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Abstract—In this paper a scalability test over eleven
scalable benchmark functions, provided by the current
workshop (Evolutionary Algorithms and other Metaheuris-
tics for Continuous Optimization Problems - A Scalability
Test), are conducted for accelerated DE using generalized
opposition-based learning (GODE). The average error of
the best individual in the population has been reported
for dimensions 50, 100, 200, and 500 in order to compare
with the results of other algorithms which are participating
in this workshop. Current work is based on opposition-
based differential evolution (ODE) and our previous work,
accelerated PSO by generalized OBL.

I. INTRODUCTION

Differential Evolution (DE) is an effective robust
optimization algorithm which was proposed by Price and
Storn in 1997 [1]. In this paper, an enhanced DE, based
on generalized OBL (GOBL) is proposed to accelerate
the convergence rate of classical DE. The GOBL was
introduced in our previous work [10] which presented
a general model for opposition-based learning (OBL).
Accelerated DE by OGBL has been called GODE in
this paper. In order to verify the performance of GODE,
current work provides a scalability test over 11 bench-
mark functions, provided by the current workshop, for
dimensions 50, 100, 200, and 500.

The rest of the paper is organized as follows. In
Section II, the classical DE algorithm is briefly reviewd.
The GOBL technique and its analysis are presented
in Section III. Section IV gives an implementation of
the proposed algorithm, GODE. In Section V, the test
functions, parameters besides a comprehensive set of
scalability experiments are provided. Finally, the work
is summarized in Section VI.

II. A BRIEF REVIEW OF DIFFERENTIAL EVOLUTION

DE is a population-based stochastic search algorithm,
and has been successfully applied to solve complex
problems including linear and nonlinear, unimodal and
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multimodal functions. It has been shown that DE is faster
and more robust on these functions than many other
evolutionary algorithms [2].

There are several variants of DE [1], where the most
popular variant is shown by “DE/rand/1/bin” which
is called classical version. The proposed algorithm
is also based on this DE scheme. Let us assume
that Xi(t)(i = 1, 2, . . . , Np) is the ith individual in
population P (t), where ps is the population size, t is
the generation index, and P (t) is the population in the
tth generation. The main idea of DE is to generate trial
vectors. Mutation and crossover are used to produce
new trial vectors, and selection determines which of
the vectors will be successfully selected into the next
generation.

Mutation–For each vector Xi(t) in Generation t, a
mutant vector V is generated by

Vi(t) = Xi1(t) + F (Xi2(t) − Xi3(t)) , (1)

i �= i1 �= i2 �= i3,

where i = 1, 2, . . . , Np and i1, i2, and i3 are mutually
different random integer indices within [1, Np]. The
population size Np should be satisfied Np ≥ 4 because
i, i1, i2, and i3 are different. F ∈ [0, 2] is a real number
that controls the amplification of the difference vector
(Xi2(t) − Xi3(t)).

Crossover–Like genetic algorithms, DE also employs
a crossover operator to build trial vectors by recombining
two different vectors. The trial vector is defined as
follows:

Ui(t) = (Ui,1(t), Ui,2(t), . . . , Ui,n(t)) , (2)

where j = 1, 2, . . . , n and

Ui,j(t) =
{

Vi,j(t), if randj(0, 1) ≤ CR ∨ j = l
Xi,j(t), otherwise

.

(3)
CR ∈ (0, 1) is the predefined crossover probability,

and randj(0, 1) is a random number within (0, 1) for
the jth dimension, and l ∈ {1, 2, . . . , n} is a random
parameter index.
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Selection–A greedy selection mechanism is used as
follows:

Xi(t) =
{

Ui(t), if f(Ui(t) < f(Xi(t)))
Xi(t), otherwise

. (4)

Without loss of generality, this paper only considers
minimization problem. If, and only if, the trial vector
Ui(t) is better than Xi(t), then Xi(t) is set to Ui(t);
otherwise, the Xi(t) is unchanged.

