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Abstract Fuzzy memberships can be understood as

coverage functions of random sets. This interpretation

makes sense in the context of fuzzy rule learning: a

random sets-based semantic of the linguistic labels is

compatible with the use of fuzzy statistics for obtain-

ing knowledge bases from data. In particular, in this

paper we formulate the learning of a fuzzy rule based

classifier as a problem of statistical inference. We pro-

pose to learn rules by maximizing the likelihood of the

classifier.

Furthermore, we have extended this methodology

to interval censored data, and propose to use upper

and lower bounds of the likelihood to evolve rule bases.

Combining descent algorithms and a co-evolutionary

scheme, we are able to obtain rule-based classifiers from

imprecise datasets, and can also identify the conflictive

instances in the training set: those that contribute the

most to the indetermination of the likelihood of the

model.

1 Introduction

It is well known that fuzzy memberships can be inter-

preted as coverage functions of random sets [5,7]. This

interpretation makes sense from a possibilistic point of

view and is also related to the likelihood-based vision

of a fuzzy set [6], therefore it can be used for assessing

the semantics of linguistic labels that have been numer-

ically obtained from data.
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In the context of machine learning, many proper-

ties of this interpretation can be exploited for learning

Knowledge Bases (KBs) from data. This has been done

in combination with clustering algorithms and also Ge-

netic Fuzzy Systems (GFSs): in [27] it was derived a

procedure for fitting a one point coverage function to a

cloud of data and this procedure was embedded in a sin-

gle linkage hierarchical clustering for obtaining scatter

fuzzy rules from data. More recently, in the GFS field,

it has been introduced the concept of random sets-rule

based system (from now on, RSRBS) and it was shown

that, under certain conditions, RSRBSs are numerically

equivalent to fuzzy rule based systems (FRBSs) and

thus they can be regarded as such [28].

The initial purpose of RSRBSs was to serve as a

threshold when determining the quality of other GFSs.

When statistical classifiers and fuzzy rule-based clas-

sifiers are compared, we often do not know to what

extent the difference in performance is intrinsic to the

dataset (because the decision surface is too complex

for being representable by a compact set of rules [12])

or the learning algorithm is accountable because it has

not found the best knowledge base (KB). As we will

show later in this paper, there are not analytical re-

sults about the optimal weight assignment for FRBSs

in the general case, but this optimal assignment can

be found for RSRBSs. As a consequence of this result,

RSRBSs can be estimated from data with deterministic

descent algorithms. Comparing the quality of a suitable

RSRBS to that of the GFS under study, we can find

those cases where a GFS has not properly converged

to an appropriate KB (but the information in its cor-

responding dataset can be represented with an FRBS)

or, by the contrary, its decision surface is too complex

for a linguistic classifier and we cannot expect that a

GFS scores well for the problem. In the same paper [28]
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it has been shown that a Genetic Algorithm (GA) can

perform a rule selection in an RSRBS and the result-

ing KB is still competitive with state-of-the-art GFSs

in both accuracy and interpretability.

Furthermore, in this paper we have generalized these

RSRBSs to interval censored data. That is to say, data

that is either known through a pair of bounds, or an

upper or lower bound of the true value. We will extend

the results of [28] to this kind of data, which is seldom

considered in the GFS field [10], and use RSRBSs for

detecting those datasets where the inaccuracy of the

data prevents us from finding a useful decision surface.

We also want to combine the method with a genetic

rule selection for deriving a linguistically understand-

able fuzzy rule based classifier that can take advantage

of this particular case of imprecise data.

There are, however, many numerical difficulties when

obtaining an RSRBS from interval data, because the

precise minimum of the objective function cannot be

produced. At the most, we will obtain a set of feasi-

ble solutions constrained by the bounds of the values of

each training data [26]. In previous works on this sub-

ject it has been proposed to use evolutionary schemes

guided to obtain nondominated sets of bounds of the

objective function by means of multicriteria GAs [29,

30]. This could be used to solve this problem, however

the computational cost is high. In this work, we pro-

pose a more efficient coevolutionary scheme [24] that

is able to produce not only a nondominated linguisti-

cally understandable classifier, but also the list of the

instances of the training set that contribute the most to

the uncertainty about the fitness of the classifier. This

list of instances is crucial for improving the computer

efficiency of our approach. We will show later that all

the elements in the training set can be approximated

by crisp data except the elements in that list. Reducing

the number of imprecise elements in the training set is

the crux for being competitive in cost with crisp GFSs.

This paper is structured as follows: in Section 2 we

recall and update the definition of RSRBS introduced

in [28], and its similarities with an FRBS. In Section 3

we state the maximum likelihood estimate of an RSRBS

from crisp data, and discuss how to extend the problem

to imprecise data. In Section 4, we discuss a coevolu-

tionary genetic algorithm that solves the problem, and

in Section 5 we provide compared numerical results.

The paper finishes with the concluding remarks in Sec-

tion 6.

