
Unidimensional Search for solving continuous high-dimensional optimization

problems

Vincent Gardeux∗, Rachid Chelouah†, Patrick Siarry‡ and Fred Glover§

∗Ecole Internationale des Sciences du Traitement de l’Information, Cergy-Pontoise, France

Email: vincent.gardeux@eisti.fr
†Ecole Internationale des Sciences du Traitement de l’Information, Cergy-Pontoise, France

Email: rachid.chelouah@eisti.fr
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Abstract—This paper presents a performance study of two
versions of a unidimensional search algorithm aimed at solving
high-dimensional optimization problems. The algorithms were
tested on 11 scalable benchmark problems. The aim is to ob-
serve how metaheuristics for continuous optimization problems
respond with increasing dimension. To this end, we report
the algorithms’ performance on the 50, 100, 200 and 500-
dimension versions of each function. Computational results are
given along with convergence graphs to provide comparisons
with other algorithms during the conference and afterwards.
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I. INTRODUCTION

Many metaheuristics and especially evolutionary algo-

rithms are designed to solve continuous optimization prob-

lems. A major challenge is to solve high-dimensional prob-

lems of this kind, which arise in critical applications such

as data or web mining. However, many current algorithms

are not designed to be dimensionally robust, and their

performance deteriorates quickly as the dimensionality of

the search space increases.

In order to compare these algorithms, performance is mea-

sured as the difference between the best solution found

by each algorithm and the test function’s global optimum.

Speed of convergence is also an important criterion because

it determines how fast an algorithm can find an acceptable

solution, even if it’s not the best one. Another relevant cri-

terion, not so often highlighted, is the number of parameters

needed to tune the algorithm for a particular problem. Such

parameters require substantial computer and human time to

be properly set.

The proposed benchmark is composed of 11 scalable func-

tions which involve unimodalities or multimodalities, sep-

arable or non separable functions, etc. Our goal in this

paper is to provide a new algorithm from the class known

as greedy algorithms, whose purpose is to solve unimodal

problems efficiently while maintaining the underlying algo-

rithmic structure as simple as possible. We focus on uni-

modal problems because even complex multimodal problems

require an ability to handle unimodal problems effectively,

and multimodal algorithms typically can take advantage

of an improved unimodal solution capability to enhance

their performance. Gradient Descent [1] is a very simple

instance of a greedy algorithm. To find a local optimum, it

takes steps proportional to the negative (positive) gradient

of the function at the current solution, for a minimization

(maximization) objective. The search starts from an initial

solution x0, and computes the direction d0 = −∇f(x0). In

the simplest case, the method takes steps of unit size in the

direction d0 until the objective function can not be further

improved. When no improving step exists the method stops.

Otherwise, the procedure is restarted from the new solution.

This method can only be performed if the objective function

is known and differentiable.

In this paper, we present two variants of the gradient descent

algorithm using a rudimentary search procedure that can

be applied to any type of function. In our algorithms, the

search direction is restricted to the set of those produced by

varying a single coordinate at a time, but all such coordinate

directions are examined.

In order to escape local optima, we augment this simple

search with a guided restart procedure inspired from the

diversification generation method used in Scatter Search

[2]. The aim of this method is to generate a collection of

diverse trial solutions and to select the one that lies farthest

from a reference set of previously visited solutions. The

presented algorithms are not only easy to implement but

also parameter-free.

Section 2 describes the first version of this algorithm called

Classical Unidimensional Search (CUS) and Section 3 gives

an extended version called Enhanced Unidimensional Search

(EUS). In Section 4, we present our simulation results with
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tables and convergence graphs, and discuss the performance

of our algorithms vs the different benchmark functions. A

concluding summary is provided in Section 5.

II. CUS ALGORITHM

The CUS algorithm is designed to be easy to implement

and robust in handling high-dimensional problems. The

algorithm starts from a randomly generated initial solution of

dimension D in the search space. A vector h is created and

initialized as follows : each component hi is set equal to the

difference between the maximum and minimum search space

bounds on the ith component of the solution vector. Then

the algorithm iterates until a stopping criterion is reached.

At each iteration, the algorithm focuses on optimizing the

current solution on only one dimension i. (For simplicity,

we represent the current solution as a vector which is given

the name current). Thus, the method searches for the

integer value v such that solution x, described as follows,

has the best fitness value (i.e. objective function value):

x = [current1, ..., currenti + v ∗ hi, ..., currentD] (1)

The search starts by comparing current (i.e. the solution

for v = 0) with its 2 neighbor solutions (i.e. for v = 1 and

−1). The best direction (positive or negative) from current

along the ith dimension is identified by the value of v that

yields the best neighbor solution. After that, the iteration

goes in only one direction : if v = 1 yields the best solution,

the search continues in the positive direction (i.e. {2,3,...}),

else it goes in the negative direction (i.e. {-2,-3,...}) until

no better solution can be found. If this computed solution is

out of bounds, it is corrected and set on the nearest bound.

