
Memetic Algorithm with Local Search Chaining for
Continuous Optimization Problems: A Scalability Test

Daniel Molina
Department of Computer
Languages and Systems

University of Cadiz
Cadiz, Spain

daniel.molina@uca.es

Manuel Lozano and Francisco Herrera
Department of Computer Science

and Artificial Inteligence
University of Granada

Granada, Spain
lozano@decsai.ugr.es, herrera@decsai.ugr.es

Abstract

Memetic algorithms arise as very effective algorithms
to obtain reliable and high accurate solutions for complex
continuous optimization problems. Nowadays, higher di-
mensional optimization problems are an interesting field of
research, that introduces new problems for the optimization
process, making recommendable to test the scalable capac-
ities of optimization algorithms. In particular, in memetic
algorithms, a higher dimensionality increases the domain
space around each solution, requiring that the local search
method must be applied with a high intensity.

In this work, we present a preliminar study of a memetic
algorithm that assigns to each individual a local search in-
tensity that depends on its features, by chaining different lo-
cal search applications. This algorithm has obtained good
results in continuous optimization problems and we study
whether, using this intensity adaptation mechanism with the
scalable LS method MTS-LS2, the algorithm is scalable
enough for being a good algorithm for medium and high-
dimensional problems. Experiments are carried out to test
the ability of being scalable, and results obtained show that
the proposal is scalable in many of the functions, scalable
and non-scalable, of the benchmark used.

1 Introduction

It is well known that the hybridization of evolutionary
algorithms (EAs) with other techniques can greatly improve
the search efficiency [1]. EAs that have been hybridized
with local search (LS) techniques are often called memetic
algorithms (MAs) [11, 10].

One commonly MA scheme improves the new created
solutions using an LS method, with the aim of exploiting
the best search regions gathered during the global sampling

done by the EA. That allows us to design MAs for contin-
uous optimization (MACO) that obtain high accurate solu-
tions for these problems [6, 14, 7].

Nowadays, medium and high-dimensional optimization
problems arise as a very interesting field of research,
since they appear in many recent real-world problems (bio-
computing, data mining, etc.). Unfortunately, the per-
formance of most available optimization algorithms could
be deteriorated very quickly when the dimensionality in-
creases. Thus, the ability of being scalable becomes an es-
sential requirement for modern optimization algorithm ap-
proaches.

In a previous work, we have defined a MA for continu-
ous optimization specifically designed to adapt the LS in-
tensity, exploiting with higher intensity the most promising
individuals [8]. To adapt the LS intensity in the proposed
model the LS can be applied several times over the same
individual, using a fixed LS intensity, and storing its final
parameters, creating LS chains. Using these LS chains an
individual previously improved by an LS invocation may
later become the initial point of a next LS application, using
the final strategy parameter values achieved by the previous
one as its initial ones in the following application. This MA
using LS chaining obtains very good results for continuous
optimization problems [8].

Unfortunately, the original proposal was not scalable be-
cause the original LS method used, C-MA-ES [5], which is
not able to tackle effectively problems when their dimen-
sionality is increased [9]. There are other LS methods, like
MTS-LS2 [16], that explores the neighborhood of a solu-
tion making changes to a subset of variables. These LS
methods are more scalables when the dimensionality is in-
creased, but sometimes they are not adequated for tackle
non-separable problems. However, that disadvantage could
be reduced when they are used in MAs. Previously, we have
applied MTS-LS2 as our LS method, obtaining good results

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.143

1068

in problems with high dimensionality values [9].
In this work, we want to extend this study to test the

scalability capacities of the algorithm using the LS method
MTS-LS2, and check if the proposed algorithm is scalable
and obtains good results. Experiments are carried out to test
the ability of our algorithm of being scalable for separable
and non-separable problems.

This work is set up as follows. In Section 2, we describe
MTS-LS2, the LS method used. In Section 3, we describe
the proposed MA. In Section 4, we present the empirical
study. Finally, conclusions and future work are presented in
Section 5.

