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Abstract We exploit an evolutionary three-objective

optimization algorithm to produce a Pareto front approxi-

mation composed of fuzzy rule-based classifiers (FRBCs)

with different trade-offs between accuracy (expressed in

terms of sensitivity and specificity) and complexity (com-

puted as sum of the conditions in the antecedents of the

classifier rules). Then, we use the ROC convex hull method

to select the potentially optimal classifiers in the projection

of the Pareto front approximation onto the ROC plane. Our

method was tested on 13 highly imbalanced datasets and

compared with 2 two-objective evolutionary approaches

and one heuristic approach to FRBC generation, and with

three well-known classifiers. We show by the Wilcoxon

signed-rank test that our three-objective optimization

approach outperforms all the other techniques, except for

one classifier, in terms of the area under the ROC convex

hull, an accuracy measure used to globally compare dif-

ferent classification approaches. Further, all the FRBCs in

the ROC convex hull are characterized by a low value of

complexity. Finally, we discuss how, the misclassification

costs and the class distributions are fixed, we can select

the most suitable classifier for the specific application.

We show that the FRBC selected from the convex hull

produced by our three-objective optimization approach

achieves the lowest classification cost among the

techniques used as comparison in two specific medical

applications.

Keywords Genetic fuzzy rule-based classifiers �
Multi-objective evolutionary algorithms �
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1 Introduction

Multi-objective genetic fuzzy modeling uses genetic/evo-

lutionary algorithms to design fuzzy rule-based systems

(FRBSs) with a good trade-off between accuracy and

interpretability (Herrera 2008; Ishibuchi 2007). As dis-

cussed in the specialized literature (Casillas et al. 2003a;

Cordon et al. 2001; Herrera 2008; Ishibuchi et al. 2005a, b;

Karr and Gentry 1993), evolutionary algorithms have been

successfully used for accuracy improvement of FRBSs in

control, regression, and classification tasks. The main

advantage of FRBSs is their linguistic interpretability; on

the other hand, improvement in system accuracy is gen-

erally achieved at the expense of interpretability (Casillas

et al. 2003b). While in the past a lot of attention has been

paid only to system accuracy, in the last years an increasing

number of papers have focused on a good trade-off

between interpretability and accuracy (Casillas et al. 2005,

2007; Nauck and Kruse 1999; Yen et al.1998): in

this framework, multi-objective evolutionary algorithms

(MOEAs) (Coello Coello and Lamont 2004; Coello Coello

2006; Deb 2001; Zitzler et al. 2000) have proved to be very

effective in searching for optimal solutions to problems

that incorporate multiple performance criteria in competi-

tion with each other. MOEAs generate a family of equally

valid solutions, where each solution tends to satisfy a cri-

terion to a higher extent than another. Different solutions
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are compared with each other by using the notion of Pareto

dominance. A solution x associated with a performance

vector u dominates a solution y associated with a perfor-

mance vector v if and only if, 8i 2 f1; . . .; Ig; with I the

number of the criteria, ui performs better than, or equal to,

vi and 9i 2 f1; . . .; Ig such that ui performs better than vi,

where ui and vi are the ith elements of vectors u and v,

respectively. A solution is said to be Pareto-optimal if it is

not dominated by any other possible solution. The set of

Pareto-optimal solutions is denoted as Pareto front. Thus,

the aim of a multi-objective search algorithm is to discover

a family of solutions that are a good approximation of the

Pareto front. In the case of multi-objective genetic fuzzy

modeling, each solution in the front represents an FRBS

with an associated trade-off between accuracy and

interpretability.

In Ishibuchi et al. (1997) and Ishibuchi and Yamamoto

(2004), MOEAs have been used for fuzzy rule selection,

after extracting a large number of candidate rules from

numerical data by a heuristic approach. The objective of

these studies is to find non-dominated subsets of candidate

fuzzy rules with respect to both accuracy maximization and

complexity minimization. Furthermore, in Ishibuchi and

Nojima (2007) and Cococcioni et al. (2007), the authors

show how sets of fuzzy rule bases can be generated with

different trade-offs between accuracy and complexity/

interpretability. Each rule is coded as an integer string, with

each integer representing a fuzzy set, and a rule set is

represented in a chromosome by concatenating as many

strings as there are rules. Ad-hoc genetic operators are

implemented to generate the offspring populations.

In Cordon et al. (2003), a multi-objective genetic algo-

rithm has been used to jointly perform feature selection and

fuzzy set granularity learning in order to obtain FRBSs

composed of a compact set of comprehensive fuzzy rules

with high classification ability. Finally, in Alcalá et al.

(2007), a new method is presented that, by considering

selection of rules together with tuning of membership

functions, achieves solutions only in the Pareto zone with

the highest accuracy. These solutions have the lowest

possible number of rules but still present the highest

accuracy.

In the last years, FRBSs have been extensively applied

in the framework of pattern recognition for their good

characteristics of generalization and their capability to

explain how they perform classification (Casillas et al.

2001; Chang and Lilly 2004; Chi et al. 1996; Cordon et al.

1999; Ho et al. 2004; Ishibuchi and Yamamoto 2005;

Nakashima et al. 2007). These FRBSs are denoted as fuzzy

rule-based classifiers (FRBCs) in the literature.

In this paper, we focus on binary classifiers, that is,

classifiers that assign patterns to one of two different

classes, typically denoted as positive and negative classes.

We use FRBCs which exploit the maximum matching

method as reasoning method (see Cordon et al. 1999) and

the penalized certainty factor as weight (see Ishibuchi and

Yamamoto 2005). We exploit a multi-objective evolu-

tionary approach to generate FRBCs with rule bases

characterized by different trade-offs between accuracy and

interpretability.

Usually, the accuracy of a classifier is evaluated in terms

of percentage of correct classifications, and the objective of

a classifier identification process is to maximize this per-

centage (or, equivalently, to minimize the misclassification

rate). This objective might not be appropriate for the

application domains characterized by highly imbalanced

distributions of patterns, with positive cases composing just

a small fraction of the available data used to train the

classifier, or when the cost of misclassification of the

positive patterns is different from the cost of misclassifi-

cation of the negative patterns.

As regards classification of imbalanced datasets, several

techniques have been proposed to overcome the bias

toward the majority class that can result from the classical

machine learning algorithms (Batista et al. 2004; Chawla

et al. 2002). In Fernandez et al. (2008), authors have

studied the behavior of FRBCs for imbalanced datasets,

focusing on the synergy between the preprocessing mech-

anism of instances and the configuration of the systems.

Good results have been achieved by using the algorithm

proposed in Chi et al. (1996) to identify the rule base after

the preprocessing step. However, the metric used does not

take the different misclassification costs of each class into

account and the obtained FRBCs lose their typical inter-

pretability due to the high number of rules.

In Nakashima et al. (2007), a cost-sensitive approach for

image-processing tasks based on FRBCs has been pre-

sented: the FRBC has been modified to incorporate the

concept of pattern weight, which can be considered as the

cost of an input pattern being misclassified. Given an initial

rule base, an iterative learning algorithm has been proposed

to adjust the rule weights in order to minimize the FRBC

misclassification cost.

The receiver operating characteristic (ROC) curve

analysis has proved to be very effective to compare dif-

ferent binary classifiers (Fawcett 2003, 2006; Provost and

Fawcett 2001). The ROC curve is usually obtained by

varying the parameters representing the binary classifier,

and, for each classifier so generated, by plotting a point in

the plane of the sensitivity and of the complement to one of

the specificity. The sensitivity and the specificity express,

respectively, how well the system classifies patterns

belonging to the positive class and to the negative class.

Sensitivity and specificity should be concurrently opti-

mized. In some previous works (Anastasio et al. 1998;

Everson and Fieldsend 2006; Kupinski and Anastasio
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1999) this optimization is performed by an evolutionary

multi-objective approach for binary non-fuzzy classifiers.

In this paper, we extend this approach to FRBCs and add a

third objective, namely the system complexity. We mea-

sure the complexity as sum of the conditions which com-

pose the antecedents of the rules included in the FRBC.

Using a well-known multi-objective evolutionary algo-

rithm, namely the NSGA-II (Deb et al. 2002), we manage

to provide a set of binary classifiers with a good trade-off

among complexity, sensitivity, and specificity. After the

optimization process, all the classifiers obtained are pro-

jected onto the ROC plane: in order to select a set of

potentially optimal classifiers we use the ROC convex hull

method proposed in (Provost and Fawcett 2001).