2 A random-set based linguistically

understandable classifier

Let C ∈ {1, . . . , l} be the class labels, x = (x1, . . . , xn),

the features with which we perceive an object, and let

X be the input space, x ∈ X = X1 × . . .×Xn. Lastly,

let the Bayes minimum error classifier be

class(x0) = arg max
c
P (C = c | X = x0). (1)

We will consider that a rule-based classifier is a para-

metric model of P (c | x) which has a specific human-

readable form. In this section we will develop a statis-

tical model that relates that linguistically understand-

able form, based on fuzzy logic, to abstract concepts of

classification theory.

2.1 Crisp sets-based model

Let us define first an instrumental model that will be

used later in the definition of an RSRBS. We will call

“crisp parametric model” to a pair comprising a parti-

tion {A1, . . . , Am} of the input space X and a matrix

M =

 p11 . . . p1l
...

. . .
...

pm1 . . . pml

 (2)

where

pic = P (c | Ai). (3)

Given the matrix M and an input x0, we can com-

pute

P (c0 | x) =

=
m∑
i=1

P (c0 | Ai)P (Ai | x)

=

m∑
i=1

pic0IAi(x)

(4)

where IAi(x) is either 1 or 0 if x ∈ Ai or x 6∈ Ai,

respectively.

In addition, if we impose that each element of this

last partition is decomposable (see Figure 1),

Ai = A1
i × . . .×Ani , Aji ⊂ X

j (5)

then the model is linguistically understandable, because

to each element of M we can assign a linguistic rule, as

follows:

if x1 is A1
i and . . . and xn is Ani then class is ci with pi.

In case there exists a partition {L1
k, . . . , L

mj
k } on each

variable j,

Xj =

mj⋃
k=1

Ljk, Ljk ∩ L
j
m = ∅ for m 6= j (6)
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A1 A2 A3 A4

A5 A6 A7 A8

A9

A10 A11

p(C1|A1)=p11
p(C2|A1)=p12
p(C3|A1)=p13

p(C1|A2)=p21
p(C2|A2)=p22
p(C3|A2)=p23

p(C1|A3)=p31
p(C2|A3)=p32
p(C3|A3)=p33

p(C1|A4)=p41
p(C2|A4)=p42
p(C3|A4)=p43

p(C1|A5)=p51
p(C2|A5)=p52
p(C3|A5)=p53

p(C1|A7)=p71
p(C2|A7)=p72
p(C3|A7)=p73

p(C1|A8)=p81
p(C2|A8)=p82
p(C3|A8)=p83

p(C1|A9)=p91
p(C2|A9)=p92
p(C3|A9)=p93

p(C1|A10)=p10 1
p(C2|A10)=p10 2
p(C3|A10)=p10 3

p(C1|A11)=p11 1
p(C2|A11)=p11 2
p(C3|A11)=p11 3

p(C1|A6)=p61
p(C2|A6)=p62
p(C3|A6)=p63

Fig. 1 A crisp parametric model is an instrumental model that
comprises a crisp partition of the input space and a matrix of

probabilities. A crisp model for a problem with two input vari-

ables and three classes is shown. The input partition is decompos-
able and has 11 elements. Each cell can be linguistically expressed

as three interval rules “If (x1, x2) ∈ Ai the class is c1 with pi1”,

“If (x1, x2) ∈ Ai the class is c2 with pi2” and ‘If (x1, x2) ∈ Ai

the class is c3 with pi3.”

such that all terms in the antecedent of the rules fullfill

that Aji = Ljk for some k, then the linguistic rule is

descriptive. Otherwise, it is a scatter rule [4].

For example, let X1 = [0, 1] be the domain of the

weights of a collection of objects, and X2 = [1, 2] the

domain of their lengths, thus X = [0, 1] × [1, 2]. Let

{SMALL,LARGE} with SMALL= [0, 0.5], LARGE=

[0.5, 1] a linguistic partition of X1, and let {SHORT,

LONG} with SHORT= [1, 1.5], LONG= [1.5, 2] a lin-

guistic partition of X2. Lastly, consider the rule that

follows:

if x1 is SMALL and x2 is SHORT then class 2 with 0.8.

The information provided by this rule is

P (C = 2 | x ∈ [0, 0.5]× [1, 1.5]) = 0.8.

In the next section we will define a random-sets based

model by means of a family of crisp models and a prob-

ability distribution defined over this family.

2.2 Random sets-based model

As we have just mentioned, we will define a random

sets rule-based system (RSRBS) by means of a family

of crisp models, indexed by a parameter θ ∈ Θ, and a

probability distribution in Θ. Each model in this family

shares the same matrix M and depends on a partition

{Aθ1, . . . , Aθm} of the input space X (see Figure 2).