III. GENERALIZED OPPOSITION-BASED LEARNING

(GOBL)

A. Opposition-Based Learning

Opposition-based Learning (OBL) [18], [19] is a
new concept in computational intelligence, and has
been proven to be an effective method to EAs in many
optimization problems [8], [20]–[24]. When evaluating a
solution x to a given problem, simultaneously computing
its opposite solution will provide another chance for
finding a solution more closer to the global optimum [9].

Opposite Number [20]−Let x ∈ [a, b] be a real
number. The opposite number of x∗ is defined by:

x∗ = a + b − x. (5)

Similarly, the definition is generalized to higher
dimensions as follows.

Opposite Point [20]−Let X = (x1, x2, ..., xD) be a
point in a D-dimensional space, where x1, x2, ..., xD ∈
R and xj ∈ [aj , bj ], j ∈ 1, 2, ..., D. The opposite point
X∗ = (x∗

1, x
∗
2, ..., x

∗
D) is defined by:

x∗
j = aj + bj − xj . (6)

By applying the definition of opposite point, the
opposition-based optimization can be defined as follows.

Opposition-based Optimization [20]−Let X =
(x1, x2, ..., xD) be a point in a D-dimensional space
(i.e., a candidate solution). Assume f(X) is a fitness
function which is used to evaluate the candidate’s fitness.
According to the definition of the opposite point, X∗ =
(x∗

1, x
∗
2, ..., x

∗
D) is the opposite of X = (x1, x2, ..., xD).

If f(X∗) is better than f(X), then update X with X∗;
otherwise keep the current point X . Hence, the current
point and its opposite point are evaluated simultaneously
in order to continue with the fitter one.

B. Generalization of OBL Model

Based on the concept of OBL, we propose a
generalized OBL as follows [10]. Let x be a solution in
current search space S, x ∈ [a, b]. The new solution x∗

in the opposite space S∗ is defined by [10]:

x∗ = Δ − x, (7)

where Δ is a computable value and x∗ ∈ [Δ−b, Δ−a].
It is obvious that the differences between current search
space S and opposite search space S∗ are the center
positions of search space. Because the size of search
range (indicates the size of interval boundaries) of S
and S∗ are b− a, and the center of current search space
moves from a+b

2 to 2Δ−a−b
2 after using GOBL.

Similarly, the definition of GOBL is generalized to a
D-dimensional search space as follows.

x∗
j = Δ − xj , (8)

where j = 1, 2, . . . , D.

By applying the GOBL, we not only evaluate the
current candidate x, but also calculate its opposite can-
didate x∗. This will provide more chance of finding
solutions closer to the global optimum. So it is important
to investigate when the GOBL is beneficial.

Assume that the current candidate is x, and the
corresponding candidate in the opposite space is x∗. The
opposite candidate x∗ is closer to the global optimum xo

than the current candidate x, if and only if

|x∗ − xo| < |x − xo|. (9)

Hence

(x∗ − xo)2 − (x − xo)2 < 0
⇒ (x∗ + x − 2xo)(x∗ − x) < 0 (10)

⇒ (Δ − 2xo)(Δ − 2x) < 0.

It is obvious that

x <
Δ
2

, if xo >
Δ
2

, (11)

x >
Δ
2

, if xo <
Δ
2

. (12)

That is, the opposite candidate x∗ is closer to the
global optimum xo than the current candidate x, when
xo and x are located at the different sides of Δ

2 .

However, according to No-Free-Lunch theorem [17],
the GOBL could not be suitable for all kinds of opti-
mization problems. For instance, the opposite candidate
may be far away from the global optimum when solving
multimodal problems. To avoid this case, a new elite
selection mechanism based on population is used after
the opposition. The specific use method of GOBL are
described in Section V.
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C. Four Different Schemes of Generalized OBL

Let Δ = k(a + b), where k is a real number. The
generalized OBL model is defined by:

x∗ = k(a + b) − x. (13)

So the opposite candidate x∗ is closer to the global
optimum xo than the current candidate x, when xo and
x are located at the different sides of k(a+b)

2 .

Let us consider four typical GOBL schemes with
different values of k as follows.