We applied the proposed approach to 11 datasets from

the UCI repository (Asuncion and Newman 2007) and to 2

real medical datasets. All the datasets are highly imbal-

anced. To evaluate the global performance of the set of

classifiers, we used the area under the ROC convex hull

(AUCH). Further, we performed the Wilcoxon signed-rank

test using the AUCH as a metric to compare our approach

with two-two-objective evolutionary approaches and one

heuristic approach to FRBC generation, and with three

well-known classifiers. Finally, we show the application of

the proposed approach to the generation of concrete

FRBCs for discriminating the regions of interest (ROIs) in

the lungs as nodules and non-nodules in a Computer Aided

Diagnosis (CAD) system, and for discriminating calcifi-

cation (cancerous samples) and non calcification (non-

cancerous samples) in mammography.

2 Fuzzy rule-based classifiers

Pattern classification consists in assigning a class Cj from a

predefined class set C = {C1,…, CK} to an object, repre-

sented as an F-dimensional point in a feature space <F : Let

X = {X1,…, XF} be the set of input variables and Uf,

f = 1,…, F, be the universe of the fth variable. Let Pf ¼
Af ;1; . . .;Af ;Tf

� �
; f ¼ 1; . . .;F; be a fuzzy partition with Tf

fuzzy sets of universe Uf : The mth rule Rm m ¼ 1; . . .;Mð Þ
of an FRBC is typically expressed as:

Rm : IF X1 is A1;jm;1 and. . .and XF is AF;jm;F

THEN Y is Cjm with RWm ð1Þ

where Y is the classifier output, Cjm 2 C is the class label

associated with the mth rule, jm;f 2 ½1; Tf � identifies the

index of the fuzzy set (among the Tf fuzzy sets of the

partition Pf ), which has been selected for Xf in the rule Rm,

and RW m is the rule weight, i.e., a certainty degree of the

classification in the class Cjm for a pattern belonging to the

fuzzy subspace delimited by the antecedent of the rule.

Let T = {(x1, y1),…, (xN, yN)} be a training set com-

posed of N input–output (xt, yt) pairs, with xt ¼
½xt;1; . . .; xt;F � 2 <F and yt 2 C: The strength of activation

(matching degree of the rule with the input) of the rule Rm

is calculated as wmðxtÞ ¼
QF

f¼1

Af ;jm;f ðxt;f Þ; and the associa-

tion degree with the class Cjm is calculated as

hm(xt) = wm(xt) � RWm.

In the last few years, different approaches have been

proposed to calculate the value of the rule weight RWm

(see Cordon et al. 1999, Ishibuchi and Yamamoto 2005 and

Mansoori et al. 2007).

Two of the most known approaches are

(1) certainty factor CFm ¼
P

xt2Cjm
wmðxtÞ

PN

t¼1
wmðxtÞ

(Cordon et al.

1999), where N is the total number of patterns;

(2) penalized certainty factor P CFm ¼ CFm �

�
P

xt 62Cjm
wmðxtÞ

PN

t¼1
wmðxtÞ

(Ishibuchi and Yamamoto 2005).

A fuzzy rule-based classifier is also characterized by its

reasoning method, which uses the information from the

rule base to determine a class label for a specific input

pattern.

In this paper, for the sake of simplicity, we focus on the

maximum matching method as reasoning method and the

penalized certainly factor as weight. In the maximum

matching method, an input pattern is classified into the

class corresponding to the rule with the maximum associ-

ation degree calculated for the pattern: in case of tie, we

randomly classify the pattern. The choice of this combi-

nation of reasoning method and rule weight is supported by

the results shown in Fernandez et al. 2008, where an in-

depth study on the use of FRBCs for imbalanced datasets

has been performed. Here, different kinds of fuzzy rule

reasoning methods, of rule weights and of fuzzy rule

learning methods have been compared and a detailed

analysis on the importance of the pre-processing in gen-

erating FRBCs using non-evolutionary approaches has

been carried out. The authors have concluded that the

FRBC which uses the maximum matching method as rea-

soning method and the penalized certainty factor as weight

achieves the best results.

Once the reasoning method and the rule weight are

selected, an FRBC can be completely described by the

following matrix J 2 NM�ðFþ1Þ

J ¼

j1;1 . . . j1;F Cj1

. . . . . . . . . . . .
jm;1 . . . jm;F Cjm

. . . . . . . . . . . .
jM;1 . . . jM;F CjM

2

66664

3

77775
ð2Þ
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where the generic element (m, f) indicates that the fuzzy set

Af ;jm;f has been selected for the variable Xf in the rule Rm,

and Cjm is the associated class label. As an example, let us

consider a two input-single output system. Let P1 = {A1,1,

A1,2, A1,3}, P2 = {A2,1, A2,2, A2,3} be the uniform fuzzy

partitions of the two input variables, and C = {C1, C2, C3}

be the class set. Then, the following rule base

R1: IF X1 is A1,2 and X2 is A2,1 THEN Y is C1

R2: IF X1 is A1,2 and X2 is A2,2 THEN Y is C3

R3: IF X1 is A1,1 and X2 is A2,1 THEN Y is C2

is described by the matrix

J ¼
2 1 1

2 2 3

1 1 2

2

4

3

5: ð3Þ

In this work, we deal with the binary classification

problem and so C = {C1, C2}, where C1 represents the

negative class and C2 the positive class.

After fixing the input variable partitions, the reasoning

method, and the weight type, we identify a set of rule bases

using an evolutionary approach in the multi-objective

framework in order to obtain FRBCs that show simulta-

neously high accuracy and low complexity. Note that the

approach described in the following sections can be

exploited for FRBCs with any kind of weights, rules, and

reasoning methods.

3 Three-objective evolutionary optimization

in the ROC space

In the framework of binary classifiers, the ROC curve anal-

ysis (Fawcett 2006; Provost and Fawcett 2001) is typically

adopted to compare different classifiers with each other. Let

TPR = TP/(TP ? FN) be the true positive rate and

FPR = FP/(TN ? FP) be the false positive rate, where

TP = true positive (positive correctly classified), TN = true

negative (negative correctly classified), FP = false positive

(negative classified as positive), FN = false negative

(positive classified as negative). TPR and FPR coincide,

respectively, with the sensitivity and the complement to 1 of

the specificity. A chart is built, where TPR is represented on

the ordinate axis, and FPR on the abscissa axis, by varying

the classifier parameters. In this way, a specific classifier is

represented as a point corresponding to its pair (FPR, TPR).

These pairs give origin to the so-called ROC curve. Typi-

cally, the curve is plotted by varying the classifier parameters

by a fixed step. This approach is feasible when the number of

parameters is very small; otherwise, the generation of pos-

sible combinations of parameter values would require too

much computational effort.

To solve this problem, we started from the following

consideration: one point in the ROC space is better than

(dominates) another if it is located more north-west (higher

TPR, lower FPR, or both). It follows that TPR and FPR are

two conflicting objectives that have to be concurrently

optimized within the identification process of a binary

classifier. Moreover, in our case, we would like to deter-

mine comprehensible classifiers. As discussed in Ishibuchi

and Yamamoto (2004), the comprehensibility of the FRBSs

depends on four factors: (1) comprehensibility of the fuzzy

partitions of the input variables, (2) simplicity of the fuzzy

rules, (3) simplicity of the fuzzy rule base, and (4) sim-

plicity of the fuzzy reasoning.

Comprehensibility of the fuzzy partitions basically relies

on the linguistic interpretability of the fuzzy sets, which is

related to their number and to the separation of the

neighboring fuzzy sets. Simplicity of the fuzzy rules is

related to the type of fuzzy rules and to the number of the

inputs involved in each rule. Simplicity of the fuzzy rule

base mainly depends on the number of the input variables

and the number of rules. Simplicity of the fuzzy reasoning

depends on the type of inference used to deduce conclu-

sions from facts and rules.

In this paper, we do not take the first and fourth factors

into account. As stated earlier, we assume that the universe

of discourse of each variable is uniformly partitioned, and

we adopt the maximum matching method and the general

model as reasoning methods. As regards the second factor,

we use rules which, adopting linguistic variables in the

antecedent part and singleton values (the class label) in the

consequent part, guarantee an optimal interpretability. As

regards the third factor, in order to reduce the complexity

of the FRBSs we restrict the number of rules. Actually,

complexity can be computed as a sum of the conditions

which compose the antecedents of the rules included in the

classifiers.

