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Design of Adaptive Fuzzy Logic Controller Based on
Linguistic-Hedge Concepts and Genetic Algorithms
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Abstract—In this paper, we propose a novel fuzzy logic con-
troller, called linguistic hedge fuzzy logic controller, to simplify the
membership function constructions and the rule developments.
The design methodology of linguistic hedge fuzzy logic controller
is a hybrid model based on the concepts of the linguistic hedges
and the genetic algorithms. The linguistic hedge operators are
used to adjust the shape of the system membership functions
dynamically, and can speed up the control result to fit the system
demand. The genetic algorithms are adopted to search the optimal
linguistic hedge combination in the linguistic hedge module.
According to the proposed methodology, the linguistic hedge fuzzy
logic controller has the following advantages: 1) it needs only the
simple-shape membership functions rather than the carefully
designed ones for characterizing the related variables; 2) it is
sufficient to adopt a fewer number of rules for inference; 3) the
rules are developed intuitionally without heavily depending on
the endeavor of experts; 4) the linguistic hedge module associated
with the genetic algorithm enables it to be adaptive; 5) it performs
better than the conventional fuzzy logic controllers do; and 6) it
can be realized with low design complexity and small hardware
overhead. Furthermore, the proposed approach has been applied
to design three well-known nonlinear systems. The simulation and
experimental results demonstrate the effectiveness of this design.

Index Terms—Adaptive fuzzy logic controller, genetic algorithm,
linguistic hedge.

I. INTRODUCTION

CONVENTIONAL control system designs heavily rely on
the linearized models or the mathematical descriptions

of the controlled plants. As to the real world nonlinear and
more complex systems which have no adequate mathematical
expression to describe them, their related controller models are
therefore difficult to construct. The fuzzy logic controller (FLC)
first implemented by Mamdani [1] on the basis of the fuzzy
logic system generalized from the fuzzy set theory originated
by Zadeh [2] has appeared to offer a feasible solution to var-
ious control problems [3]–[7]. In an FLC, the inference en-
gine plays the role of a kernel. It explores the fuzzy rules pre-
constructed by experts to accomplish inference. Since the rules
specify the implication relationships between the input variables
and output variables characterized by their corresponding mem-

Manuscript received January 24, 1999; revised September 23, 2000. This
work was supported by the National Science Council, R.O.C., under Grant
NSC-89-2215-E-006-021.

B.-D. Liu and C.-Y. Chen are with the Department of Electrical Engi-
neering, National Cheng Kung University, Tainan, Taiwan 70101, R.O.C.
(e-mail: bdliu@cad.ee.ncku.edu.tw).

J.-Y. Tsao was with the Department of Electrical Engineering, National
Cheng Kung University, Tainan, Taiwan 70101, R.O.C. She is now with
EE-Solutions, Inc., Hsinchu, Taiwan 30052, R.O.C.

Publisher Item Identifier S 1083-4419(01)00088-7.

bership functions, the choice of the rules along with the mem-
bership functions makes significant impacts on the final per-
formance of the FLC and therefore becomes the major control
strategy in FLC design. The more the membership functions are
used, the more the rules emerge, and the finer the results of in-
ference.

Much research has concentrated on the rule construction in
an FLC design. Simpson [8] proposed a fuzzy min–max neural
network for pattern classification. He used a single pass expan-
sion–contraction process of fuzzy set hyperboxes to learn non-
linear class boundaries. Based on his hyperbox method, Abe
[9] proposed a method for fuzzy rule extraction directly from
the numerical data. In the meantime, Wang [10] proposed gen-
eral methods to generate the fuzzy control rules automatically
according to the input–output (I/O) data pairs of the control
system. With these methods, the rule extraction process can
be done by one-pass to reduce the system construction com-
plexity, and the experience of a human expert can be combined
with the rules obtained from automatic learning. On the other
hand, the tree structure is such a simple and easily understood
method for modeling the problem that many applications are
solved [11]–[14]. Turksen [15] proposed a two-level tree search
method for a fuzzy expert system. With his method, taking ad-
vantage of the tree approach, the computational complexity and
the search time of the fuzzy system can be reduced. In addition,
Liu [16] proposed a tree-based FLC design methodology. By
means of this method, not only can the control rules be extracted
automatically but the search time can also be significantly re-
duced.

With regard to the membership functions, instead of having
the membership functions constructed manually by skilled op-
erators or experts, several researchers have proposed methods
for automatically selecting the high performance membership
functions for FLC’s. Karr [17] properly specified the member-
ship functions to ensure efficient FLC performance by using
the genetic algorithms (GA) [18], [19] which have the ability
of searching the near-optimal or optimal solutions in the solu-
tion space and are widely used in many applications [20]–[23].
Chang [23] adopted the GA-based tuning methods to member-
ship function tuning. Iokibe [24] automatically generated the
membership function by means of the fuzzy clustering method
which produces a much richer construction efficiency than the
neural network approach [25]. Krishnapuram [26] relied on the
properties of possibilistic clustering to develop an approach for
generating membership functions. Kim [27] applied the concept
of inductive reasoning to generate the membership function. In
his scheme, no extra information is needed except the experi-
enced data describing the input and output relationships. For the
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multivariable fuzzy systems, Chen [28] developed a technique
to decompose a system with complicated I/O relationships into
the accumulation of simple I/O relationships, and to extract a
suitable membership function for each simple subsystem. Wu
[29] proposed an algorithm to generate fuzzy rules and train
membership functions based on the defined format of fuzzy
rules.

