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GA-Fuzzy Modeling and Classification:
Complexity and Performance

Magne Setnes and Hans Roubos

Abstract—The use of genetic algorithms (GAs) and other evo-
lutionary optimization methods to design fuzzy rules for systems
modeling and data classification have received much attention in
recent literature. Authors have focused on various aspects of these
randomized techniques, and a whole scale of algorithms have been
proposed. We comment on some recent work and describe a new
and efficient two-step approach that leads to good results for func-
tion approximation, dynamic systems modeling and data classifi-
cation problems. First fuzzy clustering is applied to obtain a com-
pact initial rule-based model. Then this model is optimized by a
real-coded GA subjected to constraints that maintain the semantic
properties of the rules. We consider four examples from the liter-
ature: a synthetic nonlinear dynamic systems model, the iris data
classification problem, the wine data classification problem, and
the dynamic modeling of a diesel engine turbocharger. The ob-
tained results are compared to other recently proposed methods.

Index Terms—Classification, dynamic systems, fuzzy clustering,
real-coded genetic algorithm (GA), Takagi–Sugeno–Kang (TSK)
fuzzy model.

I. INTRODUCTION

WE focus on the problem of obtaining a compact and
accurate fuzzy rule-based model from observation data.

Frequently, in data-driven fuzzy modeling approaches, the
Takagi–Sugeno–Kang (TSK)-type fuzzy model is used [1].
The typical identification of the TSK model is done in two
steps. First, the fuzzy rule antecedents are determined; then,
least squares parameter estimation is applied to determine the
consequents. This approach is suboptimal and many methods
have been proposed to simultaneously determine all parameters
of the model. Genetic algorithms (GAs) is one such technique
that has received a lot of attention in recent literature, owing
its popularity to the possibility of searching irregular and
high-dimensional solution spaces.

GAs have been applied to learn both the antecedent and con-
sequent part of fuzzy rules and models with both fixed and
varying number of rules have been considered [2]–[4]. Also,
GAs have been combined with other techniques like fuzzy clus-
tering [5], [6], neural networks [7], [8], statistical information
criteria [9], Kalman filters [9], hill climbing [8] and even fuzzy
expert control of the GAs operators [10], to mention some. This
has resulted in many complex algorithms and, as recognized in
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[11] and [12], often the transparency and compactness of the re-
sulting rule base is not considered to be of importance. In such
cases, the fuzzy model becomes a black box and one can ques-
tion the rationale for applying fuzzy modeling instead of other
techniques like, e.g., neural networks.

In the following, we propose a new and efficient two-step ap-
proach to the construction of fuzzy rules from data that com-
bines good approximation or classification properties with com-
pactness and transparency. First, fuzzy clustering is applied to
obtain an initial rule-based model focusing on compactness and
transparency. In the second step, the performance of the initial
rule base is optimized by a real-coded GA allowing for simul-
taneous optimization of both the rule antecedents and the con-
sequents. To maintain the transparency properties of the initial
rule base, the GA is subjected to constraints that limits the search
space to the neighborhood of the initial rule base. The novelty of
the approach is the combination of fuzzy clustering for gener-
ating an interpretable initial rule base and the constrained GA
for optimizing the performance while maintaining this inter-
pretability. We also show that the GA can be combined with rule
base simplification tools. The performance degradation caused
by simplification is then to a large extent corrected by the GA.

Section II explains the initial modeling and discusses
transparency and accuracy issues. The GA-based optimization
is then described in Section III. Section IV considers four
examples known from the literature: a synthetic nonlinear
dynamic system, the iris data and the wine data classification
problems, and the modeling of a real-world truck diesel engine
turbocharger. Less complex rule bases than those reported in
literature are obtained with comparable or better accuracy.
Finally, Section V concludes the paper.

II. I NITIAL FUZZY MODEL

In the TSK fuzzy model [1] the rule consequents are usually
constant values (singletons) or linear functions of the inputs

is is

(1)

Here is the input vector, is the output
of the th rule, and are the antecedent fuzzy sets.
The model output is computed by aggregating the individual
rules contributions

(2)
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where is the degree of activation of theth rule

(3)

A. Data-Driven Identification

From data, an initial fuzzy rule base is derived in two steps.
First, the fuzzy antecedents are determined by means of
fuzzy clustering [13]. Then, with the premise fixed, the rule con-
sequents are determined by least squares parameter estimation
[14]. For clustering, a regression matrix
and an output vector are constructed from
the available data. Note that the number of used inputs (fea-
tures) is important for the transparency of the resulting model.
However, we do not explicitly deal with feature selection in this
paper. Assuming that a proper data collection has been done,
clustering takes place in the product space ofand to iden-
tify regions where the system can be locally approximated by
TSK rules. Various cluster algorithms exist, differing mainly in
the shape or size of the cluster prototypes applied. To illustrate
the proposed modeling approach, we apply the fuzzy-means
algorithm [15].