Reducing complexity and improving specificity and

sensitivity are often conflicting objectives. To deal with

this antagonism and generate a set of potentially optimal

FRBCs with different trade-offs among complexity, spec-

ificity, and sensitivity, we adopt an MOEA. MOEAs have

been investigated by several authors in recent years (Coello

Coello and Lamont 2004; Coello Coello 2006; Deb 2001;

Zitzler et al. 2000). Some of the most popular MOEAs are

the Strength Pareto Evolutionary Algorithm (SPEA)

(Zitzler and Thiele 1999) and its evolution (SPEA2) (Zitzler

et al. 2001), the Niched Pareto Genetic Algorithm (NPGA)

(Horn et al. 1999) and the different versions of the Pareto

Archived Evolution Strategy (Knowles and Corne 2002).

Due to its performance and simplicity, one of the most

popular MOEAs is certainly NSGA-II, which was proposed

in Deb et al. (2002) as an improved version of the previous
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Non-dominated Sorting Genetic Algorithm (Srinivas and

Deb 1998). NSGA-II is a population-based MOEA, which

uses an ad-hoc density-estimation metric and a non-domi-

nance rank assignment. NSGA-II starts from an initial

random population P0 of Npop individuals sorted based on

the non-dominance. Each individual is associated with a

rank equal to its non-dominance level (1 for the best level,

2 for the next-best level, and so on). More precisely, first

the non-dominated individuals are found and associated

with rank 1; then in order to find the individuals with rank

2, i.e., those in the next non-dominated front, the individ-

uals of the first front are temporarily discarded, and so on.

At each iteration t, t = 0,…, Tmax, an offspring population

Qt of size Npop is generated by selecting mating individuals

through the binary tournament selection, and by applying

crossover and mutation operators. Then the parent popu-

lation Pt and the offspring population Qt are combined so

as to generate a new population0 Pext ¼ Pt [ Qt: A rank

based on the non-dominance level is assigned to each

individual in Pext. Using these ranks, Pext is split into dif-

ferent non-dominated fronts, one for each different rank.

Within each front, a specific crowding measure, which

represents the sum of the distances from each individual to

its closest individual along each objective, is used to define

an ordering among individuals. The new parent population

Pt?1 is generated by deleting from Pext the worst Npop

individuals (considering first the ordering among the fronts

and then among the individuals). The algorithm terminates

when the number of iterations equals Tmax. In the follow-

ing, we introduce the chromosome coding and the mating

operators used in our approach.

3.1 Chromosome representation

To generate the chromosome representation, we first fix the

number Tf, f = 1,…, F, of the fuzzy sets which partition

each linguistic variable Xf (note that the number of the

fuzzy sets can be different from an input variable to

another). Second, we create a uniform partition Pf ¼
Af ;1; . . .;Af ;Tf

� �
for each variable Xf, f = 1,…, F. Let us

assume that the fuzzy system consists of M rules. Then, the

system is completely defined by the matrix J 2 NM�ðFþ1Þ

shown in (2). Thus, each possible solution can be described

through a chromosome composed of M � (F ? 1) natural

numbers, as in Fig. 1.

The chromosome in Fig. 2 represents the system

described by matrix J in (3).

As shown in (1), the antecedent of each rule involves all

input variables. On the other hand some input variables

could be irrelevant or even misleading in practical appli-

cations. Thus, it would be desirable to maintain only those

input variables that actually contribute to characterize the

system. To this aim, we add a new fuzzy set, denoted Af,0,

f = 1,…, F, for each of the F input partitions Pf:Af,0 is

characterized by a membership function equal to 1 on the

overall universe. This means that the condition Xf is Af,0,

denoted as don’t care condition in the literature (Ishibuchi

et al. 1997), does not affect the computation of the acti-

vation degree. In other words, for the specific rule, the

variable Xf is not taken into account. The terms Af,0 allow

generating rules which contain only a subset of the input

variables, thus implicitly performing a kind of feature

selection. It follows that jm;f 2 ½0; Tf �; f ¼ 1; . . .;F: A two-

input fuzzy model with three rules can be described, for

example, by the following matrix J:

J ¼
0 1 2

3 2 1

3 0 1

2

4

3

5 ð4Þ

which corresponds to the rule base:

R1: IF and X2 is A2,1 THEN Y is C2

R2: IF X1 is A1,3 and X2 is A2,2 THEN Y is C1

R3: IF X1 is A1,3 THEN Y is C1

and to the chromosome in Fig. 3.

An input variable that is not included in at least one rule

is eliminated. In this way we perform a selection of the

inputs. In real applications, we are not interested in gen-

erating an approximation of the overall Pareto optimal

front: too complex solutions with a large number of rules

are not typically significant. Thus, to speed up the accuracy

computation, we limit the search space by imposing a fixed

maximum number Mmax of rules which can compose the

system.

Every chromosome is associated with an objective

vector, each element of which typically expresses the ful-

fillment degree of a different objective. In our case, we use

a 3D vector. The first element of the vector measures the

1,1j …
1,Fj

1j
C …

,1Mj …
,M Fj

Mj
C

R1 RM

Fig. 1 Chromosome coding

2 1 1 2 2 3 1 1 2

R1 R2 R3

Fig. 2 An example of chromosome coding

0 1 2 3 2 1 3 0 1

R1 R2 R3

Fig. 3 Chromosome corresponding to matrix J in (4)
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complexity as the number of genes corresponding to the

antecedents which differ from 0, that is, the sum of the

input variables actually used in each of the M rules. In

the previous example, the complexity of the solution is 4

since we have one, two and one input variables for rules R1,

R2 and R3, respectively. The second and third elements

express, respectively, TPR and FPR.

3.2 Genetic operators

Our implementation of NSGA-II uses the one-point

crossover operator and three kinds of mutation operators.

Let c1 and c2 be the two solutions selected to generate

two new individuals. The one-point crossover operator cuts

the chromosomes c1 and c2 at some chosen common gene

and swaps the resulting sub-chromosomes. The common

gene is chosen by randomly extracting a number in

[Mmin, qmin], where Mmin is the minimum number of rules

that must be present in a rule base, and qmin is the mini-

mum number of rules in c1 and c2. We set Mmin = 1 in the

experiments.

The first mutation operator adds c rules to the rule base,

where c is randomly chosen in {1,…, cmax}. The upper

bound cmax is fixed by the user. If c ? M [ Mmax, then

c = Mmax - M. For each rule m added to the chromosome,

we generate n natural random numbers between 1 and F to

determine the input variables which compose the ante-

cedent part of the rule. Finally, for each selected input

variable f, we generate a random natural number jm,f

between 1 and Tf, which determines the fuzzy set Af ;jm;f to

be used in the antecedent of the rule m. We guarantee at

least one non-zero condition is present in the antecedent

part. The class label of the rule is assigned according to the

maximum certainty factor of the training patterns of each

class.

The second mutation operator removes k rules from the

rule base, where k is selected at random in {1,…, kmax}. In

the experiments, we used kmax = min (/max, M - Mmin),

where /max is fixed by the user and M is the number of

rules of the individual.

The third mutation operator randomly changes d ante-

cedent conditions of matrix J. The number d is randomly

generated in {1,…, dmax}. The upper bound dmax depends

on the complexity of the selected solution to be muted. We

fixed dmax to the 10% of the complexity. We ensure that,

when the operator is selected, at least one condition is

modified, even if the complexity is lower than 10. The class

label of the rule that has been modified is assigned

according to the maximum certainty factor of the training

patterns of each class. Each time a rule is added or modi-

fied, the corresponding weight is updated.

The probability of applying the crossover operator is

0.5. When the application of the crossover operator is

selected, the mutation is applied with probability 0.01;

otherwise it is always applied. When the application of the

mutation is selected, the first and the second mutation

operators are applied with the same probability of 0.4;

otherwise the third mutation operator is applied.

We experimentally verified that the crossover operator

helps the algorithm perform a good exploitation of the

solutions generated so far. Furthermore, the first mutation

operator is useful to generate solutions with high com-

plexity, the second operator is useful to reduce the com-

plexity of the solutions, and the third operator allows

performing a good exploitation of the search space.

