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Abstract Backfitting of fuzzy rules is an Iterative Rule

Learning technique for obtaining the knowledge base of a

fuzzy rule-based system in regression problems. It consists

in fitting one fuzzy rule to the data, and replacing the whole

training set by the residual of the approximation. The

obtained rule is added to the knowledge base, and the

process is repeated until the residual is zero, or near zero.

Such a design has been extended to imprecise data for

which the observation error is small. Nevertheless, when

this error is moderate or high, the learning can stop early.

In this kind of algorithms, the specificity of the residual

might decrease when a new rule is added. There may

happen that the residual grows so wide that it covers the

value zero for all points (thus the algorithm stops), but we

have not yet extracted all the information available in the

dataset. Focusing on this problem, this paper is about

datasets with medium to high discrepancies between the

observed and the actual values of the variables, such as

those containing missing values and coarsely discretized

data. We will show that the quality of the iterative learning

degrades in this kind of problems, because it does not make

full use of all the available information. As an alternative to

sequentially obtaining rules, we propose a new multiob-

jective Genetic Cooperative Competitive Learning (GCCL)

algorithm. In our approach, each individual in the popu-

lation codifies one rule, which competes in the population

in terms of maximum coverage and fitting, while the

individuals in the population cooperate to form the

knowledge base.

1 Introduction

Since the last few years, there has been a growing interest

in the use of imprecise data in intelligent systems. For

instance, in Ferson et al. (2007), up to eight categories of

real-world imprecise data suitable for a random sets based

model are discussed: plus-or-minus reports, significant

digits, intermitent measurement, non-detects, censoring,

data binning, missing data and gross ignorance. Also,

recent works in fuzzy random variables prop up using a

fuzzy representation when the data is known through a

family of confidence intervals (Couso and Sánchez 2008),

including the preceding examples and others, like recon-

ciling different measurements of a feature in a given object

(Sánchez et al. 2007, 2009).

For the most part, the application of Genetic Fuzzy

Systems (GFSs) to fuzzy data is still in their beginnings

(Sánchez and Couso 2007). According to Herrera (2008),

there are four genetic techniques for learning KB compo-

nents: Pittsburgh, Michigan, Iterative Rule Learning (IRL)

and Genetic Cooperative-Competitive Learning (GCCL).

In previous works (Sánchez et al. 2006), we have extended

our own implementations of backfitting and boosting, that

can be considered part of the IRL approach, to fuzzy data

(del Jesus et al. 2004; Sánchez and Otero 2004). In this

paper, we will do the same with an algorithm of the GCCL

type.
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In particular, in Sánchez et al. (2006), we have shown

that a fuzzy data-based IRL algorithm is efficient in

problems where the observation error is small. That GFS

adopted a fuzzy representation of the imprecise data, and

(as a consequence of this) a fuzzy-valued accuracy. To

balance accuracy and linguistic quality, the linguistic

quality was measured by a real number, and we used a

multicriteria Genetic Algorithm (GA) for jointly optimiz-

ing a mix of crisp and fuzzy objectives (Sánchez et al.

2007). The GA, in turn, was related to previous approaches

about the use of fuzzy fitness functions (Koeppen et al.

2003) and precedence operators between imprecise values

(Limbourg 2005; Teich 2001).

Nevertheless, in this paper we will show that IRL does

not make full use of low quality data. As we will discuss

later (see Sect. 4.2) backfitting-based algorithms cause the

residual to be less specific when new rules are added. In

certain cases, this prevents discovering enough rules. As an

alternative, we propose a new implementation of a multi-

objective Genetic Cooperative Competitive Learning

(GCCL) algorithm (Herrera 2005), where each individual

in the population codifies one rule, and the individuals in

the population comprise the knowledge base. The indi-

viduals compete in a fitness space defined by the coverage

and the fitting of the rules, and are assigned credit in the

cooperation phase by means of a new algebraic procedure,

related to the Singular Value Decomposition (Press et al.

1992).

The structure of this paper is as follows: in the next

section we discuss certain issues about the representation

of vague data that affect the performance of GFS. In

Sect. 3 we explain the fuzzy reasoning method. In Sect. 4

we recall the use of backfitting techniques to learn fuzzy

models from interval data. In Sect. 5 we describe the new

algorithm, and benchmark its results in Sect. 6. The paper

finishes with the concluding remarks, in Sect. 7.

2 Preliminaries: representation issues

with low quality data

Although the use of intervals or fuzzy sets for codifying

ranges or families of tolerances may seem trivial, there

exist problems where the correspondence between a vague

input and an interval, or a fuzzy set, is counterintuitive. As

we will show later (see Sect. 6) a wrong representation

guides the learning to an incorrect objective.

For example, imagine the following piece of vague

information about a function f : R ? R: ‘‘The input value

is missing, and the value of the output is 3.’’ Following

Ferson et al. (2007), we can represent the missing input by

an interval spanning the whole range of the variable, and

produce the granule ((-?, ?), 3). Depending on how we

calculate the fitting between the model and the data, this

piece of information could be interpreted by the learning

algorithm as ‘‘the function is constant and takes the value

3,’’ while the actual information provided by the granule is

other: ‘‘the value 3 is in the image of the function.‘‘

Let us consider another example: an input–output pair

(1.5, 3), and a tolerance of the measurements in the input

space of ±0.5 units. We will assume that the measurements

are accurate in the output space (see Figure 1). One might

think in representing this information through the pair

(1.5 ± 0.5, 3). But, if we included that granule of infor-

mation in the training set, we could be stating that the

output of the model must be 3 for all the values in

1.5 ± 0.5, and that is not true. What we really know is that

there exist at least one value in the interval [1, 2] whose

output is 3.