2 MTS-LS algorithm

Several classical LS methods are not scalable, thus they
are not able to obtain good results in large scale optimiza-
tion problems [13]. One option to solve this problem is
using a specifically designed LS method to these type of
algorithms. In a previous work, we have compared sev-
eral classical LS methods and other specifically designed to
tackle the scalability problem [9]. In that work, one of the
LS methods, MTS-LS2 [16], was clearly more scalable than
the other ones, thus we use it in this paper.

MTS-LS2 is a hill-climbing algorithm that explores
changing a quartier of dimensions each time.

In each step of this algorithm, each variable of the indi-
vidual to be changed is increased by a certain value (called
SR in the paper) to check if the objective function value is
improved. Only a quarter of them (randomly selected by
each application of the LS) are modified.

If the new solution improves the original one, the search
proceeds to consider the next dimension. If it is worse, the
original solution is restored and then the same variable is
increased by 0.5*SR to see if the objective function value
is improved again. In this case, the search proceeds to con-
sider the next dimension. In other case, the solution is re-
stored and the search proceeds to consider the next dimen-
sion.

The addition factor (SR) is multiplied by (-1) the 50%
of times to avoid focussing always the search to the same
direction.

Although it could be expected that an LS method that
explores dimension by dimension is only adequate to sepa-
rable problems, in combination with an EA that explore all
variables at the same time, this problem is reduced, like it is
observed in Section 4.

3 MACOs Based on LS Chains

In this section, we describe a MACO approach proposed
in [8] that employs continuous LS methods as LS operators.

It is a steady-state MA model that employs the concept of
LS chain to adjust the LS intensity assigned to the intense
continuous LS method. In particular, this MACO handles
LS chains, throughout the evolution, with the objective of
allowing the continuous LS algorithm to act more intensely
in the most promising areas represented in the EA popula-
tion. In this way, the continuous LS method may adaptively
fit its strategy parameters to the particular features of these
zones.

In Section 3.1, we introduce the foundations of steady-
state MAs. In Section 3.2, we explain the concept of LS
chain. Finally, in Section 3.3, we give an overview of the
MACO approach presented in [8], that handles LS chains
with the objective of applying the LS method with an inten-
sity value in function of how promising is each solution.

3.1 Steady-State MAs

In steady-state GAs [17] usually only or two offspring
are produced in each generation. Parents are selected to pro-
duce offspring and then a decision is made to select which
individuals in the population will be deleted in order to
make room to new offspring. Steady-state GAs are over-
lapping systems because parents and offspring compete for
survival. A widely used replacement strategy is to replace
the worst individual only if the new individual is better. We
will call this strategy the standard replacement strategy.

Although steady-state GAs are less common than gen-
erational GAs, steady-state MAs (steady-state GAs plus LS
method) may be more stable (as the best solutions do not
get replaced until the newly generated solutions become su-
perior) and they allow the results of LS to be maintained in
the population.

The SSGA applied was specifically designed to promote
high population diversity levels by means of the combina-
tion of the BLX − α crossover operator [2] with a high
value for its associated parameter (α = 0.5) and the nega-
tive assortative mating strategy [3]. Diversity is favored as
well by means of the BGA mutation operator [12].

3.2 Local Search Chains

In steady-state MAs, individuals may reside in the pop-
ulation during a long time. This circumstance allows these
individuals to become starting points of subsequent LS in-
vocations. In [8], Molina et al. propose to chain an LS
algorithm invocation and the next one as follows:

The final configuration reached by the former
(strategy parameter values, internal variables,
etc.) is used as initial configuration for the next
application.

1069

In this way, the LS algorithm may continue under
the same conditions achieved when the LS operation was
halted, providing an uninterrupted connection between suc-
cessive LS invocations, i.e., forming a LS chain.

Two important aspects that were taken into account for
the management of LS chains are:

• Every time the LS algorithm is applied to refine a par-
ticular chromosome, a fixed LS intensity should be
considered for it, which will be called LS intensity
stretch (Istr).

In this way, an LS chain formed throughout napp LS
applications and started from solution s0 will return the
same solution as the application of the continuous LS
algorithm to s0 employing napp · Istr fitness function
evaluations.

• After the LS operation, the parameters that define the
current state of the LS processing are stored along with
the final individual reached (in the steady-state GA
population). When this individual is selected to be
improved, the initial values for the parameters of the
LS algorithm will be directly available. In the case of
MTS-LS2 algorithm, the SR parameter value is stored.

