
Continuous Variable Neighbourhood Search Algorithm
Based on Evolutionary Metaheuristic Components: A Scalability Test

Carlos Garcı́a-Martı́nez
Dept. of Computing and Numerical Analysis

Univ. of Córdoba, 14071 Córdoba, Spain
cgarcia@uco.es

Manuel Lozano
Dept. of Computer Science and

Artificial Intelligence
CITIC-UGR (Research Center on Information and

Communications Technology)
Univ. of Granada, 18071 Granada, Spain

lozano@decsai.ugr.es

Abstract

Variable Neighbourhood Search is a metaheuristic com-
bining three components: generation, improvement, and
shaking components. In this paper, we describe a contin-
uous Variable Neighbourhood Search algorithm based on
three specialised Evolutionary Algorithms, which play the
role of each aforementioned component: 1) an EA spe-
cialised in generating a good starting point as generation
component, 2) an EA specialised in exploiting local infor-
mation as improvement component, 3) and another EA spe-
cialised in providing local diversity as shaking component.
We adopt the experimental framework proposed for the Spe-
cial Session on Evolutionary Algorithms and other Meta-
heuristics for Continuous Optimization Problems - A Scal-
ability Test, for the ISDA’09 conference, to test the ability of
the model of being scalable for high-dimensional problems.

1. Introduction

Nowadays, high-dimensional optimisation problems

arise as a very interesting field of research, because they

appear in many important new real-world problems (bio-

computing, data mining, etc.). Unfortunately, the perfor-

mance of most available optimisation algorithms deterio-

rates rapidly as the dimensionality of the search space in-

creases.

Metaheuristics (MHs) [11] are a family of search and

optimisation algorithms based on extending basic heuris-

tic methods by including them into an iterative framework

augmenting their exploration capabilities. MHs coordinate

subordinate components (such as probability distributions,

tabu lists or genetic operators among others) with the aim

of performing an effective and efficient process in search-

ing for the global optimum of a problem. Over the last

years, a large number of search algorithms were reported

that do not purely follow the concepts of one single clas-

sical MH, but they attempt to obtain the best from a set of

MHs that perform together and complement each other to

produce a profitable synergy from their combination. These

approaches are commonly referred to as hybrid MHs [22].

Evolutionary Algorithms (EAs) [3] are stochastic search

methods that mimic the metaphor of natural biological evo-

lution. EAs rely on the concept of a population of individu-

als, which undergo probabilistic operators to evolve toward

increasingly better fitness values of the individuals.

A novel method to build hybrid MHs, recently intro-

duced in [19], concerns the incorporation of specialised EAs
into classical MHs, replacing determinate components, but

preserving the essence of the original MH as much as pos-

sible. The idea is to build customised EAs playing the same

role as particular MH components, but more effectively, i.e.,

evolutionary MH components. In this way, a classical MH

is transformed into an integrative hybrid MH (because one

of its components is another MH). In the literature, we find

some proposals that follow this idea: In [1] and [6], two EAs

are applied to perform local search processes within a multi-

start MH; and in [18, 19], an evolutionary ILS-perturbation

technique is presented (ILS is for Iterated Local Search).

Variable Neighbourhood Search (VNS) [21] is a MH that

exploits systematically the idea of neighbourhood change

(from a given set of neighbourhood structures Nk, k =
1, . . . , kmax), both in the descent to local minima and in

the escape from the valleys which contain them. It mainly

consists of the following three components, which work on

a single candidate solution, the current solution (sc) (see

Fig. 1):

1. Generation component: Firstly, a method is executed

to generate sc within the search space.

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.68

1074

1.
Generation comp.

/
CMA-ES

2.
Improvement comp.

/
Cont. Local EA

3.
Shaking comp.

/
�CHC

sc

sc sc

VNS / VNS with EAs
N k

Figure 1. VNS model / VNS based on EAs

2. Improvement component: Secondly, sc is refined, usu-

ally by a local search method.