Hence, the proper representation of the granule of

information in Fig. 1 is (1.5 ± 0.5, [3-d1, 3 ? d2]), for

certain values d1 and d2 that depend on the excursion of f in

[1, 2]. Observe also that d1 and d2 are not related to the

tolerance in the measurements of the output variable.

With these examples we want to highlight that, when the

input data has low quality (high observation or quantization

error, missing values, etc.) the output variables must be

preprocessed to have their supports extended, before the

learning begins. For the sake of clarity, in this paper we

will label the datasets according to the relative uncertain-

ties between inputs and outputs, as follows (see Fig. 2):

I. The uncertainty in the outputs is lower than the

excursion of the function in the range of the inputs.

II. The uncertainty in the outputs is higher than the

excursion of the function in the range of the inputs.

III. The uncertainty in the outputs matches the set of all

the images of the values compatible with the input.

Fig. 1 The proper representation of the training example (1.5, 3)

when the tolerance of the measurements in the input space is ±0.5, is

a pair (1.5 ± 0.5, [3-d1, 3 ? d2]) for certain values d1 and d2 that

depend on the excursion of f in [1, 2]
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Problems of type III are rare. In point of fact, type I

problems appear the most, since we seldom can quantify

how the observation error in the inputs is transferred to the

output variable. Nevertheless, the most convenient case

(from the point of view of rule learning) is that of a type II

dataset. We will restrict ourselves to this category of

problems, because any dataset can be transformed into a

type II problem without losing much information. For

example, the transformation from an assert ‘‘There is one

point in [1, 2] whose output is 3’’ into a sentence like ‘‘The

output of the value 1.5 is in the interval [1, 4]’’ involves

selecting a characteristic point of that input (the center

point, for instance) and then extending the output until we

are certain that it covers the actual output of the function at

this characteristic point.

3 Fuzzy reasoning

In this paper, fuzzy knowledge bases comprise M fuzzy

if—then rules of the following type:

Rule m : If x1 is Am1 and. . .and xn is Amn

then y is Bm with weight wm;
ð1Þ

where x ¼ ðx1; x2; . . .; xnÞ and y are, respectively, the input

and the output values. Am1,...,Amn are linguistic labels or

‘‘or’’ combinations of labels, whose corresponding fuzzy

sets are arranged in a prespecified fuzzy grid (that will not

change during the learning). The consequents Bm can be

either singletons or fuzzy numbers. For example:

Rule 1 : If x1 is ðSMALL or MEDIUMÞ and x2 is LARGE

then y is 3 with weight 0:8; ð2Þ

The rule base is interpreted according to the First

Inference Then Aggregation (FITA) principle (Cornelis

and Kerre 2003). Let us define the fuzzy set

AmðxÞ ¼ minfAm1ðx1Þ; . . .;AmnðxnÞg: ð3Þ

Each fuzzy rule defines a function fm,

fmðxÞ ¼ CYðIðAmðxÞ;BmÞÞ ð4Þ

where I is a fuzzy inference (we have used the product

operator) and CY stands for ‘‘centroid’’,

CYðhðx; �ÞÞ ¼
R

Y yhðx; yÞ dy
R

Y hðx; yÞ dy
: ð5Þ

The aggregated output is

gðxÞ ¼ GM
m¼1wmfmðxÞ ð6Þ

The output of the rule base, for a fuzzy input X, is

computed through the extension principle, and it is the

fuzzy set

YðyÞ ¼ maxfXðxÞ j y ¼ gðxÞg: ð7Þ

Observe that the output of a crisp value x is also a crisp

number g(x), even though Bm was a fuzzy number.

4 Backfitting fuzzy models

If the aggregation operator G is the sum, then the expres-

sion in Eq. (6) describes a weighted sum of functions fm,

which can be regarded as an ensemble of models. The

weights wm of their members match the confidence degrees

of the consequents of the corresponding rules.

The catalog of functions fm is finite, because there is also

a finite number of sets Am and Bm (we have stated that the

fuzzy grid of linguistic terms does not change during the

learning). Therefore, the learning problem can be thought

of as that of finding the vector of weights (one for each

function in the catalog) that best approximates the dataset.

However, the size of the catalog prevents us from storing

the whole vector of weights in memory. We are not

Fig. 2 Categories of vague datasets. We are given three granules of

information about an unknown function f(x) = x2. a The input is in

the interval [1, 2], and the output is in [2.9, 3.1]; b the input is in [1.4,

1.6] and the output is in [1, 4]; c the input is in [1, 2] and the output is

in [1, 4]. The granule (a) is of type I, because f([1, 2]) . [2.9, 3.1].

The granule (b) is of type II, because the f([1.4, 1, 6]) , [1, 4]. The

granule (x) is of type III, because f([1, 2]) = [1, 4]
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interested in the optimal approximation, though. What we

really want is to find the best sparse approximation to the

optimal vector, i.e. that most of the weights are zero.

The backfitting algorithm [some of whose variants are

called matching pursuit (Mallat and Zhang 1993), arcing

and, arguably, boosting (Friedman et al. 1998)] is one of

the most effective methods for finding a sparse set of

weights. We discuss its crisp and fuzzy implementations in

the sections that follow.

4.1 Backfitting in crisp datasets

For a crisp dataset

fðxi; yiÞgi2f1;...;Ng ð8Þ

the backfitting algorithm recurrently calls a procedure that

finds both a function f in the mentioned catalog, and a

weight w minimizing the norm of the residual:

f ¼ arg min
XN

i¼1

yi � wf ðxiÞ
� �2

: ð9Þ

We proposed in Sánchez et al. (2006) that the best weight

w is analitically determined,

w ¼
PN

i¼1 f ðxiÞ2
PN

i¼1 yif ðxiÞ
; ð10Þ

and used a genetic procedure that searches for the list of

sets Am1,...,Amn and Bm, which, in combination with the

value of w determined in Eq. (10), produces the best

function f.

