1 Hybrid Composition Functions (F12-F19*)

The *hybrid composition functions*, F12- $F19^*$, are built combining a non-separable function with other function. The considered functions are:

• Non-Separable Functions:

- F3: Shifted Rosenbrock's Function
- F5: Shifted Griewank's Function
- NS-F9: Non-Shifted Extended f10
- NS-F10: Non-Shifted Bohachevsky

• Other Component Functions:

- F1: Shifted Sphere Function
- F4: Shifted Rastrigin's Function
- NS-F7: Non-Shifted Schwefel's Problem 2.22

The procedure used to hybridize a non-separable function F_{ns} with other function F' (function $F_{ns} \oplus F'$) is shown in Figure 1. Its main steps are: 1) to divide the solution into two parts, 2) to evaluate each one of them with a different function, and 3) to combine their results. The splitting mechanism uses a parameter, m_{ns} , which specifies the ratio of variables that are evaluated by F_{ns} . Using a higher value of m_{ns} , the hybrid function becomes more difficult to optimize dimension by dimension, because there is a greater interrelation between the variables and the fitness. With this procedure, we have defined the instances of hybrid functions shown in Table 1.

Name	F_{ns}	F'	m_{ns}	Range	Fitness Optimum
F12	NS-F9	F1	0.25	$[-100, 100]^D$	0
F13	NS-F9	F3	0.25	$[-100, 100]^{D}$	0
F14	NS-F9	F4	0.25	$[-5,5]^{D}$	0
F15	NS-F10	NS-F7	0.25	$[-10, 10]^D$	0
F16*	NS-F9	F1	0.5	$[-100, 100]^D$	0
$F17^{*}$	NS-F9	F3	0.75	$[-100, 100]^D$	0
F18*	NS-F9	F4	0.75	$[-5,5]^{D}$	0
F19*	NS-F10	NS-F7	0.75	$[-10, 10]^D$	0

Table 1: Hybrid composition functions

We should point out that the hybrid F15 and F19* functions were shifted.

Function $F_{ns} \oplus F'(S)$

- 1. S is divided into two parts $(part_1 \text{ and } part_2)$:
 - If $m_{ns} \leq 0.5$ then
 - $part_1$ is composed by the first $D \cdot m_{ns}$ even variables. ($length(part_1) = D \cdot m_{ns}$)
 - $part_2$ is composed by the remaining variables. $(length(part_2) = D - length(part_1))$
 - If $m_{ns} > 0.5$ then
 - $part_2$ is composed by the first $D \cdot (1 m_{ns})$ odd variables. $(length(part_2) = D \cdot (1 - m_{ns}))$
 - $part_1$ is composed by the remaining variables. $(length(part_1) = D - length(part_2))$
- 2. Return $F_{ns}(part_1) + F'(part_2)$.

Figure 1: Evaluation of a solution S (with D variables) by the hybrid function $F_{ns}\oplus F'$