Given the data the cluster algorithm computes
the fuzzy partition matrix whose th element is
the membership degree of the data object , in cluster .
The rows of are thus multidimensional fuzzy sets (clusters)
represented pointwise. Univariate fuzzy setsare obtained by
projecting the rows of onto the input variables and approx-
imate the projections by parametric functions [14]. To illustrate
our approach, we apply triangular membership functions

(4)

If more smooth membership functions are used, e.g., Gaussian
or exponential functions, the resulting model will in general
have a higher accuracy in fitting the training data.

Once the antecedent membership functions have been
fixed, the consequent parameters of each individual
rule are obtained as a local least squares estimate. Let

, let denote the matrix
with rows , and let denote a diagonal matrix in

having the degree of activation, as its th diag-
onal element. The consequents of theth rule is the weighted
least squares solution of , given by

(5)

B. Interpreting TSK Models

The rule consequents can also be obtained as a global least
squares estimate that considers the contribution of all rules si-
multaneously. This gives a better approximation of the data, but
usually hampers the interpretation of the rules. In [16], it was
proposed to combine local and global learning. In our approach,
we initialize the GA-based optimization with a local learned

TSK model and constrain the global optimization in order to
maintain the local interpretability. Unlike in the approach in
[16], we consider also the parameters of the antecedent part in
the global optimization.

In Section IV we apply TSK models both for modeling dy-
namic systems and for classification. In systems identification
and control engineering, rules with functional consequents are
interpreted as local linear models. This offers a means of in-
specting and analyzing dynamic systems in terms of, e.g., sta-
bility issues and controller design. Few rules and a transparent
partitioning helps to make such an analysis more easy.

For classification, we apply singleton consequent TSK
models. The rule consequents need not necessarily be the same
as the class labels because of the interpolation between the
rules. The TSK model output is continuous and an additional
step is necessary in order to arrive at a class label. We will
show that interpretable rules can still be obtained when the
consequent values are close to the actual class labels.

C. Transparency and Accuracy of Fuzzy Models

Fixed membership functions taken to represent predefined
linguistic terms are often used to partition the rule base premise.
Membership functions derived from the data, however, explain
the data-patterns in a better way and typically less sets and less
rules result than in the case of a fixed partition approach. If the
membership functions derived from data have simple shapes and
are well separated, they can still be assigned meaningful lin-
guistic labels by the domain experts.

The initial rule base constructed by fuzzy clustering typically
fulfills many criteria for transparency and good semantic prop-
erties [11]:

• Moderate Number of Rules: Fuzzy clustering helps en-
suring a comprehensive sized rule base with rules that de-
scribe important regions in the data.

• Distinguishability: A low number of clusters leads to dis-
tinguishable rules and membership functions.

• Normality: By fitting parameterized functions to the pro-
jected clusters, normal, and comprehensive membership
functions are obtained that can be taken to represent lin-
guistic terms.

• Coverage: The deliberate overlap of the clusters (rules)
and their position in populated regions of the input–output
data space ensure that the model is able to derive an output
for all occurring inputs.

The transparency and compactness of the rule base can
be further improved by methods like rule reduction [17] or
rule-base simplification [18]. (In some examples in Section IV
we will apply similarity-driven simplification and this method
is briefly described in Section II-D). The approximation
capability of the rule base, however, remains suboptimal. The
projection of the clusters onto the input variables and their
approximation by parametric functions like triangular fuzzy
sets, introduces a structural error since the resulting premise
partition differs from the cluster partition matrix. Moreover,
the separate identification of the rule antecedents and the
rule consequents prohibits interactions between them during
modeling. To improve the approximation capability of the rule
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base, we apply a GA-based optimization method as described
in Section III.

D. Rule Base Simplification

The similarity-driven rule base simplification algorithm [18]
uses a similarity measure to detect compatible fuzzy sets in a
rule base

(6)

Here denotes fuzzy set cardinality and theand operators
represent the intersection and union, respectively.
when the membership functions and are equal and

when the membership functions are nonoverlap-
ping.

The algorithm iteratively evaluates the rule base and the most
similar pair of fuzzy sets are merged in order to obtain a more
general concept that replaces the occurrences of the similar ones
in the rule base. The algorithm terminates when there are no
more similar sets in the rule base. This reduces the number of
different fuzzy sets (linguistic terms) used in the model. The
similarity measure is also used to detect “do not care” terms that
can be removed from the rule base. Similarity-driven simplifi-
cation differ from rule reduction in that the models term set can
be reduced without necessarily any rules being removed. Rule
reduction occurs when two or more rules get an equal premise.