This generic procedure is wrapped in an iterative search,

defined as follows: In a first step, we find the pair (w1, f1),

as defined in Eq. (9), that best fits the dataset (8). The fuzzy

rule associated to f1 is added to the (empty) rule base, and

assigned a weight w1.

In a second step, the training set (8) is replaced by the

residual of the approximation,

fðxi; yi � wf ðxiÞÞgi2f1;...;Ng ð11Þ

and the procedure that finds the best f in the catalog is

called again, to obtain f2 and w2:

f2 ¼ arg min
XN

i¼1

ðyi � w1f1ðxiÞÞ � w2f2ðxiÞ
� �2

: ð12Þ

The fuzzy rule related to f2 is added to the knowledge base,

and the dataset is replaced by the new residual. Once we

reach this point, this last step is repeated until the residual

is small enough.

From a conceptual point of view, observe that replacing

the output variable of the training set by the residual is

numerically the same as assigning certain weights to the

examples in the dataset. The weighted least squares prob-

lem, applied to the original dataset, is equivalent to the

least squares approximation to the residual. These weights

would range from a perfect fit (weight 0) to an uncovered

example (weight 1), therefore the rationale of this process

can also be explained as ‘‘fit a rule to the dataset, remove

the examples that are well explained by this rule and repeat

until all examples are explained.’’ In other words, the

backfitting is an IRL method.

In previous works, we have used a genetic algorithm for

finding the function f, and tested the preceding search scheme

for extracting fuzzy rules from crisp data in both classifiers

and regression models (del Jesus et al. 2004; Otero and

Sanchez 2006; Sánchez and Otero 2007). The method is

accurate and has been shown to be as fast as some ad-hoc

learning methods (Sánchez and Otero 2004). On the other

side, when the datasets are imprecise the backfitting results

may not be appropriate, as we explain in the next section.

4.2 Backfitting in interval and fuzzy datasets

If the dataset is interval-valued or fuzzy,

fðxi; yiÞgi2f1;...;Ng ð13Þ

we can not accurately compute the residual of the model.

Following the ideas introduced in Sánchez and Couso

(2007), we assume that the residual of the model is

contained in the set

a
N

i¼1

ðYi � w� FðXiÞÞ2 ð14Þ

where

FðXÞðyÞ ¼ max XðxÞ j y ¼ f ðxÞf g ð15Þ

and

X2ðyÞ ¼ maxfXðxÞ j y ¼ x2g: ð16Þ

The best function f must minimize the fuzzy valued func-

tion defined in Eq. (14), as we will show in Sect. 5.

According to our experimentation, the definition (14) is

not well suited for Type I problems. Observe that

Yi � w� FðXiÞ ð17Þ

is less specific than Yi. The uncertainty in the inputs is

propagated to the residual, because of the right term of the

fuzzy subtraction in Eq. (17). Each time the output data is

replaced by the residual of a new rule, the situation is made

worse. Eventually, the residual will cover the value zero in

all the points, and the search ends. As we will discuss later,

(see Sect. 5) a method that evaluates groups of rules at the

same time (Pittsburgh, Michigan or GCCL) is potentially

better than IRL for problems with fuzzy inputs.
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5 A multiobjective GCCL algorithm for obtaining

fuzzy regression models from imprecise data

Genetic Cooperative-Competitive Learning (GCCL) algo-

rithms (Herrera 2005, 2008; Ishibuchi et al. 1999) encode

the rule base in a subset of the population. Rather than

iteratively adding new members to the ensemble, a GCCL

algorithm evolves the whole ensemble. Hence, we do not

longer have a growing rule base; rules can be replaced and

exit the ensemble. Likewise, at each generation new

weights are assigned to all rules. Since all the weights are

assigned simultaneously, the specificity of the residual does

not influence the learning. Besides, the weight of a member

may change when a new function is added to the ensemble.

The algorithm that we propose is called Fuzzy Genetic

Cooperative Competitive Learning, or FGCCL. It makes

the individuals in the population to compete in terms of

coverage and fitting, and also to cooperate building a rule

base. The cooperation involves removing redundant rules,

and also reweighing the others, so that the fitting between

the rule base and the dataset is improved.

The pseudocode of the method is shown in Fig. 3. We

reuse the same genetic operators and representation of the

backfitting approach (Sánchez et al. 2006). The multiob-

jective genetic algorithm applied to generate nondominated

subsets of rules is based on the NSGA-II (Deb et al. 2002).

We have added a new stage to this genetic algorithm, to

implement the cooperation phase where the redundant rules

are removed, as mentioned. This new stage is called ‘‘Null

Space Filter’’ because of reasons that will be made clear

later.

It is emphasized that FGCCL is related to the symbiotic

evolution of fuzzy systems described in (Juang et al. 2000).

Symbiotic evolution also assumes that each individual in

the population represents only a partial solution to the

problem. Complete solutions are formed by combining

several individuals. In the same way, our individuals

compete for survival (in terms of coverage and fitting), and

cooperate to form the final rule base. Nevertheless, our

approach differs from symbiotic evolution, since we do not

use specializations to assign the fitness, neither reinforce-

ment learning, but assign credit to the different individuals

in the population in a global stage. Furthermore, our

assignment of the coverage criteria is similar to that of

other GCCL algorithm, COGIN (Greene and Smith 1993).