A1 A2 A3 A4

A5 A6-1 A7 A8

A9

A10 A11

A6-2

A6-3

x1

x2

Fig. 2 A random sets-based model comprises a family of crisp
models and a probability defined in this family. In the figure we

depict the case where the family comprises three elements. The 6-

th cell of the corresponding partitions is shown in detail. Observe
that the point x1 always belongs to A6, but x2 belongs to A6

with certain probability. This probability (that is, the one-point
coverage function of the random set with images {A1

6, A
2
6, A

3
6})

will be understood as a fuzzy membership function to a fuzzy cell

Ã6.

To classify an input value x, we average the outputs

of all the crisp models in the family:

P (c0 | x) =

∫
Θ

(
m∑
i=1

pic0IAθi (x)

)
dPθ

=

m∑
i=1

pic0

∫
Θ

IAθ
i
(x)dPθ

=

m∑
i=1

pic0Φi(x)

(7)

where Φi(·) is the one point coverage function of the

random set Aθi , i.e. Φi(x) = P (x ∈ Aθi ).
Let Aθi = A1θ

i × . . .×Anθi ; in case the random vari-

ables IAjθ
i

(x) are independent, then

Φi(x) =

n∏
j=1

Φji (xj) (8)

where

Φji (xj) =

∫
Θ

Ij
Aθ
i

(x)dPθ (9)

are one point coverage functions of random sets defined

on the variables Xj .

2.3 Relationship between the random set-based model

and an FRBS

According to [5,7], the one point coverage function of a

random set can be understood as a fuzzy membership
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funcion. If the functions Φi are regarded as membership

functions, then

m∑
i=1

Φi(x) =

m∑
i=1

∫
Θ

IAθ
i
(x)dPθ

=

∫
Θ

(
m∑
i=1

IAθ
i
(x)

)
dPθ

=

∫
Θ

dPθ

= 1

(10)

thus they form a Ruspini’s fuzzy partition of X [25].

This means that the linguistic information of a ran-

dom sets-based model is compatible with that of a fuzzy

model, at least for certain t-norms, t-conorms and in-

ference procedures. Observe that the inference in an

FRBS comprising rules “if Ãk then ck with wk” is:

class(x) = arg max
c

 ∨
i:ci=c

∧
j

Ãji (x) ∧ wi

 (11)

and the same process in an RSRBS composed by the

same linguistic rules (i.e. Φ(x) = Ã(x)) produces

class(x) = arg max
c

 ∑
i:ci=c

∏
j

Φji (x) · wi

 (12)

that is to say, the RSRBS is a particular case of fuzzy

classifier where
∑
Ã(x) = 1 for any x, and voting-based

inference [17] and product t-norm are used.

It is remarked that these fuzzy classifiers may be

expressed with type-III fuzzy rules [3]; each group of l

random set-based rules like

if Φk then c1 with wk1
...

if Φk then cl with wkl

carries the same meaning that

“if Ãk then c1 with wk1 and . . . and cl with wkl”.

3 Estimation of an RSRBS from data

If the linguistic partitions are not modified during the

learning, then obtaining an RSRBS from data consists

of infering the weights of the rules, i.e. the matrix M.

This is similar to many of the algorithms used for ob-

taining weighed fuzzy classification rules from data [13]:

we want to determine a sparse set of weights for the ele-

ments of a large set, comprising all the candidate rules.

This large set can contain either an exhaustive enumer-

ation of all the valid antecedents or comprise the rules

produced by another learning algorithm that was ap-

plied to the training data [15][16].

It is remarked that many authors prefer using rules

with binary weights and also optimize the parameters

defining the membership functions [4]. While there is

nothing in our previous explanation that prevents either

way, we have decided to explore the case where the

membership functions are not learnt neither tuned, but

the rule weighs are. Our initial pool of rules comprises

the set of all possible antecedents. Observe also that we

are not assuming that the consequents of these rules

are the alternatives with highest confidence [15]: cases

can be found where this assignment is not optimal [28].

The most relevant consequence of our decision is the

set of necessary conditions that follows. The weights of

the rules in an RSRBS must fulfill these conditions after

the training process, and the same conditions will be

the base of a numerical algorithm that we will propose

later.

Lemma 1 Let an RSRBS comprise m linguistic rules

“if Ãk then c1 with wk1 and . . . and cl with wkl”

Given a sample of data {(xs, cs)}s=1,...,q, the best as-

signment of weights fulfills that∑
s:cs=a

Ãi(xs)∑m
k=1 Ãk(xs)wkcs

=
∑
s:cs=b

Ãi(xs)∑m
k=1 Ãk(xs)wkcs

for all a, b ∈ {1, . . . , l}, and i = 1, . . . ,m

(13)

Proof Let us consider that an RSRBS produces the prob-

abilities p(c | x) of each class, conditioned to the in-

put, as we have stated in eq. 7. This way, the the log-

likelihood of the RSRBS is

L(M) =

q∑
s=1

log

m∑
i=1

Φi(xs)pics (14)

and there are m constraints

l∑
c=1

pic = 1. (15)