4 The ROC convex hull technique

The output of the NSGA-II execution is a three-dimen-

sional Pareto front. First of all, we project the points of the

Pareto front onto the TPR–FPR plane, so as to obtain a

ROC curve. The ROC curve shows the behavior of a

classifier without any reference to the class distribution or

the classification error cost. This means that the ROC

analysis can be appropriate to choose the best global

classifier only if there exists a classifier that dominates all

the others over the overall ROC space. Otherwise, the

answer to the question about which classifier is the best

depends on both the class distribution and the classification

error cost. The expected cost of applying a classifier

(Provost and Fawcett 2001) represented by a point (FP,TP)

in the ROC space can be expressed as follows:

cost ¼ FPR � PðnÞ � cðY; nÞ þ FNR � PðpÞ � cðN; pÞ

where P(p) and P(n) = 1 - P(p) are the a priori proba-

bilities of a positive example and a negative example,

respectively, c(Y, n) and c(N, p) are, respectively, the false-

positive cost and the false-negative cost, and FNR =

1 - TPR = 1 - TP/(TP ? FN) = FN/(TP ? FN) is the

false-negative rate. In order to solve the problem of

choosing the best global classifier, we can resort to the

ROC convex hull technique (Provost and Fawcett 2001).

We recall that a classifier is potentially optimal if and only

if it lies on the convex hull of the set of points in the ROC

space. The convex hull technique allows choosing locally

optimum classifiers, that is, the classifiers that are optimal

with respect to given class distributions and classification

error costs.

Recalling the expression of the expected classification

cost by the classifier represented by the point (FPR, TPR)

in the ROC space, once fixed the values for P(n), c(Y, n),

P(p) and c(N, p), we obtain a family of parallel lines

(called iso-cost lines) with slope
PðnÞ�cðY ;nÞ
PðpÞ�cðN;pÞ:

The points belonging to the same line have the same

cost, and the cost decreases as we move to parallel lines
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closer to the point (0,1), i.e., more north-west. For a given

ROC curve, the point that minimizes the classification cost

is the tangent point between the ROC convex hull and the

family of parallel lines (local optimum condition) as shown

in Fig. 4. This approach is robust because it scales grace-

fully to any degree of precision in specifying the classifi-

cation error costs and the class distributions without

requiring to perform a new FRBC identification process.

To evaluate the goodness of the convex hull and,

therefore, the global performance of the set of classifiers in

the convex hull, we compute the AUCH (Fawcett 2006).

Since the AUCH is a portion of the unit square, its value

will always be between 0 and 1. Anyway, because random

classifiers lie on the diagonal line between (0,0) and (1,1),

with an area of 0.5, no realistic classifier should have an

AUCH smaller than 0.5. The AUCH results to be very

effective to compare different types of classifiers. Indeed,

we can generate the ROC convex hull for each type of

classifier to be compared (by adopting the approach

described in this paper or varying appropriately the

parameters which define the type of classifier) and then

compute the AUCH for each convex hull. The type of

classifier with the highest AUCH will be the one which on

average (with different values of the classification error

costs and class distributions) outperforms the others. We

will adopt the AUCH in order to assess different types of

classifiers in the experimental part.

5 Experimental results

We tested our method on 11 datasets from the UCI

repository (Asuncion and Newman 2007) and 2 real med-

ical datasets, namely Nodules (we will discuss this dataset

in the following) and Mammography datasets (Woods et al.

1993). These datasets are imbalanced datasets because the

classification categories are not equally represented. Real-

world datasets often consist of a large percentage of normal

(negative class) examples and a small percentage of

abnormal or interesting examples (positive class). Table 1

summarizes the characteristics of the 13 datasets.

Various techniques have been proposed to deal with

imbalanced datasets and two main types of approaches are

adopted:

(1) a data level-approach, which consists of balancing the

class distribution by either over-sampling the minor-

ity class, or under-sampling the majority class, or

using a hybrid technique (Batista et al. 2004; Chawla

et al. 2002);

(2) an algorithmic level-approach, which, for example,

adjusts the costs per class (Provost and Fawcett 2001)

or learns from just one class (recognition based

learning) instead of learning from the two clas-

ses (discrimination based learning) (Raskutti and

Kowalczyk 2004).

In this work, we follow the algorithmic level-approach:

we maximize TPR and minimize FPR at the same time, and

then we select the best classifier using the convex hull

method.

In the following, we first (Sect. 5.1) compare our three-

objective evolutionary approach with two-two-objective

evolutionary approaches aimed at identifying a set of

FRBCs with different trade-offs between accuracy and

complexity. We applied the two-objective approaches both

on the original and rebalanced datasets. Then, in Sect. 5.2,

we compare our approach with three well-known classifi-

ers, namely the linear discriminant classifier (ldc), the

naı̈ve bayes classifier (naı̈ve) and the C4.5 rule learning

(C4.5), and a heuristic method proposed in Chi et al. (1996)

to generate FRBCs. We denote this method as Chi FRBC in
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Fig. 4 Selection of the best classifier in the ROC space

Table 1 Dataset characteristics

Dataset Examples Features % Positive % Negative

ecoli-0-1-3-7_vs_2-6 281 7 2.49 97.51

shuttle0vs4 1,829 9 6.72 93.28

yeastB1vs7 459 8 6.72 93.28

shuttle2vs4 129 9 4.65 95.35

glass-0-1-6_vs_2 192 9 8.89 91.11

glass-0-1-6_vs_5 184 9 4.89 95.11

page-blocks-1-3_vs_4 472 10 5.93 94.07

yeast-0-5-6-7-9_vs_4 528 8 9.66 90.34

yeast-1-2-8-9_vs_7 947 8 3.17 96.83

yeast-1-4-5-8_vs_7 693 8 4.33 95.67

yeast-2_vs_4 514 8 9.92 90.08

nodules 1,984 4 3.20 96.80

mammography 7,893 6 3.01 96.99
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the following. Table 2 shows the different types of classi-

fiers we employed in the experiments and the acronyms

used to refer to them. For both the comparisons, we per-

formed the Wilcoxon signed-rank test (Sheskin 2003 and

Wilcoxon 1945) for pair-wise statistical assessment of the

different algorithms. This test is based on computing the

differences on two sample means (typically, accuracy

obtained by a pair of different algorithms on different

datasets). In our case, we adopt the AUCH as metric for the

statistical test, so as to provide a global evaluation of the

different approaches. To perform the test, we use a level of

confidence a = 0.05.

Finally, in Sect. 5.3 once fixed the misclassification

costs and the class distribution probabilities, we discuss

two examples of selection of the most suitable classifiers

for, respectively, the Nodules and Mammography datasets.

We performed the selection step only for these datasets

because only for these datasets we can approximately fix

meaningful misclassification costs.

In all the experiments, we adopted a fivefold cross-

validation model, i.e., we split randomly each data set into

five folds, each containing the 20% of the patterns and used

four folds for training and one for testing.

5.1 Comparison among different evolutionary

approaches

To show the advantages of using TPR and FPR as objec-

tives of an evolutionary multi-objective optimization for

the design of binary FRBCs, we executed the NSGA-II

algorithm with the same parameters, operators, and prob-

abilities as in the proposed approach, but considering a

unique objective as accuracy measure. We used both the

area under the ROC curve (AUC) and the geometric

mean (GM). Both GM and AUC combine together TPR

and FPR, in terms of product and sum, respectively. Indeed

GM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPR � TNR
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPR � ð1� FPRÞ

p
and AUC ¼

ð1þ TPR� FPRÞ=2:

We fixed the population size of NSGA-II to 150, and

cmax and /max to 5. We adopted this value for the last two

parameters supported by the following consideration.

Values larger than 5 might generate an offspring too dif-

ferent from the parents, thus making mutation operators too

much oriented to exploration rather than exploitation. We

verified experimentally that in this case the convergence of

the algorithm is slower. Fixing the values of the two

parameters to 5 guarantees a good trade-off between

exploration and exploitation. Indeed, if the algorithm

chooses randomly a value between 1 and 2, we have a good

exploitation, whereas if the algorithm chooses randomly a

value between 4 and 5, we have a good exploration. For

each fold, we executed NSGA-II for 300 iterations. To

guarantee a good level of interpretability, we fixed the

maximum number Mmax of rules to 20 and we uniformly

partitioned the universe of each variable using five fuzzy

sets labeled LOW, MEDIUM LOW, MEDIUM, MEDIUM

HIGH and HIGH.