Conversely, our work is different from previous approa-

ches in that (a) we will use two objectives when assigning

credit to the rules (the coverage of the rule, and its fitting to

the set of examples), and (b) one of the objectives is a

fuzzy valued function, because the algorithm is intended to

run on imprecise data.

In the following sections we will explain this algorithm

in detail, and give a comprehensive explanation of the

following points:

1. The computation of the coverage and fitting of a rule.

2. How to extend the NSGA-II algorithm for finding

nondominated sets of rules under two different criteria,

one of which is crisp and the other fuzzy.

3. The ‘‘Null Space Filtering’’, that removes redundant

rules and weights the members of the ensemble.

5.1 Fitness function: coverage and fitting of a rule

The fitness function of FGCCL has two components: the

coverage and the fitting. The first component counts how

many examples are explained by the rule, and the second is

intended to measure how well the consequent of the rule

fits the data.

To compute the coverage, each example is allocated at

the most to one rule. Let us recall that our rule base

comprises M rules, as mentioned in Sect. 3:

Rule m : If x1 is Am1 and. . .and xn is Amn

then y is Bm with weight wm: ð18Þ

The antecedent of a rule is associated to the fuzzy set

AmðxÞ ¼ minfAm1ðx1Þ; . . .;AmnðxnÞg; ð19Þ

and let the vague dataset contain N pairs of fuzzy sets (Xi,

Yi). If the consequents Bm are fuzzy sets, then the example

number i is allocated to the rule whose firing strength

max
x;y;t
fminfXiðxÞ; YiðyÞg j t ¼ AmðxÞ � BmðyÞg ð20Þ

is higher. In case that Bm are singletons, the example is

allocated to the rule whose antecedent has the higher

degree of truth:

max
x;t
fXiðxÞ j t ¼ AmðxÞg: ð21Þ

The calculus of the second component, the fitting, is more

troublesome. Since we are aggregating rules with the sum,Fig. 3 Pseudocode of the FGCCL algorithm
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we cannot easily isolate the contribution of a single rule to

the approximation error. We have assigned to each rule a

‘‘replacement error’’, defined as the increment of the error

of the whole rule base when that rule is removed and the

remaining rules are assigned new weights, with the pro-

cedure that we explain in the next section. For example, the

replacement error of a duplicate rule must be zero.

Since the residual of the model is imprecisely known, we

define the replacement error of the mth rule as the fuzzy set

Em ¼a
N

i¼1

ðYi � FðXiÞÞ2 � ðYi � F:mðXiÞÞ2 ð22Þ

where

FðXÞðtÞ ¼ max XðxÞ j t ¼
X

k

wkfkðxÞ
( )

ð23Þ

and

F:mðXÞðtÞ ¼ max XðxÞ j t ¼
X

k 6¼m

w0kfkðxÞ
( )

ð24Þ

where wk are the weights of the rule base and w0k are those

of the reduced base.

5.2 Using NSGA-II for optimizing uncertain objectives

The population of rules is evolved by means of a genetic

algorithm that is derived from NSGA-II (Deb et al.

2002). The main difference between the genetic algorithm

in FGCCL and NSGA-II is the use of the Null Space

Filter. Besides, the NSGA-II has to work with a non-

standard set of operators in order to manage fuzzy criteria

(Deb et al. 2002). We need to define new precedence

(dominance) operators, an alternate nondominated sorting

of the individuals, and a crowding distance between

fuzzy values. These operators are detailed in the sections

that follow.

5.2.1 Precedence under imprecise fitness

To determine whether one individual precedes another, it is

needed to set up a procedure that, given two fuzzy obser-

vations X1 and X2 of two unknown fitness values x1 and x2,

estimates whether the probability of x1 \ x2 is greater than

that of x1 C x2, thus X1�X2: In this sense, the criteria that

we pursue can be regarded as a special case of fuzzy

ranking. However, we also want to find those cases where

there is not statistical evidence in X1 and X2 that makes us

to prefer one of them (thus X1kX2).

If a joint probability Pðx1; x2Þ was known, comparing

two individuals would be a statistical decision problem, i.e.

X1 � X2when

Pðx1\x2Þ[ Pðx1� x2Þ ð25Þ

or

Pðx1� x2Þ\1=2: ð26Þ

Nevertheless, a fuzzy set provides us with less

information than this probability distribution. We will

interpret a fuzzy membership as a possibility, i.e. an upper

probability that dominates the probability of the crisp

fitness. In other words, given a fuzzy value X, the

information we have about the value x is limited to

XðxÞ ¼ P�ðxÞ�PðxÞ: ð27Þ

Hence, X1�X2 when

P�ðx1\x2Þ[ P�ðx1� x2Þ ð28Þ

and, applying that P*(A) = 1 - P*(Ac), the expression

(28) is reduced to

P�ðx1� x2Þ\1=2: ð29Þ

Since P*(�) is a possibility,

P�ðAÞ ¼ maxfP�ðxÞ : x 2 Ag ð30Þ

therefore, to decide whether X1�X2; we check that

maxfX1ðx1Þ � X2ðx2Þ : x1\x2g� 1=2 ð31Þ

and also that

maxfX1ðx1Þ � X2ðx2Þ : x1� x2g\1=2 ð32Þ

It is remarked that rejecting X1�X2 does not imply that

X2�X1; because it may happen that Eq. (29) is higher than

1/2 and also that P*(x1 \ x2) C 1/2. In that case, we

conclude that the fuzzy memberships X1 and X2 do not

contain enough information to appreciate significant

differences between them, i.e. X1kX2.