On the other hand, Zadeh [30] proposed the fuzzy linguistic
hedges such asvery, more or less, much, essentially, andslightly
to modify the membership functions of the fuzzy sets. Since
the linguistic hedges proposed by Zadeh in 1973, only a small
amount of literature dealing with these concepts has been pub-
lished [31]–[39]. Banks [31] used hedge operations to better
qualify and emphasize the crisp variables to mix crisp and fuzzy
logic in applications. Bouchon-Meunier [32] investigated sev-
eral interesting properties of linguistic hedge, such as

1) being compatible with simple symbolic rules;
2) avoiding computations and being compatible with the

fuzzy logic;
3) enhancing the comparison of various available fuzzy im-

plication;
4) managing gradual rules in the context of deductive rules.

Modifying the existing linguistic hedge models, Novák [33]
proposed a horizon-shifting model of linguistic hedges, by
which the membership function can be shifted as well as its
steepness modified. In addition, the concept of extended hedge
algebras and their application in approximate reasoning was
discussed by Ho [34], [35]. To maintain the completeness
of the set of the linguistic hedges, Liu [36]–[39] proposed
several hedge operators. Their related hardware realizations in
current-mode approach are also found.

Although the rule developments and the membership func-
tion constructions can be accomplished automatically by a va-
riety of algorithms, this major strategy in an FLC design still
becomes a considerable challenge when the number of men-
tioned variables is increased, when the parameters of the con-
trolled plants are varied, or when the conditions of the envi-
ronment are changed. To aim directly at this point, an adap-
tive FLC with ease of membership function constructions and
rule developments is necessary. In this paper, we take advantage
of the superior characteristics inherent in the linguistic hedges
and the search ability of GA to design a novel FLC called alin-
guistic hedge fuzzy logic controller(LHFLC). In this controller,
each variable utilized is characterized by only three fuzzy sets
with simple-shape membership functions; therefore, the max-
imum number of fuzzy rules required for a system withinput
variables is . Moreover, a module called thelinguistic hedge
moduleembedded in this controller plays the role of a linguistic
modifier. It is used to dynamically modify the shape of simple-
shape membership functions according to the feedback signal
from the controlled plants. This modification action allows the
LHFLC to utilize only fewer rules and simple-shape member-
ship functions without the satisfactory performance degrading.
In addition, to prevent the foul factors from damaging the system
design, the adjustment of the linguistic hedge module through
the attached GA module makes this controller adaptive. Finally,
three well-known examples including the nonlinear plant model

control system [40], the truck backer-upper control system [41],
and the cart-pole balance system [42] will be used to verify the
feasibility of this LHFLC.

This paper is organized as follows. In Section II, we will
briefly review the fuzzy set theory and introduce the concept
of fuzzy linguistic hedges. Besides, the FLC will be also men-
tioned. In Section III, the architecture of the proposed LHFLC
will be presented. The GA algorithms used for searching the op-
timal hedge combination will be presented in Section IV. In Sec-
tion V, three well-known examples along with their simulation
results will be presented to verify the feasibility of this LHFLC.
In addition, the experimental results acquired by controlling the
real cart-pole balance system will also be demonstrated. Sec-
tion VI concludes this work.

II. FUZZY SETS, FUZZY LINGUISTIC HEDGES, AND FUZZY

LOGIC CONTROLLER

A. Fuzzy Set Theory and Fuzzy Set Operations

Fuzzy sets have been interpreted as membership functions
that associate with each elementof the universe of discourse

a number in the interval . In essence, a fuzzy set
may be represented in the form of

(1)

In the case of having a finite support , the dis-
crete form of (2) is [30]

(2)

where is the grade of membership of in .
Unlike the crisp set logic that distinguishes the members of

a given set from no-members by binary decision, the fuzzy sets
are characterized by their membership functions. In order to ma-
nipulate the fuzzy sets as well as ordinary sets with Boolean op-
erations, Zadeh [30] proposed the extension of the ordinary set
theory for fuzzy sets. Let and be two fuzzy sets in with
membership functions and , respectively. The fuzzy set
operations ofunion, intersection, andcomplementare defined
as follows.

Union:

(3)

Intersection:

(4)

Complement:

(5)

These fundamental fuzzy operations are often used to build the
other fuzzy logic functions.
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B. Fuzzy Linguistic Hedges

In a fuzzy logic based system, the information is described
linguistically. The linguistic hedge is an operator with an oper-
ation like a modifier used to modify the shape of membership
functions. According to the statement in [30], linguistic hedge
operations can be classified into three categories:concentra-
tion, dilation, andcontrast intensification. In this paper, we only
focus on theconcentrationtype and thedilation type hedge op-
erations.

1) Concentration: Applying a concentration operator to a
fuzzy set results in the reduction in the magnitude of the grade
of membership of in which is relatively small for those
with a high grade of membership in and relatively large for
those with low membership. The hedge operation of “concen-
tration ” defined by Zadeh [30] is

CON (6)

Based on the above definition, a few related hedge operations
such asabsolutely, very, much more, more, andpluscan be de-
fined as [36], [39]

absolutely (7)

very (8)

much more (9)

more (10)

plus (11)

2) Dilation: In contrast, the effect of dilation is opposite to
that of concentration. The hedge operation of “dilation ” de-
fined by Zadeh [30] is

DIL (12)

Similarly, some related hedge operations such asminus, more
or less, andslightly can be defined as [38], [39]

minus (13)

more or less (14)

slightly (15)

In order to consider the hedge effect on the fuzzy set, the
hedge operatorvery is used to stand for theconcentrationtype
operation; the hedge operatormore or lessis used to stand for
thedilation type operation. The fuzzy setscold, very cold, and
more or less coldcharacterized by their membership functions

, and are shown in
Fig. 1. In this figure, the membership function of the fuzzy set
very coldis generated by applying the hedge operatorvery to
that of the fuzzy setcold while the membership function of the
fuzzy setmore or less coldis generated by applying the hedge
operatormore or lessto that of the fuzzy setcold. Obviously,
the linguistic hedgevery tends to narrow the shape of the
membership function and decrease the membership degree;
the linguistic hedgemore or lesstends to widen the shape of
the membership function and increase the membership degree.
That is, the members in the fuzzy setvery coldare closer to the

Fig. 1. Effects of the fuzzy linguistic hedge “very” and “more or less”.