No additional values of v are examined beyond the first

one found that fails to improve the objective function. Then,

the current solution is updated to be the best one obtained

along the ith dimension and successive dimensions i are

treated in the same manner. (In the case where no improving

moves exist for a given i, the updating operation leaves the

solution unchanged.).

Therefore, after one iteration, which consists of thus ex-

amining every dimension i, the algorithm finds a restricted

local optimum relative to the precision given by the vector

h. (We call this local optimum restricted, since if any

change is produced during the iteration it is possible that

a better solution could be produced by a new pass of the

dimension i.) Often this restricted local minimum is a true

local minimum relative to the current h employed, and so,

after each iteration, h is decreased by a ratio value fixed

to 0.5 until h becomes smaller than a pre-selected vector of

minimum hi values denoted by h(min), and then h is not

decreased further. h(min) values are all fixed to 1e− 20 in

order to obtain a suitable precision. The parameter ratio can

be tuned but experiments show that the given fixed value is

suitable.

The pseudo-code in Figure 1 details an iteration of the

algorithm, where next, previous and x are temporary

solutions. The algorithm is not a population-based algorithm,

Procedure CUS

begin

for i = 1 to D

next, previous = current

nexti = currenti + hi

previousi = currenti − hi

evaluate next and previous fitness

x = best of 3 solutions

while better solution found

xi = xi ± hi in best direction

end

current = x

end

h = h ∗ 0.5 until h < h(min)
end

Figure 1. An iteration of CUS algorithm

so to avoid becoming trapped in a local minimum, we

use a restart procedure that keeps the best solution found

so far and re-initializes h to a new starting value after

reaching the termination point given by h < h(min).
Therefore, increasing the vector h(min) may increase the

potential number of restarts of the algorithm, but tends to

decrease the error accuracy. In order to better explore the

search space, when the restart procedure is activated, a new

solution is generated, that lies far from the reference set.

This technique uses the diversification generation method

from Scatter Search algorithm. It generates a collection of

diverse trial solutions and selects the one farthest from a

reference set of previously visited restricted local optima.

III. EUS ALGORITHM

This algorithm amends the CUS algorithm as follows. The

variables D, h and its components hi are initialized in the

same manner as in the CUS algorithm. But at each iteration,

when a good direction is found, there is no intensification.

So, after one iteration, each dimension i of the current

solution can have 3 possible values, depending on which

one produces the best current fitness:

currenti =











currenti

currenti + hi

currenti − hi

(2)

with i ∈ {1, ..., D}.

This version is designed to solve more complex functions by

taking smaller steps in a direction at a time. Indeed, changing

the direction at each step reduces the probability of being

trapped in a local minimum and permits to explore a larger

part of the solution space. The pseudo-code of an iteration

of this algorithm is given in Figure 2.
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Procedure EUS

begin

for i = 1 to D

next, previous = current

nexti = currenti + hi

previousi = currenti − hi

evaluate next and previous fitness

current = best of 3 solutions

end

if no improvement has been found

h = h ∗ 0.5 until h < h(min)
end

end

Figure 2. An iteration of EUS algorithm

IV. EXPERIMENTAL RESULTS

In order to compare our results with those of competing

algorithms, our two algorithms have been tested on a fixed

benchmark of 11 scalable functions. This process is designed

to identify key mechanisms that make metaheuristics to be

scalable on high-dimension problems.

A. Experimental setup

The proposed set of test problems includes 11 scalable

functions with different characteristics (Table I). The first

six are taken from the CEC’2008 test suite described in [3].

Other function definitions can be found in the workshop

report [4]. A more detailed discussion of the Extended F10

function can be found in [5].

# Function Unimodal Separable

1 Shifted Sphere X X
2 Shifted Schwefel Problem 2.21 X -
3 Shifted Rosenbrock - -
4 Shifted Rastrigin - X
5 Shifted Griewank - -
6 Shifted Ackley - X
7 Schwefel Problem 2.22 X -
8 Schwefel Problem 1.2 X -
9 Extended F10 - -
10 Bohachevsky #1 - X
11 Schaffer #2 - -

Table I
BENCHMARK FUNCTIONS

For each function f , experiments are conducted in 50,

100, 200 and 500 dimensions. Each algorithm is run 25

times and the average of error e of the best solution x is

computed:

e = f(x) − f(o) where o = optimum of the function (3)

The maximum number of fitness evaluations is 5000 ∗ D

and determines the stopping criterion for a run. The errors

obtained by the EUS and CUS algorithms for each function

are listed in Tables II-V. Error Value (Err. Val.) and Standard

Deviation (Std. Dev.) are computed for 25 runs and are

reported for both algorithms on each of the 11 functions.