III. GENETIC ALGORITHMS

GAs are gradient free parallel-optimization algorithms that
use a performance criterion for evaluation and a population of
possible solutions to search for a global optimum. These struc-
tured random search techniques are capable of handling com-
plex and irregular solution spaces [19]. GAs are inspired by the
biological process of Darwinian evolution where selection, mu-
tation, and crossover play a major role. Good solutions are se-
lected and manipulated to achieve new and possibly better so-
lutions. The manipulation is done by thegenetic operatorsthat
work on thechromosomesin which the parameters of possible
solutions are encoded. In each generation of the GA, the new so-
lutions replace the solutions in the population that are selected
for deletion.

We consider real-coded GAs [19]. Binary coded or classical
GAs [20] are less efficient when applied to multidimensional,
high-precision or continuous problems. The bitstrings can be-
come very long and the search space blows up. Furthermore,
central processing unit (CPU) time is lost to the conversion be-
tween the binary and real representation. Other alphabets like
the real coding can be favorably applied to variables in the con-
tinuous domain. In real-coded GAs, the variables appear directly
in the chromosome and are modified by special genetic opera-
tors. Various real-coded GAs were recently reviewed in [21].
The main aspects of the proposed GA are discussed below and
the implementation is summarized in Section III-E.

A. Fuzzy Model Representation

Chromosomes are used to describe the solutions in a GA.
The initialization step by-means clustering was introduced to
allow us to create chromosomes with a similar coding, i.e., each

element of each chromosome codes for the same variable. This
is necessary for efficient utilization of the crossover operators.
The initialization also allows us to limit the search space. This
makes the optimization problem more efficient.

The chromosome representation determines the GA structure.
With a population size , we encode the parameters of each
fuzzy model (solution) in a chromosome as
a sequence of elements describing the fuzzy sets in the rule an-
tecedents followed by the parameters of the rule consequents.
For a model of fuzzy rules, triangular fuzzy sets (each given
by three parameters), a-dimensional premise and pa-
rameters in each consequent function, a chromosome of length

is encoded as

(7)

where contains the consequent parametersof rule , and
contains the parameters

of the antecedent fuzzy sets , according to
(4). In the initial population is the initial
model, and are created by random variation (uniform
distribution) around within the defined constraints (see Sec-
tion III-D).

B. Selection Function

The selection function is used to create evolutionary pressure,
i.e., well-performing chromosomes have a higher chance to sur-
vive. The roulette wheelselection method [19] is used to se-
lect chromosomes for operation. The chance on the roulette
wheel is adaptive and is given as , where

(8)

and is the performance of the model encoded in chromosome
measured in terms of the mean-squared-error (mse)

(9)

where is the true output and is the model output. The in-
verse of the selection function is used to select chromosomes
for deletion. The best chromosome is always preserved in the
population (elitist selection).

The chance that a selected chromosome is used in a crossover
operation is 95% and the chance for mutation is 5% (in this
paper). When a chromosome is selected for crossover (or muta-
tion) one of the used crossover (or mutation) operators are ap-
plied with equal probability.

C. Genetic Operators

Two classical operators,simple arithmetic crossoveranduni-
form mutationand four special real-coded operators are used in
the GA. These operators have been successfully applied in [19],
[22], [23].1

1The used operators are rather straightforward, and the interested reader can
find other and more sophisticated operators in the specialized literature like,
e.g., the IEEE TRANSACTION ONEVOLUTIONARY COMPUTING andProceedings
of Annual Eventssuch as theCongress on Evolutionary Computing (CEC)and
theGenetic and Evolutionary Computation Conference (GECCO).
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Fig. 1. Inputu(k), unforced systemg(k), and outputy(k) of the plant in (10).

In the following, is a random number (uniform dis-
tribution), is the generation number, and
are chromosomes selected for operation, is the
position of an element in the chromosome, and and
are the lower and upper bounds, respectively, on the parameter
encoded by element.