Fig. 2. Basic configuration of a fuzzy logic controller.

temperature ofcold while the members in the fuzzy setmore
or less coldare farther far away from the temperature ofcold.

C. Fuzzy Logic Controller

A fuzzy logic controller designed on the basis of the fuzzy
logic is an approximate reasoning-based controller, which
does not require exactly analytical models and is much closer
in spirit to human thinking and natural language than the
traditional logic system. Fig. 2 shows the block diagram of an
FLC consisting of four principal units: thefuzzifier module,
fuzzy inference engine, knowledge base, and thedefuzzifier
module. In fuzzy control applications, the observed data are
usually crisp. Since the data manipulation in an FLC is based
on fuzzy set theory, fuzzification is necessary during an earlier
stage. Fuzzification is related to the vagueness and imprecision
in a natural language, which translates the input crisp data
into the fuzzy representation for further processing. The most
outstanding feature of fuzzy set theory which made it very
attractive for applications is its ability to model the meaning of
natural language expressions. A fuzzy system is characterized
by a set of linguistic statements according to expert knowledge
that is usually represented in the form of “IF–THEN” rules
expressed as

IF (a set of conditions are satisfied)

THEN (a set of consequences can be inferred)(16)

The antecedent and the consequence of these IF–THEN rules
are associated with fuzzy concepts, so they are often calledfuzzy
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conditional statements. In fact, the antecedent is a condition in
its application domain and the consequence is a control action
for the system under control. Above all, the fuzzy control rules
provide a convenient way for expressing control policy and do-
main knowledge. The knowledge base module is used to specify
the control rules, which comprises a knowledge of the applica-
tion domain and the attendant control goals. Moreover, to deal
with the fuzzy information described above, the fuzzy inference
engine employs the fuzzy knowledge base to simulate human
decision making and infer fuzzy control actions. Finally, the de-
fuzzifier module is used to translate the processed fuzzy data
into the crisp data suited to real world applications.

Consider a multivariable fuzzy control system with three in-
puts and three outputs. The linguistic description of the system
control rules can be expressed as [5] [see (17) at the bottom of
the page], where is the fuzzy value of the-th input vari-
able defined in the universe of discourse ; and

is the fuzzy value of the-th output variable defined in the
universe of discourse .

Assume that the outputs depend only on the inputs and have
nothing to do with the other outputs. Thus, the linguistic de-
scription of the control rules can be rewritten as

IF AND AND THEN

or
...

IF AND AND THEN

or
...

IF AND AND THEN (18)

where . The three-input/three-output system can be
decomposed into 3 three-input/one-output systems. Regarding
the three-input/ one-output system, the fuzzy relation of this
system defined by Zadeh [30] can be expressed as

(19)

If the present inputs are , and , then the present output
can be determined by the compositional rule of inference

[30]

(20)

Fig. 3. Membership functions of the fuzzy sets NB, NM, NS, ZE, PS, PM, and
PB.

Essentially, the control strategies in the FLC are based on ex-
pert experience, so the fuzzy logic controller can be regarded as
the simulation of a humanoid control model. When designing a
FLC, the control strategies have to be based on the determination
of the fuzzy membership function of control variables and the
linguistic control rules. Therefore, after finishing the design of a
controller, if the control result fails to meet the system require-
ments due to a change in the outside environment of the control
system, the system control strategies have to be modified to fit
the control objective. The possible solution to this problem is
that we can adjust either the membership function of the fuzzy
sets or the control rules to achieve the control objective.

To explain the linguistic hedges from a more physical per-
spective, we consider their effects on the inference performance
of an FLC whose goal is to produce the suitable control ac-
tions to control the controlled plants reaching the desired sit-
uations. In general, the schedule of the membership functions
of the fuzzy sets in this case are in the form shown in Fig. 3, in
which the fuzzy sets are labeled with linguistic variables Nega-
tive–Big (NB), Negative–Medium (NM), Negative–Small (NS),
Zero (ZE), Positive–Small (PS), Positive–Medium (PM), and
Positive–Big (PB). What an FLC should do is lead the controlled
plant to the state such that the input variables and the output
variables of this FLC enter the range around the fuzzy set ZE or
reach ZE, which indicates that a balanced condition is met. For
simply explaining the effect of linguistic hedges on the member-
ship functions, we concentrate only on the fuzzy sets NB, ZE,
and PB. The dashed lines in Fig. 4 are the membership functions
of the fuzzy sets NB, ZE, and PB. The solid lines in Fig. 4(a)
represent the effect of the hedge operatormore or lesson the
fuzzy sets NB, ZE, and PB, while those in Fig. 4(b) reveal the
effect owning to the hedge operatorvery. Clearly, the effect of
more or lesscan be viewed as the stress of fuzzy sets in physical
meaning. Alternatively, if is located in NB or PB, themore or
lesseffect increases the membership degrees and stresses the
meaning of NB or PB. This action forces FLC to consider that

IF AND AND THEN AND AND

or
...

IF AND AND THEN AND AND

or
...