Lastly, the precedence between heterogeneous pairs

ðn1;X1Þ and ðn2;X2Þ comprising an integer and a fuzzy

number, is as follows:

ðn1;X1Þ � ðn2;X2Þ ,
n1\n2 and X1 � X2

n1	 n2 and X1 � X2

�

ð33Þ

5.2.2 Non dominated sorting

Finding the best individual is a generalization of the pre-

cedence between fuzzy values seen before. Observe that we

can bound the lower probability of the assert ‘‘the ith

individual has the minimum fitness in the population’’ by

Mi ¼
YM

j¼1

P�ðxi\xjÞ i 6¼ j

where P�ðxi\xjÞ ¼ 1�maxfX1ðx1Þ � X2ðx2Þ : x1� x2g:
Sorting the population with respect to the fuzzy criterion is

the same as ordering the values of Mi.
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5.2.3 Crowding distance

We have chosen the Hausdorff distance between the mean

values of both fitness values. The mean value of the fuzzy

number X is an interval [l(X), u(X)] (Dubois and Prade,

1987). Let [la, ua] be the a-cut of the fuzzy set X. Then,

uðXÞ ¼
R 1

0
auada

R 1

0
uada

ð34Þ

and

lðXÞ ¼
R 1

0
alada

R 1

0
lada

: ð35Þ

Given two intervals A and B, the Haussdorff distance is

defined as

dHðA;BÞ ¼ maxfja1 � b1j; ja2 � b2jg: ð36Þ

The crowding distance for a given individual is defined

as the distance between the nearest (as defined by the

Hausdorff metric) individual preceding it and the nearest

individual following it. The first and the last individuals are

assigned a high crowding distance. The meaning of

‘precede’, ‘follow’, ‘first’ and ‘last’ is given by the order

defined by the values Mi mentioned before.

5.3 Cooperation–competition problem: null space

filtering

Assuming that the expected value of the fitness function

tends to increase during the genetic evolution, it is clear

that the cooperation between the rules in the population

arises when the sum of the fitness values of the individuals

is comonotonic with the fitness of the rule base that they

form. In our case, on the one side, the sum of the coverage

values equates the number of points in the dataset that fire

at least one rule, thus the genetic evolution tends to

increase the number of explained examples; the coopera-

tion arises in a natural way. On the other side, imagine a set

of linearly dependent rules: the replacement error of any of

the rules in the set is zero, because any rule can be removed

without affecting the fitting. Obviously, this does not mean

that we can remove all the rules in the set. We can not

determine which rules are superfluous on the basis on the

replacement error. Further processing of the fitting criterion

is needed to achieve cooperation.

In point of fact, if the size of the population is large

enough, there will be infinitely many different settings of

the confidence degrees that produce an optimal fit, in the

least squares sense. Since our purpose is to obtain the most

compact rulebase, we have to choose between those dif-

ferent weight assignments in a way that the number of

redundant rules is as high as possible, thus the size of the

rule base is small. Resembling credit assignment in fuzzy

classifier systems, where two identical rules may be

assigned different credit (Ishibuchi et al. 1999), we want

that most, but not all of the rules with zero replacement

error are assigned a null weight.

Let us derive first the expression of the set of weights

that minimizes the squared error. Let A = [anm] be

the matrix of the memberships of the antecedents of all

rules in the population, at the modal points of the inputs,

anm ¼ AmðXnÞ: Let Y = [yn], yn ¼ Yn be a column vector

with the centers of the desired outputs of the model, and let

W = [Wn] be another column vector formed by the weights

of these rules, those that we want to obtain. The assignment

of weights that minimizes the error (and therefore solves

the cooperation problem) is

K ¼ ðAtAÞ�1AtY ð37Þ

provided that the rank rA of A coincides with its number of

columns, the number of individuals in the population. In

most cases, rA is lower than the population size, therefore

C = At A does not have inverse. The common solution to

this problem is to apply a Singular Value Decomposition

(SVD) of the matrix C, so that C = U D Vt, for canceling

the eigenvalues of D lower than 10-6 times the highest, and

take the inverse of the remaining ones, and by last define

K ¼ ½V � ð1=DÞ � Ut
AtY: ð38Þ

This assignment solves the cooperation problem. We

want to modify it for improving the competition part of the

problem too. Observe that the SVD solution does not

discard rules. For example, if the rule base has two

identical rules, the definition in eq. (38) will assign them

the same weight. In conflict with this, we prefer that one of

them takes all the credit.

It is easy to purge the duplicated rules, but it is difficult to

remove rules that are (almost) linear combination of others.

The value of K in the preceding equation is that of minimum

norm of the weight vector, but what we really need is the

definition of the matrix (1/D) that produces the most sparse

definition of K. In fact, the number of individuals we want

to have assigned weights different than zero is the same as

the number of not cancelled eigenvalues in D. Observe that,

the columns of the matrix U associated to null eigenvalues

form a basis of the nullspace of A. That means that each

individual (each column of A), if expressed in the base

formed by the columns of U, will have at most rA non-null

coefficients. In other words, we will not find more than rA

independent elements in the population. Therefore, we

know that we can set to zero the weights of all the rules but

rA. The problem here is, how can we determine which

columns of A can be zeroed without losing accuracy.

The solution is given by the stage that we call ‘‘Null

Space Filtering’’: we compute the eigenvalues of C0 = (A0)t
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A0, for all the submatrices A0 of A formed by removing only

one of its columns. When it is found a submatrix A0 whose

corresponding non null eigenvalues are the same as those

of A, the column is removed and the process restarted from

A0. We will end up with a matrix with rA columns and full

rank. Now it is possible to use the pseudoinverse solution

in Eq. (37) to obtain the weights of the rA rules in the base,

assigning a weight zero to a number of rules equal to the

dimension of the null space of A.

