J Syst Eng (1991)1:114-118
© 1991 Springer-Verlag London Limited

Journal of
Systems
Engineering

Optimum Design of Fuzzy Logic Controllers Using Genetic

Algorithms

D.T. Pham and D. Karaboga

Intelligent Systems Rescarch Laboratory, School of Electrical, Electronic and Systems Engineering, University ol Wales,

PO Box 904, Cardiff, CF1 3YH, UK

This paper describes the use of genetic algorithins
(GAs) to design fuzzy logic controllers (FLCs). Two
GAs are considered, a basic GA and a modified
GA. The modified GA employs ‘cross breeding’
between different gene populations to produce a fitter
population. Simulation results are presented which
demonstrate the ability of the modified GA to design
better FLCs than those obtained with the basic GA.

Keywords: Fuzzy control; Genetic algorithms;
Expert control; Optimal controller design

1. Introduction

Fuzzy logic control is based on Zadeh’s theory of
fuzzy sets [1]. Since fuzzy logic control was first
introduced by Mamdani [2], several fuzzy logic
controllers (FL.Cs) have been designed for diverse
practical applications (see, for example, [3-5]).

The key element in an FLC is a set of control
rules or a relation matrix representing the mapping
between the FLC’s input fuzzy error values and
output fuzzy control actions.

This paper describes the use of genetic algorithms
(GAs) to optimise the relation matrix of an FLC.
Basic GAs were initially considered by the authors
for this task in [6]. In the present work, a modified
GA is employed which implements the optimisation

in two stages. The first stage produces independent

populations of ‘genes’ representing preliminary FLC

Received 2 July 1991

Correspondence and offprint requests to: D.T. Pham, Intelligent
Systems Research Laboratory, School of Electrical, Electronic
and Systems Engineering, University of Wales, PO Box 904,
Cardiff, CF1 3YH, UK :

designs. A ‘cross breeding’ operation is performed
to generate a population of strong genes for further
optimisation in the second stage.

The main body of the paper comprises four
sections. Section 2 reviews some of the previous
work on the design of FLCs. Section 3 provides a
brief introduction to fuzzy control. Section 4
describes both the basic GA used in the previous
work and the modified GA. Section 5 presents the
results of computer simulations of the responses of
a time-delayed second-order plant under the control
of FLCs designed by the basic and the modified
GAs. '

2. Previous Work on FLC Design

Researchers have concentrated on the problem of
extracting control rules for FLCs. Manual extraction
of rules has two major difficulties. First, experienced
operators from whom rules can be acquired may
not be readily available. Second, such operators
may not be able to represent their process control
knowledge as accurate and consistent rules. Thus,
efforts have been devoted to finding methods to
extract rules automatically. For example, Procyk
and Mamdani [7] have described a self-organizing
FLC capable of this. Lee and Berenji [8] have
reported a self-learning FLLC employing reinforce-
ment techniques to learn the required rules. Auto-
matic rule learning has also been achieved in the
work by Patrikar and Provence [9] who have used
neural networks for this purpose.

The automatic generation of control rules based
on a model of the behaviour of the controlled process
rather than the operator’s actions or experience has
also been attempted. Work in this area includes

Supplied by The British Library - "The world's knowledge"

———

< g T gl - A & A A At .. e} e e i i . e e, M e N - B

e W

——

Optimum De&ign of Fuzzy Logic Controllers

that by Czogala and Pedrycz [10] and Chen [11].
The latter author has employed a method known
as the cell-state-space method for constructing the
rule base. Peng [12] has described a parametric
function optimisation method for deriving control
rules for systems with known mathematical models.
FLCs designed in this way have been shown by the
author to possess a better performance than the
conventional PID controllers available for such
systems.