1) Crossover Operators:For crossover operations, the chro-
mosomes are selected in pairs .

i) Simple arithmetic crossover: and are crossed
over at the th position. The resulting offsprings
are: and

, where is
selected at random from .

ii) Whole arithmetic crossover: a linear combination of
and resulting in and

.
iii) Heuristic crossover: and are combined such that

and .
2) Mutation Operators:For mutation operations, single

chromosomes are selected.

i) Uniform mutation: a random selected element
is replaced by , which is a random

number in the range . The resulting chro-
mosome is .

ii) Multiple uniform mutation: uniform mutation of
randomly selected elements, whereis also selected at
random from .

iii) Gaussian mutation: all elements of a chromosome
are mutated such that ,
where , . Here
is a random number drawn from aGaussian dis-
tribution with zero mean and an adaptive variance

. The parameter
tuning performed by this operator becomes finer and
finer as the generation counterincreases.

D. Constraints

To maintain the transparency properties of the initial rule base
as discussed in Section II-C, the optimization performed by the

GA is subjected to two types of constraints:partitionandsearch
spaceconstraints.

The partition constraint prohibits gaps in the partitioning of
each input (antecedent) variable. The coding of a fuzzy set must
comply with (4), i.e., . To avoid gaps in the partition,
pairs of neighboring fuzzy sets are constrained by ,
where and denote left and right set, respectively. After ini-
tialization of the initial population and after each generation of
the GA, these conditions are forced, i.e., if for some fuzzy set

, then and are swapped and if , then and
are swapped.

Given the initial model, an initial chromosome is gen-
erated. A chromosome consist of a vector of elements

. The upper and lower limits of the
search space are determined by the two user defined bounds

and , that determine the maximum allowed variation
around the initial chromosome for the antecedent and the
consequent parameters, respectively. Following (7), the bound

regards the allowed variation of the first elements of
the chromosome vector, while the boundregards the allowed
variation of the last elements of the chromosome
vector.

The first bound is intended to maintain the distinguisha-
bility of the models term set (the fuzzy sets) by allowing the
parameters describing the fuzzy sets to vary only within a
bound of around their initial values, where is the
length (range) of the domain on which the fuzzy setsare de-
fined. By a low value of , one can avoid the generation of do-
main-wide and multiple overlapping fuzzy sets, which is a typ-
ical feature of unconstrained optimization. The second bound,

, is intended to maintain the local-model interpretation of the
rules by allowing the th consequent parameter of theth rule,

, to vary within a bound of
around its initial value.

The search space constraints are coded in the two vectors,
and , giving

the upper and lower bounds on each of theelements in a
chromosome. During generation of the initial partition and
in the case of a uniform mutation, elements are generated at
random within these bounds. Only the heuristic crossover and
the Gaussian mutation can produce solutions that violate the
bounds. After these operations the constraints are forced, i.e.,
all elements of the operated chromosomes are subjected to

.

E. Proposed GA with Constrained Search Space

Given the pattern matrix and a fuzzy rule base, select the
number of generations , the population size , the number
of operations and the constraints and . Let be the
current population of solutions and let be
the vector of corresponding values of the evaluation function.

1) Make an initial chromosome from the initial fuzzy rule
base.

2) Calculate the constraint vectors and using
and and .

3) Create the initial population where
are created by constrained uniform
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random variations around and the partition constraints
apply.

4) Repeat genetic optimization for :

a) evaluate by simulation and obtain ;
b) select chromosomes for operation;
c) select chromosomes for deletion;
d) operate on chromosomes acknowledging the search

space constraints;
e) exercise partition constraints;
f) create new population by substituting the op-

erated chromosomes for those selected for deletion.
5) Select best solution from by evaluating .

IV. EXAMPLES

In the following four subsections, we consider four different
modeling problems. The first is a synthetic example regarding
the modeling of a nonlinear dynamic plant. Then, the iris data
and the wine data classification problems are studied, and finally
the modeling of a real-world truck diesel engine turbocharger is
considered. In all examples, we apply a GA with the population
size from which are selected for operation in
each iteration (25% replacement).

A. Nonlinear Dynamic Plant

We consider the second-order nonlinear plant studied by
Wang and Yen in [9], [24], and [17]

(10)

where

(11)

The goal is to approximate the nonlinear component
of the plant with a fuzzy model. As in [9], 400

simulated data points were generated from the plant model (10).
Starting from the equilibrium state , 200 samples of iden-
tification data were obtained with a random input signal
uniformly distributed in , followed by 200 samples
of evaluation data obtained using a sinusoid input signal

. The resulting signals are shown in Fig. 1.
1) Solutions in the Literature:We compare our results with

those obtained by the three different approaches proposed in [9],
[24] and [17]. These approaches are described below, and the
best results obtained in each case are summarized in Table II.

In [9] a GA was combined with a Kalman filter to obtain a
fuzzy model of the plant. The antecedent fuzzy sets of 40 rules,
encoded by Gaussian membership functions, were determined
initially by clustering and kept fixed. A binary GA was used
to select a subset of the initial 40 rules in order to produce a
more compact rule base with better generalization properties.
The consequents of the various models in the GA population
were estimated after each generation by the Kalman filter, and
an information criterion was used as evaluation function to bal-
ance the tradeoff between the number of rules and the model
accuracy.