3. Shaking component: Then, shaking is performed to es-

cape from the valley where sc lies. It selects a random

solution in the kth neighbourhood of sc, which be-

comes a new starting solution for improvement com-

ponent. At the beginning of the run, and every time

last improvement process improved the best found so-

lution, k is set to one; otherwise, k is set to k + 1.

In this work, we study a novel continuous VNS model,

presented in [7, 8], that is based on three specialised EAs

playing the role of each VNS component. Experiments

are carried out to test the ability of the algorithm of being

scalable for high-dimensional problems. With this aim, we

adopt the experimental framework proposed for the Special

Session on Evolutionary Algorithms and other Metaheuris-

tics for Continuous Optimization Problems - A Scalability

Test, for the ISDA’09 conference.

In Sect. 2, we describe the general scheme of the VNS

model based on evolutionary MH components. In Sect. 3,

we introduce the generation component. In Sect. 4, we de-

tail the improvement component. In Sect. 5, shaking com-

ponent is described. In Sect. 6, we present the empirical

study. Conclusions are presented in Sect. 7.

2. VNS based on Specialised EAs

In this study, we focus on a continuous VNS model based

on three specialised EAs, which play the role of each VNS

component (see Fig. 1):

1. Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [12, 13] generates initial sc (Sect. 3).

2. Continuous Local EA improves sc (Sect. 4).

3. Micro Cross-generational elitist sel., Heterogeneous
recombination, and Cataclysmic mutation (μCHC)

performs shaking to scape from the valley where sc

lies, according to the kth neighbourhood (Sect. 5).

Adaptation of parameter k is performed the same way

original VNS algorithm does.

Neighbourhoods structures are defined by using metric

ρ:

Nk(sc) = {s | rk−1 ≤ ρ(sc, s) ≤ rk} (1)

where rk is the radius of Nk(sc) monotonically nonde-

creasing with k. Hereafter, we will always consider the fol-

lowing distance metric because of computational reasons:

ρ(x,y) =
n∑

i=1

|xi − yi| (2)

Bound constraints are checked every time a new solu-

tion is sampled. Every value that lies outside the ranges of

its corresponding variable is recomputed to its symmetric

value with regards to the violated bound. This process is

repeated until no bound constraint is violated.

Stop condition is reached when k surpasses kmax (in our

case, kmax is set to 20). At this point, the algorithm per-

forms a restart. In this way, exploiting larger number of

function evaluations may increase the chance to achieve bet-

ter function values. In our case, a restart means that VNS

is run once again from the CMA-ES execution, generating

a new sc.

3. CMA-ES as Generator Component

The proposal applies CMA-ES [12, 13] to

obtain a good point in the design space from

which the algorithm carries out its search pro-

cess. We have applied the C code, available at

http://www.lri.fr/∼hansen/cmaes inmatlab.html

with the suggested parameter values from a random

solution.

4. Continuous Local EA as
Improvement Component

Continuous Local EA plays the role of improvement

component for the VNS model. It is an EA based on the

principles of Binary Local Genetic Algorithm [10], which

obtained promising results in efficacy and efficiency against

classical improvement methods.

Continuous Local EA is a steady-state real-coded ge-
netic algorithm [14, 15] that inserts one single new mem-

ber into the population (Pop) in each iteration. It uses a

replacement method in order to force a member of the cur-

rent population to perish and to make room for the new off-

spring. It is important to know that the selected replace-

ment method favours the acquisition of information about

1075

Crossover

Acceptance
Criterion

sC

z

Update Pop

Pop

Mate
Selection

Figure 2. Continuous Local EA

the search space. Then, the algorithm exploits local infor-

mation around sc, provided by the individuals in Pop close

to it, to orientate the improvement process.

Let’s suppose that Continuous Local EA is to improve

the given sc. Then, the following steps are carried out (see

Fig. 2):

• Mate selection: A solution from Pop is selected as

smate by means of nearest improving solution selec-
tion method (Sect. 4.1).