IF AND AND THEN AND AND (17)
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Fig. 4. Diagrammatic sketch of effects withveryandmore or less. (a) Effect ofmore or less. (b) Effect ofvery.

the input state is still far from the target ZE. Furthermore, the
FLC stresses the output control action to reach the target earlier.
The situation of located in ZE is the same as stated above.
The stress of ZE forces FLC to consider that the input state is
very close to the target and to tune the output control action in a
finer manner to fit control demand. On the other hand, opposite
to that ofmore or less, the effect ofvery suppresses the input
state. This means that if is located in NB or PB, the suppres-
sion forces FLC to consider that the input state is not far from
the target ZE and to control the output action to approach the
target in a finer manner. As usual, ifis located in ZE, suppres-
sion forces FLC to consider that the input state is not close to
the target and to tune the output action in a coarser manner to fit
the system demand.

III. L INGUISTIC HEDGE FUZZY LOGIC CONTROLLER

ARCHITECTURE

The LHFLC is designed by taking advantage of the superior
characteristics inherent in the linguistic hedges which can be
used to modify the shape of the fuzzy membership functions in
order to achieve better inference performance. The major differ-
ence between this proposed LHFLC and the conventional FLC
is that a module calledlinguistic hedge moduleis inserted into
the conventional one to adjust the shape of fuzzy membership
functions dynamically according to the feedback signal from
the controlled plant. The emerged interesting result is that this
LHFLC maintains better performance even though the number

of the inference rules is reduced to a number as small as possible
such as that only nine rules are used. Fig. 5 is the block dia-
gram of this LHFLC, which consists of several modules similar
to those in a conventional FLC except for the linguistic hedge
module attached to the fuzzifier module. Relying on the benefits
described, the number of inference rules used in this LHFLC is
nine. These rules are usually scheduled in a rule table. As
shown in Fig. 6, three fuzzy sets labeled NB, ZE, and PB are
used in this architecture, which are the most general and uni-
versal representations of membership functions used in FLC’s.
The Z-shape membership function of fuzzy set NB can
be expressed as

(21)

The -shape membership function of fuzzy set ZE can
be expressed as

(22)

The S-shape membership function of fuzzy set PB can
be expressed as

(23)
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Fig. 5. Architecture of linguistic hedge fuzzy logic controller.

Fig. 6. Membership functions applied to linguistic hedge fuzzy logic
controller.

In order to apply the hedge operations to the proposed FLC,
the domains of the input variables are partitioned intoin-
tervals. From the mathematical point of view, the membership
functions , and seem to be assembled
by piecewise linear functions. These partitioned membership
functions denoted as , and can be ex-
pressed as

(24)

where denotes the trace of a matrix, and is the par-
tition matrix defined as (25) shown at the bottom of the page.
in which denotes the step size of the input domain partition,
and is the unit step function of defined as

(26)

The membership function in each interval
is now modified by its corresponding hedge operator

which is the -th element of the hedge combination vector
defining the proper hedge operators of the

intervals of the whole input domain. For the sake of the
convenience of mathematical expression, we define the hedge
combination matrix as

...
...

...
(27)

where is the -th basis of dimensional vector space, which
is defined as

... (28)

and

otherwise
(29)

That is, every entry of is 0 except the diagonal entriess
which give the hedge operators of the corresponding interval
of membership function. Since the matrix is diagonal, the
membership functions , and
resulting from modification by corresponding hedge operators
can be expressed as

(30)

After processing in the fuzzifier module and the linguistic hedge
module, we send the resulting signals to the succeeding stage re-

...
...

... (25)
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ferred to as the inference engine. This stage infers the fuzzy con-
trol actions employing fuzzy implication and rules constructed
by the expert experience. The fuzzy reasoning method adopted
in the LHFLC is Mamdani’s Minimum Operation Rule [43].
The final stage is the defuzzifier module whose function is to
transfer the signal from the fuzzy set into the real world for ob-
taining the actual control actions. The widely used method, cen-
tral of gravity (COG), is adopted in the proposed LHFLC. In this
case, the crisp output can be derived by [5]

(31)

where is the abscissa at which the membership function
reaches the maximum value and is the number of
quantization levels of the output variable.

According to the above descriptions, we can find that the
characteristic of this architecture simplifies the complexity of
the LHFLC design both on architecture itself and the hardware
realization. From the viewpoint of the LHFLC architecture it-
self, inserting a linguistic hedge module allows us to use the
simple triangle-like membership functions and a fewer number
of rules instead of the more carefully designed membership
functions and the large number of rules to reach the control
goals. As a result, the membership function constructions and
the rule developments become simpler works. From the view-
point of the hardware realization, by comparing this LHFLC
and the conventional FLC’s, we can find that only one extra
module called a linguistic hedge module is inserted. Besides,
the fuzzifier circuit (membership function generator) becomes
simpler than those of the conventional FLC’s because it only
has to generate fewer and simpler triangle-like membership
functions; thus, size of memory is decreased dramatically be-
cause fewer rules are needed storing. Therefore, this LHFLC
can be realized with low design complexity and small hardware
overhead.

IV. OPTIMIZATION MECHANISMS

In LHFLC, we must tune the linguistic hedge combinations
which are difficult to be contributed according to human ex-
perience and knowledge. To acquire an optimal combination,
we adopt the GA’s as the search method. In this work, the GA
module works offline. That is, it searches the optimal linguistic
hedge combination vector according to the controlled plants
specified at first, and then provides this solution to the linguistic
hedge module to make the LHFLC adaptive. Among all the
various GA’s, the simple GA is the simplest one without loss
of efficiency. In this work, we adopted a modified version of
a simple GA for increasing the linguistic hedge combination
variety while searching the optimal solution. Fig. 7 shows the
flow chart of the modified simple GA. In this algorithm, ten
individuals with lower fitness among the whole population are
removed, and ten newly generated individuals fill the resulting
vacancies in the population. This operation increases the variety
of the combination of linguistic hedges and enhances the search
ability. Before proceeding with this GA approach, there are two
preliminaries to be finished.

