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ABSTRACT

The DIRECT global optimization algorithm is tested on the
BBOB 2009 testbed. The algorithm is rather time and space
consuming since it does not forget any point it samples dur-
ing the optimization. Furthermore, all the sampled points
are considered when deciding where to sample next. The re-
sults suggest that the algorithm is a viable alternative only
for low-dimensional search spaces (5D at most).

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—Global Opti-
mization, Unconstrained Optimization; F.2.1 [Analysis of
Algorithms and Problem Complexity|: Numerical Al-
gorithms and Problems

General Terms

Algorithms, Experimentation, Performance, Reliability

Keywords

Benchmarking, Black-box optimization, Evolutionary com-
putation, Global optimization, DIRECT

1. INTRODUCTION

The DIRECT algorithm was introduced in [5]. The name
of the algorithm not only expresses that it belongs to the
class of direct search algorithms, it also describes the basic
principle of the algorithm: the DIRECT acronym stands for
DlIviding RECTangles.

2. ALGORITHM DESCRIPTION

In this paper, a MATLAB implementation [2, [6] of the
DIRECT algorithm is used. Only the basic algorithm design
principles are described here; for the detailed description see
5] or [2].

The algorithm divides the search space to non-overlaping
hyperrectangles; in each time instant, the whole search space
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is completely covered by all the hyperrectangles. The point
in the middle of each hyperrectangle (the base point) is eval-
uated. Each hyperrectangle thus has two (among others)
important characteristics:

1. the fitness of its base point, and
2. the size of the hyperrectangle.

There are many possible definitions of the hyperrectangle
size, here the distance from the basepoint to the hyperect-
angle corner is used.

In each iteartion the algorithm decides which of the ex-
isting hyperrectangles should be split, i.e. where the next
points should be sampled. The decision is based on the fol-
lowing 2 assumptions:

e the better fitness of the base point, the higher the
chance of finding an improvement, and

e the larger the rectangle, the higher the chance of find-
ing an improvement.

The algorithm thus selects for division] large rectangles and
rectangles with highly fit base points, while it ignores small
rectangles, or rectangles with non-fit base points.

The division process then proceeds by splitting the rect-
angle into thirds by evaluating 2D points (D is the search
space dimensionality) lying in the distance :I:% of the respec-
tive side length of the hyperrectangle from the base point,
and deciding the order in which the individual dimensions
should be divided into thirds. The demonstration of the
DIRECT sampling process can be seen in Fig. [1l

2.1 Implementation Modifications

The MATLAB implementation [2] was modified to better
suit the needs of the BBOB-benchmarking.

1. The original implementation allowed the user to use
it in the test mode when the value of global optimum
is known. However, in that case all other termination
criteria were ignored, i.e. the algorithm runs until it
finds the global optimum. The modification takes into
account also other termination criteria, the maximum
number of evaluations in particular.

!The selection of the next rectangles to divide is basically
a multi-objective problem. The algorithm does not use the
usual definition of non-dominated solutions; instead it se-
lects (the right subset of) the rectangles that lie on the
boundary of the convex hull of all rectangles described by
their size and the base point fitness.
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Figure 1: DIRECT algorithm optimizing 2D Rosenbrock’s function using 1000 samples.

Left: the overall

picture, interval (—5,5)?, right: the detail of interval (0, 2)?

2. The original MATLAB implementation used function
calls that work on shared data structures. Since MAT-
LAB does not allow passing arguments to functions
by reference and always passes them by value, this
resulted in creating unnecessary temporary copies of
the working data structures. The modified implemen-
tation now uses a pseudo-object-oriented approach, so
that the data structures are really shared and no copies
of data structures are created, which speeds up the al-
gorithm.