1) k = 0 (Symmetrical Solutions in GOBL, GOBL-
SS)
The GOBL-SS model is defined by

x∗ = −x, (14)

where x ∈ [a, b] and x∗ ∈ [−b,−a]. The current solution
x and opposite solution x∗ are on the symmetry of
origin.

2) k = 1
2 (Symmetrical Interval in GOBL, GOBL-SI)

The GOBL-SI model is defined by

x∗ =
a + b

2
− x, (15)

where x ∈ [a, b] and x∗ ∈ [− b−a
2 , b−a

2 ]. The interval of
the opposite space is on the symmetry of origin.

3) k = 1 (Opposition-based learning, OBL)
When k = 1, the GOBL model is identical to Eq.5,
where x ∈ [a, b] and x∗ ∈ [a, b].

4) k = rand(0, 1) (Random GOBL, GOBL-R)
The GOBL-SI model is defined by

x∗ = k(a + b) − x, (16)

where k is a random number within [0, 1], x ∈ [a, b]
and x∗ ∈ [k(a + b)− b, k(a + b)− a]. The center of the
opposite space is at a random position between −a+b

2

and a+b
2 .

For a given problem, it is possible that the oppo-
site candidate may jump out of the definition domain
[Xmin, Xmax]. When this happens, the GOBL will be
invalid, because the opposite candidate is infeasible. To
avoid this case, the opposite candidate is assigned to a
random value as follows.

x∗ = rand(a, b), If x∗ < Xmin || x∗ > Xmax, (17)

where rand(a, b) is a random number within [a, b], and
[a, b] is the interval boundaries of current search space.

IV. GOBL-BASED OPTIMIZATION

If the interval of the current search space is symmetric
with respect to the origin (a = −b), then Δ = a+b = 0.
According to Eq.10, the GOBL is beneficial when xo ·
x < 0 is satisfied. If the global optimum xo = 0, then the
GOBL is invalid because there does not exist a candidate
x which satisfies 0 · x < 0. The global optimum xo is
located on the origin in many optimization problems [3],
[7], [8], [11]. To have an asymmetric opposition, the
interval boundaries [aj(t), bj(t)] is dynamically updated
according to the size of current search space. The new
dynamic GOBL model is defined by [8]

X∗
i,j = k[aj(t) + bj(t)] − Xi,j (18)

aj(t) = min(Xi,j(t)), bj(t) = max(Xi,j(t)) (19)

X∗
i,j = rand(aj(t), bj(t)), If X∗

i,j < Xmin || X∗
i,j > Xmax

(20)
i = 1, 2, . . . , Np, j = 1, 2, . . . , D, k = rand(0, 1),

where Xi,j is the jth vector of the ith candidate in
the population, X∗

i,j is the opposite candidate of Xi,j ,
aj(t) and bj(t) are the minimum and maximum values
of the jth dimension in current search space respec-
tively, rand(aj(t), bj(t)) is a random number within
[aj(t), bj(t)], [Xmin, Xmax] is the definition domain, Np

is the population size, rand(0, 1) is a random number
within [0, 1], and t = 1, 2, . . . , indicates the generations.

V. GENERALIZED OPPOSITION-BASED

DIFFERENTIAL EVOLUTION (GODE)

In our previous work [10], GOBL was applied to
PSO and the experimental results showed that the GOBL
model with random k works better than the other three
models in many benchmark function problems. So, the
proposed approach GODE is also based on the random
GOBL model in this paper.

Like ODE, the GODE uses the GOBL method to
initialize population and produce new candidates in
evolutionary generations. The original DE is chosen as
a parent algorithm and the proposed GOBL model is
embedded in DE to improve its performance. However,
the embedded strategy of GODE is different from ODE.
In the ODE, the opposition occurs with a probability,
and the classical DE executes every generation. But in
the GODE, if rand(0, 1) ≤ p

o
, then execute the GOBL;

otherwise execute the classical DE.
The pseudo-code of GODE is shown in Algorithm

1, where P is the current population, GOP is the
transformed population after using GOBL, Pi is the
ith individual in P , GOPi is the ith individual in
GOP , k is a random number within [0, 1], p

o
is the

probability of GOBL, Np is the population size, n is
the dimension size, aj(t), bj(t) is the interval boundaries
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Algorithm 1: Accelerated Differential Evolution
based on generalized opposition-based learning
(GODE).