(a)

(b)

Fig. 2. The convergence (mse) of the GA applied to the optimization of the
TSK model with linear consequents. (a) Five-rule model with eight fuzzy
sets. (b) Four-rule model with four fuzzy sets. Training data (solid lines) and
evaluation data (dash-dot lines) are shown.

In [24] various information criteria were used to successively
pick rules from a set of 36 rules in order to obtain a compact
and accurate model. The initial rule base was obtained by par-
titioning each of the two inputs and by six
equidistant fuzzy sets. The rules were picked in an order deter-
mined by an orthogonal transform.

In [17] various orthogonal transforms for rule selection were
studied using an initial model with 25 rules. In this initial model,
20 rules were obtained by clustering, while five redundant rules
were added to evaluate the selection performance of the studied
techniques.

2) Proposed Approach:We applied the modeling approach
proposed in this paper. The real-coded GA described in Sec-
tion III was applied with the constraints % %,
and generations.

First, we considered asingletonTSK model consisting of
seven rules obtained by fuzzy-means clustering as described
in Section II. The mse for both training and validation data
were comparable, indicating that the initial model is not over-
trained. By GA optimization, the mse was reduced by 81% from

to on the training data and by 96% from
to on the evaluation data.

Considering the good results obtained with the singleton
model, we decided to look for a smaller rule base. This time a
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(a)

(b)

(c)

(d)

(e)

Fig. 3. The fuzzy sets in the antecedent of the linear consequent TSK model of the plant. (a) Initial model (five rules, ten fuzzy sets) obtained byc-means
clustering. (b) Simplified model (five rules, eight fuzzy sets). (c) Model after GA optimization. (d) Model after second simplification (four rulesand four fuzzy
sets). (e) Final model after second GA optimization.

TSK model with linear consequent functionswas used since
the more powerful approximation capabilities of the functional
consequents allows for less rules. An initial model of five rules
was constructed by clustering, see Fig. 3(a). To further simplify
the initial model, we applied the similarity-driven simplifica-
tion described in Section II-D. Two sets were aggregated in
each premise as shown in Fig. 3(b). The GA was applied to
this model (five rules, eight fuzzy sets), and the convergence
is shown in Fig. 2(a). The mse is lower for the evaluation data
than for the training data, indicating that the low-frequency
information in the output signal is well learned and we are
not overtraining. The mse reduced from to for
training data, and from to for evaluation data.
The fuzzy sets in the optimized model are shown in Fig. 3(c).

In search of further simplification of the optimized model,
once again, we applied similarity-driven simplification. This
gave a reduced model of four rules, with the four fuzzy sets as
shown in Fig. 3(d). As a result of this, the mse increased. The
GA, however, was able to bring the performance back to an ac-
ceptable level, mse and , for training and evalu-
ation data, respectively. The convergence is shown in Fig. 2(b).
Only small modifications of the model parameters were done by
the GA, as seen when comparing Fig. 3(d) with Fig. 3(e). The
final rule base is given in Table I, and Fig. 4 shows the corre-
sponding model surface and the individual rule consequents.

From the results summarized in Table II, we see that the pro-
posed modeling approach is capable of obtaining good results
using fewer rules than other approaches reported in the litera-
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TABLE I
FUZZY MODEL OF THENONLINEAR DYNAMIC PLANT

TABLE II
FUZZY MODELS OF THENONLINEAR DYNAMIC PLANT. ALL MODELS ARE OF THETSK TYPE

ture. Moreover, simple triangular membership functions were
used as opposed to cubic-splines in [24] and Gaussian-type
basis functions in [9], [17]. By applying the GA after a rule-base
simplification step, not only an accurate, but also a compact and
transparent rule base was obtained.

B. Iris Data Classification

The iris data is a common benchmark in classification and
pattern recognition studies [2], [10], [25], [26]. It contains 50
measurements of four features from each of the three species
Iris setosa, Iris versicolor, andIris virginica [27].2 We label the
species 1, 2, and 3, respectively, which gives a 5150 pattern
matrix of observation vectors

(12)

where , and are the sepal length, sepal width,
petal length, and petal width, respectively. The measurements
are shown in Fig. 5.