2.2 Parameter Settings

The DIRECT algorithm uses several parameters which
must be set:

e The Jones factor € is the minimal amount of improve-
ment which is considered to be signficant by the algo-
rithm. The value is e = 10710,

The maxdeep argument determines the possible depth
of the division tree; the parameter is roughly equiva-
lent to setting the minimal allowed distance between
two neighboring sampled points. It was set to 21, so
that the minimal distance is of order 10710,

2.3 Box Constraints? Yes

The algorithm is not suitable for unconstrained optimiza-
tion, it needs the bounding hypercube. In the BBOB exper-
imentation documentation [3], it is stated that all the func-
tions have the global optimum in (—5,5)" hypercube (D
is the search space dimensionality), thus it may seem that
this hypercube can be a good choice for the box constraits
for DIRECT. However, several of the benchmark functions
have the global optimum near (or directly on) the search
space boundary and DIRECT is pretty bad in approaching
such solutions. Consequently, the DIRECT box constraints
were chosen as (—6,6)” hypercube. It was observed that
this choice improved the results e.g. for the Linear slope
function, while it did not worsen the results on the rest of
the functions.
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2.4 The Crafting Effort

The same parameter settings were used for all experiments
on all functions, the crafting effort CrE = 0.

2.5 Invariance Properties

The algorithm searches a form of rectangular grid, it is
thus not invariant with respect to translation and rotation.
When deciding where to sample the next points, the DI-
RECT algorithm makes use of the fitness values in such a
way that it is not invariant with respect to order-preserving
transformations of the fitness function.

3. EXPERIMENTAL PROCEDURE

The standard experimental procedure of BBOB was adopt-
ed, with one exception: the algorithm was run on 24 test
functions, 5 instances each, but only 1 run on each instance
(as opposed to 3 runs in the standard procedure)—the DI-
RECT algorithm is deterministic so making more than one
run would give the same results. Each run was finished

e after finding a solution with fitness difference Af <
1078, or

e after performing more than 10° function evaluations.

The maximal allowed number of evaluations was set to be
independent of the dimensionality of the search space. The
decision to use such setting is based on the fact that for the
DIRECT algorithm, the time needed to sample new points
in later phases of optimization is more time consuming than
in the beginning—the algorithm does not forget anything
and before selecting the next rectangles to divide, it must
go through all the rectangles created before. The available
time allowed for 10° function evaluations.

4. RESULTS

Results from experiments according to [3] on the bench-
mark functions given in [T}, [4] are presented in Figures 2l and



and in Table[Il The algorithm was able to find the global
optimum (at least once out of 5 runs) in 24, 19, 9, 4, and 2
cases (out of 24) for search space dimensions 2, 3, 5, 10, and
20, respectively.

The restarted version of the DIRECT algorithm was tested
as well. Each multistart run was allowed to use up to 10*
function evaluations while the individual DIRECT launch
was allowed only up to 10® function evaluations, i.e. about
10 restarts were carried out on average. The first launch was
always run on the whole search space, for the other launches
it was decided randomly, if the search should be started only
in a small hypercube containing the best solution found so
far in the middle, or if it should search almost the whole
search spaceE.

Surprisingly, the results did not differ very much from the
results of the non-restarted version, that is why they are not
presented in this paper.

S. CPU TIMING EXPERIMENT

The algorithm was run with the maximal number of evalu-
ations set to 10°, it was restarted for at least 30 seconds. The
results show the algorithm takes on approximately 1.7-1075,
1.6-107%, 1.1-107*% 3.4-1073, 2.7-1073, and 2.0- 1073
seconds per function evaluation for 2-, 3-, 5-, 10-, 20-, and
40-dimensional search space, respectively. The experiment
was conducted on Intel Core 2 CPU, T5600, 1.83 GHz, 1 GB
RAM with Windows XP SP3 in MATLAB R2007b.

6. CONCLUSION

Although the DIRECT algorithm is a global search one
and comes with a proof of finding the global optimum, it
needs quickly increasing number of function evaluations which
renders the algorithm practically unusable in high-dimensio-
nal search spaces. With 10° allowed function evaluations,
the algorithm is usable in 2-, or 3-dimensional search space,
for 5- and moredimensional spaces the algorithm converges
too slowly.

