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GA-Fuzzy Modeling and Classification:
Complexity and Performance

Magne Setnes and Hans Roubos

Abstract—The use of genetic algorithms (GAs) and other evo- [11]and [12], often the transparency and compactness of the re-
lutionary optimization methods to design fuzzy rules for systems sylting rule base is not considered to be of importance. In such
modeling and data classification have received much attention in cases, the fuzzy model becomes a black box and one can ques-

recent literature. Authors have focused on various aspects of these tion th i e f ving f deling instead of oth
randomized techniques, and a whole scale of algorithms have been lon the rationale for applying Tuzzy modeling instead of other

proposed. We comment on some recent work and describe a newtechniques like, e.g., neural networks.
and efficient two-step approach that leads to good results for func-  In the following, we propose a new and efficient two-step ap-
tion approximation, dynamic systems modeling and data classifi- proach to the construction of fuzzy rules from data that com-
cation problems. First fuzzy clustering is applied to obtain a com- - h;ne5 go0d approximation or classification properties with com-
pact initial rule-based model. Then this model is optimized by a . L .
real-coded GA subjected to constraints that maintain the semantic paCt_neSS and transparency. First, fuzzy clustering is applied to
properties of the rules. We consider four examples from the liter- Obtain an initial rule-based model focusing on compactness and
ature: a synthetic nonlinear dynamic systems model, the iris data transparency. In the second step, the performance of the initial
classification problem, the wine data classification problem, and ryle base is optimized by a real-coded GA allowing for simul-
the dynamic modeling of a diesel engine turbocharger. The ob- 564y optimization of both the rule antecedents and the con-
tained results are compared to other recently proposed methods. o - o
sequents. To maintain the transparency properties of the initial
Index Terms—Classification, dynamic systems, fuzzy clustering, rule base, the GA is subjected to constraints that limits the search
;ﬁ;"z';%igge?e“e“c algorithm (GA), Takagi-Sugeno-Kang (TSK) gnace to the neighborhood of the initial rule base. The novelty of
' the approach is the combination of fuzzy clustering for gener-
ating an interpretable initial rule base and the constrained GA
|. INTRODUCTION for optimizing the performance while maintaining this inter-
E focus on the problem of obtaining a compact anaretability. We also show that the GA can be combined with rule

accurate fuzzy rule-based model from observation da’%a_se.: sinjplific;atiqn tools. The performance degradation caused
Frequently, in data-driven fuzzy modeling approaches, t é(3|mpl|f|cat|on IS then toalgr_g_e extent cprrected by_the GA.
Takagi-Sugeno—Kang (TSK)-type fuzzy model is used [14. Section Il explains the _|n|t|al modeling and dlspu_sse_s
The typical identification of the TSK model is done in wwaransparency and accuracy issues. The GA-based optimization

steps. First, the fuzzy rule antecedents are determined; th'gthen described in Sectlon. lll. Section IV cor.15|ders.four
least squares parameter estimation is applied to determine Hgmp!es known fror.n. the literature: a synthetic no'n'lme.ar
consequents. This approach is suboptimal and many meth ypamic system, the |r|s.data and the wine data C.Iassmcat.lon
have been proposed to simultaneously determine all paramefg lems, and the modeling of a real-world truck diesel engine
of the model. Genetic algorithms (GAs) is one such techniqt ocharger. Less_ complgx rule bases than those reported in
that has received a lot of attention in recent literature, owi %erature are obtained with comparable or better accuracy.
its popularity to the possibility of searching irregular an nally, Section V concludes the paper.

high-dimensional solution spaces.

GAs have been applied to learn both the antecedent and con-
sequent part of fuzzy rules and models with both fixed and In the TSK fuzzy model [1] the rule consequents are usually
varying number of rules have been considered [2]-[4]. Alsgpnstant values (singletons) or linear functions of the inputs
GAs have been combined with other techniques like fuzzy clus-
tering [5], [6], neural networks [7], [8], statistical information R;:If x1is A;p and .. .1, IS A;,,
criteria [9], Kalman filters [9], hill climbing [8] and even fuzzy then g; = pi1z1 + -+, PinTn + Pi(ny1)
expert control of the GAs operators [10], to mention some. This i=1 M. (1)
has resulted in many complex algorithms and, as recognized in T

II. INITIAL Fuzzy MODEL

Herex = [z1,z2,...,7,]" is the input vectory; is the output
of the«th rule, andA;4, . .., A;, are the antecedent fuzzy sets.
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whereg; is the degree of activation of théh rule TSK model and constrain the global optimization in order to
maintain the local interpretability. Unlike in the approach in
[16], we consider also the parameters of the antecedent part in
the global optimization.

In Section IV we apply TSK models both for modeling dy-
namic systems and for classification. In systems identification
A. Data-Driven ldentification and control engineering, rules with functional consequents are
- . . . interpreted as local linear models. This offers a means of in-
From data, an initial fuzzy rule base is derived in two steps, ~ . . . .

pecting and analyzing dynamic systems in terms of, e.g., sta-

First, the fuzzy antecedents;; are determined by means o bility issues and controller design. Few rules and a transparent

fuzzy clustering [13]. Then, with the premise fixed, therulecon-_ - .~ . hel K h Vsi
sequents are determined by least squares parameter estim&?mtlomng €S {0 make such an analysis more easy.
¥or classification, we apply singleton consequent TSK