Randomly initialize each individual in population P ;1
double k = rand(0, 1);2
for i = 1 to Np do3

for j = 1 to n do4
GOPi,j = k(aj + bj) − Pi,j ;5
if GOPi,j is out of the definition domain then6

GOPi,j = rand(aj , bj);7
end8

end9
Calculate the fitness value of GOPi;10
NE++;11

end12
Select Np fittest individuals from {P , GOP } as an initial population P ;13
while NE ≤ MAXNE and BFV > VTR do14

if rand(0, 1) ≤ p
o

then15
Update the dynamic interval boundaries [aj(t), bj(t)] in P16
according to Eq.19;
k = rand(0, 1);17
for i = 1 to Np do18

for j = 1 to n do19
GOPi,j = k[aj(t) + bj(t)] − Pi,j ;20
if GOPi,j is out of the definition domain then21

GOPi,j = rand(aj(t), bj(t));22
end23

end24
Calculate the fitness value of GOPi;25
NE++;26

end27
Select Np fittest individuals from {P , GOP } as current28
population P ;

end29
else30

for i = 1 to Np do31
Randomly select 3 parents Pi1, Pi2 and Pi3 from P ,32
where i �= i1 �= i2 �= i3 ;
for j = 1 to n do33

if rand(0, 1) < CR then34
Vi,j = Pi1,j + F (Pi2,j − Pi3,j);35
Ui,j = Vi,j ;36

end37
else38

Ui,j = Pi,j ;39
end40

end41
Calculate the fitness value of Ui;42
NE++;43
if f(Ui) < f(Pi) then44

P
′
i = Ui45

end46
else47

P
′
i = Pi;48

end49
end50

end51
end52

of current population, rand(aj(t), bj(t)) is a random
number within [aj(t), bj(t)], BFV is the best fitness
value, VTR is the value-to-reach [8], NE is the number
of evaluations, and MAXNE is the maximum number of
evaluations.

VI. CONDUCTED SCALABILITY TESTS

A. Experimental Framework

For the experiments, the following eleven scalable
benchmark problems have been considered:

1. F1-F6 of the CEC’2008 Special Session and Com-
petition on Large Scale Global Optimization test suite
[25].

2. Schwefel’s Problem 2.22 (F7), Schwefel’s Problem
1.2 (F8), Extended f10 (F9), Bohachevsky (F10), and
Schaffer (F11), see [26] for their descriptions.

The requirements on the simulation procedure are the
followings [26]:

1. Each algorithm is run 25 times for each test
function, and the average error of the best individual
of the population is computed. For a solution x, this
measure is defined as: f(x) − f(op), where op is the
optimum of the function.

2. The study has been made with dimensions 50,
100, 200, and 500. The maximum number of fitness
evaluations is 5000 × D. Each run stops when the
maximal number of evaluations is achieved.

B. Setting Control Parameters

Parameter settings for all conducted experiments are
as follows (the same setting has been used in literature
cited after of each parameter):

• Population size, Np = 100 [8]
• Differential amplification factor, F = 0.5 [8]
• Crossover probability constant, Cr = 0.9 [8]
• Probability of GOBL, po = 0.4 (selected based on

our previous experiments)
• Maximum number of function calls, MAXNFC =

5000× D (proposed by the current workshop) [26]
• Mutation Strategy: DE/rand/1/bin (classical DE) [8]

C. Numerical Results

Results for dimensions 50, 100, 200, and 500 are
summarized in Tables I, II, III, and IV, respectively. In
addition, in order to conduct some statistic tests during
the workshop, the author will provide to the organizers
an Excel file with all these results.