6 Numerical analysis

In this section we include some numerical experiments, to

provide statistical evidence supporting the main claims of

this paper. These claims can be summarized in the fol-

lowing four points:

1. IRL-based learning from Type-I vague datasets is

prone to overtrain (see Sect. 6.1).

2. The FGCCL algorithm makes better use of vague

datasets than IRL in problems with moderate and high

observation error (Sect. 6.2).

3. The FGCCL algorithm is not worse than other fuzzy

rule learning algorithms in the literature when the

nature of the uncertainty is stochastic (Sect. 6.3).

4. The ‘‘Null Space Filter’’ stage in the FGCCL algorithm

permits discovering more compact rule bases than IRL

(Sect. 6.4).

Nine laboratory problems and four real world problems

have been used to benchmark the algorithms proposed in

this paper (see Table 1). The laboratory problems are:

– f1: high slope function f1(x, y) = x2 ? y2, no noise

added (Sánchez et al. 2002). f1 � 10; f1 � 20; f1 � 50

are the same function, with 10, 20 and 50% of gaussian

noise.

– f2: low slope function f2(x, y) = 10(x-xy)/

(x-2xy ? y), no noise added (Sánchez et al. 2002).

f2 - 10, f2 - 20, f2 - 50 are the same function, with

10, 20 and 50% of gaussian noise.

– Friedman: Synthetic benchmark dataset proposed in

(Friedman 1991) f(x, y, z, t, u) = 10 sin(p xy) ?

20(z - 0.5)2 ? 10t ? 5u, with added gaussian noise.

The real world problems are:

– elec Relationship between the population and the radius

of a village and the length of its electrical line (Cordón

et al. 1999).

– machine-CPU Relative performance of CPUs based on

other computer characteristics (Ein-Dor and Feldmes-

ser 1987).

– daily-elec Daily price of electrical energy in Spain, in

2003, as a function of the technology mix (Alcala et al.

2008; Marı́n and Sánchez 2004).

– building problem taken from the benchmark (Prechelt

1994), with eight binary and six continuous input

variables.

In all experiments, 50% of the points were used to train

the models, which were tested against the remaining 50%.

The roles of training and test sets were interchanged and

the process repeated, and this was replicated five times for

different permutations of the dataset, which gives ten

repetitions of the learning algorithm for each dataset. The

results shown are the mean test values of ten repetitions of

the experiments. The parameters used in the genetic

learning are summarized in Table 2.

6.1 Overtraining in Type-I datasets

In Sect. 2 we explained that vague data in Type-I datasets

is easily misrepresented. If the uncertainty in the output is

lower than the excursion of the function in the range of

values of the input, the learning algorithm will learn a

different function than expected. This effect will be per-

ceived as an overtraining, i.e. reducing the train error

causes the test error to increase.

In Table 3 we have quantified the importance of this

problem. We have computed the test error of the FGCCL

algorithm for the synthetic problems f1 and f2 (and their

noisy versions) and the real world problem ‘‘elec’’ for

interval-valued input data, with tolerances ±1, ±2 and

±3% in the input variables, and assuming that the output

Table 1 Properties of the datasets used in the numerical analysis

Name Inputs Examples

f1 2 675

f1 - 10 2 675

f1 - 20 2 675

f1 - 50 2 675

f2 2 675

f2 - 10 2 675

f2 - 20 2 675

f2 - 50 2 675

elec 2 490

Friedman 5 1200

machine-CPU 6 209

daily-elec 6 365

building 14 4208

f1, f2 and Friedman are synthetic datasets. f1 - * and f2 - * contain

different amounts of stochastic noise. The remaining problems con-

tain real-world data
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variable can be precisely observed. Each granule of

information comprises (wrongly) two interval-valued

inputs and a crisp output. Under these circumstances, when

the observation error is combined with a high slope in the

function (function f1 and ‘‘elec’’ problem,) an overtraining

happens, as can be seen in the column ‘‘3%’’.

6.2 Comparison between FGCCL and IRL in imprecise

datasets

To compare FGCCL and IRL in imprecise datasets, the

functions f1 and f2 were chosen. We want to show that the

improvements of GCCL are more significant in f1 (because

its slope magnifies the effect of the imprecision in the

inputs) than they are in f2. Consequently, we have prepared

datasets with 1, 5 and 10% of interval-valued imprecision

in the outputs, superimposed on different amounts of sto-

chastic uncertainty.

All the obtained rule bases have been tested with crisp

data, assuming a biased (non-zero mean) observation error:

all the test points were in the upper extreme of the toler-

ance. Notice that we have only used datasets for which the

stochastic error is lower than the observation error.

The results are shown in Table 4. As expected, GCCL

improved the results in the tests for which the observation

error was the most relevant source of noise, almost

uniformly.

6.3 Influence of the stochastic noise

The third benchmark checks whether FGCCL can be

applied to crisp problems. We have compared the accuracy

Table 3 Test error when the input data has tolerances ±1, ±2 and

±3%

0% 1% 2% 3%

f1 0.13 0.22 1.34 5.30

f1 - 10 1.59 1.67 2.75 6.69

f1 - 20 5.98 6.08 7.17 11.05

f1 - 30 14.37 14.53 15.76 19.92

f1 - 50 39.22 39.30 40.31 44.16

f2 0.22 0.23 0.34 0.76

f2 - 10 0.35 0.37 0.50 0.93

f2- 20 0.86 0.88 1.00 1.43

f2 - 30 1.40 1.42 1.55 1.97

f2 - 50 3.69 3.71 3.83 4.25

elec 9 10-3 416 416 416 890

When the observation error is combined with a high slope in the

function (function f1 and ‘‘elec’’ problem,) the learning algorithm

overtrains. The abnormal values are shown in boldface

Table 4 Comparison of FGCCL and backfitting in datasets with 1, 5

and 10% of interval-valued imprecision in the outputs, and tested with

crisp data with non-zero mean observation error

1% 5% 10%

BFT FGCCL BFT FGCCL BFT FGCCL

f1 0.89 0.35 6.64 6.25 24.82 24.77

f1 - 10 2.66 1.86 9.39 8.31 29.03 28.60

f2 0.52 0.23 0.60 0.47 1.41 1.23

f2 - 10 0.56 0.37 0.97 0.68 1.67 1.70

elec 440 421 581 558 1003 988

FGCCL improved the results in all the tests for which the observation

error was the most relevant source of noise

Table 2 Parameters used in computational experiments

FGCCL BFT (IRL)