[14]. For clustering, aTregressmn matk" = [x1,...,xx] models. The rule consequents need not necessarily be the same
and an _OUtDUt vecty” = [ys,...,yx] are construct_ed from as the class labels because of the interpolation between the
the available data. Note that the number of used inputs (feg1es The TSK model output is continuous and an additional
tures) is important for the transparency of the resulting modgle; js necessary in order to arrive at a class label. We will
However, we do not explicitly deal with feature selection in thigy, o\ that interpretable rules can still be obtained when the

paper. Assuming that a proper data collection has been doggssequent values are close to the actual class labels.
clustering takes place in the product spac&aodndy to iden-

tify regions where the system can be locally approximated
TSK rules. Various cluster algorithms exist, differing mainly ir?:)/' Transparency and Accuracy of Fuzzy Models
the shape or size of the cluster prototypes applied. To illustrateFixed membership functions taken to represent predefined
the proposed modeling approach, we apply the fuzmyeans linguistic terms are often used to partition the rule base premise.
algorithm [15]. Membership functions derived from the data, however, explain
Given the dat&” = [X,y] the cluster algorithm computesthe data-patterns_ in a better way gnd typicg_lly less sets and less
the fuzzy partition matrisU whoseikth elemeniu;, € [0,1]is  rules result than in the case of a fixed partition approach. If the
the membership degree of the data objact Z, in clusteri. membership functions derived frqm data h_ave simple s_hapes :_and
The rows ofU are thus multidimensional fuzzy sets (clusters}'® Well separated, they can still be assigned meaningful lin-
represented pointwise. Univariate fuzzy séfsare obtained by 9uistic labels by the domain experts. _ _
projecting the rows obJ onto the input variables; and approx- 'I_'he initial ru]e b_ase constructed by fuzzy clustering typ|cally
imate the projections by parametric functions [14]. To illustrafilfills many criteria for transparency and good semantic prop-

n

ﬁzIHA“(.’IZJ), i=1,2,...,M. (3)

J=1

our approach, we apply triangular membership functions erties [11]:
* Moderate Number of Rule§uzzy clustering helps en-
. _ . frT—a c—< suring a comprehensive sized rule base with rules that de-
w(z;a,b,¢) = max | 0, min , . @4 Lo . i
—a' ¢c—b scribe important regions in the data.

) . _» Distinguishability A low number of clusters leads to dis-
If more smooth membership functions are used, e.g., Gaussian tinguishable rules and membership functions.

or exponential functions, the resulting model will in general Normality. By fitting parameterized functions to the pro-

have a higher accuracy in fitting the training data. jected clusters, normal, and comprehensive membership
Once the antecedent membership functions have been fynctions are obtained that can be taken to represent lin-

fixed, the consequent parametegg, of each individual guistic terms.

rule are obtained as a local least squares estimate. Lete Coverage The deliberate overlap of the clusters (rules)

07 = [pir,. .., Pin, Pitnsn)], l€t X, denote the matrifX1] and their position in populated regions of the input—output

with rows [x;,1], and let W; denote a diagonal matrix in data space ensure that the model is able to derive an output

RE*K having the degree of activatiof;(x;) as itskth diag- for all occurring inputs.

onal element. The consequents of ke rule is the weighted  Tpe transparency and compactness of the rule base can

least squares solution f= X.6; + ¢, given by be further improved by methods like rule reduction [17] or

_ rule-base simplification [18]. (In some examples in Section IV
0, = [XITW,X.]  XIWy. () we will apply similarity-driven simplification and this method

is briefly described in Section 1I-D). The approximation
. capability of the rule base, however, remains suboptimal. The
B. Interpreting TSK Models projection of the clusters onto the input variables and their
The rule consequents can also be obtained as a global leastpproximation by parametric functions like triangular fuzzy
squares estimate that considers the contribution of all rules séts, introduces a structural error since the resulting premise
multaneously. This gives a better approximation of the data, pdrtition differs from the cluster partition matrix. Moreover,
usually hampers the interpretation of the rules. In [16], it wahe separate identification of the rule antecedents and the
proposed to combine local and global learning. In our approachle consequents prohibits interactions between them during
we initialize the GA-based optimization with a local learnechodeling. To improve the approximation capability of the rule
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base, we apply a GA-based optimization method as descrileddment of each chromosome codes for the same variable. This

in Section . is necessary for efficient utilization of the crossover operators.
o The initialization also allows us to limit the search space. This
D. Rule Base Simplification makes the optimization problem more efficient.

The similarity-driven rule base simplification algorithm [18] The chromosome representation determines the GA structure.
uses a similarity measure to detect compatible fuzzy sets iMéth a population sizé., we encode the parameters of each
rule base fuzzy model (solution) in a chromosonsg,! = 1,...,L as

| Aty O Ay | a sequence of elements describing the fuzzy sets in the rule an-
= (6) tecedents followed by the parameters of the rule consequents.

|41 U A For a model of\/ fuzzy rules, tri i

y rules, triangular fuzzy sets (each given
Here| - | denotes fuzzy set cardinality and thendu operators by three parameters),sadimensional premise and 4 1 pa-
represent the intersection and union, respectivély,m) = 1 rameters in each consequent function, a chromosome of length
when the membership functions;; and A4,,,; are equal and N = M(3n + (n + 1)) is encoded as

S(l,m) = 0 when the membership functions are nonoverlap-
pmg S; = (antl,...,antM,Ql,...,ﬁM) (7)

The algorithm iteratively evaluates the rule base and the most . s ontains the consequent parameteyf rule R;, and
T L2

similar pair of fuzzy sets are merged in order to obtain a more = _ (@1, it Cit - -, @in, bin, cin) CONtAINS the parameters

general concept that replaces the occurrences of the similar OBlFﬁ]e antecedent fuzzy sefl;, j = 1 n, according to
in the rule base. The algorithm terminates when there are In the initial populatiors® :]’{S(l) 75%]7» S? is the initial
N P )

more similar sets in the rule base. This reduces the number 0 0 - .

different fuzzy sets (linguistic terms) used in the model. Thg dgl, G-md;Q’ = .,sLOarg created bylrandom variation (uniform
oo . “ ) stribution) arounds within the defined constraints (see Sec-

similarity measure is also used to detect “do not care” terms “}R)tn III-D)

can be removed from the rule base. Similarity-driven simplifi- '

cation differ from rule reduction in that the models term set cgg Selection Function

be reduced without necessarily any rules being removed. RUIeI'he selection function is used to create evolutionary pressure
reduction occurs when two or more rules get an equal premilse. yP '