1) Solutions in the Literature:Ishibuchiet al.[26] reviewed
nine fuzzy classifiers and ten nonfuzzy classifiers from the liter-
ature, giving between three and 24 misclassifications for the iris

2The original Iris data was recently republished in [25].

classification problem. They also proposed various approaches
using a fixed grid fuzzy partitioning of the antecedent space.
The best result, four misclassifications with leave-one-out eval-
uation (resubstitution), was obtained with weighted voting with
multiple fuzzy rule bases and a total of 864 rules.3 Using 1296
rules and asingle winnerapproach, the complete data set could
be learned with two training errors [26].

Bezdeket al. [28] compared various multiple prototypegen-
erationschemes. With the so-calleddog-rabbitmodel, five pro-
totypes were obtained which gave three resubstitution errors.
In [29] a nearest prototype approach, with three prototypesse-
lectedby either a binary coded GA or random search, gave also
three resubstitution errors.

Shiet al.[10] used a GA withinteger codingto learn a Mam-
dani type fuzzy model. Starting with three fuzzy sets associ-
ated with each feature, the membership function shapes and
types, and the fuzzy rule set, including the number of rules, were
evolved using a GA. Furthermore, a fuzzy expert system was
used to adapt the GAs learning parameters. After several trials
with varying learning options, a four rule model was obtained,
which gave three errors in learning the data.

3The reader is reminded that there are only 150 data samples available in the
Iris data set. . ..
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(a)

(b)

Fig. 4. Nonlinear dynamic plant. (a) Surface plot of the TSK model in Table I
and (b) the individual rule consequent functions. Training data are shown as
black dots.

Fig. 5. Iris data:iris setosa(4), iris versicolor (�), and iris virginica (?).
Sample no. 84, indicated by the� is misclassified by our approach.

2) Proposed Approach:We applied the fuzzy-means clus-
tering as described in Section II to obtain an initial TSK model
with singleton consequents. In order to perform classification,

(a)

(b)

Fig. 6. The convergence of the GA in learning the iris data (a) with three rules
and (b) with two rules. Both the number of classification errors (solid lines) and
the GA objective function (dash-dotted lines) given in (14) are shown.

the output of the TSK model was used with the following
classification rule:

if
if
if

(13)

First, an initial model with three rules was constructed from
clustering where each rule described a class (singleton conse-
quents). The classification accuracy of the initial model was
rather discouraging, giving 36 misclassifications on the training
data. We then optimized this model with the GA described in
Section III, using an objective function that combines the mse
with the classification error

(14)

The mse is needed to differentiate between various solutions
with the same number of classification errors, and it was found
to speed up the convergence of the GA for the used model type
(continuous output). The GA was applied with the constraints

%, %, and generations. The con-
vergence is illustrated in Fig. 6(a), and the resulting model is
capable of classifying the data with one error only. The model
is suitable for interpretation since the rules consequents are so
close to the actual class labels that each rule can be taken to de-
scribe a class. The fuzzy sets of the optimized model are shown
in Fig. 7, while the corresponding rules are given in Table III.
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TABLE III
THREE RULE FUZZY CLASSIFIER FOR THEIRIS DATA. (FUZZY SETS IN FIG. 7)

TABLE IV
TWO RULE FUZZY CLASSIFIER FOR THEIRIS DATA. (FUZZY SETS IN FIG. 8)

Fig. 7. The fuzzy sets in the antecedent of the optimized three rule classifier
for the iris data.

Motivated by the good results obtained with three rules, we
decided to constructed a two rule model. Such a model is less
suited for interpretation, as it will have to interpolate between
two classification rules in order to generate the three class out-
puts. The initial model constructed by clustering gave 49 clas-
sification errors. When we optimized this model using the pro-
posed GA, the misclassifications reduced to one error only [see
Fig. 6(b)]. The resulting two fuzzy classification rules are given
in Table IV and the optimized membership functions are shown
in Fig. 8. Comparing the rules in Tables III and IV, it looks as
if the two rule classifier interpolates between and of the

Fig. 8. The fuzzy sets in the antecedent of the optimized two rule classifier for
the iris data.

three rule classifier. In the two rule classifier it is difficult to as-
sign sensible labels to the partition ofsepal length and no
class label can be attached to the rule consequents.

The results obtained with the proposed modeling approach
for the iris data case illustrates the power of the GA for op-
timizing fuzzy models. By simultaneously optimizing the an-
tecedent and consequent parts of the rules, the GA found an op-
timum for the model parameters in the neighborhood of the ini-
tializations, which gave drastic improvements in classification
performance.
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Fig. 9. Wine data: 3 classes and 13 attributes.