As regards the two-objective evolutionary approaches,

we performed simulations using both the original (imbal-

anced) and the rebalanced datasets (we employed the

SMOTE over-sampling algorithm proposed in Chawla

et al. (2002) to rebalance the datasets). For each solution in

the final approximated Pareto fronts, we computed the TPR

and the FPR, and plotted the corresponding (TPR, FPR)

point in the ROC space. Finally, we extracted the convex

hull in the ROC space both on training and test sets. To

evaluate the goodness of the set of the solutions in the

convex hull we calculated the AUCH.

Tables 3, 4 and 5 show the average results obtained on

all the datasets by our approach, and by the two-objective

Table 2 The types of classifiers

used in the experiments
Type of Classifier Acronym

FRBC generated by the three-objective evolutionary

approach

3ob_FRBC

FRBC generated by the two-objective evolutionary

approach (with AUC as accuracy)

2ob_ FRBC_AUC

FRBC generated by the two-objective evolutionary

approach (with GM as accuracy)

2ob_FRBC_GM

FRBC generated by the two-objective evolutionary

approach (with AUC as accuracy and Smote as data

rebalancing technique)

2ob_FRBC_AUC_Sm

FRBC generated by the two-objective evolutionary

approach (with GM as accuracy and Smote as data

rebalancing technique)

2ob_FRBC_GM_Sm

FRBC generated by Chi et al. algorithm Chi FRBC

Linear Discriminant Classifier ldc

Naı̈ve Bayes naı̈ve

C4.5 Learning Rule C4.5
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evolutionary approaches without and with rebalancing,

respectively. In the tables, AUCHtr and AUCHts represent

the average values of the AUCH on training and test sets,

respectively, Ctr and Cts represent the average values of

complexity of the most complex solutions of the ROC

convex hull on the training and test sets, respectively, and

Cmax represents the maximum possible value of complexity

for each dataset (calculated as the product between Mmax

and the number of features of the dataset). In the last line of

each table, we also report in bold the average results

obtained on all the datasets.

Tables 3 and 4 show that, on average, the three-objective

evolutionary approach outperforms the two-objective evo-

lutionary approaches both on the training and test sets with

respect to the AUCH metric. Table 5 highlights the fact that

the rebalancing process improves the performance of the

two-objective approaches, but cannot contrast the three-

objective approach which seems to explore the search space

more effectively. We can observe that all the approaches

generate FRBCs characterized by a value of complexity

much lower than the possible maximum value Cmax. This

confirms the effectiveness of the multi-objective approach in

concurrently maximizing accuracy and minimizing com-

plexity. To assess whether there exist significant differences

between the results achieved by our three-objective

approach and each of the other two-objective approaches,

we adopted the Wilcoxon signed-rank test. Table 6 shows

the results of the test application. Here, R? and R- represent

the sums of the ranks corresponding to our approach and to

the other evolutionary approaches, respectively. The null

hypothesis is accepted if p value [ a. We note that the null

hypothesis is always rejected in favor of the three-objective

approach, thus confirming that the three-objective evolu-

tionary approach always outperforms, in terms of AUCH on

the test set, the two-objective evolutionary approaches.

5.2 Comparisons with non-evolutionary classifiers

In this section, we compare our three-objective evolution-

ary approach with three well-known classifiers (ldc, naı̈ve

and C4.5) and the Chi FRBC. We used the versions of ldc

and naı̈ve implemented in the PRTools package for

MATLAB (Duin 2007) and the version of C4.5 imple-

mented in the software Keel (Alcalá-Fdez et al. 2009).

As regards ldc and naı̈ve, we first generated the ROC

curves, both on training and test sets, by varying the output

threshold from zero to one, with step 0.005, and then we

extracted the points of the convex hull. For the Chi FRBC

and C4.5, we have only one point in the ROC curve (in

particular, for C4.5 this point was obtained by using the

default parameters of the Keel software). Thus, as dis-

cussed in Fawcett (2006), we considered the convex hull as

composed by this point, and the points (0,0) and (1,1).

Note that, both for the ldc, naı̈ve, and C4.5 classifiers,

and for the Chi FRBC, we rebalanced only the training sets

by using SMOTE and evaluated the generalization capa-

bility on never-shown patterns using the imbalanced test

sets (which are exactly the same as used in the evolutionary

generated FRBCs).

Table 7 shows the average results obtained on all the

datasets by the Chi FRBC, ldc, naı̈ve and C4.5.

We note that the best average results among the

non-evolutionary classifiers are achieved by C4.5 on the

training set and by ldc on the test set. In any case, our

Table 3 Results achieved by the three-objective evolutionary approach

3ob_FRBC Cmax

Dataset AUCHtr AUCHts Ctr Cts

ecoli-0-1-3-7_vs_2-6 1.00 ± 0.00 0.89 ± 0.22 27.00 ± 7.65 10.20 ± 4.49 140

shuttle0vs4 1.00 ± 0.00 1.00 ± 0.00 11.40 ± 6.23 10.40 ± 4.16 180

yeastB1vs7 0.95 ± 0.01 0.90 ± 0.04 82.40 ± 14.05 25.60 ± 12.30 160

shuttle2vs4 1.00 ± 0.00 1.00 ± 0.00 10.20 ± 0.84 10.00 ± 1.22 180

glass-0-1-6_vs_2 0.96 ± 0.02 0.91 ± 0.08 52.80 ± 5.17 25.40 ± 16.15 180

glass-0-1-6_vs_5 1.00 ± 0.00 0.98 ± 0.02 21.00 ± 11.42 13.60 ± 10.11 180

page-blocks-1-3_vs_4 1.00 ± 0.00 1.00 ± 0.00 35.40 ± 11.24 21.40 ± 16.56 200

yeast-0-5-6-7-9_vs_4 0.96 ± 0.01 0.93 ± 0.05 96.20 ± 19.94 50.40 ± 20.55 160

yeast-1-2-8-9_vs_7 0.90 ± 0.02 0.85 ± 0.05 70.40 ± 14.40 47.60 ± 23.80 160

yeast-1-4-5-8_vs_7 0.86 ± 0.02 0.83 ± 0.04 114.40 ± 18.77 55.80 ± 36.98 160

yeast-2_vs_4 0.99 ± 0.00 0.99 ± 0.01 74.60 ± 27.41 18.40 ± 8.20 160

nodules 0.97 ± 0.00 0.97 ± 0.02 51.40 ± 11.22 22.20 ± 16.05 80

mammography 0.96 ± 0.01 0.95 ± 0.03 104.00 ± 3.08 97.60 ± 9.21 120

0.97 – 0.01 0.94 – 0.04 57.78 – 10.88 31.43 – 13.83 158.46
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three-objective approach outperforms all the approaches on

the training set and on the test set, except for ldc which

shows the same value of mean AUCH on the test set.

Table 8 shows the results of the application of the

Wilcoxon signed-rank test between our three-objective

evolutionary approach and the four non-evolutionary

approaches. We observe that our approach statistically

outperforms, in terms of AUCH on the test set, all the non-

evolutionary classifiers except for ldc. Since in this case the

null hypothesis is accepted, we conclude that there do not

exist statistical differences between the results achieved by

our approach and ldc. On the other hand, we have to

consider that ldc is not interpretable.

5.3 Classifier selection for Nodules and Mammography

datasets

In this section, once the misclassification costs and the

class distribution probabilities are fixed, we present two

examples of classifier selection for the Nodules and

Mammography datasets, respectively. We performed the

selection step just for these two real medical datasets,

because only for these datasets we could approximately fix

the misclassification costs. We extract the best classifier

from the ROC convex hull generated by using the patterns

of the training set and then assess the generalization

capability of the selected classifier on the test set.