.€., well-performing chromosomes have a higher chance to sur-

vive. Theroulette wheekelection method [19] is used to se-

lectne chromosomes for operation. The chance on the roulette
GAs are gradient free parallel-optimization algorithms thajheel is adaptive and is given &/, Pv, where

use a performance criterion for evaluation and a population of

possible solutions to search for a global optimum. These struc- P 1 ? LU el ) ®)

tured random search techniques are capable of handling com- LAY B

plex and irregular solution spaces [19]. GAs are inspired by the | .

biological process of Darwinian evolution where selection, mli'i‘-nd‘]l IS thedp_erformanier(])f the model encgded in chromosome

tation, and crossover play a major role. Good solutions are ggmeasured In terms of the mean-squared-error (mse)

lected and manipulated to achieve new and possibly better so- 1K

lutions. The manipulation is dqne by thenetic operatori;ha; J= % Z(yk — i)? 9)

work on thechromosomes which the parameters of possible k=1

solutions are encoded. In each generation of the GA, the new

lutions replace the solutions in the population that are selecg;

for deletion. f
We consider real-coded GAs [19]. Binary coded or classic pulation €litist selection).

GAs [20] are less efficient when applied to multidimensional, The chance that a selected chromosome is used in a crossover

high-precision or continuous problems. The bitstrings can bg'eration is 95% and the chance for mutation is 5% (in this

come very Iong_ and t_he search space blows up. Furth_ermoFg per). When a chromosome is selected for crossover (or muta-
central processing unit (CPU) time is lost to the conversion Zg

S(Alj7 Arnj)

[ll. GENETIC ALGORITHMS

lerey is the true output ang is the model output. The in-
se of the selection function is used to select chromosomes
ch deletion. The best chromosome is always preserved in the

) X on) one of the used crossover (or mutation) operators are ap-
tween the binary and real representation. Other alphabets | &4 with equal probability

the real coding can be favorably applied to variables in the con-
tinuous domain. Inreal-coded GAs, the variables appear direcly Genetic Operators
in the chromosome and are modified by special genetic opera- . . . . .
tors. Various real-coded GAs were recently reviewed in [21]. Two classical operatorsimple arithmetic crossovenduni-

The main aspects of the proposed GA are discussed below A mutationand four special real-caded aperators are u_sed in
the implementation is summarized in Section I1I-E. the GA. These operators have been successfully applied in [19],

[22], [23]1

A. Fuzzy Model Representation 1The used operators are rather straightforward, and the interested reader can

Chromosomes are used to describe the solutions in a @ind other and more sophisticated operators in the specialized literature like,
€.g., the IEEE RANSACTION ON EVOLUTIONARY COMPUTING andProceedings

The initialization step by-means Cl_USte”'_qg_WaS 'nt_rOdl_Jced tQyf Annual Eventsuch as th€ongress on Evolutionary Computing (CE)d
allow us to create chromosomes with a similar coding, i.e., eahGenetic and Evolutionary Computation Conference (GECCO)
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Fig. 1.

In the following,r € [0, 1] is a random number (uniform dis-
tribution),t = 0,1, ...,7 is the generation numbex, ands,,
are chromosomes selected for operatiog, {1, 2, ... N} isthe
position of an element in the chromosome, afft* andvi»®*
are the lower and upper bounds, respectively, on the param
encoded by elemerit

1) Crossover Operatorsfor crossover operations, the chroy
mosomes are selected in pa(ss, s.,).

i) Simple arithmetic crossovers!,
over at the kth position. The resulting offsprings

ii)
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GAis subjected to two types of constrairpsrtition andsearch
spaceconstraints.

The partition constraint prohibits gaps in the partitioning of
each input (antecedent) variable. The coding of a fuzzy set must

50 100 150 200 250 300 350 400 comply with (4), i.e.a < b < ¢. To avoid gaps in the partition,

; ' ' ; ' f ' pairs of neighboring fuzzy sets are constrainedaly < ¢,

whereL and RZ denote left and right set, respectively. After ini-
WWWMWW tialization of the initial population and after each generation of

the GA, these conditions are forced, i.e., if for some fuzzy set

0 100150 200 230 300 3s0  ao0 @ > b, thena andb are swapped and ifr > cr, thenag and

! : cr, are swapped.

Given the initial model, an initial chromosons§ is gen-

. erated. A chromosome consist of a vector 8f elements

[v1,v2,...,Vk,...,un]. The upper and lower limits of the

Inputu(k), unforced system(k), and outpuy( k) of the plantin (10).

search space are determined by the two user defined bounds
a1 and aw, that determine the maximum allowed variation
around the initial chromosoms«{ for the antecedent and the
consequent parameters, respectively. Following (7), the bound
« regards the allowed variation of thd (3r) first elements of
the chromosome vector, while the boungiregards the allowed
variation of theM(n + 1) last elements of the chromosome
vector.

The first boundy; is intended to maintain the distinguisha-
%ti‘ﬁ{y of the models term set (the fuzzy sets) by allowing the
parameters describing the fuzzy seig to vary only within a

50 100 150 200 250 300 350 400
k

bound of+«; |X;| around their initial values, whetey;| is the

. length (range) of the domain on which the fuzzy sétsare de-
and s, are crossed fineq By a low value ofv , one can avoid the generation of do-
main-wide and multiple overlapping fuzzy sets, which is a typ-

.ot _ . _ . L2
a{fi Sy = (v, Uk Wit wN) AN jeg) feature of unconstrained optimization. The second bound,
Sw = (wi.. W vk, un), Where kIS isintended to maintain the local-model interpretation of the

selected at random frof®,..., N — 1}.
Whole arithmetic crossovea linear combination o,

ands!, resulting inst*! = (s )+ (1—7)st, andst ! =
t . . .
w) (1= 7)s. The search space constraints are coded in the two vectors,

r(s

rules by allowing thejth consequent parameter of tith rule,
Piq. t0 vary within a bound oftw,(max;(p;,) — min,(p;,))
around its initial value.

v

t

Heuristic crossovers!, ands!, are combined such that _ max

sitl =sf +r(s!, —s') ands’ ! = s!, + (s, — ).