For function #4, two different minima are found (local and

global). It wouldn’t be appropriate to compute average error

for all 25 runs, therefore we calculated separately the average

error on each minimum. An error(n) value indicates the

average error for n runs out of the 25 total.

# fn
CUS EUS

Err. Val. Std. Dev. Err. Val. Std. Dev.

1 4.18E-13 5.09E-14 4.14E-13 5.46E-14

2 1.24E2 7.04E0 1.90E-11 1.21E-11

3 3.01E2 2.35E3 1.07E1 2.74E2

4
5.43E-13(12) 1.28E-13

3.69E-13 3.64E-14
1.49E0(13) 5.01E-1

5 2.11E-13 2.80E-14 2.10E-13 4.25E-14

6 1.97E1 1.37E-1 1.97E1 1.83E-2

7 0.00E0 0.00E0 0.00E0 0.00E0

8 4.23E4 2.11E4 7.20E-10 2.39E-9

9 3.65E2 3.31E1 3.55E2 3.28E1

10 0.00E0 0.00E0 1.54E1 1.70E0

11 0.00E0 0.00E0 0.00E0 0.00E0

Table II
ERROR VALUES ACHIEVED FOR D = 50

# fn
CUS EUS

Err. Val. Std. Dev. Err. Val. Std. Dev.

1 9.40E-13 7.72E-14 9.45E-13 7.42E-14

2 1.40E2 5.02E0 9.82E-11 2.67E-10

3 3.65E2 2.84E3 9.70E1 4.15E3

4 4.68E0 5.19E0 7.72E-13 4.25E-14

5 4.73E-13 4.30E-14 4.85E-13 3.44E-14

6 1.97E1 7.84E-2 1.97E1 4.93E-2

7 0.00E0 0.00E0 0.00E0 0.00E0

8 2.66E5 1.05E5 3.11E-3 3.73E-3

9 7.32E2 4.56E1 7.10E2 5.09E1

10 0.00E0 0.00E0 3.46E1 2.71E0

11 0.00E0 0.00E0 0.00E0 0.00E0

Table III
ERROR VALUES ACHIEVED FOR D = 100

# fn
CUS EUS

Err. Val. Std. Dev. Err. Val. Std. Dev.

1 2.01E-12 1.00E-13 2.07E-12 8.37E-14

2 1.56E2 4.16E0 8.15E-10 1.69E-9

3 1.49E3 4.83E3 4.47E2 2.63E3

4 2.02E1 1.28E1 1.71E-12 8.15E-14

5 1.02E-12 7.10E-14 1.39E-12 6.82E-14

6 1.98E1 2.60E-2 1.98E1 7.48E-2

7 0.00E0 0.00E0 0.00E0 0.00E0

8 1.02E6 3.72E5 4.02E0 3.39E0

9 1.44E3 4.96E1 1.42E3 6.22E1

10 0.00E0 0.00E0 7.53E1 5.42E0

11 0.00E0 0.00E0 0.00E0 0.00E0

Table IV
ERROR VALUES ACHIEVED FOR D = 200
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# fn
CUS EUS

Err. Val. Std. Dev. Err. Val. Std. Dev.

1 5.40E-12 2.25E-13 5.37E-12 1.41E-13

2 1.69E2 2.33E0 1.14E-3 3.26E-4

3 1.34E3 2.75E3 4.78E2 2.13E2

4 1.11E2 2.41E1 4.55E-12 1.16E-13

5 2.89E-12 1.12E-13 3.53E-12 9.02E-14

6 1.98E1 1.63E-2 1.98E1 1.83E-2

7 0.00E0 0.00E0 0.00E0 0.00E0

8 8.11E6 3.29E6 6.53E3 3.35E3

9 3.65E3 9.95E1 3.52E3 9.68E1

10 0.00E0 0.00E0 2.00E2 7.94E0

11 0.00E0 0.00E0 0.00E0 0.00E0

Table V
ERROR VALUES ACHIEVED FOR D = 500

The convergence graphs of CUS and EUS algorithms on

functions 1-5 and functions 6-11 are plotted in Figures 3-4

and 7-8 for 50 dimension problems, 5-6 and 9-10 for 500

dimension problems, respectively.

B. Discussion

For both algorithms, we observe that the convergence

is very fast (fewer than 2.0E4 function evaluations for 50

dimensions and 2.0E5 for 500). Moreover, the algorithms

keep this fast convergence behavior even if the dimension

increases. The Rosenbrock and Ackley functions resist so-

lution by these algorithms. The global minimum of Rosen-

brock’s function is inside a long, narrow, parabolic shaped

flat valley. To find the valley is trivial, but to converge to the

global minimum is difficult. Similarly, the landscape of the

Ackley’s function is very flat and the optimum is on a very

localized peak. Our algorithms are not based on maintaining

a population of solutions, so they may be inefficient in

exploring particular regions of the search space if they are

not guided, in particular in the case of high dimensions.