We convert the constrained problem into an unconstrained

one with the help of m Lagrange multipliers,

L′(M) =
q∑
s=1

log

m∑
i=1

Φi(xs)pics +

m∑
i=1

λi(1−
l∑

c=1

pic)
(16)

Taking derivatives with respect to pic and λi, we obtain

the following conditions∑
s:cs=c

Φi(xs)∑m
k=1 Φk(xs)pkcs

= λi (17)
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normalize(X ∈ Rm×l)

if (Xic < 0) Xic = 0

Xic = Xic/
∑l
d=1 Xid

end of normalize

minimize(M ∈ Rm×l, selected ∈ {0, 1}N)
λ,D ∈ Rm×l, α ∈ R, c ∈ 1 . . . l, i ∈ 1 . . .m

Mic = 1/l

repeat

λic =
∑
s:cs=c

Φi(xs)/
∑m
k=1 Φk(xs)Mkcs

if selected[i] then Dic = λic − l−1
∑l
c=1 λic

else Dic = 0

Brent search of α that minimizes L(normalize(M + α ·D))

M = normalize(M + α ·D)

until α||D|| < ε

end of minimize

Fig. 3 Pseudocode of the numerical algorithm used to solve the set of equations (13).

for i = 1, . . . ,m, c = 1, . . . , l and

l∑
c=1

pic = 1 (18)

thus eq. 13 fulfills.

Observe that these conditions are necessary but not

sufficient, because the likelihood function is not always

unimodal. However, in practice good solutions are found

starting from an uniform assignment of weights (all

weights equal to 1/l) and using the deterministic al-

gorithm in Figure 3. This algorithm combines solving

these m(l + 1) nonlinear equations with a descent step

based on a Brent linear search [21] and a projection of

the search direction in the feasible space. The parame-

ter called “selected” in this function allows us to select

which rows of M intervene in the optimization problem.

The unselected rows will end up with weights equal to

1/l for all classes, thus the corresponding rules vote the

same for all classes and can be removed. This parame-

ter allows us to guide the search of a compact rulebase

with a genetic algorithm, as we will show later.

The linear search (determination of the value of α)

was implemented with Brent’s method. All points ex-

amined fulfill eq. (18) because of the function normalize,

and the algorithm stops when the conditions (17) are

approximately true.

3.1 Generalization to interval-valued data

Let us study the case where the input data cannot be

precisely observed, but we perceive intervals that con-

tain them. This includes, for instance, inexact measure-

ments, censored data and missing values (represented

by an interval that spans the range of the unknown

variable). In particular, consider that we have a sample

{(Γs, cs)}s=1,...,q

where

Γs = [x−1s, x
+
1s]× . . .× [x−ns, x

+
ns]

is an interval of Rn. Let gs = (x1s, x2s, . . . , xns) be

a vector or Rn, such that xis ∈ [x−is, x
+
is], thus the

sequence (g1,g2, . . . ,gq) is a selection of the sample,

gs ∈ Γs.
If the true training set was this selection, its likeli-

hood would be

L(M) =

q∑
s=1

log

m∑
i=1

Φi(xi)pics . (19)

It is clear that the likelihood of the RSRBS, given the

information provided by the interval sample, is an un-

known value in the set

[L−(M), L+(M)] ={
q∑
s=1

log

m∑
i=1

Φi(gs)pics | gs ∈ Γs

}
,

(20)

with the same m constraints as before.

It is also clear that, generally speaking, we can no

longer determine an unique set of weights M but we

want to find the largest set of nondominated matrices

{M | L+(M′) > L−(M) for all M′}. (21)

3.1.1 GAs and interval-valued optimization

Genetic algorithms are well suited for this kind of search,

that is closely related to multicriteria optimization [19].
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Let us clarify the task at hand with the help of an ex-

ample: in Figure 4 we depict a case where we want to

find the minimum x0 of a partially known function f ,

that lies between f− and f+. We know that the value of

the objective function in the minimum, f(x0), is in the

segment we have labelled “Pareto front in the fitness

landscape”. In turn, x0 is in the area marked “Pareto

front in Genotype Space”.

Former genetic solutions to this problem [29] defined

the fitness of each individual x as the set [f−(x), f+(x)]

and then introduced a precedence between fitness val-

ues, for instance

[a, b] ≺ [c, d] ⇐⇒ b < c. (22)

Many different precedence operators can be used [11].

Once the operator is selected, a GA depending on it can

be easily defined. If the precedence operator induces a

total order in the set of fitness values, a scalar algorithm

is suitable, or else a multicriteria GA is needed. These

extended multicriteria GA produce sets of individuals

contained in the Pareto front in the genotype space.

In this paper we will improve this schema, as we

will detail in the next section. We want to identify

those “max-min” and “min-min” individuals in Figure

4. In particular, we want to identify two crisp samples

{xlow
s , cs} and {xhigh

s , cs}, with xlow
s , x

high
s ∈ Γs, such

that the models obtained from these two samples (by

applying the algorithm introduced in the preceding sec-

tion) score both extrema L− and L+ of the Pareto front

in the Fitness Landscape.