• Crossover: smate and sc are crossed over by means of

parent-centric BLX-α, creating offspring z (Sec. 4.2).

• Acceptance and replacement: If z is accepted (Sect.

4.3), it replaces sc and is inserted into the population

forcing the individual with lowest information contri-

bution to perish (Sect. 4.4).

All these steps are repeated until a maximum number of

iterations without improving the best visited sc is reached

(we stop the run after 100 iterations without improving best

sc). At last, the best found sc is returned.

An important aspect when using Continuous Local EA

in the proposed VNS model is that Pop undergoes initial-

isation only once, at the beginning of the run, and not at

every invocation to improve sc. In this way, the algorithm

may gather up valuable information about the search space

and its optima, and employ accumulated search experience

from previous refinements to enhance future ones.

4.1. Nearest Improving Solution Selection

Assortative mating is the natural occurrence of mating

between individuals of similar phenotype more or less often

than expected by chance. Mating between individuals with

similar phenotype more often is called positive assortative

mating and less often is called negative assortative mating.

Fernandes et al. [5] implement these ideas to design two

mating selection mechanisms.

We introduce a new assortative mating mechanism to be

used in Continuous Local EA, nearest improving solution

selection. Its idea is to select the individual in Pop that pro-

vides valuable information of the search space (location and

fitness value) for the task of locally improving sc. On the

one hand, this mechanism dismisses individuals worse than

sc, because they reduce chances for improving sc. On the

other hand, nearest solution is selected because it provides

more information about the search space region where sc

is located. We also include a distance threshold to avoid

choosing a solution too similar to sc.

Therefore, first parent is always sc, then, second parent

is the individual in Pop most similar to sc (at phenotypic

level) fulfilling two conditions: 1) it has a better fitness

value than sc and 2) similarity between both solutions is

above a given threshold. Mating threshold is initially set to

1e − 2. Then, after every VNS restart, it is set to half its

value to improve precision.

An important remark is that this selection mechanism

may return no mate for sc. It occurs when the mechanism

has dismissed all solutions in Pop because either they are

worse than sc, or their distances to sc are under mating

threshold. Crossover is not performed in this case. Off-

spring is generated by perturbing sc instead (Sect. 4.2).

4.2. PBX-α Crossover Operator

PBX-α [20] is an instance of parent-centric crossover
operators, which have arisen as a meaningful and efficient

way of solving real-parameter optimisation problems [2, 9].

Given sc= (sc
1 · · · sc

n) and smate= (smate
1 · · · smate

n),
PBX-α generates offspring z= (z1 · · · zn), where zi is a

random (uniform) number from interval [sc
i − I · α, sc

i +
I · α], with I = |sc

i − smate
i |. Parameter α is initially

set to 0.5. Then, after every VNS restart, it is set to

0.5/loge(number of restarts + 1) to improve precision.

As mentioned before, crossover operation occurs when

mate selection returns a solution from Pop. Otherwise, off-

spring is generated by adding a normal random vector to sc,

whose standard deviation is the product of the current val-

ues of aforementioned parameters α and mating threshold.

Bounds constraints are checked as in the general VNS

framework (Sect. 2), either when PBX-α is applied or when

a vector of random values is added to sc.

4.3. Acceptance Criterion

Once offspring z has been generated either by PBX-α
or perturbation, Continuous Local EA decides which solu-

tion, between z and sc, becomes the new sc. It follows a

similar idea to the one behind Simulated Annealing [16] to

overcome rugged landscapes and local optima. In particu-

lar, it always accepts z if it is better than a specific com-

puted bound. At the beginning, that bound is set equal to

the fitness value of sc, only allowing improving offspring.

1076

Then, every time a new best sc is found, the bound is com-

puted as the average of the fitness of the new best sc and the

old bound. This simple mechanism provides some selection

pressure on the search process that also lets the algorithm to

accept uphill moves, and overcome small local optima.