Table 4 Results achieved by the two-objective evolutionary approaches without rebalancing

Dataset 2ob_ FRBC_AUC 2ob_FRBC_GM Cmax

AUCHtr AUCHts Ctr Cts AUCHtr AUCHts Ctr Cts

ecoli-0-1-3-7_vs_2-6 0.98 ± 0.02 0.84 ± 0.21 20.40 ± 8.41 19.60 ± 9.42 0.98 ± 0.02 0.89 ± 0.19 19.20 ± 5.93 15.40 ± 4.88 140

shuttle0vs4 1.00 ± 0.00 1.00 ± 0.00 11.20 ± 1.30 11.20 ± 1.30 1.00 ± 0.00 1.00 ± 0.00 12.00 ± 1.87 12.00 ± 1.87 180

yeastB1vs7 0.86 ± 0.02 0.75 ± 0.04 65.20 ± 29.59 23.00 ± 15.13 0.85 ± 0.03 0.70 ± 0.07 60.00 ± 25.27 40.20 ± 18.91 160

shuttle2vs4 1.00 ± 0.00 1.00 ± 0.00 11.20 ± 1.30 11.20 ± 1.30 1.00 ± 0.00 0.99 ± 0.01 11.20 ± 1.48 11.20 ± 1.48 180

glass-0-1-6_vs_2 0.83 ± 0.05 0.70 ± 0.10 38.80 ± 26.80 32.20 ± 15.96 0.74 ± 0.15 0.69 ± 0.16 49.20 ± 48.95 29.00 ± 23.53 180

glass-0-1-6_vs_5 0.90 ± 0.22 0.87 ± 0.21 20.60 ± 11.13 17.80 ± 12.09 0.90 ± 0.22 0.84 ± 0.22 19.80 ± 16.95 17.40 ± 18.11 180

page-blocks-13_vs_4 0.98 ± 0.03 0.98 ± 0.03 18.80 ± 4.76 17.20 ± 6.83 1.00 ± 0.00 0.99 ± 0.01 30.40 ± 14.74 28.20 ± 15.93 200

yeast-0-5-6-7-9_vs_4 0.87 ± 0.03 0.82 ± 0.07 80.20 ± 12.11 57.60 ± 21.76 0.87 ± 0.03 0.82 ± 0.05 75.20 ± 27.52 46.60 ± 22.53 160

yeast-1-2-8-9_vs_7 0.72 ± 0.04 0.70 ± 0.08 31.40 ± 25.01 27.60 ± 19.93 0.67 ± 0.11 0.65 ± 0.14 77.20 ± 50.51 77.20 ± 50.51 160

yeast-1-4-5-8_vs_7 0.68 ± 0.10 0.61 ± 0.07 51.80 ± 37.29 29.60 ± 25.70 0.65 ± 0.09 0.56 ± 0.07 47.00 ± 48.69 15.00 ± 12.96 160

yeast-2_vs_4 0.90 ± 0.05 0.86 ± 0.06 54.60 ± 25.12 53.00 ± 27.82 0.92 ± 0.02 0.87 ± 0.04 35.80 ± 24.85 23.80 ± 12.21 160

nodules 0.90 ± 0.01 0.83 ± 0.06 27.00 ± 9.03 20.00 ± 11.20 0.90 ± 0.02 0.86 ± 0.09 15.60 ± 6.62 14.20 ± 6.38 80

mammography 0.90 ± 0.02 0.88 ± 0.03 67.00 ± 14.27 62.60 ± 17.95 0.90 ± 0.00 0.89 ± 0.04 65.40 ± 18.23 52.80 ± 15.27 120

0.89 – 0.05 0.83 – 0.07 38.32 – 16.81 29.43 – 13.64 0.88 – 0.05 0.83 – 0.08 40.25 – 22.43 28.14 – 15.73 156.46

Table 5 Results achieved by the two-objective evolutionary approaches with Smote rebalancing

Dataset 2ob_ FRBC_AUC_Sm 2ob_FRBC_GM_Sm Cmax

AUCHtr AUCHts Ctr Cts AUCHtr AUCHts Ctr Cts

ecoli-0-1-3-7_vs_2-6 0.98 ± 0.01 0.83 ± 0.21 36.00 ± 14.71 4.60 ± 3.85 0.98 ± 0.01 0.86 ± 0.20 45.20 ± 15.22 25.20 ± 27.29 140

shuttle0vs4 1.00 ± 0.00 1.00 ± 0.00 5.00 ± 1.41 4.40 ± 1.52 1.00 ± 0.00 1.00 ± 0.00 4.80 ± 1.79 4.80 ± 1.79 180

yeastB1vs7 0.78 ± 0.07 0.69 ± 0.13 37.00 ± 13.78 16.00 ± 10.91 0.83 ± 0.02 0.77 ± 0.07 65.00 ± 15.62 40.20 ± 33.68 160

shuttle2vs4 1.00 ± 0.00 1.00 ± 0.01 23.00 ± 12.79 9.40 ± 3.36 1.00 ± 0.00 1.00 ± 0.00 11.80 ± 4.66 10.80 ± 2.49 180

glass-0-1-6_vs_2 0.81 ± 0.07 0.71 ± 0.14 57.40 ± 25.58 43.00 ± 21.64 0.80 ± 0.04 0.67 ± 0.12 78.20 ± 17.98 43.00 ± 25.82 180

glass-0-1-6_vs_5 0.95 ± 0.05 0.94 ± 0.03 45.20 ± 12.79 45.20 ± 12.79 0.95 ± 0.03 0.95 ± 0.04 39.40 ± 6.31 31.00 ± 10.22 180

page-blocks-1-3_vs_4 0.92 ± 0.08 0.92 ± 0.06 24.80 ± 15.74 21.80 ± 14.50 0.99 ± 0.01 0.98 ± 0.01 45.00 ± 27.46 28.20 ± 32.41 200

yeast-0-5-6-7-9_vs_4 0.84 ± 0.03 0.82 ± 0.05 63.40 ± 17.98 35.80 ± 25.05 0.84 ± 0.03 0.79 ± 0.08 68.20 ± 18.23 50.60 ± 13.20 160

yeast-1-2-8-9_vs_7 0.98 ± 0.01 0.83 ± 0.21 36.00 ± 14.71 4.60 ± 3.85 0.98 ± 0.01 0.86 ± 0.20 45.20 ± 15.22 25.20 ± 27.29 160

yeast-1-4-5-8_vs_7 0.75 ± 0.02 0.62 ± 0.08 87.00 ± 25.37 73.80 ± 28.35 0.75 ± 0.05 0.67 ± 0.03 94.40 ± 20.26 56.80 ± 30.80 160

yeast-2_vs_4 0.90 ± 0.03 0.89 ± 0.03 44.80 ± 21.79 34.00 ± 22.10 0.92 ± 0.02 0.89 ± 0.05 49.80 ± 21.81 19.40 ± 15.32 160

nodules 0.92 ± 0.01 0.88 ± 0.02 40.00 ± 7.65 23.20 ± 6.46 0.92 ± 0.01 0.89 ± 0.04 31.00 ± 15.12 25.40 ± 15.66 80

mammography 0.90 ± 0.04 0.86 ± 0.04 61.80 ± 35.52 60.80 ± 35.12 0.92 ± 0.02 0.88 ± 0.02 64.80 ± 14.41 53.20 ± 23.30 120

0.90 – 0.03 0.85 – 0.08 43.18 – 16.91 28.97 – 14.58 0.91 – 0.02 0.86 – 0.07 49.45 – 14.93 31.83 – 19.94 158.46
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5.3.1 Nodules dataset

Lung cancer represents the leading cause of death for

malignancy in the world. Thus, automatic detection of

malignant nodules is an important research topic. The

advent of multi-slice, spiral computed tomography (CT),

able to perform a 3D reconstruction of the interior of the

human body, has opened new horizons for early detection

of lung cancers (Awai et al. 2004).

We tested our approach using a dataset made of features

extracted from 3D ROIs, which represent candidates for

lung nodules. These ROIs are automatically extracted from

lung multi-slice CT scans (all with medical report)

(Antonelli et al. 2006), each consisting, on average, of 300

slices, each slice being a 512 9 512 pixel matrix. The slice

thickness is 1.25 mm and the pixel size is 0.6 mm.

Each ROI may be either a nodule (positive class) or a

non-nodule (negative class), e.g., a blood vessel. Specifi-

cally, we used a dataset X ¼ Xn [ Xv made of 1,984 3D

ROIs, divided into 64 nodules (set Xn), corresponding to

%3.2% of the total, and 1,920 blood vessels (set Xv),

corresponding to %96.8% of the total.