4 A proposal of coevolutionary learning of

RSRBS from vague data

In this section we propose a novel coevolutionary algo-

rithm that solves the optimization problem mentioned

in the last section. We want to obtain the bounds of

the likelihood for an interval censored dataset, and at

the same time perform a rule selection that produces a

compact rule base.

In addition, we want to save as much computer time

as possible, so this method is comparable to crisp GFSs

in execution time. It is remarked that for the most part,

the extra overhead of an interval-data based GFS is

consumed evaluating the set of classes to which an im-

precise input belongs, i.e. determining the set

class(Γ ) ={
arg maxc

{∑
i:ci=c

(∏
j Φ

j
i (x) · wi

)}
| x ∈ Γ

} (23)

Solving eq. 23 requires, in turn, of a new optimization

algorithm, that can be rather costly.

Pareto front in Genotype Space

Pa
re

to
 f

ro
nt

 in
 t

he
 F

itn
es

s 
La

nd
sc

ap
e

max-min individuals

min-max individual

y=f+(x)

y=f-(x)

X

Y

min-min individual

Dominated

individuals

Dominated

Individuals

Fig. 4 Interval optimization: f−(x) ≤ f(x) ≤ f+(x). f− and
f+ are known, but f is not. Hence, the minimum of f cannot

be known, but we can bound the values of x and f(x) at the

minimum.

However, there is no need for computing eq. 23 for

all the elements of the training set. Observe, for in-

stance, the situation depicted in Figure 5. If we wanted

to obtain the misclassification rate of the classifier given

by the decision surface in the figure, it is clear that we

can replace all those instances that do not intersect the

decision surface with points. Instead, if we want to ob-

tain the likelihood this is not exact, nevertheless it is

still true that we can replace most of the points in the

dataset by crisp instances without committing large er-

rors in the approximation.

De
ci

sio
n 

su
rf

ac
e

Fig. 5 Classification with interval data: all the elements that are
not crossed by the decision surface can be replaced by any point

in their interior without altering the error rate, and with little
influence in the specificity of the likelihood of the classifier.
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M xlow xhigh

Population of models

(Pitts approach)

Populations of samples

(Cooperative approach)

fitness(M)=[L(xlow),L(xhigh)]

Fig. 6 Populations of the coevolutionary genetic algorithm. The

first one contains different model candidates, the second and the
third contain selections of the sample where the upper and lower

bounds of the likelihood are reached.

Likewise, we propose an algorithm that searches the

best selection of rules, and at the same time finds those

elements of the sample that can be replaced by crisp

selections with the lowest approximation error. The al-

gorithm depends on three populations (see Figure 6).

The first one contains different model candidates, rep-

resented by their matrices M (thus each individual rep-

resents a model, Pitts style [18]), and the other two con-

tain the crisp samples {xlow
s } and {xhigh

s } mentioned

in the preceding section. In these two last populations,

each individual represents one point in the sample, and

the whole population is the solution (cooperative ap-

proach [14]). These three populations coevolve to find

the best RSRBS and the extrema {xlow
s }, {xhigh

s }. The

parts and operators defining this GA are described in
detail in the remaining of the section.

4.1 Representation of an individual

Each model in the first population can be univocally

represented with a binary vector, that was called “se-

lected” in Figure 3. This vector stores the set of rows

of the matrix M whose terms are different from 1/l; in

other words, if a bit is set to 1 then we emit the rule

whose antecedent is associated to the position of the

bit. Observe that this vector can have a significant size,

therefore we encode it as a sparse vector, an ordered

list of the indices of the non zeros.

The elements of the second and third populations

are points contained in the intervals Γs that form the

input part of the training set. Recall that we eventually

want to find the upper and lower extrema of the likeli-

hood of the classifier. The actual values of the elements

of the sample are not known, but we know bounds for

them: the unknown value of the s-th input xs is in the

interval Γs. In addition, we assume that, for most of the

elements in the sample, making a wrong guess about xs
does not influence too much the likelihood of the classi-

fier: those elements can be replaced with the midpoints

of Γs.

Only those values of xs that make a difference in

the likelihood will be stored. It is needed to determine

which elements are those, and for each one of them we

need to know the point in Γs where the extremum is

reached, therefore each element of the population will

be a pair (index,value). The value of xs will be nor-

malized so that the lower and upper bounds of its co-

ordinates x−js and x+js are mapped to the values zero

and one, respectively, at the corresponding alleles. That

is to say, each element xs will be codified as a pair

[s, (δ1s, . . . , δns)], where δjs = (xjs − x−js)/(x
+
js − x

−
js).

For instance, if we are given a sample of two impre-

cise values {(x1 = [0, 3]× [1, 2]× [3, 4], class = 1), (x2 =

[3, 4]×[1, 1]×[3, 3], class = 2)}, the list {1, (0.5, 1, 0.25)}
is a valid individual, and it represents a point (1.5, 2, 3.25) ∈
[0, 3]× [1, 2]× [3, 4].