3. Fuzzy Logic Control

The basic structure of an FLC is conceptually shown
in Fig. 1. The knowledge base of the FLC is its
relation matrix R which, as previously mentioned,
represents the rules for controlling the plant. Using
R, the computation unit produces a fuzzy output B’
from a fuzzy input A'. B' is defuzzified by the
defuzzification unit to give the output v to control
the plant. A’ is obtained from the fuzzification unit.
The input to the latter is the error between the
desired plant output r and the actual plant output
y.
During operation of the controller, if the fuzzified
observed plant error is A’, the controller’s fuzzy
output B’ will be produced by the computation unit
according to the compositional rule of inference [1]
as follows:
B'=A'OR

A’ 0 R is the sup-star composition of A’ and R
defined by using either the Max-Min operator or
the Max-Product operator [6].

The Max—Product operator has been adopted in
this study as it has been shown to produce smoother
control actions [13].

The fuzzification unit converts a ‘crisp’ error value
u (=5 = u = +5) into a fuzzy set A’ the elements
of which are linguistic variables. The following seven

linguistic variables were used in this work: Negative
Large (NL) or u,, Negative Medium (NM) or u,,

FLC
Knowledge
Base
A’ : B yv
r u v
Fuzz Computation Def.
T Tluntt Unit unit[T*|Plant
Y

Fig. 1. Basic structure of a fuzzy control system.

115

Negative Small (NS) or u3, Zero (ZE) or u,, Positive
Small (PS) or us, Positive Medium (PM) or s,
Positive Large (PL) or ;. These linguistic variables
are themselves fuzzy sets defined by the membership
functions shown in Fig. 2. Note that, as A’ comprises
up to seven elements, the number of rows, m, of
R is equal to seven.

The output B' of the computation unit is a fuzzy
set. The maximum number of elements of B’ is
equal to the number of columns, n, of R, which has
been chosen as 11 in this work. That is, the output
space of the FLC has been quantised into 11
different levels in the interval [—5, +5].

The defuzzification unit converts B’ into a crisp
value for controlling the plant. The centre-of-
area method has been selected to implement the
defuzzification [6].

4. Genetic Algorithms

This section outlines the operation of the GA used
by the authors in a previous study [6] and presents
the improved GA employed in the present work.

4.1. Previous GA

Figure 3 shows the structure of the GA. There are
five basic components: a random number generator,
a ‘fitness’ evaluation unit and genetic operators
for the ‘reproduction’, ‘crossover’ and ‘mutation’
operations.

The initial population required at the start of the
GA is a set of number strings or genes produced
by the random number generator. Each string is a
one-dimensional representation of a matrix R, of
the form ’

Bap Bpz e - e PBije o - Bonn

where p; is an element of the relation matrix R.
p;j is itself a string of binary digits.

Associated with each string is a fitness value as
computed by the evaluation unit. A fitness value is
a measure of the goodness of the relation matrix
that the string represents. The aim of the genetic

NE NM NS 1 2E PS M j4:]

-5 -4 -3 =2 -1 © 1 2 3 4 5

Fig. 2. Membership functions for fuzzy sets of input errors.

Supplied by The British Library - "The world's knowledge"

116

Random No.
Generator

Initia
Population

Fitness
Evaluation

T

Fitness
Scaling

Seeded Sel.|(Reproduction
unit
Random Sel.

Elite

Crossover

Mutation

gl

)
£

Population

No

@

Yes

Stop

Fig. 3. Flow chart of basic GA.

operators is to transform a set of strings into sets
with higher fitness values.

The basic reproduction operator implements a
natural selection function known as ‘seeded selec-
tion’. Individual strings are copied from one set
(representing a generation of solutions) to the next
according to their fitness values, the higher the
fitness value, the greater the probability of a string
being selected for the next generation.

The crossover operator chooses pairs of strings
at random and produces new pairs. The simplest
crossover operation is to cut the original ‘parent’
strings at a randomly selected point and exchange
their tails. This operation is shown in Fig. 4.

The mutation operator, illustrated in Fig. 5,
randomly reverses the values of bits in a string.