C. Wine Classification Data

The wine data4 contains the chemical analysis of 178 wines
grown in the same region in Italy but derived from three
different cultivars. The 13 continuous attributes are available
for classification: alcohol, malic acid, ash, alcalinity of ash,
magnesium, total phenols, flavanoids, nonflavanoids phenols,
proanthocyaninsm color intensity, hue, OD280/OD315 of
dilluted wines and proline (Fig. 9).

Corcoran and Sen [30] applied all the 178 samples for
learning 60 nonfuzzy IF-THEN rules in a real-coded ge-
netic-based machine learning approach. They used a population
of 1500 individuals and applied 300 generations, with full
replacement, to come up with the following result for ten
independent trials: best classification rate 100%, average
classification rate 99.5% and worst classification rate 98.3%,
which is three misclassifications. Ishibuchiet al. [4] applied
all the 178 samples designing a fuzzy classifier with 60 fuzzy
rules by means of an integer-coded GA and grid partitioning.
Their population contained 100 individuals and they applied
1000 generations, with full replacement, to come up with the
following result for ten independent trials: best classification
rate 99.4% (one misclassifications), average classification rate
98.5% and worst classification rate 97.8% (four misclassifica-
tions).

In both approaches the final rule base contains 60 rules. The
main difference is the number of model evaluations that was
necessary to come to the final result. In [30] the Pittsburgh ap-
proach of genetic-based learning is used where each individual
in the population contains a complete fuzzy model, resulting
in 150 000 model evaluations. In [4], the Michigan approach is

4The wine data is available from the University of California, Irvine, via
anonymous ftp ftp.ics.uci.edu/pub/machine-learning-databases.

followed were each individual contains one rule and the com-
plete population consists of one fuzzy model and thus only 1000
model evaluations were performed.

1) Proposed Approach:An initial TSK singleton model
with three rules was constructed from-means clustering an all
the available 178 samples as described in Section II. In order
to perform classification, the continuous output of the TSK
model was used with the same classification rule as in the iris
example (13).

The initial model gave 60 misclassifications. We then applied
similarity-driven simplification and the number of fuzzy sets
was reduced with 11. This model was optimized with the GA
described in Section III, with % and %, using
the same objective function (14) as for the iris data. The con-
vergence is shown in Fig. 10(a), and after 200 iterations the
model was capable of classifying the data with nine misclas-
sifications. The obtained model was again subjected to simi-
larity-driven simplification and the reduced model, with an ad-
ditional seven sets less, was again optimized in 400 iterations by
the GA Fig. 10(b). The final model improved to three misclas-
sifications. The fuzzy sets of the optimized model are shown in
Fig. 11, while the corresponding rules are given in Table V.

In this example, the repetitive simplification and optimiza-
tion left four features without antecedent terms. Thus, feature
reduction is obtained, and the resulting three rule classifier uses
only nine of the initial 13 features. Comparing the fuzzy sets in
Fig. 11 with the data in Fig. 9 shows that the obtained rules are
highly interpretable. For example, the Flavonoids are divided
in low, medium and high, which is clearly visible in the data.
Visual inspection of the data also shows that “do not care” el-
ements were obtained for features that contain little variation
over the three classes (Ash, Mag, nFlav and Hue). The number
of model evaluations was in total %
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TABLE V
THREERULE FUZZY CLASSIFIER FOR THEWINE DATA. THE LABELS L, M, AND H, CORRESPONDS TOLOW, MEDIUM AND HIGH, RESPECTIVELY

(a)

(b)

Fig. 10. The convergence of the GA in learning the wine data in (a) the first
optimization and (b) final optimization. Both the number of classification errors
(solid lines) and the GA objective function (dash-dotted lines) given in (14) are
shown.

since we apply the Pittsburgh approach with 25% replacement
in each iteration. The obtained classification result is compa-
rable to those in [4] and [30], but our model uses far less rules
(three compared to 60) and less features.

D. Identification of a Turbocharger

The dynamic modeling of a truck Diesel engine turbocharger
[31] is considered. The goal is to obtain an accurate simulation
model, but at the same time it should be transparent and of low
complexity in order to support applications like controller de-
sign, hardware-in-the-loop simulations and fault diagnosis.

The charging process of the diesel engine by an exhaust
turbocharger is schematically presented in Fig. 12. A physical
model of the turbocharger is hard to obtain and it is to complex
for controller design. The identification method as proposed in
this paper delivers an appropriate alternative and is only based
on recorded input–output data. For ahardware-in-the-loop

Fig. 11. The fuzzy sets in the antecedent of the optimized three rule classifier
for the wine data.