It is remarked that the index s is included in the

representation because we will manage population sizes

lower than the number of instances in the training set,

and also because the same index can appear more than

once in the same population, associated with differ-

ent candidates for these selections which maximize and

minimize the likelihood for the s-th element of the sam-

ple.

4.2 Fitness value

The fitness value of a model is an interval of values

of likelihood (see Eq. 14). The extrema of this interval

are reached for certain selections of the interval-valued

sample. These selections are stored in the second and

third populations.

Due to this, the fitness value of an individual in

these last two populations is, respectively, the gain or

loss in the lower and upper bounds of the likelihood of

the model, when the point contained in the individual

is replaced by the midpoint of Γs (where s is the index

codified in the individual, as mentioned). This way, the

sum of the fitness values of all the individuals in the

population equals the difference between the likelihood

of the sample comprising the midpoints of the interval-

valued training set and the likelihood of the sample

codified by the whole population. The genetic evolution

tends, therefore, to produce sets of values with respec-

tively lower and higher likelihoods (see Figure 7 for an

actual plot of the bounds of the likelihood of the best
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Fig. 7 Example run of the GA: Bounds of the likelihood of the

best model in the first population when the second and third

populations evolve.

model in the first population when the second and third

populations evolve).

It is remarked that, in case that an index appears

more than once, the fitness values of all the individuals

but the best one must be set to zero, or else the sum of

the fitness values is no longer the mentioned difference

and the algorithm would not converge to the best solu-

tion, but to populations containing many copies of the

element that makes the fork of values of the likelihood

to grow the most. It may be argued that these duplicate

elements need not to be stored, thus making room for

new individuals and achieving a higher diversity. Nev-

ertheless, if this decision was made, on the one side, we

would also need to evolve an additional mechanism for

deciding how many conflictive elements will be consid-

ered; this last mechanism is implicit in the codification

we are proposing in this section. On the other side, the

removal of duplicates would prevent the evolution of

the value of xs, as we will discuss in Section 4.5.

4.3 Coevolutionary scheme

The coevolutionary scheme is described with the pseu-

docode that follows:

1. All populations (models, xlow and xhigh) are ini-

tialized with random values.

2. Repeat steps 3 to 9, G1 times:

3. Each model in the first population is optimized (see

Figure 3) for a sample comprising the semi-sum

of the values encoded in the populations xlow and

xhigh.

4. This first population is ranked by means of a prece-

dence operator between intervals [20]; this definition

is reproduced in Section 4.4 for making this paper

more self-contained. The elite is copied apart. Tour-

nament selection, crossover and mutation are per-

formed in this population, and the offspring is in-

serted in place of the worst individuals in the tour-

nament.

5. Repeat steps 6 to 9, G2 times:

6. The first element of the second population (xlow)

is temporarily replaced by the midpoint of its cor-

responding interval Γs in the training set. The like-

lihood of the elite model is reevaluated. The gain

with respect to the lower bound of the likelihood of

the elite, is the fitness of this first element. Changes

are reverted, and this procedure is repeated for all

the elements in this population.

7. The first element of the third population is replaced

by the midpoint of its corresponding interval Γs in

the training set, and the process described in the

preceding step is repeated, now for the higher bound

of the likelihood.

8. For the two last populations, if an element of the

sample appears more than once, the fitness of all

the instances of the element but the best one are

assigned a value 0.

9. Crossover and mutation are performed in these last

two populations, and the offspring is inserted back

in place (steady state).

4.4 Uniform dominance

The precedence operator between interval-valued fit-

ness values has been adapted, as mentioned, from [20].

In short, for deciding whether an interval [a1, b1] is pre-

ferred to another interval [a2, b2] we define two uniform

probability distributions in both intervals and assume

that the two unknown fitness values f1 and f2 fulfill

f1 → U [a1, b1], f2 → U [a2, b2]. (24)

so that

[a1, b1] � [a2, b2] ⇐⇒ p(f1 ≥ f2) ≥ p(f2 > f1). (25)

4.5 Genetic operators

All algorithms are steady state and based in a tour-

nament selection. The offspring of the winners of the

tournament replace the last two elements of the tour-

nament, whose length is used to control the selective

pressure.

Standard two-point crossover and mutation are used

in the first population, which is binary encoded. The

other populations need custom operators. Two individ-

uals (s1, δ1) and (s2, δ2) are crossed as follows:
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– If s1 = s2, we do an arithmetic crossover between

δ1 and δ2 [22].

– If s1 6= s2, we insert a copy of the best individual

and randomly generate the other.

This last operator might seem too disruptive, however

consider that individuals with the same index “s” are

actually being part of a subpopulation, since their “delta”

parts can be regarded as approximations to the best

value of xs. Individuals from different subpopulations

have completely unrelated delta parts, thus we have de-

cided to regard the crossover of individuals of different

subpopulations as a decimation operator and promote

the introduction of new genetic material.