2A random point was chosen in the hypercube. This point
and the most distant corner of the (—5,5)° hypercube
formed the two defining corners of the reduced search space.
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Figure 2: Expected Running Time (ERT, ®) to reach fopt + Af and median number of function evaluations of
successful trials (4), shown for Af =10,1,107",1072,107%,107%,107® (the exponent is given in the legend of f;
and f24) versus dimension in log-log presentation. The ERT(Af) equals to #FEs(Af) divided by the number
of successful trials, where a trial is successful if fo,x + Af was surpassed during the trial. The #FEs(Af) are
the total number of function evaluations while f,,; + Af was not surpassed during the trial from all respective
trials (successful and unsuccessful), and fop,¢ denotes the optimal function value. Crosses (%) indicate the total
number of function evaluations #FEs(—occ). Numbers above ERT-symbols indicate the number of successful
trials. Annotated numbers on the ordinate are decimal logarithms. Additional grid lines show linear and
quadratic scaling.
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f1 in 5-D, N=5, mFE=2723 | f1 in 20-D, N=5, mFE=100651 f2 in 5-D, N=5, mFE=100113 | f2 in 20-D, N=5, mFE=100777
Af |# ERT 10% 90% RTgucc|# ERT 10% 90% RTgucc Af |# ERT 10% 90% RTgucc |# ERT 10% 90% RTgucc
10 5 2.2el 1.7el 2.6el 2.2el 5 2.1e3 1.9e3 2.3e3 2.1e3 10 5 4.8e2 3.8e2 5.7e2 4.8e2 4 5.2e4 3.2e4 T.led 4.3e4
1 5 8.6el 6.9el 1.0e2 8.6el |5 4.8e3 4.6e3 5.1e3 4.8e3 1 5 6.3e2 5.0e2 7.6e2 6.3e2 2 1.8e5 1.5e5 2.2e5 6.6e4
le—1| 5 2.3e2 2.2e2 2.5e2 2.3e2 |5 9.7e3 8.9e3 1.0e4 9.7e3 le—1|5 7.4e2 5.6e2 9.3e2 7.4e2 2 1.9e5 1.6e5 2.2e5 6.9e4
le—3| 5 5.4e2 4.9e2 6.0e2 5.4e2 5 2.led 2.0e4 2.2e4 2.1le4 le—3| 5 1.2e3 1.0e3 1.5e3 1.2e3 2 2.1e5 1.8e5 2.3e5 T.7Ted
le—5| 5 1.0e3 9.1e2 1.1e3 1.0e3 5 3.8e4 3.6e4 3.9e4 3.8e4 le—5|5 2.0e3 1.5e3 2.5e3 2.0e3 0 1l4e-1 43e-6 55e+0 7.9e4
le—8| 5 2.3e3 2.1e3 2.5e3 2.3e3 4 1.0e5 9.5e4 1.1eb 8.led le—8| 4 4.3e4 1.9e4 6.7ed 4.0e4 B . . B .
f3 in 5-D, N=5, mFE=100137 | f3 in 20-D, N=5, mFE=100787 f4 in 5-D, N=5, mFE=100183 | f4 in 20-D, N=5, mFE=100863
Af |# ERT 10% 90% RTsucc |# ERT 10% 90% RTsucc Af |# ERT 10% 90% RTsucc |# ERT 10% 90% RTsucc