Fig. 12. Scheme of the diesel engine turbocharger.

simulation, the fuel injection, per injection and the
engine speed in (rpm) are chosen as the inputs and the
charging pressure in (bar) is the models output. Three data
sets with input–output data were obtained from the engine with
different driving cycles. The data has a sampling time of 0.2
s and is shown in Fig. 13. The learning dataSet 1is obtained
by driving on a flat test track with the biggest possible load.
For validation,Set 2was obtained in a similar way andSet 3
was obtained in a driving cycle meant to reproduce realistic
conditions in urban traffic.

In [31] the performance of two TSK fuzzy modeling ap-
proaches were compared on this example: the LOLIMOT
local linear model tree algorithm [32] and Gustafson–Kessel
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Fig. 13. Training data:Set 1; validation data:Sets 2and3.

product space clustering for rule construction [14]. The latter is
comparable with our initial model step described in Section II.
The charging pressure was modeled by

(15)

The LOLIMOT algorithm used ten rules with multivariate
Gaussian membership functions while the rule base constructed
from product space clustering used three rules and univariate
piecewise exponential membership functions. The root-mean-
squared-error (rmse) for simulation on both the training set (Set
1) and the validation sets (Set 2andSet 3) was 0.021, 0.023,
and 0.032 for the LOLIMOT model and 0.024, 0.023, 0.036
with the clustering approach. It must be noted that the model
performance in this example is based on simulation and not
one-step-aheadprediction as in the dynamic model example in
Section IV-A, i.e., the state variables are only given at the initial
time, and for the remaining time the simulation is recursive.

1) Proposed Approach:Based on the good experience with
the proposed method we decided to start with a simple nonlinear
model to predict the charging pressure:

(16)

An initial model was made with only two clusters. We then ap-
plied similarity-driven simplification and the conditions for fuel
injection were removed from antecedent part of the model
(replaced by “do not care”). The simulation of the initial model
gives an rmse of 0.152 for the training data and 0.227 and 0.151
for the two validation sets.

We then optimized this model with the GA described in Sec-
tion III ( % and %), using the rmse as the
objective function and iterations. The rmse of the op-
timized model is 0.046 for the training data and 0.048 and 0.053
for the two validation sets. The convergence of the GA is shown
in Fig. 14(a). It should be noted that this optimization has a high
computational load due to the recursive simulation that needs to

(a)

(b)

Fig. 14. (a) The GA convergence for the turbocharger model and (b) the fuzzy
sets of the obtained model. In (a) both the rmse on the learning dataSet 1(solid
lines) and the mse of the validation data (Set 2+Set 3)(dash-dotted lines) are
shown.

be performed for each new individual in the GA. However, this
only needs to be done a few times during the model develop-
ment. The obtained fuzzy sets in the two rule model are shown
in Fig. 14(b) and the two rules are given in Table VI. The simu-
lation results are shown in Fig. 15.

V. CONCLUSION

Many approaches to fuzzy rule-based modeling by means of
evolutionary methods or other data-driven techniques have been
published. The variety of possibilities and automated algorithms
has often resulted in unnecessarily complex models that more
resembles black-box approaches.

We have described a method to construct compact and trans-
parent, yet accurate fuzzy rule-based models of the TSK type.
Fuzzy clustering in the product space of the models inputs and
output is applied to obtain an initial fuzzy rule base. This helps
to ensure a qualitatively tractable rule base where the rules are
local models that describe important regions in the systems
input–output space. To increase the quantitative properties
of the initial model we have proposed a real-coded GA that
simultaneously optimizes the parameters of the antecedent
membership functions and the rule consequents. The tractable
structure of the initial model is maintained by constraining the
search space of the GA. In cases where transparency issues
are less important, the constraints on the GA search space
can be relaxed. We also showed that successive application
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TABLE VI
FUZZY MODEL OF THEDIESEL TURBOCHARGER

Fig. 15. Simulation of the optimized Turbocharger model. Both training data
(top) and validation data (bottom) are shown (solid line) together with the model
output (dash-dotted line).

of rule-base simplification and GA-based optimization can
be considered to further reduce the model complexity. In this
case, the proposed constrained GA was capable of efficiently
correcting for the decrease in model accuracy introduced by
the simplification.

The proposed modeling approach was successfully applied
to four problems known from the literature: the modeling of a
synthetic nonlinear dynamic plant, the iris data classification
problem, the wine data classification problem, and the mod-
eling of a diesel engine turbocharger. Quantitatively, the ob-
tained models were comparable to the best results reported in
the literature. However, the obtained models used fewer rules
than other fuzzy models reported in the literature. Moreover,
these results were obtained with simple triangular membership
function constructs in order to allowed for linguistic interpre-
tation of the models term set. Even better model accuracy can
be obtained by using smooth membership functions and by re-
laxing the constraints on the GA search space.
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