All the data used in the experiments are represented as

patterns in <4; after extracting the following features from

the single 3D ROIs: sphericity, average gray level, standard

deviation of the average gray level, and inverse of elon-

gation. In particular, sphericity s is defined as s ¼ VðRi\SiÞ
VðRiÞ

where V(�), Ri, Si are, respectively, the volume, the 3D ROI

and the sphere equivalent to Ri [i.e., the sphere with center

in the barycenter of Ri and radius equal to that of the sphere

with volume V(Ri)]. The inverse of elongation 1
el is com-

puted as 1

el
¼

8 max
j2JðRiÞ

ðdjÞ

� �2

P
j2JðRiÞ

AðZjÞ
; where A(�) is the area of the jth

2D ROI Zj forming the 3D ROI Ri, max(�) is the maximum,

dj is the thickness of Zj (that is, dj is the number of erosion

Table 6 Wilcoxon signed-rank test between the 3ob_FRBC and the four-two-objective evolutionary approaches

Comparison R? R- Hypothesis (a = 0.05) p value

3ob_FRBC vs. 2ob_ FRBC_AUC 89.5 1.5 Rejected for 3ob_FRBC 0.003

3ob_FRBC vs. 2ob_FRBC_GM 89.5 1.5 Rejected for 3ob_FRBC 0.003

3ob_FRBC vs. 2ob_FRBC_AUC_Sm 89.5 1.5 Rejected for 3ob_FRBC 0.003

3ob_FRBC vs. 2ob_FRBC_GM_Sm 86.5 4.5 Rejected for 3ob_FRBC 0.004

Table 7 Results achieved by the four non-evolutionary approaches

Dataset Chi FRBC ldc naı̈ve C4.5

AUCHtr AUCHts AUCHtr AUCHts AUCHtr AUCHts AUCHtr AUCHts

ecoli-0-1-3-7_vs_2-6 0.98 ± 0.01 0.71 ± 0.01 0.98 ± 0.01 0.97 ± 0.06 0.89 ± 0.22 0.88 ± 0.22 0.98 ± 0.01 0.81 ± 0.22

shuttle0vs4 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

yeastB1vs7 0.80 ± 0.02 0.84 ± 0.00 0.88 ± 0.01 0.90 ± 0.03 0.90 ± 0.02 0.88 ± 0.04 0.91 ± 0.02 0.65 ± 0.05

shuttle2vs4 0.98 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01

glass-0-1-6_vs_2 0.72 ± 0.04 0.57 ± 0.09 0.87 ± 0.02 0.91 ± 0.06 0.88 ± 0.01 0.75 ± 0.10 0.95 ± 0.01 0.63 ± 0.11

glass-0-1-6_vs_5 0.97 ± 0.01 0.96 ± 0.00 0.96 ± 0.00 0.97 ± 0.03 0.99 ± 0.00 0.98 ± 0.03 0.97 ± 0.01 0.81 ± 0.24

page-blocks-1-3_vs_4 0.95 ± 0.01 0.96 ± 0.00 0.96 ± 0.00 0.96 ± 0.02 0.98 ± 0.00 0.97 ± 0.02 0.99 ± 0.00 0.99 ± 0.01

yeast-0-5-6-7-9_vs_4 0.82 ± 0.02 0.80 ± 0.01 0.88 ± 0.02 0.90 ± 0.05 0.90 ± 0.01 0.87 ± 0.04 0.91 ± 0.01 0.75 ± 0.09

yeast-1-2-8-9_vs_7 0.84 ± 0.02 0.86 ± 0.03 0.98 ± 0.01 0.97 ± 0.06 0.89 ± 0.22 0.88 ± 0.22 0.93 ± 0.03 0.63 ± 0.05

yeast-1-4-5-8_vs_7 0.75 ± 0.01 0.68 ± 0.11 0.77 ± 0.01 0.78 ± 0.04 0.85 ± 0.02 0.82 ± 0.07 0.94 ± 0.02 0.54 ± 0.03

yeast-2_vs_4 0.89 ± 0.02 0.86 ± 0.03 0.96 ± 0.00 0.97 ± 0.01 0.87 ± 0.21 0.88 ± 0.21 0.95 ± 0.01 0.88 ± 0.07

nodules 0.86 ± 0.02 0.82 ± 0.05 0.95 ± 0.01 0.95 ± 0.03 0.95 ± 0.00 0.94 ± 0.04 0.94 ± 0.01 0.87 ± 0.03

mammography 0.90 ± 0.00 0.86 ± 0.04 0.92 ± 0.01 0.90 ± 0.04 0.93 ± 0.01 0.91 ± 0.04 0.92 ± 0.02 0.86 ± 0.06

0.88 – 0.01 0.84 – 0.03 0.93 – 0.01 0.94 – 0.03 0.93 – 0.06 0.90 – 0.08 0.95 – 0.01 0.80 – 0.07

Table 8 Wilcoxon signed-rank test between the 3ob_FRBC and the

non-evolutionary classifiers

Comparison R? R- Hypothesis

(a = 0.05)

p
value

3ob_FRBC vs. Chi

FRBC

86.5 4.5 Rejected for

3ob_FRBC

0.005

3ob_FRBC vs. ldc 61.0 30.0 Accepted 0.514

3ob_FRBC vs. naı̈ve 79.0 12.0 Rejected for

3ob_FRBC

0.021

3ob_FRBC vs. C4.5 90.5 0.5 Rejected for

3ob_FRBC

0.002
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steps necessary to delete Zj), and J(Ri) is the set of indexes j

of the 2D ROIs composing the 3D ROI Ri.

Figure 5 shows the Pareto front approximations pro-

vided by NSGA-II for each fold. We projected the three-

dimensional fronts onto the ROC plane and we represented

the complexity with different gray levels (we associated

higher values of complexity with darker gray levels). We

also plotted a piecewise line that represents the ROC

convex hull. As expected, a good trade-off between com-

plexity and accuracy was obtained: we observe that clas-

sifiers characterized by high accuracy (high TPR and low

FPR) are generally more complex than classifiers with low

accuracy.

As an example of classifier selection, we fixed the

a-priori probabilities P(n) and P(p) of the negative and

positive classes to the class frequencies in the data set, that

is, P(n) equal to 1,920/1,984 (%97%) and P(p) equal to 64/

1,984 (%3%). Then, we chose a ratio c(Y, n)/c(N, p) equal

to 1/60. This ratio was motivated by considering the cost of

a false negative much higher than the cost of a false

positive. On the other hand, a false negative does not

activate the adequate treatment and therefore might be

extremely hazardous for the patient’s health. We, therefore,

obtained a slope for the optimal iso-cost lines equal to 0.5.

Considering the cost of a false positive equal to one, the

cost of a classifier can be calculated as follows:

cost ¼ FPR � 0:97 � 1þ FNR � 0:03 � 60:

Finally, once the optimal classifier on the ROC convex

hull generated on the training set is selected, we evaluate

the generalization capability on the test set. Table 9

shows for all the classifiers the values of TPR, FPR,

complexity, number of rules and cost, in the form

(average ± the standard deviation), obtained repeating the

selection process for each fold. Obviously, for the Chi

FRBC and C4.5, we performed no selection, but we

simply adopted the unique classifier generated by the

learning process.

We can observe that, on average, the classifiers selected

from the ROC convex hull generated by the three-objective

evolutionary approach outperform in terms of cost all the

other classifiers, while maintaining a low level of com-

plexity (7.75 rules and 23.75 conditions on average). The

classifiers generated by the two-objective evolutionary

approaches executed on the original dataset are character-

ized by low level of complexity, but quite high costs. When

we rebalance the datasets, the costs of these classifiers

decrease, but the complexity increases. Thus, we can

conclude that for this dataset the rebalancing helps the

evolutionary process to explore more accurate, but also

more complex solutions. As expected, the Chi FRBC is

characterized by a very high level of complexity and also

by a quite high cost. The ldc, naı̈ve and C4.5 classifi-

ers achieve quite low costs (almost comparable with the

three-objective evolutionary approach). On the other hand,

ldc and naı̈ve are not interpretable at all since they cannot

be expressed as sets of rules. As regards C4.5, a set of rules

can be extracted from the decision tree produced by exe-

cuting the rule learning algorithm based on the classical

C4.5 decision tree algorithm (see Quinlan 1993 for a

complete description of the algorithm). For this reason, in

Table 9 we also show the average complexity and the

number of rules for this classifier type. We can observe that

the number of rules in C4.5 is higher than the number of

rules in the FRBC selected by using our approach. Further,

the fuzzy rules used in the FRBC are certainly more

interpretable than the rules used in C4.5. As an example,

Table 10 and Fig. 6 show, respectively, the rule base of an

FRBC and some rules extracted from the C4.5 decision tree

for one of the five folds. We can note that the fuzzy rules

are easily comprehensible and provide very useful infor-

mation to characterize a nodule. Indeed, we can learn that

nodules are characterized by both a high value of sphericity

and a low average gray level. On the other hand, the rules

extracted from the C4.5 decision tree cannot be easily

expressed in linguistic terms, since the crisp intervals used

in the conditions do not correspond to intuitive partitions of

the system variables. Thus, these rules result to be quite

unreadable.