D. Results Analysis

As seen, for functions F1-F6 (shifted problems), when
the dimension of the problems increases the average er-
ror (f(x)−f(op)) increases as well, which looks logical.
But for functions F7-F11 (unshifted problems), GODE
performs in a reverse manner. The main reason is that
we use the same population size (Np) for problems with
different dimensions. This is unfair to lower dimensional
problems, because higher dimensional problems have
more maximum generation (MAXNE/Np) than lower
dimensional ones. Another reason is that GODE is not
sensitive to F7-F11 with different dimensions. If given
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TABLE I
GODE RESULTS FOR D=50, EACH ALGORITHM IS RUN 25 TIMES

FOR EACH TEST FUNCTION, AND THE AVERAGE OF ERROR (
f(x) − f(op), op: THE OPTIMUM THE FUNCTION) FOR THE BEST

INDIVIDUAL OF THE POPULATION IS COMPUTED.

Function f(x) − f(op)
F1 1.6872e − 014
F2 20.1736
F3 64.9945
F4 332.358
F5 6.90133e − 004
F6 1.65117e − 008
F7 6.76794e − 067
F8 6.54375e − 080
F9 5.25139e − 032

F10 6.04275e − 136
F11 5.85362e − 032

TABLE II
GODE RESULTS FOR D=100, EACH ALGORITHM IS RUN 25 TIMES

FOR EACH TEST FUNCTION, AND THE AVERAGE OF ERROR (
f(x) − f(op), op: THE OPTIMUM THE FUNCTION) FOR THE BEST

INDIVIDUAL OF THE POPULATION IS COMPUTED.

Function f(x) − f(op)
F1 3.12245e − 014
F2 47.134
F3 252.605
F4 466.972
F5 0.00614746
F6 0.734186
F7 3.22251e − 140
F8 1.9967e − 149
F9 5.55917e − 066

F10 5.64935e − 268
F11 5.83833e − 067

TABLE III
GODE RESULTS FOR D=200, EACH ALGORITHM IS RUN 25 TIMES

FOR EACH TEST FUNCTION, AND THE AVERAGE OF ERROR (
f(x) − f(op), op: THE OPTIMUM THE FUNCTION) FOR THE BEST

INDIVIDUAL OF THE POPULATION IS COMPUTED.

Function f(x) − f(op)
F1 2.37789e − 010
F2 71.0062
F3 748.518
F4 411.156
F5 0.0338863
F6 2.92399
F7 6.1449e − 277
F8 1.19597e − 293
F9 0
F10 0
F11 0

TABLE IV
GODE RESULTS FOR D=500, EACH ALGORITHM IS RUN 25 TIMES

FOR EACH TEST FUNCTION, AND THE AVERAGE ERROR (
f(x) − f(op), op: THE OPTIMUM OF THE FUNCTION) FOR THE

BEST INDIVIDUAL OF THE POPULATION IS COMPUTED.

Function f(x) − f(op)
F1 0.0229091
F2 89.0436
F3 2688.548
F4 2690.83
F5 0.0317864
F6 12.2297
F7 0
F8 0
F9 0

F10 0
F11 0

enough MAXGen, it will find more accurate solutions. In
order to investigate the mentioned statement, we have
changed population size Np = 100 (the constant one)
with Np = D for function F7, results are as follows:

D = 50, Np = 50, f(x) − f(op) = 4.38552e − 173
D = 100, Np = 100, f(x)−f(op) = 3.22251e−140
D = 200, Np = 200, f(x) − f(op) = 1.2945e − 116
As seen, the average error increases by dimension

and these results confirm our reasoning at least for
F7. Population size can play a crucial role to obtain
more accurate solutions. The overall performance of
GODE will be more clear during comparison with other
algorithms participating in the workshop.

VII. SUMMARY

In this paper, Differential Evolution Based on gener-
alized opposition-based learning (GODE) is proposed.
The GOBL is an enhanced opposition-based learning,
which transforms candidates in current search space
to a new search space. By simultaneously evaluating
solutions in current search space and transformed space,
we can provide more chance of finding better solutions.
A scalability test over 11 scalable benchmark func-
tions, provided for the current workshop, are conducted.
Results for the dimensions 50, 100, 200 and 500 are
reported.
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