3.3 A MACO Model that Handles LS
Chains

In this section, we introduce a MACO model that handles
LS chains (see Figure 1), with the following main features:

1. It is a steady-state MA model.

2. It ensures that a fixed and predetermined local/global
search ratio is always kept. With this policy, we eas-
ily stabilise this ratio, which has a strong influence on
the final MACO behavior. Without this strategy, the
application of intense continuous LS algorithms may
induce the MACO to prefer super exploitation.

3. It favours the enlargement of those LS chains that are
showing promising fitness improvements in the best
current search areas represented in the steady-state GA
population. In addition, it encourages the activation of
innovative LS chains with the aim of refining unex-
ploited zones, whenever the current best ones may not
offer profitability. The criterion to choose the individ-
uals that should undergo LS is specifically designed to
manage the LS chains in this way (Steps 3 and 4).

The proposed MACO scheme defines the following rela-
tion between the steady-state GA and the intense continuous
LS method (Step 2): every nfrec number of evaluations of
the steady-state GA, apply the continuous LS algorithm to a

1. Generate the initial population.

2. Perform the steady-state GA throughout nfrec evalua-
tions.

3. Build the set SLS with those individuals that potentially
may be refined by LS.

4. Pick the best individual in SLS (Let’s cLS to be
this individual).

5. if cLS belongs to an existing LS chain then

6. Initialise the LS operator with the LS state stored
together with cLS .

7. else

8. Initialise the LS operator with the default LS state.

9. Apply MTS-LS2 method to cLS with an LS intensity of Istr

(Let’s cr
LS to be the resulting individual).

10. Replace cLS by cr
LS in the steady-state GA

population.

11. Store the final LS state along with cr
LS .

12. If (not termination-condition) go to step 2.

Figure 1. Pseudocode algorithm for the pro-
posed MACO model

selected chromosome, cLS , in the steady-state GA popula-
tion. Since we assume a fixed L

G ratio, rL/G, nfrec may be
calculated using the equation nfrec = Istr

1−rL/G

rL/G
, where

Istr is the LS intensity stretch (Section 3.2), and rL/G is de-
fined as the percentage of evaluations spent doing LS from
the total assigned to the algorithm’s run.

The following mechanism is performed to select cLS

(Steps 3 and 4):

1. Build the set of individuals in the steady-state GA pop-
ulation, SLS that fulfils:

(a) They have never been optimized by the intense
continuous LS algorithm, or

(b) They previously underwent LS, obtaining a fit-
ness function improvement greater than δmin

LS (a
parameter of our algorithm).

2. If |SLS | 6= 0, then apply the continuous LS algo-
rithm to the best individual in this set. On other case,
the population of the steady-state MA is restarted ran-
domly (keeping the best individual).

With this mechanism, when the steady-state GA finds a
new best individual, it will be refined immediately. Fur-
thermore, the best performing individual in the steady-state
GA population will always undergo LS whenever the fitness

1070

improvement obtained by a previous LS application to this
individual is greater than δmin

LS threshold.

Parameter setting For the experiments, we have used the
same parameter values applied in [8] which obtained good
results. the MACO instances applyBLX−αwith α = 0.5.
The population size is 60 individuals and the probability of
updating a chromosome by mutation is 0.125. The nass

parameter associated with the negative assortative mating is
set to 3. They use Istr = 500 and rL/G = 0.8. In this
case, δLS

min = 0 because in the functions there is no fitness
threshold value.

4 Experiments

The proposal has been tested on 11 scalable optimization
problems, defined for the organizers of the Workshop Evo-
lutionary Algorithms and Other Metaheuristics for Contin-
uous Optimization Problems — A Scalability Test, of the
9th International Conference on Intelligence Systems De-
sign and Applications, ISDA’2009.

Functions f1, . . . , f6 have been defined in [15], and func-
tions f7, . . . , f11 have been defined in [4]. Table 1 shows
their names, bounds, and optimum values. In the following,
we describe several properties of the functions that we con-
sider interesting. For more detail, the above references can
be it could be consulted the .