Fig. 7. Modified simple GA approach for searching the optimal hedge
combinations.

A. Two Preliminaries in GA

1) Definition of Suitable Coding:One of the most attractive
problems in GA’s is coding the solution space. According to the
eight hedge operations mentioned before and theempty-hedge
operation defined as

empty-hedge (32)

there are nine possible hedge operations to be adopted in the
linguistic hedge module for modifying the corresponding mem-
bership functions properly. Consider the input domain parti-
tioned into intervals with their own hedge operations. In the
case of a system with three fuzzy sets, the overall number of
linguistic hedge combinations is as many as . That is,
there are as many as kinds of encoding representations
to be searched. To simplify this search problem, we investi-
gate these three mentioned membership functions as shown in
Fig. 6 again. The demonstrated significant result is their sym-
metrical property. That is, the membership function is
self-symmetrical with respect to the line ; the
membership functions and are symmetrical
to each other with respect to the line. Therefore, the hedge
combination of the fuzzy set ZE ranging from the first interval
to the -th interval and those ranging from the -st
interval to the -th interval must be symmetrical with respect
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TABLE I
PARAMETERS FORMODIFIED SIMPLE GA

to the line . Accordingly, the hedge combination vector
used to specify the membership function of fuzzy set ZE must
be in the form of

(33)

where specifies the hedge operators corre-
sponding to the intervals to the left of the line , and is
the vector whose elements are in the reverse order with respect
to those of , i.e.,

(34)

where the transfer matrix is defined as

...
...

...
(35)

Similarly, consider the fuzzy sets NB and PB. The hedge com-
bination vector specifying the hedge operators ranging from
the first interval to the -th interval of the fuzzy set NB and
the hedge combination vectorspecifying the hedge operators
ranging from the -st interval to the -th interval of
the fuzzy set PB must be also symmetrical with respect to the
line . That is

(36)

Obviously, once the vector and the vector are determined,
the vectors and can be also obtained in turn. The
hedge combination vector used to specify the fuzzy sets NB
and PB becomes

(37)

where specifies the hedge operators ranging from the first
interval to the -th interval of the fuzzy set NB while
specifies the hedge operators ranging from the -st
interval to the -th interval of the fuzzy set PB. Accordingly,
the hedge combination vectors we have to determine areand

with the dimension of . For GA processing, more natural
representations are more efficient and produce better solutions.
Hence, the real-coded representation is used to manipulate the
floating point hedge operators. Each individual to be considered
is encoded as a vector of floating point numbers, i.e.,

or (38)

Fig. 8. Control loop of nonlinear plant model control system.

Fig. 9. The7� 7 rule table of nonlinear plant model control system.

where

(39)

(40)

(41)

and

all hedge operators such as

and

(42)

This kind of encoding representation reduces the number of the
possible individuals in the search space dramatically from
to .

2) Choice of Fitness Function:The second preliminary to
be finished is choosing the problem-dependent fitness function.
Different fitness functions promote different GA behaviors,
which generate fitness values providing a performance measure
of the problem considered. The general form of a fitness
function consists of two functions and can be expressed as
the composition of a scaling function and an objective
function , i.e.,

(43)

where is the objective function returning a cost value, and
is the scaling function transferring the cost value to the

fitness. In this work, we choose the fitness function using the
power scaling function, which can be expressed as

(44)

where stands for the cost function which varies from
problem to problem, and can be viewed as a discernment
measure.

After deciding these two preliminaries, we should choose the
genetic operators. This modified simple GA consists of three
kinds of genetic operations which areselection, crossover, and
mutation.
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Fig. 10. Fuzzy membership functions fore(k); _e(k), and�x of conventional fuzzy logic controller with7� 7 rules.

B. GA Operators

1) Selection: Selection chooses the individuals in the popu-
lation as parent individuals to create offspring for the next gen-
eration, whose purpose is to emphasize the fitter individuals in
the population in hopes that their offspring will in turn have
even higher fitness. In this work, the implementation method of
fitness-proportionate selection is adopted. The selective proba-
bility of the -th individual is

(45)

2) Crossover: Instead of the single-point crossover, we
adopt the two-point crossover to increase the candidate popula-
tion variety of the linguistic hedge combinations. For example,
the parent individuals and given to be crossovered at the
points and with the crossover probability results in
the new offspring and expressed as

otherwise
(46)

and

otherwise.
(47)

3) Mutation: Each element in a hedge combination string is
a possible candidate for the mutated element that may be ran-
domly replaced by all the hedge operators according to the mu-
tation probability . As an illustration, the individual mu-
tated in the -th element and the-th element results in the new
offspring expressed as (48) shown at the bottom of the next
page.

In order to acquire better performance, several parameters for
GA’s should be set appropriately. In this work, the parameters
suggested by De Jong [44] are adopted, which are widely used
in GA community. These parameters are shown in Table I.

Fig. 11. The3� 3 rule table of the nonlinear plant model control system.

Fig. 12. Fuzzy membership functions fore(k); _e(k), and�x of conventional
fuzzy logic controller with3 � 3 rules.

V. DEMONSTRATIVE EXAMPLES AND EXPERIMENTAL RESULTS

The capability and feasibility of the proposed LHFLC
are demonstrated in this section. The focus of this work is
to emphasize that the LHFLC with fewer rules can work
better than a conventional FLC with more rules. To do this,
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Fig. 13. Genetic algorithm performance at each generation of nonlinear plant model control system. (a) Average fitness value. (b) Average cost value.

three well-known nonlinear systems including the nonlinear
plant model control system, the truck backer-upper control
system, and the cart-pole balance system are used to verify
the performance of the LHFLC. The number of rules chosen
in this LHFLC is nine; the domain of each input variable
is divided into 16 equal intervals. Throughout this work, all
simulations are performed with MATLAB [45]. In addition, the
physical cart-pole balance system is also used to demonstrate
the feasibility of this LHFLC.