VIR = [peX ] andvtit = [t L o), giving
the upper and lower bounds on each of fkieelements in a

2) Mutation Operators:For mutation operations, singlechromosome. During generation of the initial partition and
chromosomes are selected. in the case of a uniform mutation, elements are generated at
i) Uniform mutation a random selected element, random within these bounds. Only the heuristic crossover and
ke{l,2,....,N}is replaced by, which is a random the Gaussian mutation can produce solutions that violate the
number in the rangéu}™™, v}***]. The resulting chro- bounds. After these operations the constraints are forced, i.e.,
mosome it = (v1, ..., vyt Um). all elementsy;, of the operated chromosomes are subjected to

ii)

D. Constraints

Mu

ltiple uniform mutation uniform mutation of n v, := max(v®, min(v, vEX)).

k

randomly selected elements, wherés also selected at

random from{1,..., N}.

E. Proposed GA with Constrained Search Space

Gaussian mutation all elements of a chromosome
are mutated such that*! = (v},...,v,...,v,), Given the pattern matri€, and a fuzzy rule base, select the

Tty vYm

where v, = v + fi, k = 1,2,...,N. Here f; number of generation%’, the population sizd., the number

is

a random number drawn from Gaussiandis- Of operationsic and the constraints; and«,. Let S* be the

tribution with zero mean and an adaptive varianceurrent population of solutions,/ = 1,..., L and letJ* be

Tk
tun

= (T — t)/T)((vj"™™ — vi"™)/3). The parameter the vector of corresponding values of the evaluation function.
ing performed by this operator becomes finer and 1) Make an initial chromosoms from the initial fuzzy rule

finer as the generation counteincreases. base.

2) Calculate the constraint vector&'® andv™2* usings?
ando; andas.

To maintain the transparency properties of the initial rule base 3) Create the initial populatioB® = {s?,...,s%} where
as discussed in Section II-C, the optimization performed by the  s?,/ = 2,..., L are created by constrained uniform
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random variations arours} and the partition constraints x10~
apply.
4) Repeat genetic optimization foe=0,1,2,...,7 — 1:
a) evaluatest by simulation and obtaid?;
b) selectn chromosomes for operation;
c) selecth chromosomes for deletion;
d) operate on chromosomes acknowledging the search
space constraints;
e) exercise partition constraints;
f) create new populatio8**! by substituting the op-
erated chromosomes for those selected for deletion.

L T C R TTEr- D
oy T )

. T . T 1 L 1
5) Select best solution frord* by evaluatingl- . 00 500 1000 1500 2000
Generations
IV. EXAMPLES (@
In the following four subsections, we consider four different x 10~

modeling problems. The first is a synthetic example regarding
the modeling of a nonlinear dynamic plant. Then, the iris data
and the wine data classification problems are studied, and finally
the modeling of a real-world truck diesel engine turbocharger is 4t
considered. In all examples, we apply a GA with the population
size L = 40 from whichn¢ = 10 are selected for operation in
each iteration (25% replacement).

A. Nonlinear Dynamic Plant

We consider the second-order nonlinear plant studied by B ST S
Wang and Yen in [9], [24], and [17] 0 ; ; ;
0 500 G 1000 1500 2000
enerations
u(k) = gy(k = D).k = 2) +ulk) (10 o

where Fig. 2. The convergence (mse) of the GA applied to the optimization of the
TSK model with linear consequents. (a) Five-rule model with eight fuzzy
g(y(k . 1)7 y(k . 2)) sets. (b) Four-rule model with four fuzzy sets. Training data (solid lines) and

evaluation data (dash-dot lines) are shown.
oy gk =Dk =D =05) ),
B 1+92(k—Dy*(k—2) o e -
In [24] various information criteria were used to successively
The goal is to approximate the nonlinear compongnt{t — pick rules from a set of 36 rules in order to obtain a compact
1),y(k — 2)) of the plant with a fuzzy model. As in [9], 400 and accurate model. The initial rule base was obtained by par-
simulated data points were generated from the plant model (1fXjoning each of the two inputg(k — 1) andy(k — 2) by six
Starting from the equilibrium stai®, 0), 200 samples of iden- equidistant fuzzy sets. The rules were picked in an order deter-
tification data were obtained with a random input signgt) mined by an orthogonal transform.
uniformly distributed in[—1.5, 1.5], followed by 200 samples  In [17] various orthogonal transforms for rule selection were
of evaluation data obtained using a sinusoid input sigfa) = studied using an initial model with 25 rules. In this initial model,
sin(27k/25). The resulting signals are shown in Fig. 1. 20 rules were obtained by clustering, while five redundant rules
1) Solutions in the LiteratureMWe compare our results with were added to evaluate the selection performance of the studied
those obtained by the three different approaches proposed in {éghniques.
[24] and [17]. These approaches are described below, and th&) Proposed ApproachWe applied the modeling approach
best results obtained in each case are summarized in Table proposed in this paper. The real-coded GA described in Sec-
In [9] a GA was combined with a Kalman filter to obtain aion Ill was applied with the constraintg = 25%, as = 25%,
fuzzy model of the plant. The antecedent fuzzy sets of 40 rulesydZ” = 2000 generations.
encoded by Gaussian membership functions, were determineé#irst, we considered aingletonTSK model consisting of
initially by clustering and kept fixed. A binary GA was usedseven rules obtained by fuzzymeans clustering as described
to select a subset of the initial 40 rules in order to produceira Section Il. The mse for both training and validation data
more compact rule base with better generalization propertiegere comparable, indicating that the initial model is not over-
The consequents of the various models in the GA populatitiained. By GA optimization, the mse was reduced by 81% from
were estimated after each generation by the Kalman filter, ah@ie—2 to 3.0¢~2 on the training data and by 96% froh2e—2
an information criterion was used as evaluation function to bab 4.9¢=* on the evaluation data.
ance the tradeoff between the number of rules and the modeConsidering the good results obtained with the singleton
accuracy. model, we decided to look for a smaller rule base. This time a
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1 1
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0 0
yk-1) yk-2)

(e)

Fig. 3. The fuzzy sets in the antecedent of the linear consequent TSK model of the plant. (a) Initial model (five rules, ten fuzzy sets) obtamezchdy
clustering. (b) Simplified model (five rules, eight fuzzy sets). (c) Model after GA optimization. (d) Model after second simplification (foancufesrr fuzzy
sets). (e) Final model after second GA optimization.