• f1 and f2 are unimodals, and f3 . . . f11 are multi-
modals. Thus, the majority of functions have many
optima.

• Functions f1, f4 and f6 are strictly separable. In other
words, only 3 of the eleven functions are strictly sep-
arable. That is specially interesting to analyse if our
proposal obtains good results in non-separable func-
tions.

The experiments have been carried out following the
instructions indicated in the documents associated to the
Benchmark functions, to be able to compare our proposal
with the other algorithms presented in the workshop. The
main characteristics are:

1. Each algorithm is run 25 times for each test function,
and the average of error of the best individual of the
population is computed.

2. The study has been made with dimension D=50, 100,
200 and 500.

3. The maximum number of fitness evaluations is 5, 000 ·
D. Each run stops when this maximum number of
evaluations is achieved.

Table 1. Benchmark’s Test problems
Name Intervals f∗

f1 Shifted Sphere [-100, 100] -450
f2 Shifted Schwefel 2.21 [-100, 100] -450
f3 Shifted Rosenbrock [-100, 100] 390
f4 Shifted Rastrigin [-5, 5] -330
f5 Shifted Griewank [-600, 600] -180
f6 Shifted Ackley [-32, 32] -140
f7 Schwefel 2.22 [-10, 10] 0
f8 Schwefel 1.2 [-65.536, 65.536] 0
f9 Extended f10 [-100, 100] 0
f10 Bohachevsky [-15, 15] 0
f11 Schaffer [-100, 100] 0

Table 2. Mean Error for function and dimen-
sion

Fun Dim=50 Dim=100 Dim=200 Dim=500

f1 5,23E-14 5,68E-14 1,14E-13 2,84E-13
f2 9,87E-01 1,16E+01 3,26E+01 7,00E+01
f3 1,06E+02 8,88E+02 3,47E+02 7,86E+02
f4 5,46E-14 6,59E-14 7,96E-02 1,07E+00
f5 2,27E-14 3,94E-04 2,74E-03 1,44E-13
f6 5,12E-14 7,84E-14 1,46E-13 3,33E-13
f7 1,07E-75 6,11E-80 1,17E-75 1,27E-58
f8 1,24E+00 2,86E+02 2,97E+03 6,84E+04
f9 5,13E-02 1,77E-01 2,23E-01 3,47E+00
f10 2,45E-99 1,24E-51 3,01E-65 7,04E-45
f11 1,60E-01 4,11E-01 9,95E-01 1,61E+01

1071

Table 2 shows the average mean for each function and di-
mension obtained by our proposal. We are going to analyse
the results:

• In the half of functions, our algorithm achieves an av-
erage error lower than 10−12 in the majority of dimen-
sions, and in general our proposal achieve very good
results.

• In separable functions, f1, f4, and f6, we obtain very
good results, as it was expected. But as it is said in the
previous line, the good results are not limited to this
type of functions, several non-separable functions are
improved meaningfully.

• Results of our algorithm are not good enough for three
functions, f2, f3 and f8. To know the reason, we have
to see their mathematical expressions. Function f2 is
the maximum of the absolute value of the variables,
thus an exploitation that not consider many variables
at the same time will have problems to optimize this
function. In function f3, there is a very narrow val-
ley from local optimum to global optimum, and that
appears to be a disadvantage to be optimized with our
proposal. Function f8, on the other side, is a function
that is rather special, because the influence of variable
is increased in function of its position, higher for lower
position. This behaviour makes more difficult the opti-
mization using our algorithm, because the variables in
lower positions are not always consider in the exploita-
tion.

• Considering the scalability question, we can observe
that our algorithm tackle successfully the scalability
issue for the majority of functions. In many functions,
although results are getting worse when dimensional-
ity is increased, they have the same order of magni-
tude during several dimension values. The functions
with the worse behaviour are function f8, that is not
improved enough by the algorithm for any dimension
value, and f4.

5 Conclusions

In this work, we have shown the adaptation of MACO
proposed in [8], that apply the idea of LS chaining, with
the scalable LS method MTS-LS2. We have carried out an
empirical study to analyse how scalable is the proposal for
large scale problems. Experiments show that the algorithm
obtain good results in the majority of functions. Our pro-
posal, nevertheless, have several problems to optimize sev-
eral extremely non-separable functions. In future works, we
are going to modify the algorithm to obtain good results also
with this type of functions.