Evolutionary scheme NSGA-II w/ fuzzy fitness ?

Null Space Filter (Sect. 5.3)

NSGA-II with fuzzy fitness

(Sánchez et al. 2007)

Coding scheme DNF fuzzy rules, binary codification,

fixed length (Sánchez and Otero 2004)

Fitness: first criterion Fitting (Sect. 5.1) Fuzzy MSE on the residual

(Sánchez et al. 2006)

Fitness: second criterion Coverage (Sect. 5.1) N/A

Crossover probability 0.9 0.9

Tournament size Binary tournament Binary tournament

Mutation probability 0.02 0.02

Population size 10–25 50

Evaluations of fitness 1,000–2,000 Generations 10–30 9 100 Generations

BFT is an IRL algorithm, where the GA is lauched once for each rule. FGCCL obtains the whole population in a single execution of the GA.

Depending on the problem, the GA in BFT is launched between 10 and 30 times, and then stopped after 100 generations. The GA in FGCCL has

a small population (10–25 individuals) in order to limit the number of rules and the time needed to process the null space filter described in

Sect. 5.3. It is remarked that, although the number of fitness evaluations in FGCCL is lower than that of BFT, the overhead imposed by the null

space filter makes that the computing time of GCCL is roughly four times higher than that of BFT
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of FGCCL with the selection of learning algorithms in

Sánchez et al. (2006). We have intentionally dropped from

that list the real-world datasets1, and focused in the syn-

thetic datasets, whose degree of contamination with

stochastic noise is known. It is emphasized that, in this

case, we have assumed that the observation error is zero,

since none of the algorithms to which we will compare ours

can use vague data.

The fuzzy rule learning algorithms in Sánchez et al.

(2006) are: Wang and Mendel (1992) with importance

degrees ‘maximum’, ‘mean’ and ‘product of maximum and

mean’ (WM1, WM2 and WM3, respectively) the same

three versions of Cordón and Herrera’s method (Cordón

and Herrera 2000) (CH1, CH2, CH3). Nozaki, Ishibuchi

and Tanaka’s fuzzy rule learning (Nozaki et al. 1997)

(NIT), TSK rules (Takagi and Sugeno 1985) optimized

with Weighted Least Squares and Genetic Backfitting

(Sánchez and Otero 2004), and MOSA-based backfitting

(Sánchez and Villar 2008; Sánchez et al. 2006) (BMO).

The same reference includes Linear Regression (LIN),

Quadratic Regression (QUA) and a Conjugate-Gradient

trained Multilayer Perceptron (NEU). This 13 algorithms

have been compared to the Genetic Cooperative Compet-

itive FGCCL.

The best overall result and the most accurate fuzzy rule

base are boldfaced in Table 5. We have also included a

selection of boxplots in Fig. 4. These provide a graphical

insight of the relevance of the differences between the

median, the mean and the variance of the results. Observe

that the performances of the heuristic algorithms are always

worse than those of the GFS. There are not, in general,

significant differences in accuracy between GFS, statistical

nonlinear regression and neural networks, although there

seems to be a small improvement in accuracy of FGCCL

over the remaining GFS. The significance of the difference

is never statistically sound (95% level). Observe that, if we

had used the results in the first column of Table 3 (which

were obtained after a different set of ten independent runs of

the algorithm) the conclusions are the same.

However, the most important gain, if FGCCL is to be

used in crisp datasets, is not the improved accuracy but the

compactness of the rule base, as we show in the next

section.

6.4 Performance of GCCL over machine learning

databases

The fourth benchmark uses standard Machine Learning

benchmarks to assess the accuracy and the compactness of

the FGCCL algorithm, in problems with different sizes and

number of inputs. In order to keep the discussion simple,

we have chosen a selection of the algorithms in the pre-

ceding section. CH1, CH2 and CH3 were discarded

because they produced a much higher number of rules than

WM, without a noticeable increment of the accuracy. Also,

since we are measuring the linguistic quality by the number

of rules, without taking into account the complexities of the

consequent part of the rules, we discard NIT, because it is

less accurate than weighted linear squares-based TSK, for

the same number of fuzzy rules. The quadratic regression is

also removed, because most of times the corresponding

polynomial has more terms than the multilayer perceptron

needed for obtaining an equivalent accuracy.