A. Nonlinear Plant Model Control System

1) Problem Description:The first example in this work is a
non-BIBO nonlinear plant [40] with the plant model

(49)

where is the input signal of the plant andis its output signal.
The reference model that the plant output will track is chosen as

(50)

The diagram of the plant control loop is plotted in Fig. 8. The
goal of this system is to determine the plant input such that

(51)

where is a suitably chosen constant. That is, the faster
tracks the reference signal , the better the controller will
perform. In Fig. 8, the variables and represent the
error input and the change rate of error input of the controller,
respectively, which are expressed as

(52)

and

(53)

where the time step is chosen as 0.1 seconds. Furthermore,
in (49) can be expressed as

(54)

where represents the increment of the plant inputat each
iteration. Since the chosen plant model is nonlinear, it is diffi-
cult to handle it when the controller is determined by the clas-

hedge operators randomly selected fromaccording to otherwise.
(48)
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Fig. 14. Simulation result of nonlinear plant model control system.

TABLE II
PERFORMANCEFACTORS OFNONLINEAR PLANT MODEL CONTROL SYSTEM

sical control theory. The FLC is therefore a suitable choice to
replace the role played by this controller. The input variables of
the FLC are the errorand its change rate; the output variable
is . In order to stress the power of the proposed LHFLC, the
performance of the system controlled by the conventional FLC
with rules and rules is also concerned.

2) Simulation Results:

• Conventional FLC with Rules
Fig. 9 shows the rule table specifying the implication
relationships between the input variables (and ) and the
increment of the output variable in the FLC. As shown
in Fig. 10, the input variables and are characterized
by seven fuzzy sets with the Gauss-like membership
functions distributed in the interval and

, respectively; the increment of the output
variable is characterized by seven fuzzy singletons
over the interval with the sup-

port values (with membership equal to 1) located at
, and , respec-

tively.
• Conventional FLC with Rules

In this case, the number of rules in the conventional FLC
is reduced from to to run the same simulation.
The rule table specifying the I/O relationships is shown in
Fig. 11. Fig. 12 shows the membership functions for the
input variables ( and ) scheduled by only three fuzzy sets
with the simple shape membership functions linguistically
labeled as NB, ZE, and PB distributed over the intervals

and , respectively; the output
variable is characterized by three fuzzy singletons NB,
ZE, and PB over the interval .

• LHFLC with Rules
The major difference between the LHFLC and the FLC
with rules is the inserted linguistic hedge module.
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Fig. 15. Diagram of simulated truck and loading zone.

Fig. 16. The5� 7 rule table of truck backer-upper control system.

The linguistic hedge combination is searched by GA and
the fitness function is chosen as

(55)

where is selected as 0.2 and is the cost function
expressed as

(56)

in which is the number of iterations during simula-
tion. In the GA searching phase, the performance is mea-
sured according to its corresponding cost value. The lower
the cost value, the better the linguistic hedge combination
searched. Hence, the variable will track the reference
signal in the best manner possible. During this phase,
the state is chosen as the initial state to
search the optimal linguistic hedge combination by GA.
Fig. 13 shows the GA performance. From this figure, the
maximum average fitness value of 0.79 can be achieved at
the 39th generation. The resultant optimal linguistic hedge
combination vectors are shown in (57) at the bottom of the
page for the fuzzy set ZE and in (58) shown at the bottom
of the next page for the fuzzy sets NB and PB.

Fig. 17. Fuzzy membership functions forx; �, and� of conventional FLC
with 5 � 7 rules.

Fig. 18. The3� 3 rule table of truck backer-upper control system.

Fig. 19. Fuzzy membership functions forx; �, and� of conventional FLC
with 3 � 3 rules.

(57)
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Fig. 20. GA performance at each generation of truck backer-upper control system. (a) Average fitness value. (b) Average cost value.

The performance of the plant model controlled by this
LHFLC is indicated by the solid line in Fig. 14. We define
the settling time as the time for response to settle to within

% of the steady-state value. Therefore, the plant output
tracks the reference signal with 0.3 s settling time

in the proposed LHFLC system. In contrast, the plant output
tracks the reference signal with 1.1 s settling time

when it is controlled by the conventional FLC with
rules. Also, tracks with 2.7 s settling time when it is
controlled by the conventional FLC with rules. Clearly,
the LHFLC which adopts the least number of rules ( rules
rather than rules as those in the conventional FLC) and
the simplest shape membership functions (the triangle-like
membership functions rather than the Gauss-like ones as those
in the conventional FLC) possesses the best performance.
Table II summaries these results.

B. Truck Backer-Upper Control System

1) Problem Description:The truck backer-upper control
system with the goal of parking the truck in a prescribed
parking lot is shown in Fig. 15. Three variables , and
describe this system well, where the variablespecifies the

angle of the truck to the horizontal while the coordinate pair
specifies the position of the rear center of the truck in the

plane . The truck moves backward by some
fixed distance at each step. The experiment is targeted to drive
the truck to the loading dock at a right
angle .

At each stage, the fuzzy logic controller produces the steering
angle which causes the truck to back up to the loading zone
from any initial position with any angle in the plane. The dy-
namic equations describing the truck moving backward from

to at each iteration can be expressed as [41]

(59)

(60)

(61)

where is the fixed moving distance of the truck at each itera-
tion. The constraints of these mentioned variables are

(62)

(63)

(64)

(58)
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Fig. 21. Trajectories of truck with the initial point(x; y; �) = (10; 10;260 ).

where the positive values ofrepresent clockwise rotations of
the steering wheel while the negative ones represent counter-
clockwise rotations.