TSK model withlinear consequent functionsas used since In search of further simplification of the optimized model,
the more powerful approximation capabilities of the functionalnce again, we applied similarity-driven simplification. This
consequents allows for less rules. An initial model of five rulegave a reduced model of four rules, with the four fuzzy sets as
was constructed by clustering, see Fig. 3(a). To further simpli§hown in Fig. 3(d). As a result of this, the mse increased. The
the initial model, we applied the similarity-driven simplifica-GA, however, was able to bring the performance back to an ac-
tion described in Section II-D. Two sets were aggregated aeptable level, msg.2e—2 and4.7¢~*, for training and evalu-
each premise as shown in Fig. 3(b). The GA was applied &tion data, respectively. The convergence is shown in Fig. 2(b).
this model (five rules, eight fuzzy sets), and the convergen@mly small modifications of the model parameters were done by
is shown in Fig. 2(a). The mse is lower for the evaluation dathe GA, as seen when comparing Fig. 3(d) with Fig. 3(e). The
than for the training data, indicating that the low-frequendjnal rule base is given in Table I, and Fig. 4 shows the corre-
information in the output signal is well learned and we argponding model surface and the individual rule consequents.
not overtraining. The mse reduced frah8e 2 to 7.5¢~* for From the results summarized in Table I, we see that the pro-
training data, and fron2.5¢—2 to 3.5¢—* for evaluation data. posed modeling approach is capable of obtaining good results
The fuzzy sets in the optimized model are shown in Fig. 3(c)using fewer rules than other approaches reported in the litera-
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TABLE |
Fuzzy MODEL OF THENONLINEAR DYNAMIC PLANT

Ry If y,_; is Low and y;_o is Low then g = 0.4502y;_; + 0.1686y;_s + 0.1413
Ry If y, 1 is Low and y,—_o is High then g = —0.4193y;_; + 0.1575y,_, — 0.0937
R;  If y,_, is High and y,_» is Low then g = —0.2699y;_; + 0.0890y,_» + 0.1327
Ry  If yy is High and y;_» is High then g = 0.3213y,_; + 0.0584y;_» — 0.1716

Fuzzy set parameters

ye-1 Low = (—4.7899, —1.4475,1.2972) High = (—0.6048,0.9765, 4.7889)
yp—2 Low = (—3.1795, —0.6248,0.6600) High = (—0.7942,0.9789, 2.7312)
TABLE I

Fuzzy MODELS OF THENONLINEAR DYNAMIC PLANT. ALL MODELS ARE OF THETSK TYPE

Ref. No. of rules No. of Sets Consequent | MSE train | MSE eval
9] 40 rules (initial) 40 Gauss. (2D) | Singleton 3.3e~4 6.9¢~*
28 rules (optimized) | 28 Gauss. (2D) [ Singleton 3.3 6.0e7*
[24] 2 | 36 rules (initial) 12 B-splines Singleton 2.8¢75 5.1¢73
23 rules (optimized) | 12 B-splines Singleton 3.2¢75 1.9¢3
36 rules (initial) 12 B-splines Linear 1.9~ 2.9¢73
24 rules (optimized) | 12 B-splines Linear 2.0e8 6.4e7*
[17] 25 rules (initial) 25 Gauss. (2D) | Singleton 2.3¢74 4.1et
20 rules (optimized) | 20 Gauss. (2D) | Singleton 6.8¢7% 2.4e™4
This | 7 rules (initial) 14 triangular | Singleton 1.6e72 1.2¢72
paper | 7 rules (optimized) 14 triangular | Singleton 3.0e73 4.9¢74
Fig. 3a | 5 rules (initial) 10 triangular Linear 5.8¢73 2.5¢73
Fig. 3¢ | 5 rules (optimized) 8 triangular Linear 7.5¢~4 3.5e~4
Fig. 3e | 4 rules (optimized) 4 triangular Linear 1.2¢78 4.7~

2 The low MSE on the training data in contrast to the MSE on the evaluation data may indicate overtraining.

ture. Moreover, simple triangular membership functions werdassification problem. They also proposed various approaches
used as opposed to cuhit-splines in [24] and Gaussian-typeusing a fixed grid fuzzy partitioning of the antecedent space.
basis functions in[9], [17]. By applying the GA after a rule-bas&he best result, four misclassifications with leave-one-out eval-
simplification step, not only an accurate, but also a compact angtion (resubstitution), was obtained with weighted voting with

transparent rule base was obtained. multiple fuzzy rule bases and a total of 864 rudddsing 1296
) o rules and aingle winnerapproach, the complete data set could
B. Iris Data Classification be learned with two training errors [26].

The iris data is a common benchmark in classification and Bezdeket al.[28] compared various multiple prototypen-
pattern recognition studies [2], [10], [25], [26]. It contains 5@rationschemes. With the so-calleg-rabbitmodel, five pro-
measurements of four features from each of the three spedigiypes were obtained which gave three resubstitution errors.
Iris setosa, Iris versicolgrandlris virginica [27].2 We label the In [29] a nearest prototype approach, with three prototygees
species 1, 2, and 3, respectively, which gives>a 550 pattern lectedby either a binary coded GA or random search, gave also

matrix Z of observation vectors three resubstitution errors.
- Shiet al.[10] used a GA withinteger codingo learn a Mam-
Z, = [Th1, Tr2, Thz, Tia, Cr; dani type fuzzy model. Starting with three fuzzy sets associ-

a€{1,2,3}, k=12,...,150 (12) ated with each feature, the membership function shapes and
. types, and the fuzzy rule set, including the number of rules, were
wherexy., vx2, Txs, anda, are the sepal length, sepal widthg,glyed using a GA. Furthermore, a fuzzy expert system was

petal length, and petal width, respectively. The measureme(iizq 1o adapt the GAs learning parameters. After several trials

are shown in Fig. 5. , _ _ with varying learning options, a four rule model was obtained,
1) Solutions in the Literatureishibuchiet al.[26] reviewed , ich gave three errors in learning the data.