In addition to the aforementioned basic com-
ponents, the GA used also incorporates a number

of enhanced features. The ‘fitness scaling’ unit .

shown in Fig. 3 is for normalising the fitness values
computed by the evaluation unit. A ‘scaling window’
is used in this normalisation process to distinguish
between good and better solutions. The reproduction
unit also implements a random selection procedure,
controlled by a parameter called the ‘generation
gap’, and an ‘elite’ procedure for preserving the

D.T. Pham and D. Karaboga

Parent 1 100010011110 «— tail

Parent 2 01101000110 +— tail

New string 2 011010011110
New string 1 100011000110

Fig. 4. Simple crossover operation.

old string 110 O{Oil 011101
New string 110011011101

Fig. 5. Mutation operation.

fittest solution in each generation, in addition to
the seeded selection process described earlier.

A phase of the GA consists of sequentially
applying the evaluation, reproduction, crossover
and mutation operations. A new generation of
solution strings is produced with each phase of the
GA. The GA is repeated for a maximum number
of generations, MAXGEN. For more details of
GAs, see [14-15].

The GA parameters employed were as follows:

. Fitness evaluation criterion = ITAE!
Scaling window = 1

. Crossover rate = 0.95

Mutation rate = 0.01

. Generation gap = 1.0

Length of a solution string = 616 bits?

. Number of solution strings in each generation =
100

8. Maximum number of generations = 400

NN AW e

4.2. Improved GA

The flow chart of the new GA is depicted in Fig.
6. Blocks 1'to n are each identical to the flow chart
shown in Fig. 3. These blocks represent n GAs
executing in parallel. The initial population for the
GAs are created using random number generators
with different ‘seeds’. After a fixed number of
generations, MAXGEN]I, the execution of these
GAs is stopped. The n populations of solution

"The performance of an FLC produced by the GA was measured
according to the error in the step response of the plant that it
controls. The ‘Integral of Time Multiplied by Absolute Error’
criterion was used to compute this error [16].

2It is recalled that each solution string represents a relation
matrix. As mentioned in Section 3, the matrix dimensions are
7 X 11, giving 77 elements. The string length is the result of
assigning eight bits per element.

Supplied by The British Library - "The world's knowledge"

e s o o

?.‘.._.,..,.._ Ao e b Mg o e A s e

Optimum Design of Fuzzy Logic Controllers

Block 1 | .eeeeencvens Block n

1 1

Prelim. Prellim.
Pop.1 Pop.n

Selection

Cross bred
population

Block n+i

Fina
population

Fig. 6. Flow chart of new GA.

strings produced by these GAs represent n sets of
‘preliminary’ designs. A procedure is applied to
create a new population from these preliminary
designs. Various methods could be used for this
purpose, including those described in Section 4.1.
In this study, for simplicity, the fittest 1/n of each
population is selected to form the new population.
The ‘crossbred’ population thus generated is used
as the initial population for the GA represented by
block (n + 1) in Fig. 6. Block (1 + 1) is the same
as the flow chart in Fig. 3, except that it does not
use a random generator to produce the initial
population. The GA of block (n + 1) is then
executed MAXGEN?2 times. The population that it
yields is the set of final ‘detailed’ designs. The fittest
solution string is taken as representing the desired
R matrix.
In this study,

n=72
MAXGEN1 =25
MAXGEN?2 = 350

Other GA parameters are as given in Section 4.1.

5. Simulation Results

Figures 7-8 show the simulated step responses of
a time-delayed second-order plant with transfer
function

_ exp(—0.4s)
RO

when under the control of two different FLCs
designed by the unmodified GA described in Section

117

output

QBT
0.8
L sampling times 0.1 sec
04l —
0.2+
° | - | - j S | S | 1 I B j I 1
0 1 2 3 4 5 6 7 8 9 10

time(sec)

Fig. 7. Step response obtained using first FLC designed by basic
GA.

output

1.2
i

08

sampling time= 0.1 sec
045

0.2

0 1 [T N N | | I TR S—

(o} 1 2 3 4 5 6 7 8 9 10

time(sec)

Fig. 8. Step response obtained using second FLC designed by
basic GA.

4.1. To obtain the relation matrices for these
FLCs, the GA was run using two different initial
populations. The GA parameters employed, includ-
ing the maximum number of generations, are as
given in Section 4.1.