The performance of the FLC is measured in terms of the
docking errordefined as the Euclidean distance between the
actual final position and the desired final position

of the truck, i.e.,

docking error
(65)

For the FLC, the input variables are the-position and the
truck angle ; the output variable is the steering angle. The
-position can be ignored becauseand are both the functions

of . In this example, the results acquired from the conventional
FLC with rules and rules are also mentioned to
demonstrate the outstanding behavior of this proposed LHFLC.

2) Simulation Results:

• Conventional FLC with Rules
Fig. 16 shows the rule table specifying the implication
relationships between the input variables (and ) and
the output variable in the FLC. As shown in Fig. 17,
five fuzzy sets with the carefully designed membership
functions linguistically labeled as NB, NM, ZE, PM, and
PB corresponding to the input variablesare designed
over interval ; seven fuzzy sets with the
carefully designed membership functions linguistically
labeled as NB, NM, NS, ZE, PS, PM, and PB corre-
sponding to the input variables are designed over
interval ; seven fuzzy sets with carefully

designed membership functions linguistically labeled
as NB, NM, NS, ZE, PS, PM, and PB corresponding
to the output variable are designed over interval

.
• Conventional FLC with Rules

Similar simulation work is performed in the other conven-
tional FLC in which the number of rules is reduced from

to to emphasize the capability of the LHFLC.
The rule table is shown in Fig. 18. As shown in Fig. 19,
the input variable either or is scheduled by only three
fuzzy sets with the triangle-like membership functions lin-
guistically labeled as NB, ZE, and PB distributed over the
intervals and , respectively;
three fuzzy singletons with related linguistic labels corre-
sponding to the output variableare specified in the in-
terval .

• LHFLC with Rules
Similar to the LHFLC designed in the first example, the op-
timal linguistic hedge combination is searched by GA. The
major concern is whether the truck backs at the right site
at a right angle or not; hence, the docking-error is included
in the fitness function to search the optimal combinations.
The fitness function is chosen as

(66)

where is selected as 0.8 and is the cost function
of the docking-error expressed in (65). In this example,
the GA performance is measured according to the
docking-error oriented cost value. That is, the smaller the
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Fig. 22. Trajectories of truck with the initial point(x; y; �) = (30; 20;60 ).

docking-error, the better the performance of this LHFLC.
The truck state is chosen as the
initial state to search the optimal hedge combinations by
GA. The GA performance is shown in Fig. 20. This figure
indicates that the maximum average fitness value of 0.9 can
be achieved at the 22nd generation. The resultant optimal
linguistic hedge combination vectors are shown in (67) at
the bottom of the page for the fuzzy set ZE and in (68) at the
bottom of the page for the fuzzy sets NB and PB.

Fig. 21 shows the trajectory of the truck with the initial
state . The performance factors are
listed in Table III. According to the results in Table III, the
proposed LHFLC possesses the lowest docking-error with
the smallest number of iterations. To verify the generality
of this linguistic hedge combination, the other initial point

is also chosen to simulate this truck
backer-upper control system. The simulation results in Fig. 22
and Table III reveal that the LHFLC still gets the best perfor-
mance of the truck backer-upper control system. These results

meet our claims again. That is, the LHFLC that adopts the least
number of rules ( rules rather than rules as those
in the conventional FLC) and the simplest shape membership
functions (the triangle-like membership functions rather than
the carefully designed ones as those in the conventional FLC)
possesses the best performance.

C. Cart-Pole Balance System

1) Problem Description:The cart-pole balance system is re-
ally a well-known nonlinear system the goal of which involves
both vertically balancing a pole hinged to a motor-driven cart
and causing the cart to be stopped at the specified position by
applying forces on it either left or right. Fig. 23 represents the
cart-pole balance system, which can be described by the fol-
lowing nonlinear differential equations [46] [see (69) and (70)
at the bottom of the next page], where the related parameters are

m/s acceleration due to gravity;
kg mass of cart;
kg mass of pole;

(67)

(68)
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TABLE III
PERFORMANCEFACTORS OFTRUCK BACKER-UPPERCONTROL SYSTEM

Fig. 23. Diagram of simulated cart-pole balance system.

m half-pole length;
coefficient of friction of cart on track;
coefficient of friction of pole on cart;

s the sample time;
the four state variables and the output variable are

position of the cart on the track (in meters);
cart velocity (in meters per second);
angle of the pole with the vertical (in radians);
rate of change of the angle (in radians per second)
force (in Newtons) applied to cart’s center of mass.

In this example, we use theswitching-typefuzzy sliding
mode controller (FSMC) to control the cart-pole balance system
as our platform. The switching-type FSMC proposed by Li [47]
is a method based on FLC and sliding mode controller (SMC)
[48]–[50], which achieves asymptotic stability of the system.
The dynamics of the cart-pole balance system is divided into
approaching conditionanddeparture condition. Two different
FSMCs to solve control problems for these two conditions
should be designed, each characterized by the associated sliding

Fig. 24. The5� 5 rule table of the cart-pole balance system.

surface chosen. The sliding surface of the cart-pole balance
system for the approaching mode is designed as

(71)

while that for the departure mode is chosen as

(72)

in which the error vector is defined as the
difference between the actual state vector and
the desired state vector . That is

(73)

The input variables of the switching-type FSMC areand its
time derivative ; the output variable is the force applied to

sgn
(69)

sgn (70)
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Fig. 25. Fuzzy membership functions fors; _s, andf of switching-type fuzzy sliding mode controller with5� 5 rules.