4.4. Lowest Information Contribution Re-
placement

One of the objectives of Continuous Local EA is to

gather up valuable information about the search space and

its optima, to enhance future refinements. To carry out this

objective, Pop should maintain a set of good solutions prop-

erly spread over the search space. The problem of maintain-

ing such a set of solutions recalls the problem of attaining

a good set of non-dominated solutions in multi-objective

problems. In [17], Kukkonen and Deb propose a method

for pruning of non-dominated solutions in many-objective

problems. The basic idea is to eliminate the most crowded

members of a non-dominated set one by one, and update the

crowding information of the remaining members after each

removal.

Continuous Local EA applies a similar method for up-

dating Pop, when solving mono-objective problems. The

mechanism firstly inserts the new offspring in Pop, then,

it removes the most crowded solution, keeping population

size constant (we use |Pop| = 100). To determine the so-

lution to be removed, everyone in Pop holds a pointer to

its nearest solution as well as the distance between them, at

phenotypic level. Since, according to this definition, there

are always, at least, two solutions holding the minimum dis-

tance, the worst of them is the one to be removed. Point-

ers and distances are updated every time Pop changes, i.e.,

when inserting the new solution and when removing the

most crowded one. Notice that the best found solution is

never removed.

5. μCHC as Shaking Component

The VNS model applies μCHC as the shaking compo-

nent. μCHC was firstly presented as an evolutionary ILS-
perturbation technique for binary-coded problems [18, 19].

The role of μCHC is to receive sc, provide local diversity,

and generate a solution that is then considered as starting

point for the next improvement process (see Fig. 3). The

reason for choosing CHC, as the base model, is that it suit-

ably combines powerful diversification mechanisms with an

elitist selection strategy. The filtering of high diversity by

means of high selective pressure favours the creation of use-
ful diversity: many dissimilar solutions are produced during

the run and only the best ones are conserved in the popula-

tion, allowing diverse and promising solutions to be main-

tained. From our point of view, this behaviour is desirable

Improv. Improv.
Improv.

�CHC

�CHC
�CHC

Nk Nk Nk

Figure 3. μCHC as shaking module

for an EA assuming the work of a shaking operator.

5.1. μCHC Model

We have conceived μCHC to be an effective explorer in

the neighbourhood of sc to perform shaking process, be-

cause it provides local diversity. At the beginning, sc is

used to create its initial population (Sect. 5.2). Then, it is

performed throughout a predetermined number of fitness

function evaluations. The best reached individual is then

considered as starting point for the next improvement pro-

cess (see Fig. 3). Every time a new solution is sampled,

bound constraints are checked as in the general VNS frame-

work (Sect. 2).

The main components of the algorithm are:

• Population size: μCHC manages a population with

few individuals (|Pop| = 5), and thus, it may be seen

as micro EA. In standard VNS models, the number of

evaluations required by the shaking mechanism is very

low as compared with the one for the improvement

method. With the aim of preserving, as far as possi-

ble, the essence of VNS, we have considered an EA

with a low sized population; for being able to work ad-

equately under the requirement of spending few evalu-

ations.

• Number of evaluations: In particular, the number of

evaluations assigned to μCHC for a particular invoca-

tion will be a fixed proportion (pevals), of the num-

ber of evaluations consumed by the previously per-

formed improvement method (Continuous Local EA).

It is worth noting that pevals should be set to a low

value. We will use pevals equals to 0.5.

• Elitist selection: Current population is merged with

offspring population obtained from it and the best

|Pop| individuals are selected for the new population.

• Incest prevention mechanism: Before mating, Ham-

ming distance between the corresponding Gray-coding

strings of paired individuals (with 20 bits per variable)

is calculated. Only paired individuals whose distance

exceed a difference threshold d are allowed to undergo

1077

2k�rangei

k max

Figure 4. Prob. distribution for initialisation

crossover operation. Aforementioned threshold is ini-

tialised to L/4 (with L being the number of bits cod-

ing a potential solution). If no offspring is obtained in

one generation, difference threshold is decremented by

one.