nine fuzzy classifiers and ten nonfuzzy classifiers from the liter-

ature, giving between three and 24 misclassifications for the iris
3The reader is reminded that there are only 150 data samples available in the
2The original Iris data was recently republished in [25]. Iris data set . ..
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Fig. 6. The convergence of the GA in learning the iris data (a) with three rules
and (b) with two rules. Both the number of classification errors (solid lines) and
the GA objective function (dash-dotted lines) given in (14) are shown.

Fig. 4. Nonlinear dynamic plant. (a) Surface plot of the TSK model in Table |

and (b) the individual rule consequent functions. Training data are shown

black dots.
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Fig. 5. Iris datairis setosa(A), iris versicolor (o), andiris virginica (x).

Sample no. 84, indicated by thes misclassified by our approach.

e outputy, of the TSK model was used with the following
classification rule:

1, ifyr <15
=12, ifl5<y<2.5 (13)
3, if 2.5 < yg.

First, an initial model with three rules was constructed from
clustering where each rule described a class (singleton conse-
qguents). The classification accuracy of the initial model was
rather discouraging, giving 36 misclassifications on the training
data. We then optimized this model with the GA described in
Section Ill, using an objective function that combines the mse
with the classification error

N

N
J = % =)+ (e #é) | (14)
k=1 k=1

The mse is needed to differentiate between various solutions
with the same number of classification errors, and it was found
to speed up the convergence of the GA for the used model type
(continuous output). The GA was applied with the constraints
a; = 50%, ax = 25%, andZ = 500 generations. The con-
vergence is illustrated in Fig. 6(a), and the resulting model is
capable of classifying the data with one error only. The model
is suitable for interpretation since the rules consequents are so

2) Proposed ApproachWe applied the fuzzy-means clus- close to the actual class labels that each rule can be taken to de-
tering as described in Section Il to obtain an initial TSK modeicribe a class. The fuzzy sets of the optimized model are shown
with singleton consequents. In order to perform classificatiom Fig. 7, while the corresponding rules are given in Table IIl.
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TABLE 1lI
THREE RULE Fuzzy CLASSIFIER FOR THEIRIS DATA. (Fuzzy SETS IN FIG. 7)

R; If x; is Short and z7 is Wide and z3 is Short  and x4 is Narrow then g = 0.9763
Ry 1If zyis Long and z; is Medium and z3 is Medium and x4 is Medium then g = 2.0054

R3 If x; is Medium and z; is Narrow and z3 is Long  and x4 is Wide then g = 3.0185

Fuzzy set parameters
1 S=(4.2046,5.3171,5.9475) M=(3.7522,5.9779,8.2048) L=(4.3795, 6.5593, 8.2816)
xzg N=(1.2431,2.5759,4.4562) M=(1.7047,3.5304, 3.8480) W=(1.8674,4.143,4.935)
zz  5=(0.3542,1.061,4.1049) M=(0.5027,3.9518,5.4715) L=(4.1304, 6.8883, 7.808)
x4 N=(-0.3903,-0.0909,1.097) M=(0.4008,1.130,2.3095) W=(1.1088,2.1603,3.0233)

TABLE IV
Two RULE Fuzzy CLASSIFIER FOR THEIRIS DATA. (FUzzy SETS IN FIG. 8)

Ry Ifx;is A and z, is Wide and z3 is Short and x4 is Narrow then g = 1.0453
R, If z; is B and x5 is Narrow and z3 is Long and z4 is Wide then g = 2.8034

Fuzzy set parameters

T A=(3.2623,5.8125,9.4886) B=(4.2430,6.5271,7.570)
z,  N=(1.5607,2.6806,4.2887) W=(1.7444, 3.7105, 5.5704)
z3  $=(—0.3239,0.9202, 5.7306) L=(1.4735,6.2559, 6.9432)
x4 N=(-0.4926,0.0813,2.9029) W=(0.7133, 3.5986, 4.5500)
) Short Medium Long | Narrow Medium Wide | A B | Narrow Wide
= = = =
0.5 0.5 0.5 0.5
0 0 0 0
5 6 7 8 25 3 35 4 45 5 6 7 8 25 3 35 4 45
Sepal length Sepal width Sepal length Sepal width
| Short Medium Long ) Narrow Medium Wide | Short Long ) Narrow Wide
=3 = =3 =
0.5 0.5 0.5 0.5
0 0 0 0
2 4 6 05 1 15 2 25 2 4 6 05 1 15 2 25
Petal length Petal width Petal length Petal width
Fig. 7. The fuzzy sets in the antecedent of the optimized three rule classifier ) o -
for the iris data. Fig. 8. The fuzzy sets in the antecedent of the optimized two rule classifier for
the iris data.