Fig. 26. The3� 3 rule table of the cart-pole balance system.

the cart. In the simulation as well as the experiment, the objec-
tive with which we are concerned is to control the pole being
balanced at the position m with the angle rad.

2) Simulation Results:

• Switching-Type FSMC with Rules
Fig. 24 shows the rule table which specifies the impli-
cation relationships between the input variables (and
) and the output variable in this controller. The five

fuzzy sets with Gauss-like membership functions linguis-
tically labeled as NB, NS, ZE, PS, and PB corresponding
to the input variable and are designed over the inter-
vals and , respectively,
as shown in Fig. 25. The output variableis character-
ized by seven fuzzy singletons designed over the interval

.
• Switching-Type FSMC with Rules

To emphasize the capability of the LHFLC, the number of
rules in the original switching-type FSMC is reduced from

to to run the same simulation. In this case,
the rule table is shown in Fig. 26. Each input variable is
defined by three fuzzy sets with triangle-like membership
functions distributed over the intervals
and , respectively, as shown in Fig. 27.
The output variable is defined by three fuzzy singletons
distributed over the interval .

Fig. 27. Fuzzy membership functions fors; _s, andf of switching-type FSMC
with 3 � 3 rules.

• LHFLC with Rules
In this case, the linguistic hedge concept is applied to the
design of switching-type FSMC in order to modify the
membership functions of the input variablesand . The
optimal linguistic hedge combination is searched by GA
according to the fitness function defined as

(74)

where is selected as 0.1; and are the cost
functions expressed as

(75)
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Fig. 28. Genetic algorithm performance at each generation of cart-pole balance system. (a) Average fitness value. (b) Average cost value.

and

(76)

in which is the number of iterations during simula-
tion. During the search process, the state

is chosen as the initial state to search the
optimal linguistic hedge combination by GA. The cost
values returned by GA reflect the qualities of the lin-
guistic hedge combinations searched. The lower the cost
value, the better the result searched. That is, we expect
the pole angle to reach 0 rad and the cart to be located
at the desired position m as fast as possible.
Fig. 28 shows the GA performance. Obviously, the max-
imum average fitness value of 0.8 can be achieved at the
40th generation. The resultant optimal linguistic hedge
combination vectors are shown in (77) at the bottom of

the page for the fuzzy set ZE and in (78), shown at the
bottom of the page, for the fuzzy sets NB and PB.

Fig. 29 shows the response of the cart-pole balance system
controlled by the switching-type FSMC with either or

rules and the LHFLC with associated. Obviously, either
the pole angle response or the cart position response reveals that
the LHFLC adopting the least number of rules and the simplest
shape membership functions really enhances the performance of
the FLC adopting rules and Gauss-like membership func-
tions or the FLC adopting rules and triangle-like member-
ship functions.

3) Experimental Results:To apply the proposed LHFLC to
the real experimental system, the cart-pole balance system man-
ufactured by Phimatic Enterprise Co. Ltd. is used to demonstrate
this work. The arrangement of the whole experimental setup is
illustrated in Fig. 30. The specifications of the related hardware
are listed as follows.

(77)

(78)
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Fig. 29. Simulation result of the cart-pole balance system with initial conditions(�; _�; x; _x) = (0; 0; 0; 0). (a) Response of pole angle. (b) Response of cart
position.

Fig. 30. Experimental setup of the cart-pole balance system.

Pole: 0.5 m length;
Drive force: dc motor (15 W);
Sensor: Photo encoder (500 pulse per rotation);
Micro-computer: 486 personal computer;

A/D, D/A & digital signal control card: MBSP card [51].
Initially, the LHFLC algorithm is programmed in C language.

The control signals generated by the resultant execution code
compiled from the C program are sent to the DSP controller of

the MBSP card through the 25-pin RS-232 transmission line.
The DSP controller processes the received signals to produce
the control actions. These control actions are delivered to a dc
motor via the D/A converter to apply the suitable force to the
cart. The state of the cart-pole balance system is sensed by a
photo encoder and fed back to the A/D converter of the MBSP
card. This routine is run continuously until the system demand
is met.

The responses of the pole angle and the cart position are
recorded by computer and plotted in Fig. 31. Fig. 32 exhibits
the photograph of the cart-pole balance system controlled by
the resultant LHFLC with an exposure of about 8 s.

VI. CONCLUSION

In this paper, we have proposed the LHFLC. By means of ad-
justing the membership functions dynamically through the lin-
guistic hedge concept, we can employ fewer rules and simple-
shape membership functions to achieve a better performance
than a conventional FLC does. Moreover, the GA module at-
tached to this system with the ability of searching the optimal
linguistic hedge combination allows this LHFLC to confront the
variations due to internal or external factors; in other words, this
LHFLC is adaptive. To verify the feasibility of this LHFLC,
we have simulated three famous examples including the non-
linear plant model control system, the truck backer-upper con-
trol system, and the cart-pole balance system. The member-
ship functions used in these systems are S-shape,-shape, and
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Fig. 31. Experimental result of the cart-pole balance system.

Fig. 32. Photograph of cart and pole during control with initial conditions
(�; _�; x; _x) = (0; 0; 0; 0).

Z-shape. The number of rules is nine and the number of parti-
tions of each input variable is 16. We have also performed exper-
iment on the real cart-pole balance system to prove this LHFLC
to be practical. Both the simulation and experimental results re-
veal that the proposed scheme is really feasible.

Due to the benefits mentioned such as characterizing the re-
lated variables by simple-shape membership functions, infer-
ring control actions based on fewer rules, and its adaptability,
this LHFLC is attractive especially in the systems with more
variables. Furthermore, to be suited to the real-world applica-
tions, the study on developing a hardware realization of this
LHFLC in VLSI to achieve a real-time adaptive FLC will be
continued in the future.
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