5 Numerical results

In this section we have performed three different anal-

ysis of the algorithm:

1. Study of the robustness of the algorithm for increas-

ing vagueness of the input data.

2. Exploitation of the information in linguistic datasets

with censoring, interval valued data and missing val-

ues.

3. Study of crisp classification problems with missing

values, for gaining insight into the advantages or

disadvantages of an interval-based representation.

5.1 Robustness of the algorithm

The first set of tests is intended to show that this algo-

rithm is consistent and the quality of the rules obtained

with it degrades less with highly imprecise datasets

than crisp classifiers. We have used a subset of size 100

of the Haykin’s two gaussians problem [9], and have

added interval-valued imprecision to the data in two

different manners:

1. Each sample has been enclosed by a square of ran-

dom size, not centered in the point (one of the ver-

tices of the square is the actual value of the in-

stance). The training sets comprise sets of squares

whose sides are of varying lengths, with uniform dis-

tributions between 0 and 0.8, 1.0 and 1.2, respec-

tively.

2. Some of the samples were enclosed in intervals span-

ning the values between the lowest point in the scale

and the actual point, other samples were enclosed

in intervals that origin in the actual point and reach

the highest value in the scale (censored data).

In both cases, we have begun with a small amount of

imprecision and we have gradually increased it, plot-

ting the corresponding decision surfaces of the RSRBSs

and 1NN (nearest neighbor) classifiers in Figure 8. In

the upper part of the figure we show how the decision

surface of RSRBS is approximately the same for differ-

ent uncertainties of the sample, while the 1NN surface

changes because of the changes in the centers of the

squares. However, the most important differences are

shown in the lower part of the figure, where a different

fraction of the inputs instances are censored. Observe

that the decision surface of the RSRBS is almost im-

mune to the presence of censored data, while the 1NN

is largely affected.

5.2 Exploitation of the information in synthetic

problems

We expect that the algorithm described in this paper

is able to efficiently exploit the available information

in imprecisely perceived datasets. It is well known that

when there are missing, censored or interval data, stan-

dard GFSs must preprocess the information and make

up suitable replacements for the incomplete instances.

This generated information might or might not match

the actual, unknown instances. In this last case, we

want to check that the degradation of the quality of the

new algorithm is lower than that of the combination of

a crisp algorithm and a suboptimal preprocessing of the

data.

Given that the GFS proposed in this paper is not

optimized for large datasets, because the representation

of an individual in the first population is potentially

very consuming in space, we have designed a benchmark

for which

1. We know that the classification rules can be ex-

pressed with a compact rulebase: low to moderate

number of features, not too complex decision sur-

face.

2. The data has low quality, including censoring, inter-

val valued and missing features.

To comply with our first requirement, we have built

an RSRBS comprising 9 rules in a problem with two

inputs between 0 and 1, and two classes. This RSRBS is

a model of a joint probability of the input features and

the class (Section 2). Since we know the distribution

of the population, we have generated datasets whose

Bayes error is also known, and for which there exists

an RSRBS which is the optimal solution. Two datasets

of sizes 100 and 1000 were generated.

The second requirement has been fulfilled by adding

imprecision to these datasets. We have considered three

different categories of imprecision:
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Fig. 8 Upper part: (a), (b) and (c): The addition of interval-valued imprecision to the data alters the decision surface of classical
classifiers, but the RSRBS is less affected. The average length of the side of the squares is lowest in (a) and highest in (c). Lower part:

(d), (e) and (f): Different percentages of upper or lower censored data have a large influence in the decision surface of crisp classifiers,

not so for RSRBSs. In all the figures, the green ellipse is the theoretical decision surface for the crisp, precise data. The classical
classifier (red line) is the 1NN. The black line is the decision surface of the RSRBS, with three labels for each variable, and trained

with a Genetic Algorithm as explained in the text.

1. Censoring: in the 50% of cases, the training data xs
is replaced by the interval [0, xs]. The other cases

were replaced by the interval [xs, 1].

2. Interval valued data: each training data is replaced

by the interval [xs, xs+0.4]. or [xs, 1] if xs+0.4 > 1

3. Missing values: 40% of the points in the training set

had one of their features replaced by the interval

[0, 1].

These three additions were performed for both data-

sets, giving the six problems we will use in this section.

Other details of the experimental setup are: each exper-

iment has been repeated 10 times, with a 5x2cv exper-

imental design. The size of the first genetic population

is 25. Second and third populations are of sizes 100 or

1000, depending on the dataset. The number of gen-

erations G1 is 50 and G2 is 5 (see Section 4.3). The

probabilities of crossover and mutation in the first pop-

ulation are 0.7 and 0.1, and the probability of crossover

in the second and third populations are equal to 0.9.

The tournament size is 5.