Motivated by the good results obtained with three rules, we
decided to constructed a two rule model. Such a model is leéksee rule classifier. In the two rule classifier it is difficult to as-
suited for interpretation, as it will have to interpolate betweesign sensible labels to the partitionsépal length(; ) and no
two classification rules in order to generate the three class oclass label can be attached to the rule consequents.
puts. The initial model constructed by clustering gave 49 clas-The results obtained with the proposed modeling approach
sification errors. When we optimized this model using the prder the iris data case illustrates the power of the GA for op-
posed GA, the misclassifications reduced to one error only [s@mizing fuzzy models. By simultaneously optimizing the an-
Fig. 6(b)]. The resulting two fuzzy classification rules are givetecedent and consequent parts of the rules, the GA found an op-
in Table IV and the optimized membership functions are showimum for the model parameters in the neighborhood of the ini-
in Fig. 8. Comparing the rules in Tables Il and IV, it looks asializations, which gave drastic improvements in classification
if the two rule classifier interpolates betwe&n and 3 of the performance.
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Fig. 9. Wine data: 3 classes and 13 attributes.
C. Wine Classification Data followed were each individual contains one rule and the com-

The wine data contains the chemical analysis of 178 winebRlete population consists of one fuzzy model and thus only 1000

grown in the same region in Italy but derived from thre§'0del evaluations were performed. _

different cultivars. The 13 continuous attributes are availablel) Proposed ApproachAn initial TSK singleton model

for classification: alcohol, malic acid, ash, alcalinity of ashVith three rules was constructed franmeans clustering an all
magnesium, total phenols, flavanoids, nonflavanoids phenotﬁ‘,a available 178 samples as described in Section Il. In order
proanthocyaninsm color intensity, hue, OD280/0D315 & Perform classification, the continuous output of the TSK
dilluted wines and proline (Fig. 9). model was used with the same classification rule as in the iris

Corcoran and Sen [30] applied all the 178 samples fgxample (13). _ L _
learning 60 nonfuzzy IF-THEN rules in a real-coded ge- T_he_|n|t|al_mode_l gave 6Q misclassifications. We then applied
netic-based machine learning approach. They used a popula§Bfilarity-driven simplification and the number of fuzzy sets
of 1500 individuals and applied 300 generations, with ful@s reduced with 11. This model was optimized with the GA
replacement, to come up with the following result for tef{€Scribed in Section Ill, witlx; = 50% anda, = 20%, using
independent trials: best classification rate 100%, averall¢ Same objective function (14) as for the iris data. The con-

classification rate 99.5% and worst classification rate 98.394rgence is shown in Fig. 10(a), and after 200 iterations the
which is three misclassifications. Ishibuati al. [4] applied Model was capable of classifying the data with nine misclas-

all the 178 samples designing a fuzzy classifier with 60 fuzA}ications. The obtained model was again subjected to simi-
egrlty—dnven simplification and the reduced model, with an ad-

rules by means of an integer-coded GA and grid partitioning; . ) o 3 A "
Their population contained 100 individuals and they appli tional seven sets less, was again optimized in 400 iterations by

1000 generations, with full replacement, to come up with tH8€ GA Fig. 10(b). The final model improved to three misclas-
following result for ten independent trials: best classificatiofiications. The fuzzy sets of the optimized model are shown in
rate 99.4% (one misclassifications), average classification r&td- 11, while the corresponding rules are given in Table V.

98.5% and worst classification rate 97.8% (four misclassifica- " this example, the repetitive simplification and optimiza-
tions). tion left four features without antecedent terms. Thus, feature

In both approaches the final rule base contains 60 rules. Tigduction is obtained, and the resulting three rule classifier uses
main difference is the number of model evaluations that w28y nine of the initial 13 features. Comparing the fuzzy sets in
necessary to come to the final result. In [30] the Pittsburgh ajp!d- 11 with the data in Fig. 9 shows that the obtained rules are
proach of genetic-based learning is used where each individigh!Y interpretable. For example, the Flavonoids are divided
in the population contains a complete fuzzy model, resultig oW medium and high, which is clearly visible in the data.

in 150 000 model evaluations. In [4], the Michigan approach 14su@! inspection of the data also shows that “do not care” el-
ements were obtained for features that contain little variation

4The wine data is available from the University of California, Irvine, vidOvVer the three Cl_asses (Ash' Mag, nFlav and Hue)' The number
anonymous ftp ftp.ics.uci.edu/pub/machine-learning-databases. of model evaluations was in totg#00+400)-25%- 100 = 6000
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TABLE V
THREE RULE Fuzzy CLASSIFIER FOR THEWINE DATA. THE LABELS L, M, AND H, CORRESPONDS TA-OW, MEDIUM AND HIGH, RESPECTIVELY

Alc Mal Ash aAsh Mag Tot Fla nFlav Pro Col Hue OD2 Pro Class

Ry H L - L - H H - H M - H H 0.94
R, L L - L - H M - H L - M L 2.04
Ry L H - H - L L - L H - L L 3.01
40 ‘ ‘ . 1 1 1
‘ 205 205 205
30
g 0 0 0
2 12 13 14 1 2 3 4 5 15 20 25 30
- Alcohol Malic acid Alcalinity ash
<20 1 1 1
=
X
= =05 205 =05
10+
0 0 0
1 2 3 1 2 3 4 5 1 2 3
Tot. Phenols . Flavonoids ) Proanthoc.
0 L I 'l
0 50 100 150 200
Generations
=0.5 =0.5 205
@
40
0 0 0
2 4 6 8 1012 2 3 4 500 1000 1500
Color intesity OD280/0D315 Proline
307 Fig. 11. The fuzzy sets in the antecedent of the optimized three rule classifier

for the wine data.
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Fig. 10. The convergence of the GA in learning the wine data in (a) the fir P Ty
optimization and (b) final optimization. Both the number of classification error T a = T —
(solid lines) and the GA objective function (dash-dotted lines) given in (14) a o =20 | e Lurb Py T, Exhaust
shown. A Prurb
. . . Heng yv: Com-  Turbine

since we apply the Pittsburgh approach with 25% replaceme Engine speed pressor

in each iteration. The obtained classification result is compa-
rable to those in [4] and [30], but our model uses far less rule. 12. Scheme of the diesel engine turbocharger.
(three compared to 60) and less features.
o simulation, the fuel injectionin, (mg) per injection and the
D. Identification of a Turbocharger engine speed.,, in (rppm) are chosen as the inputs and the
The dynamic modeling of a truck Diesel engine turbochargeharging pressurg; in (bar) is the models output. Three data
[31] is considered. The goal is to obtain an accurate simulatieats with input—output data were obtained from the engine with
model, but at the same time it should be transparent and of Idifferent driving cycles. The data has a sampling time of 0.2
complexity in order to support applications like controller des and is shown in Fig. 13. The learning d&et lis obtained
sign, hardware-in-the-loop simulations and fault diagnosis. by driving on a flat test track with the biggest possible load.
The charging process of the diesel engine by an exha#sir validation,Set 2was obtained in a similar way arget 3
turbocharger is schematically presented in Fig. 12. A physicaas obtained in a driving cycle meant to reproduce realistic
model of the turbocharger is hard to obtain and it is to compl@onditions in urban traffic.
for controller design. The identification method as proposed inIn [31] the performance of two TSK fuzzy modeling ap-
this paper delivers an appropriate alternative and is only baggdaches were compared on this example: the LOLIMOT
on recorded input—output data. Forhardware-in-the-loop local linear model tree algorithm [32] and Gustafson—Kessel
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product space clustering for rule construction [14]. The latter is
comparable with our initial model step described in Section II.