10 4 3.2e4 T7.le3 5.7ed 7.0e3 0 43e+0 24e+0 53e+0 7.le4 10 2 1.6e5 1.0e5 2.0e5 5.4e4 0 88e+0 31e+0 10e+1 7.9e4
1 1 4.9e5 4.8e5 5.0eb 1.0e5 . . . . B 1 2 1.7e5 1.3e5 2.1e5 6.2e4 . B B . .
le—1| 0 30e-1 99e-2 13e+0 8.9e4 le—1| 1 4.2e5 3.4e5 5.0e5 1.0e5
le—3| . . B B le—3| 0 Ile+0 51e-3 13e+0 2.8e4
le—5 le—5 . . .
le—8 . B . B B . . . B le—8| . . . . . . B B . B
f5 in 5-D, N=5, mFE=133 f5 in 20-D, N=5, mFE=9167 f6 in 5-D, N=5, mFE=100125 f6 in 20-D, N=5, mFE=100531
Af |# ERT 10% 90% RTgucc|# ERT 10% 90% RTgsucc Af |# ERT 10% 90% RTgucc |# ERT 10% 90% RTgsucc
10 5 9.2el 9.2el 9.3el 9.2el 5 T7.3e3 7.3e3 7.3e3 7.3e3 10 5 2.6e2 1.9e2 3.5e2 2.6e2 0 40e+0 19e+0 58e+0 1.0e5
1 5 1.2e2 1.2e2 1.2e2 1.2e2 |5 9.1e3 9.0e3 9.2e3 9.1e3 1 5 6.1e3 3.9e3 8.0e3 6.1e3 . . . . .
le—1|5 1.3e2 1.3e2 1.3e2 1.3e2 [5 9.2e3 9.2e3 9.2e3 9.2e3 le—1| 2 2.2e5 2.0e5 2.5e5 7.2e4
le—3| 5 1.3e2 1.3e2 1.3e2 1.3e2 5 9.2e3 9.2e3 9.2e3 9.2e3 le—3| 0 22e-2 26e—4 46e-2 T.led
le—5|5 1.3e2 1.3e2 1.3e2 1.3e2 5 9.2e3 9.2e3 9.2e3 9.2e3 le—5 . .
le—8| 5 1.3e2 1.3e2 1.3e2 1.3e2 5 9.2e3 9.2e3 9.2e3 9.2e3 le—8 B . . . . . . . .
f7 in 5-D, N=5, mFE=317725 | f7 in 20-D, N=5, mFE=133265 f8 in 5-D, N=5, mFE=100051 | fg8 in 20-D, N=5, mFE=100925
Af |# ERT 10% 90% RTsucc |# ERT 10% 90% RTsucc Af |# ERT 10% 90% RTsuce |# ERT 10% 90% RTsucc
10 5 6.6el 5.1el 8.lel 6.6el 0 15e+0 10e+0 17e+0 3.2e4 10 5 3.0e2 2.1e2 3.8e2 3.0e2 0 64e+0 17e+0 1le+1 1.0e5
1 5 5.4e2 3.9e2 6.8e2 5.4e2 . . . . B 1 5 1.6e3 9.2e2 2.2e3 1.6e3 . . B . .
le—1|3 1.3e5 6.1le4 2.2e5 1.1e5 le—1| 5 7.4e3 5.3e3 9.7e3 7.4e3
le—3| 0 4le-3 13e-3 46e-2 2.0e3 le—3| 5 3.9e4 2.5e4 5.4e4 3.9e4
le—5 . . . . le—5| 4 8.0e4 5.6e4 1.0e5 6.9e4
le—8| . . . . . . . . . . le—8| 3 1.3e5 9.1e4 1.5e5 9.7e4 . . . . .
f9 in 5-D, N=5, mFE=100121 | f9 in 20-D, N=5, mFE=100785 f10 in 5-D, N=5, mFE=100068 | f10 in 20-D, N=5, mFE=100261
Af |# ERT 10% 90% RTguce |# ERT 10% 90% RTsucc Af |# BERT 10% 90% RTsuce |# BERT 10% 90% RTsucc
10 5 1.1e2 8.0el 1.4e2 1.1e2 0 22e+0 22e+0 29e+0 1.0e5 10 4 3.8e4 1.1e4 6.3e4 3.7Te4 0 94e+2 45e+2 1lle+3 1.0e5
1 5 5.3e2 4.0e2 6.7e2 5.3e2 . . . . 1 4 7.led4 4.4e4 9.9e4 6.8e4 . . . . .
le—1| 5 1.0e4 6.4e3 1.4e4 1.0e4 le—1|2 1.6e5 1.1e5 2.1e5 1.0e5