For crisp algorithms (LDA and QDA discriminant

analysis [8], multilayer perceptron [9], KNN classifier,

Chi [2], Ishibuchi [13], Pal-Mandal [23] and RSRBS

[28]) we replaced each interval by its midpoint. We ex-

pect that our approach performs the best in all the

cases we selected, and also that the final populations

xlow and xhigh contain the most conflictive points for

the classifier (i.e., those points that, if removed, reduce

the most the width of the interval of likelihoods of the

model).

The mean value of the test results are shown in Ta-

ble 1, and the boxplots depicting the relevance of the

differences are displayed in Figure 9. We have obtained

the expected results in all cases but one (40% of missing

data, datasets of size 100), where the crisp version of

the same algorithm improved the results. At the sight of

these preliminary results, we think that this algorithm

is a promising new technique for exploiting interval data

in rule-based classification problems.

5.3 Crisp benchmarks with missing data

While this method is not expected to improve previous

algorithms for crisp data and, in particular, will pro-

duce the same results as in [28] for crisp datasets, we

have studied the three datasets in the KEEL Dataset
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Crisp Interval

Linear Quadratic Neural KNN CHO ISH PM RSRBS RSRBS

censored - 100 0.492 0.478 0.460 0.448 0.448 0.488 0.478 0.478 0.424

censored - 1000 0.421 0.414 0.424 0.437 0.409 0.413 0.474 0.403 0.402
interval - 100 0.554 0.478 0.490 0.506 0.460 0.478 0.458 0.442 0.432

interval - 1000 0.394 0.397 0.402 0.416 0.450 0.393 0.424 0.351 0.346

missing - 100 0.408 0.372 0.426 0.376 0.364 0.328 0.518 0.330 0.372
missing - 1000 0.416 0.445 0.412 0.461 0.470 0.426 0.456 0.415 0.401

Table 1 Numerical results: Crisp algorithms (LDA and QDA discriminant analysis [8], multilayer perceptron [9], KNN classifier, Chi
[2], Ishibuchi [13], Pal-Mandal [23] and RSRBS [28] were compared to Interval-RSRBS. The best test results are boldfaced.
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Fig. 9 Boxplots showing the dispersion of the results in Table 1. Censored data, sizes 100 (a) and 1000 (b). Interval valued data, sizes
100 (c) and 1000 (d). Missing data, sizes (e) and 1000 (f). The algorithms being compared are in the same order as they appear in
Table 1.

webpage [1] that have missing values (see the mentioned

reference for a description of these datasets). We have

carried a compared study of these, using the same bat-

tery of algorithms in the preceding section, for deter-

mining whether the use of the new coevolutionary ge-

netic algorithm, combined with an interval-valued rep-

resentation of the missing data, is competitive with a

crisp algorithm where the missing value is replaced by

the mean of the remaining elements of the variable. We

expect that the improvements are minimal, if any, but

also that the new algorithm is not worse than its crisp

version.

The results of the experimentation are shown in Ta-

ble 2 and Figure 10. From the mean values in Table 2

we can conclude that there is a small, not statistically

significant advantage to this method in all the cases (see
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Crisp Interval

Linear Quadratic Neural KNN CHI ISH PM RSRBS RSRBS

Cleveland 0.410 - 0.437 0.433 0.466 0.410 0.427 0.413 0.410

Credit 0.145 0.143 0.151 0.239 0.275 0.134 0.147 0.135 0.133
Dermatology 0.158 - 0.103 0.106 0.191 0.098 0.336 0.095 0.095

Table 2 Numerical results: Crisp algorithms (LDA and QDA discriminant analysis [8], multilayer perceptron [9], KNN classifier, Chi
[2], Ishibuchi [13], Pal-Mandal [23] and RSRBS [28] were compared to Interval-RSRBS. The best test results are boldfaced.
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Fig. 10 Boxplots showing the dispersion of the results in Table 2. Censored data, sizes 100 (a) and 1000 (b). Interval valued data,
sizes 100 (c) and 1000 (d). Missing data, sizes (e) and 1000 (f). The algorithms being compared are in the same order as they appear

in Table 2.

the boxplots in Figure 10 for information about the dis-

persion of the test results). This is an expected result,

because the number of missing values is small and their

influence in the fitness value is not very noticeable.

6 Concluding remarks

In this paper we have proposed a new approach for

obtaining linguistically understandable classifiers from

interval-valued data. We have defined a particular case

of FRBS and its optimal assignment of weights. Then

we have combined a descent algorithm with a coevolu-

tionary scheme and searched in parallel for the best set

of rules, and for the two selections of the training set

where the lowest and highest likelihood are reached.

These two bounds are used to find a model which is

not dominated by other models, and that results in a

robust estimation under vague input data. Lastly, we

have checked that this approach is able to obtain bet-

ter models than many statistical and fuzzy classifiers.

This is, however, a seminal work that might be ben-

efited in the future from some changes in the repre-

sentation of the rule base. In this sense, we plan to

include “don’t care” terms among other, more flexible

descriptions of linguistic rulebases that allow reducing

the number of degrees of freedom of this model in prob-

lems with a large number of input features.
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