• BLX-α crossover operator: Paired individuals allowed

to produce offspring undergo BLX-α crossover oper-

ator [4], producing one offspring. Given y1 and y2,

BLX-α generates offspring z, where zi is a random

(uniform) number from [ymin−I ·α, ymax+I ·α] inter-

val, with ymin = min(y1
i , y2

i), ymax = max(y1
i , y2

i),
and I = |y1

i − y2
i |. This parameter α is set to 0.5.

• Mating with sc: μCHC incorporates a strategy of re-

combining sc with another solution. In addition to

the typical recombination phase of CHC, our algorithm

mates sc with a member of Pop (selected at random)

and, if they are finally crossed over (attending on the

incest prevention mechanism), the resulting offspring

will be introduced into the offspring population.

• Cataclysmic mutation: μCHC, as CHC, uses no mu-

tation in the classical sense of the concept, but in-

stead, it goes through a process of cataclysmic muta-

tion when the population has converged. The differ-

ence threshold is considered to measure the stagnation

of the search, which happens when it has dropped to

one. Then, the population is reinitialised with individ-

uals generated by perturbing sc attending to the kth

neighbourhood structure (Sect. 5.2).

5.2. Initialisation and Cataclysmic Muta-
tion

Every individual in the initial μCHC population is gen-

erated by perturbing sc according to a relaxed idea of the

given neighbourhood structure Nk (see equation 1). In par-

ticular, each individual is generated by adding a vector of

random values from the following equation (see Fig. 4):

N(0, 1) · rangei/kmax ± k · rangei/kmax (3)

where N(0, 1) is a normal random value with mean 0 and

variance 1, rangei is the range of ith variable domain, kmax

is the maximum number of neighbourhood structures VNS

manages, and k is the current neighbourhood index; ± is

chosen according to the sign of the random value.

Table 1. Test problems
Name Interval f∗

f1 Shifted Sphere [-100, 100] -450

f2 Schwefel [-100, 100] -450

f3 Shifted Rosenbrock [-100, 100] 390

f4 Shifted Rastrigin [-5, 5] -330

f5 Shifted Griewank [-600, 600] -180

f6 Shifted Ackley [-32, 32] -140

f7 Schwefel 2.22 [-10, 10] 0

f8 Schwefel 1.2 [-65536, 65536] 0

f9 Extended F10 [-100, 100] 0

f10 Bohachevsky [-15, 15] 0

f11 Schaffer [-100, 100] 0

Table 2. Parameter setting
Parameter Value Parameter Value

kmax 20 CMA-ES parameters Suggested in code

|CLEA’s Pop| 100 CLEA stop cond. 100 its without improv.

|μCHC’s Pop| 5 CLEA mating th. 1e-2 initially

BLX-α 0.5 PBX-α 0.5 initially

pevals 0.5 μCHC bits/var 20

Cataclysmic mutation fills the population with individu-

als created by the same way as initial population is built, but

preserving the best performing individual found in the pre-

vious generation. After applying cataclysmic mutation, the

difference threshold is set to: σ ·(1−σ)·L, with L being the

number of bits coding a potential solution of the problem

(20 bits per variable) and σ is the average of the minimal ra-

dius of neighbourhoods Nk and Nk+1 ((2k + 1)/(2kmax)).

6. Results

The continuous VNS model with evolutionary MH com-

ponents has been tested on the experimental framework

proposed for the Special Session on Evolutionary Algo-

rithms and other Metaheuristics for Continuous Optimiza-

tion Problems - A Scalability Test, for the ISDA’09 confer-

ence. It consist of 11 scalable function optimisation prob-

lems. Table 1 shows their names, bounds, and optimum val-

ues. Functions f1 to f6 are defined in [23], and functions f7

to f11, in [9]. Four dimensions (D = {50, 100, 200, 500})
are studied. The maximum number of fitness evaluations is

5, 000 · D. Table 2 summarises the parameter setting (pa-

rameter values taken from [7]), where CLEA is for Contin-

uous Local EA. Table 3 shows the error average, defined

as the difference between the best attained fitness and the

optimum value, and its standard deviation in brackets over

25 runs for each test function and dimension.