5.3.2 Mammography dataset

The Mammography dataset was used in Woods et al.

(1993). It consists of 11,183 samples with 6 numeric fea-

tures, and 2 classes representing, respectively, calcification

(cancerous samples) and non calcification (non-cancerous

samples). The minority class, which represents calcifica-

tion, contains only 260 examples, i.e., 2.32% of the total

examples. In this work, we used a filtered version of the

dataset composed of 7,853 patterns: indeed, we carefully

analyzed the dataset and eliminated all the patterns with

zero value for all the features.

As an example of classifier selection, also for this

dataset we fixed the a-priori probabilities P(n) and P(p) of

the negative and positive classes to the class frequencies in

the data set, that is, P(n) equal to 7615/7853 (%97%) and

P(p) equal to 238/7853 (%3%). Then, we chose a ratio

c(Y, n)/c(N, p) equal to 1/60. As for the first dataset, this

ratio was motivated by considering the cost of a false

negative much higher than the cost of a false positive. We

obtained a slope for the optimal iso-cost lines equal to 0.5.

Table 11 shows for each classifier the values of TPR,

FPR, complexity, number of rules and cost of the best

classifiers, in the form (average ± the standard deviation).

We can observe that, on average, the classifiers selected

from the ROC convex hull generated by the three-objective

evolutionary approach outperform in terms of cost all the
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Fig. 5 Pareto front

approximations and ROC

convex hull on the training and

test sets
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other classifiers, though their complexities are slightly

higher than the FRBCs generated by the two-objective

evolutionary approaches. As regards these FRBCs, we can

observe that the rebalancing does not affect particularly

their performance. Indeed, both the cost and the complexity

remain practically unchanged. The Chi FRBC is

characterized by low cost, despite the highest level of

complexity. As regards the three classifiers used for com-

parison, only C4.5 achieves costs comparable to the three-

objective evolutionary approach, with a very low level of

complexity. We recall, however, that the C4.5 rules are not

easy to interpret.

Table 9 FRBC selection: Results of the 5-fold cross-validation on Nodules dataset (test set)

Algorithm TPR FPR Complexity Rules Cost

3ob_FRBC 87.50 ± 4.81 13.85 ± 5.02 23.75 ± 7.89 7.75 ± 2.63 0.35 ± 0.08

2ob_ FRBC_AUC 73.33 ± 23.86 5.67 ± 1.35 15.60 ± 6.62 5.00 ± 2.12 0.53 ± 0.42

2ob_FRBC_GM 70.00 ± 7.45 7.19 ± 2.88 27.00 ± 9.03 8.40 ± 2.88 0.61 ± 0.15

2ob_FRBC_AUC_Sm 76.67 ± 6.97 8.45 ± 3.41 37.80 ± 8.32 11.40 ± 2.70 0.50 ± 0.11

2ob_FRBC_GM_Sm 85.00 ± 6.97 9.82 ± 1.81 30.00 ± 15.25 9.00 ± 4.69 0.37 ± 0.13

Chi FRBC 75.00 ± 8.33 10.60 ± 2.96 411.20 ± 23.73 102.80 ± 5.93 0.55 ± 0.16

ldc 86.67 ± 7.45 15.75 ± 2.67 0.39 ± 0.15

Naı̈ve 85.00 ± 6.97 13.75 ± 3.47 0.40 ± 0.14

C4.5 83.33 ± 5.89 7.72 ± 1.62 82.4 ± 5.12 28 ± 3.32 0.37 ± 0.11

Table 10 Rule base of an FRBC selected in one of five folds

Sphericity Average gray level Standard deviation of average gray level Inverse of elongation Class

HIGH LOW MEDIUM MEDIUM LOW Nodule

MEDIUM HIGH LOW LOW – Nodule

MEDIUM LOW MEDIUM LOW MEDIUM HIGH MEDIUM HIGH Non nodule

LOW MEDIUM HIGH MEDIUM LOW MEDIUM Non Nodule

– – HIGH LOW Non nodule

MEDIUM LOW MEDIUM LOW MEDIUM HIGH LOW Non nodule

IF (Std. Dev. Av. Gray Lev.<=0.5356)  THEN Class=Non nodule 

ELSE IF (Inverse of elongation>0.3333 && Sphericity>0.5 && Average gray level<=0.0497)  THEN Class=Non nodule 

ELSE IF (Sphericity>0.7 && Average gray level>0.0571 && Sphericity<=0.7129) THEN Class=Non nodule 

ELSE IF (Sphericity>0.7 && Average gray level<=0.0571 && Inverse of elongation>0.1808 && Std. Dev. Av. Gray 
Lev.<=0.7262) THEN Class=Non nodule 

ELSE IF (Inverse of elongation>0.3333 && Std. Dev. Av. Gray Lev.<=0.6537 && Sphericity>0.5 && Average gray lev-
el<=0.0497 && Average gray level>0.0301) THEN Class=Non nodule 

ELSE IF (Std. Dev. Av. Gray Lev.>0.5484 && Std. Dev. Av. Gray Lev.<=0.6537 &&Inverse of elongation>0.3826 && Sphe-
ricity<=0.2087 && Sphericity>0.0062) THEN Class=Non nodule 

… 

ELSE IF (Std. Dev. Av. Gray Lev.>0.5484 && Sphericity<=0.5 && Sphericity>0.2087) THEN Class=Nodule 

ELSE IF (Sphericity<=0.3711 && Std. Dev. Av. Gray Lev.>0.5439) THEN Class=Nodule 

ELSE IF (Inverse of elongation<=0.4369 && Sphericity>0.7258 &&  Average gray level>0.0801 && Sphericity<=0.8191) 
THEN Class=Nodule 

ELSE IF (Average gray level>0.0571 && Inverse of elongation<=0.3202) THEN Class=Nodule 

… 

ELSE Class=Non nodule 

Fig. 6 Example of rules extracted from the C4.5 decision tree for Nodules dataset
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6 Conclusions

In this paper, we have introduced a novel approach to

determine FRBCs for highly imbalanced datasets. First,

we have used the well-known NSGA-II multi-objective

optimization algorithm to generate an approximation of a

Pareto front composed of FRBCs with different trade-offs

among sensitivity, specificity, and interpretability. Sensi-

tivity and specificity are evaluated in the ROC plane, where

each FRBC is described as a point whose coordinates are

the true positive rate and the false positive rate, respec-

tively. Then, after projecting the overall Pareto front onto

the ROC plane, we have determined the potentially optimal

classifiers by using the ROC convex hull method. To

compare our approach with two evolutionary approaches,

three well-known classifiers, namely, ldc, naı̈ve, and C4.5,

and one heuristic approach to FRBC generation, we have

used 13 imbalanced datasets and the AUCH as metric. The

Wilcoxon signed-rank test applied between our three-

objective evolutionary approach and the other classifiers

shows that our approach statistically outperforms the other

approaches (except for ldc) in terms of AUCH, though the

generated FRBCs are characterized by low level of com-

plexity. Finally, we have shown a procedure to select

optimal FRBCs among those in the convex hulls and have

discussed the performance of these FRBCs for discrimi-

nating regions of interest (ROIs) in the lungs as nodules

and non-nodules in a Computer Aided Diagnosis system,

and for discriminating calcification (cancerous samples)

and non calcification (non-cancerous samples) in mam-

mography. On both these medical applications, the classi-

fication cost achieved by our approach has been lower than

the ones obtained by the methods used for comparison.
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