We observe that the CUS and EUS algorithms yield similar

results on functions 1,5,6,7,9 and 11, but EUS yields bet-

ter results on all others, except for Bohachevksy’s (#10).

Rastrigin’s function (#4) is solved partially by CUS and

performance decreases while the dimension increases, but

it’s always solved with an E-13 accuracy by EUS. Schwefel’s

problems 2.21 and 1.2 (#2 and #8) resist solution by CUS

while EUS manages to solve them with E-10 accuracy in

50 dimensions. Smaller steps of EUS algorithm permit more

complex problems to be solved even if convergence time is

a bit longer than for CUS.

Some further experiments show that including a random

parameter with h in equation (1) allows the EUS algorithm

to solve Bohachevsky’s and even Ackley’s function. How-

ever, this does not help in the case of the Rosenbrock and

Extended F10 functions.

In order to have a preliminary idea of EUS and CUS

performance, we can compare them with the other tested

algorithms from the CEC’08 competition. Functions of this
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Figure 3. Convergence Graphs of CUS for D=50 (functions 1-5)
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Figure 4. Convergence Graphs of CUS for D=50 (functions 6-11)

benchmark are the 6 first described in Figure 4. Results of

this competition can be consulted in [6]. The algorithms

are ranked according to their average performance on all

functions. The 3 first ranked algorithms are MTS [7],

LSEDA-gl [8] and jDEdynNP-F [9], respectively. The Table

VI merges these 3 algorithms results with those of CUS and

EUS for 1000 dimension problems. The experimental setup

is the same as the one described in section 4.1.

# CUS EUS MTS LSEDA-gl jDEdynNP-F

1 9.67E-12 9.66E-12 0.00E0 3.23E-13 1.14E-13

2 1.81E2 8.01E-1 4.72E-2 1.04E-5 1.95E1

3 2.52E3 8.24E2 3.41E-4 1.73E3 1.31E3

4 3.41E2 9.62E-12 0.00E0 5.45E2 2.17E-4

5 5.99E-12 6.39E-12 0.00E0 1.71E-13 3.98E-14

6 1.98E1 1.98E1 1.24E-11 4.26E-13 1.47E-11

Table VI
ERROR VALUES ACHIEVED FOR D = 1000
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Figure 5. Convergence Graphs of CUS for D=500 (functions 1-5)
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Figure 6. Convergence Graphs of CUS for D=500 (functions 6-11)
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Figure 7. Convergence Graphs of EUS for D=50 (functions 1-5)
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Figure 8. Convergence Graphs of EUS for D=50 (functions 6-11)
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Figure 9. Convergence Graphs of EUS for D=500 (functions 1-5)
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Figure 10. Convergence Graphs of EUS for D=500 (functions 6-11)
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This table shows a similar behavior between the 5 algo-

rithms on functions #1 and #5. However, EUS has better

results than jDEdynNP-F for functions #2 and #4. Function

#3 is not well solved by all algorithms, except for MTS.

Ackley’s function still resists solution for EUS and CUS.

The MTS efficiency relies heavily on using 3 different local

algorithms. Each one is tested on the neighborhood of a

potential solution and the one whoever has the best results is

chosen to improve the solution. Besides, our algorithms are

stand-alone, in future research we may hybrid them to obtain

better results. Overall, with EUS, we obtain competitive

performance for 5 out of 6 of the previous problems,

compared to efficient but more complex algorithms.

V. CONCLUSION

We present two main variants of a unidimensional search

algorithm in this paper. Our methods, called CUS and

EUS, are applied to a test suite that contains 11 high-

dimension optimization problems. We utilize a dimension

separation process that makes our algorithms robust in han-

dling problems of high dimension. The experiments indicate

that our methods achieve fast convergence on a wide range

of functions in high dimension. Moreover, after comparison

with the 3 best algorithms of the CEC’08 conference, our

EUS algorithm shows similar performance results for the

5 first functions of the benchmark. These outcomes are

noteworthy for an algorithm that is very simple to implement

and that has no parameters to tune.
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probability distribution,” in IEEE Congress on Evolutionary
Computation, 2008, pp. 3917–3924.

[9] J. Brest, A. Zamuda, B. Boskovic, M. S. Maucec, and
V. Zumer, “High-dimensional real-parameter optimization us-
ing self-adaptive differential evolution algorithm with pop-
ulation size reduction,” in IEEE Congress on Evolutionary
Computation, 2008, pp. 2032–2039.

1101