1078

Table 3. Results
50 100 200 500

f1 5,7e-14(3e-29) 1,3e-13(3e-14) 2,6e-13(3e-14) 6,0e-13(3e-14)

f2 2,7e-11(6e-12) 5,8e-9(1e-8) 1,1e-9(6e-10) 3,6e-4(1,1e-4)

f3 1,5e+0(2,8e+0) 1,8e+1(8,4e+0) 1,0e+2(1,5e+1) 6,1e+4(3,0e+5)

f4 1,3e+1(4,5e+0) 4,4e+1(1,3e+1) 1,9e+2(1,1e+2) 2,5e+3(4,3e+2)

f5 3,3e-14(1e-14) 7,7e-14(2e-14) 1,6e-13(1e-14) 3,5e-13(2e-14)

f6 1,8e+1(7,5e+0) 2,1e+1(5,8e-1) 2,1e+1(1,9e-1) 2,2e+1(4,3e-2)

f7 1,5e-9(4,0e-9) 7,7e-5(2,4e-4) 4,1e-2(7,2e-2) 5,0e-2(5,1e-2)

f8 1,2e-14(1e-14) 5,8e-14(1e-14) 2,6e-13(4e-14) 4,9e-4(2,3e-4)

f9 4,8e+0(9,0e+0) 2,2e+1(1,5e+1) 1,5e+2(8,0e+1) 2,5e+3(6,6e+2)

f10 1,7e-4(1,5e-4) 4,5e-4(2,7e-4) 1,3e-3(5,7e-4) 4,7e-3(6,5e-4)

f11 3,6e+0(6,5e+0) 2,2e+1(1,7e+1) 1,7e+2(7,2e+1) 2,4e+3(6,1e+2)

7. Conclusions

We have presented the continuous VNS model based on

three evolutionary MH components: 1) CMA-ES as an EA

specialised in generating a good starting point, as genera-

tion component, 2) Continuous Local EA, specialised in ex-

ploiting local information, as improvement component, and

3) μCHC, which provides local diversity, as shaking com-

ponent. We have tested the continuous VNS model with

evolutionary MH components on the experimental frame-

work proposed for the Special Session on Evolutionary

Algorithms and other Metaheuristics for Continuous Op-

timization Problems - A Scalability Test, for the ISDA’09

conference, to study the ability of the algorithm of being

scalable for high-dimensional problems.

8 Acknowledgments

This work was supported by Research Projects

TIN2008-05854 and P08-TIC-4173.

References

[1] A. Auger and N. Hansen. Performance evaluation of an ad-

vanced local search evolutionary algorithm. In Proc. of the
IEEE Int. Conf. Evolutionary Computation, volume 2, pages

1777–1784. IEEE Press, 2005.
[2] K. Deb, A. Anand, and D. Joshi. A computationally ef-

ficient evolutionary algorithm for real-parameter optimiza-

tion. Evol. Comput., 10(4):371–395, 2002.
[3] A. Eiben and J. Smith. Introduction to Evolutionary Com-

puting. Springer-Verlag, 2003.
[4] L. Eshelman and J. Schaffer. Real-coded genetic algorithms

and interval-schemata. In L. Whitley, editor, Foundations of
Genetic Algorithms 2, pages 187–202. 1993.

[5] C. Fernandes and A. Rosa. A study on non-random mat-

ing and varying population size in genetic algorithms using

a royal road function. In Proc. of the Congress on Evolu-
tionary Computation, pages 60–66. IEEE Press, 2001.