Summarizing, linear regression and the neural network

are left for reference purposes. Other than this, we have

compared: one example-guided heuristic method (Wang

and Mendel algorithm), one TSK grid-based algorithm (we

fitted with weighted least squares a plane to each set of

elements covered by one cell of the fuzzy grid; the weights

Table 5 Comparative test error of FGCCL and the synthetic datasets f1 and f2 (reproduced from reference Sánchez et al. 2006)

WM1 WM2 WM3 CH1 CH2 CH3 NIT LIN QUA NEU TSK BFT BMO GCCL

f1 5.65 5.73 5.57 5.82 8.90 6.93 5.63 130.5 0.00 0.35 0.095 0.327 0.30 0.14

f1 - 10 6.89 7.19 6.54 6.84 10.15 8.20 7.16 133.91 1.40 1.78 1.62 1.86 1.71 1.65

f1 - 20 11.07 10.99 11.06 11.33 13.45 12.42 10.63 135.6 5.29 6.42 5.90 6.04 5.98 5.89

f1 - 50 51.78 46.40 47.80 53.48 48.94 48.16 39.65 166.64 33.53 41.18 36.76 39.62 38.66 38.66

f2 0.41 0.48 0.45 0.40 0.59 0.45 0.43 1.54 1.61 1.48 0.15 0.24 0.26 0.25

f2 - 10 0.64 0.68 0.68 0.59 0.68 0.60 0.58 1.71 1.75 1.81 0.29 0.42 0.41 0.38

f2 - 20 1.27 1.16 1.17 1.29 1.15 1.17 0.97 2.04 2.09 0.90 0.76 0.87 0.87 0.90

f2 - 50 4.34 3.98 3.94 4.47 3.90 3.97 3.59 4.67 4.78 3.76 3.62 3.67 3.72 3.70

The algorithms include: heuristics (WM, CH), statistical regression (LIN, QUA), neural networks (NEU), rules with a real-valued consequent

(NIT), TSK rules (TSK), genetic backfitting (BFT) and MOSA-based backfitting (BMO). BFT, BMO and GCCL runs were limited to 25 fuzzy

rules. The best of WM, CH, NIT, BFT, BMO and GCCL, plus the best overall model, were highlighted for every dataset

1 The results of FGCCL on the two dropped problems building and

elec can be found in Table 6. In both cases, FGCCL is better than all

GFSs in reference (Sánchez et al. 2006), but the difference is not

relevant in this context.
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Fig. 4 Statistical relevance of the differences between FGCCL and

the selection of statistical and fuzzy rule-based regression algorithms

found in Sánchez et al. (2006), in the datasets f1 and f2. The

performance of the heuristic algorithms is worse than that of the GFS.

In turn, there are not, in general, significant differences in accuracy

between GFS, statistical nonlinear regression and neural networks
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are the memberships of the elements to the cell), an IRL

method (genetic backfitting) and Fuzzy GCCL. The results

are given in Tables 6, 7, and Fig. 5.

As expected, the example-guided heuristic uses a mod-

erately high number of rules, and it is not very precise

(equivalent or worse than linear regression). The weighted

linear squares obtention of TSK rules is the most precise

method, similar to that of the neural network. Backfitting

and FGCCL both perform well and offer a good compro-

mise between compacteness and accuracy. FGCCL was

significantly better than backfitting in four of five tests,

where the fuzzy knowledge bases it generated were both

more compact and more precise.

7 Concluding remarks

This paper addressed some problems of learning fuzzy

rules from imprecise data. We have proposed a new

Genetic Cooperative Competitive Learning algorithm,

designed to make full use of low quality data, and shown

that this paradigm has inherent advantages over IRL when

the inputs are vague. Our algorithm includes an algebraic

stage, where the redundant rules are filtered. We have

demonstrated that this stage contributes to obtain compact

rulebases. We have also shown that an FGCCL algorithm

has good properties when applied to crisp data.

Table 6 Performance of a selection of statistical models, heuristic

rule learning and GFS in some benchmarks

Statistical Fuzzy rule learning

LIN NEU WM WLS-TSK BFT FGCCL

elec 9 10-3 419 616 832 485 444 399

machine-CPU 6204 8955 18057 7533 17857 9536

daily-elec 0.171 0.195 0.305 0.179 0.224 0.196

Friedman 7.33 1.22 7.11 1.80 2.28 1.61

building 9 103 4.77 2.76 4.44 2.68 3.15 2.98

The most accurate fuzzy rule learning algorithm is Weighted Least

Squares TSK, followed by FGCCL

Table 7 The number of fuzzy rules generated by FGCCL is much

lower than those produced by either example-guided or grid-guided

learning methods

Labels WM WLS-TSK BFT FGCCL

elec 3 7 8 10 4

machine-CPU 3 20 91 25 4

daily-elec 3 64 427 25 5

Friedman 3 192 242 25 10

building 3/2* 789 896* 30 20

FGCCL improves grid-based learning algorithms by one order of

magnitude in the number of parameters. We have used three linguistic

labels in all the variables (but the discrete ones). In the dataset

‘‘building’’, the grid-based algorithm depends on partitions of size 2.

Otherwise, the number of rules is too high for practical purposes
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Fig. 5 Compared accuracy between Linear Regression, Neural Networks, Wang and Mendel, TSK rules, Genetic Backfitting and FGCCL. The

accuracy of FGCCL is better, in general, than that of backfitting, and the differences are statistically relevant in four of the five datasets
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Besides, there are some basic questions that remain

unanswered, such as the best way of preprocessing a

dataset with a high degree of imprecision in the input. In

particular, it would be convenient to know how to compute

the spread of the output when the input is shrunk to one

point (generally speaking, how to convert type I problems

into type II). In this paper we have benchmarked the

algorithm over type II problems, but future works should

emphasize the learning of the more common type I prob-

lems, including those with totally unknown input values

(i.e., missing data).

On a different subject, there is room for certain

improvements in the computer algorithm of FGCCL. It is

worth mentioning that the initialization of the population is

currently random. Hence, it may happen that some rules in

the initial population do not cover any examples. This

slows the convergence in high dimensional problems. We

are currently studying the initialization of the population

with a heuristic rule learning algorithm.
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