The step response of the same plant under the
control of a FLC designed by the new GA is
presented in Fig. 9. Note that the new control
system is faster than the previous two systems,

- although the overshoot incurred is higher. This is a

result of the ITAE optimisation criterion adopted.
The effectiveness of the new GA is more evident
in Fig. 10 which shows the evolution of the fitness

‘ratio r; defined as

_ MinITAE (overall)
"~ Min ITAE (ith generation)

r;

It can be seen that the two r; plots for the unmodified
GA reach lower saturation levels than that attained
by the r; plot for the new GA.

Supplied by The British Library - "The world's knowledge"

time(sec)

Fig. 9. Step response obtained using FLC designed by new GA.

Fitness ratio g

0 — : —

o 100 200 300 . 400
generation i

— unmodified GA - unmodified GA — new GA

Fig. 10. Evolution of fitness ratio r;.

6. Conclusion

This paper has focussed on an improved genetic
algorithm for designing fuzzy logic controllers. The
improvement is based on the idea of dividing the
design process into two stages, a preliminary and a
detailed design stage, and ‘cross breeding’ the
preliminary design solutions to form a set of good
alternatives for ‘detailed’ consideration. Results
obtained for the control of a time-delayed second-
order plant have demonstrated the ability of the
new GA to find better solutions than could be
obtained from the unmodified GA. -

D.T. Pham and D. Karaboga

Acknowledgement

The authors would like to thank Erciyes University,
Turkey, for supporting D. Karaboga.

References

1. Zadeh L. Outline of a new approach to the analysis
of complex systems and decision processes. IEEE
Trans Syst Man Cybern 1973; SMC-3: 28-44

2. Mamdani EH. Applications of fuzzy algorithms for
control of simple dynamic plant. Proc IEE 1974;
121(12): 1585-1588

3. Sutton R, Towill DR. An introduction to the use of
fuzzy sets in the implementation of control algorithms.
J Inst Electronic Radio Eng 1985; 55(10): 357-367

4. Holmblad LP, Ostergaard LL. Control of a cement
kiln by fuzzy logic. In: Gupta MM, Sanchez E
(eds) Fuzzy information and decision process, North-
Holland, Amsterdam, 1982

5. Huang 1J, Tomizuka M. A self-paced fuzzy tracking
controller for two-dimensional motion control. IEEE
Trans Syst Man Cybern 1990; 20(5): 1115-1124

6. Pham DT, Karaboga D. A new method to obtain the
relation matrix of fuzzy logic controllers In: Proc. 6th
Int. Conf. on Applications of Artificial Intelligence
in Engineering (AIENGY91), Oxford, UK, July 1991,
pp 567-581

7. Procyk TJ, Mamdani EH. A self-organizing linguistic
process controller. Automatica 1979; 15: 15-30

8. Lee CC, Berenji HR. An intelligent controller based
on approximate reasoning and reinforcement learning,
Proc IEEE Int symp on intelligent control Albany,
NY, 1989, pp 200-205

9. Patrikar A, Provence J. Neural network implemen-
tation of linguistic controllers, Proc. 12th IASTED
Int. Symp. on robotics and manufacturmg, Santa
Barbara, CA, 1989

10. Czogala E, Pedrycz W. Fuzzy rules generation for
fuzzy control. Cybern Syst 1982; 13: 275-293

11. Chen YY. Rules extraction for fuzzy control systems.
In: IEEE Int. Conf. on Systems Man and Cybernetics
1989; vol 2, pp 526-527

12. Peng XT. Generating rules for fuzzy logic controllers
by functions. Fuzzy Sets Syst 1990; 36: 85-89

13. Yamazaki T. An improved algorithm for a self
organising controller, PhD thesis, Queen Mary Col-
lege, University of London, 1982

14. Holland JH. Adaptation in natural and artificial
systems, The University of Michigan Press, Ann
Arbor, MI, 1975

15. Goldberg DE. Genetic algorithms in search, optimiz-
ation, and machine learning, Addison-Wesley, Read-
ing, MA, 1989

16. Ogata K. Modern control engmeermg, Prentice-Hall,
Englewood Cliffs, NI, 1970

Supplied by The British Library - "The world's knowledge"