[6] C. Garcı́a-Martı́nez and M. Lozano. Local search based on

genetic algorithms. In P. Siarry and Z. Michalewicz, editors,

Advances in Metaheuristics for Hard Optimization, Natural

Computing, pages 199–221. Springer, 2008.
[7] C. Garcı́a-Martı́nez and M. Lozano. A continuous variable

neighbourhood search based on specialised EAs: Applica-

tion to the noiseless BBO-benchmark 2009. In Genetic Evo-
lutionary Computation Conf., pages 2287–2294, 2009.

[8] C. Garcı́a-Martı́nez and M. Lozano. A continuous variable

neighbourhood search based on specialised EAs: Applica-

tion to the noisy BBO-benchmark 2009 testbed. In Genetic
Evolutionary Computation Conf., pages 2367–2374, 2009.

[9] C. Garcı́a-Martı́nez, M. Lozano, F. Herrera, D. Molina, and

A. Sánchez. Global and local real-coded genetic algorithms

based on parent-centric crossover operators. Eur. J. Oper.
Res., 185(3):1088–1113, 2008.

[10] C. Garcı́a-Martı́nez, M. Lozano, and D. Molina. A local

genetic algorithm for binary-coded problems. In Proc. of the
Int. Conf. on Parallel Problem Solving from Nature, volume

4193 of LNCS, pages 192–201. Springer, 2006.
[11] F. Glover and G. Kochenberger, editors. Handbook of Meta-

heuristics. Kluwer Academic Publishers, 2003.
[12] N. Hansen, S. Müller, and P. Koumoutsakos. Reducing

the time complexity of the derandomized evolution strategy

with covariance matrix adaptation (CMA-ES). Evol. Com-
put., 11(1):1–18, 2003.

[13] N. Hansen and A. Ostermeier. Completely derandom-

ized self-adaptation in evolution strategies. Evol. Comput.,
9(2):159–195, 2001.

[14] F. Herrera and M. Lozano. Two-loop real-coded genetic al-

gorithms with adaptive control of mutation step sizes. App.
Intell., 13(3):187–204, 2000.

[15] F. Herrera, M. Lozano, and J. Verdegay. Tackling real-coded

genetic algorithms: operators and tools for behavioral anal-

ysis. Artif. Intell. Rev., 12(4):265–319, 1998.
[16] S. Kirkpatrick, C. Gelatt Jr, and M. Vecchi. Optimization by

simulated annealing. Sci., 220(4598):671–680, 1983.
[17] S. Kukkonen and K. Deb. A fast and effective method for

pruning of non-dominated solutions in many-objective prob-

lems. In Proc. of the Int. Conf. on Parallel Problem Solving
from Nature, LNCS, volume 4193, pages 553–562, 2006.

[18] M. Lozano and C. Garcı́a-Martı́nez. An evolutionary ILS-

perturbation technique. In Proc. of the Int. Workshop on Hy-
brid Metaheuristics, LNCS, volume 5296, pages 1–15, 2008.

[19] M. Lozano and C. Garcı́a-Martı́nez. Hybrid metaheuristics

with evolutionary algorithms specializing in intensification

and diversification: Overview and progress report. Comput.
Oper. Res., In press, 2009.

[20] M. Lozano, F. Herrera, N. Krasnogor, and D. Molina. Real-

coded memetic algorithms with crossover hill-climbing.

Evol. Comput., 12(3):273–302, 2004.
[21] N. Mladenovic and P. Hansen. Variable neighborhood

search. Comput. Oper. Res., 24:1097–1100, 1997.
[22] E. Talbi. A taxonomy of hybrid metaheuristics. J. Heuris-

tics, 8(5):541–564, 2002.
[23] K. Tang, X. Yao, P. Suganthan, C. MacNish, Y. Chen,

C. Chen, and Z. Yang. Benchmark functions for the

CEC’2008 special session and competition on large scale

global optimization. Technical report, Nature Inspired Com-

putation And Applications Laboratory, USTC, China, 2007.

1079