Acknowledgement

This work was supported by Research Projects
TIN2008-05854 and P08-TIC-4173.

References

[1] L. Davis. Handbook of Genetic Algorithms. Van Nostrand
Reinhold, New York, 1991.

[2] L. J. Eshelman and J. D. Schaffer. Real-coded Genetic Al-
gorithms in Genetic Algorithms by Preventing Incest. Foun-
dation of Genetic Algorithms 2, pages 187–202, 1993.

[3] C. Fernandes and A. Rosa. A Study of non-Random Match-
ing and Varying Population Size in Genetic Algorithm using
a Royal Road Function. Proc. of the 2001 Congress on Evo-
lutionary Computation, pages 60–66, 2001.

[4] C. Garcia, M. Lozano, and D. Molina. Parallel Problem
Solving From Nature - PPSN IX. In Proceedings of the 9th
Internationational Conference on Parallel Problem Solving
from Nature. Lecture Notes in Computer Science 4193, pages
192–201. Springer Berlin / Heidelberg, 2006.

[5] N. Hansen and A. Ostermeier. Adapting Arbitrary Normal
Mutation Distributions in Evolution Strategies: The Covari-
ance Matrix Adaptation. In Proceeding of the IEEE Interna-
tional Conference on Evolutionary Computation (ICEC ’96),
pages 312–317, 1996.

[6] W.E. Hart. Adaptive Global Optimization With Local Search.
PhD thesis, Univ. California, San Diego, CA., 1994.

[7] N. Krasnogor and J. Smith. A Tutorial for Competent
Memetic Algorithms: Model, Taxonomy, and Design Issue.
IEEE Transactions on Evolutionary Computation, 9(5):474–
488, 2005.

[8] D. Molina, M. Lozano, C. Garcı́a-Martı́nez, and F. Herrera.
Memetic algorithms for continuous optimization based on
local search chains. Evolutionary Computation. In press,
2009.

[9] D. Molina, M. Lozano, and F. Herrera. Memetic algorithm
with local search chaining for large scale continuous opti-
mization problems. In Proc. of the 2009 IEEE Congress on
Evolutionary Computation. Digital Proceeding, 2009.

[10] P. Moscato and C. Cotta. Handbook of Metaheuristics, chap-
ter A Gentle Introduction to Memetic Algorithms, pages
105–144. Kluwer Academic Publishers, Boston MA, 2003.

[11] P.A. Moscato. On evolution, search, optimization, genetic
algorithms and martial arts: Towards memetic algorithms.
Technical report, Technical Report Caltech Concurrent Com-
putation Program Report 826, Caltech, Pasadena, California,
1989.

[12] H. Mülenbein and D. Schlierkamp-Voosen. Predictive Mod-
els for the Breeding Genetic Algorithm in Continuous Pa-
rameter Optimization. Evolutionary Computation, 1:25–49,
1993.

1072

[13] H. P. Schewefel. Numerical Optimization of Computer Mod-
els. Wiley, Chichester, 1981.

[14] E.G. Talbi. A Taxonomy of Hybrid Metaheuristics. Journal
of Heuristics, 8:541–564, 2002.

[15] K. Tang, X. Yao, P.N. Suganthan, C. MacNish, Y.P. Chen,
C.M. Chen, and Z. Yang. Benchmark functions for the
CEC’2008 special session and competition on large scale
global optimization. Technical report, Nature Inspired Com-
putation and Application Laboratory, USTC, China, 2007.
http://nical.ustc.edu.cn/cec08ss.php.

[16] L.Y. Tseng and C. Chen. Multiple trajectory search for large
scale global optimization. In 2008 IEEE Congress on Evolu-
tionary Computation, pages 3057–3064, 2008.

[17] D. Whitley. The GENITOR Algorithm and Selection Pres-
sure: Why Rank-Based Allocation of Reproductive Trials is
Best. Proc. of the Third Int. Conf. on Genetic Algorithms,
pages 116–121, 1989.

1073