The charging pressure was modeled by =051
p2(/€ + 1) = f(mb (k)’ mb(k o 1)’ mb(k o 2)’ neng(k)7 % 500 1000 1500 2000
neng(k - 1)7neng(k - 2),p2(k),p2(]€ - 1)) " eng(rpm)
(15) (b)

Fig. 14. (a) The GA convergence for the turbocharger model and (b) the fuzzy
The LOLIMOT algorithm used ten rules with multivariatesets of the obtained model. In (a) both the rmse on the learningsaatisolid

Gaussian membership functions while the rule base construc{pgp) and the mse of the validation datef 2+Set J(dash-dotted lines) are
from product space clustering used three rules and univariate

piecewise exponential membership functions. The root-mean-

squared-error (rmse) for simulation on both the trainingSet ( be performed for each new individual in the GA. However, this
1) and the validation setsSet 2and Set 3 was 0.021, 0.023, only needs to be done a few times during the model develop-
and 0.032 for the LOLIMOT model and 0.024, 0.023, 0.03gent. The obtained fuzzy sets in the two rule model are shown
with the clustering approach. It must be noted that the modslFig. 14(b) and the two rules are given in Table VI. The simu-
performance in this example is based on simulation and ration results are shown in Fig. 15.

one-step-aheagrediction as in the dynamic model example in

Section IV-A, i.e., the state variables are only given at the initial V. CONCLUSION

time, and for the remaining time the simulation is recursive. .
1) Proposed ApproachBased on the good experience with ’V'a’_‘y approaches to fuzzy rule—bas_ed modeh_ng by means of
the proposed method we decided to start with a simple nonlinéyP Igt|onary methqu or other.d_a%tg-dnven techniques haV(_e been
model to predict the charging pressure: published. The varlgty of pOSSIbI|It!eS and automated algorithms
has often resulted in unnecessarily complex models that more
palk +1) = f(pa(k), mu(k), neng (k). (16) resembles black-pox approaches.

We have described a method to construct compact and trans-

An initial model was made with only two clusters. We then agparent, yet accurate fuzzy rule-based models of the TSK type.
plied similarity-driven simplification and the conditions for fuelFuzzy clustering in the product space of the models inputs and

injectionm, were removed from antecedent part of the modeltput is applied to obtain an initial fuzzy rule base. This helps
(replaced by “do not care”). The simulation of the initial modeio ensure a qualitatively tractable rule base where the rules are
gives an rmse of 0.152 for the training data and 0.227 and 0.16¢al models that describe important regions in the systems
for the two validation sets. input—output space. To increase the quantitative properties

We then optimized this model with the GA described in Seof the initial model we have proposed a real-coded GA that
tion lll (ay = 50% andas = 20%), using the rmse as thesimultaneously optimizes the parameters of the antecedent
objective function and” = 200 iterations. The rmse of the op-membership functions and the rule consequents. The tractable
timized model is 0.046 for the training data and 0.048 and 0.0588ucture of the initial model is maintained by constraining the
for the two validation sets. The convergence of the GA is shoveearch space of the GA. In cases where transparency issues
in Fig. 14(a). It should be noted that this optimization has a higite less important, the constraints on the GA search space
computational load due to the recursive simulation that needsctin be relaxed. We also showed that successive application
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521

Fuzzy MODEL OF THE DIESEL TURBOCHARGER

Ry If my(k) is Low and po(k) is Low
then pa(k + 1) = 0.8716pa(k) + 0.0031my (k) + 2.053 - 10~3neny (k) + 0.1144
Ry If my(k) is High and po(k) is High
then py(k + 1) = 0.8077px(k) + 0.0122mp(k) + 9.188 - 10~3nen, (k) + 0.0013
Fuzzy set parameters
pa(k)  Low = (0.5033,0.7809,2.5386) High = (1.2180,2.1925, 3.2040)
mp(k) Don’t care = Universal set
Neng(k) Low = (—83.1,-64.9,2146.3)  High = (300.3,1753.9,2103.3)

Set 1

2.5
£
£
o~
[ [1]
[2]
g [3]
£
™ [4]
[T
4 [5]

Time (min)

Fig. 15. Simulation of the optimized Turbocharger model. Both training data [6]
(top) and validation data (bottom) are shown (solid line) together with the model

output (dash-dotted line).
(7]

of rule-base simplification and GA-based optimization can
be considered to further reduce the model complexity. In thisg
case, the proposed constrained GA was capable of efficiently
correcting for the decrease in model accuracy introduced bng
the simplification.

The proposed modeling approach was successfully applieldo]
to four problems known from the literature: the modeling of )
synthetic nonlinear dynamic plant, the iris data classification
problem, the wine data classification problem, and the mod-
eling of a diesel engine turbocharger. Quantitatively, the obl12]
tained models were comparable to the best results reported in
the literature. However, the obtained models used fewer rulei§3]
than other fuzzy models reported in the literature. Moreover14
these results were obtained with simple triangular membershifs;
function constructs in order to allowed for linguistic interpre-
tation of the models term set. Even better model accuracy cadndl
be obtained by using smooth membership functions and by re-
laxing the constraints on the GA search space. [17]
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