le—3| 5 4.0e4 3.0ed 5.2e4 4.0e4 le—3| 0 15e-2 76e-3 1le+0 8.9e4
le—5| 5 5.1e4 4.0ed 6.led 5.1le4 le—5 . .
le—8| 3 1.3e5 1.le5 1.5e5 7.2e4 B . . . . le—8 . . . . . . B . .
f11 in 5-D, N=5, mFE=100066 | f11 in 20-D, N=5, mFE=100325 f12 in 5-D, N=5, mFE=100135 | f12 in 20-D, N=5, mFE=100847
Af |# ERT 10% 90% RTgucc |# BERT 10% 90% RTsucc Af |# ERT 10% 90% RTguce |# ERT 10% 90% RTsucc
10 5 1.2e4 3.1e3 2.2e4 1.2e4 0 76e+0 62e+0 98e+0 1.0e5 10 5 9.2e2 8.7e2 9.6e2 9.2e2 1 4.4e5 3.7eb5 5.0e5 1.0e5
1 1 4.5e5 4.0e5 5.0e5 5.0e4 B . . . B 1 5 2.3e3 1.7e3 3.0e3 2.3e3 1 4.6e5 4.1eb5 5.0e5 1.0e5
le—1| 0 19e-1 42e-2 2je-1 8.9e4 le—1| 5 6.9e3 4.4e3 9.7e3 6.9e3 0 25e+3 47e-2 6Te+4 1.0e5
le—3| . B . B B le—3| 5 5.0e4 3.8e4 6.led 5.0e4 . . . . B
le—5 le—5| 1 4.9e5 4.8e5 5.0e5 1.0e5
le—8| . B . B B B . B B . le—8| 0 2le-6 30e-7 46e-5 8.9e4 . B . . B
f13 in 5-D, N=5, mFE=100058 | f13 in 20-D, N=5, mFE=100597 f14 in 5-D, N=5, mFE=100109 | f14 in 20-D, N=5, mFE=100461
Af |# ERT 10% 90% RTguce |# BRT 10% 90% RTgucc Af |# ERT 10% 90% RTguce |# ERT 10% 90% RTsucc
10 [ 5 9.2e2 6.8e2 1.2e3 9.2e2 0 13e+1 45e+0 35e+1 8.9e4 10 [ 5 9.8e0 4.2e0 1.6el 9.8e0 5 6.3e2 4.2e2 8.3e2 6.3e2
1 5 4.0e3 2.6e3 5.3e3 4.0e3 . . . . . 1 5 1.5e2 9.6el 2.0e2 1.5e2 4 3.7e4 1.2e4 6.led 1.2e4
le—1| 5 8.6e3 7.1e3 1.0e4 8.6e3 le—1| 5 2.8e2 1.9e2 3.6e2 2.8e2 3 8.8e4 5.0e4 1.3e5 4.2e4
le—3| 4 5.5e4 3.5e4 7.6e4d 5.1le4 le—3| 5 3.2e3 1.8e3 4.6e3 3.2e3 0 90e-3 17e-3 12e-1 1.0e5
le—5| 2 2.1e5 1.9e5 2.3e5 8.0e4 le—5| 1 4.8e5 4.5e5 5.0e5 1.0e5 . .
le—8| 0 12e-6 92¢-8 15e-3 8.9e4 B . . . B le—8| 0 62e-6 19e-7 10e-5 8.9e4 . . . B B
f15 in 5-D, N=5, mFE=100183 | f15 in 20-D, N=5, mFE=100399 f16 in 5-D, N=5, mFE=100092 | f16 in 20-D, N=5, mFE=100254
Af |# ERT 10% 90% RTgucc |# BERT 10% 90% RTsucc Af |# ERT 10% 90% RTgsuce |# ERT 10% 90% RTsucc
10 5 2.8e3 1.8e3 3.7e3 2.8e3 0 10e+1 52e+0 12e+1 7.9e4 10 5 1.4e2 1.1e2 1.7e2 1.4e2 5 1.1led 2.2e3 2.1le4 1.1e4
1 3 8.7e4 4.8e4 1.2e5 6.9e4 B . . . B 1 5 9.6e2 8.0e2 1.le3 9.6e2 2 1.9e5 1.5e5 2.2e5 6.8e4
le—1[ 0 99e-2 27e-2 30e-1 6.3e4 le—1|5 9.1e3 5.4e3 1.3e4 9.1e3 0 12e-1 31e-2 85e-1 7.le4
le—3 . . le—3| 4 6.2e4 3.8e4 8.6e4 3.7e4 . . .
le—5 le—5| 2 2.2e5 2.1e5 2.4e5 1.0e5
le—8]| . . . . . . . . . . le—8| 1 4.9e5 4.9e5 5.0e5 1.0e5 . . . . .
f17 in 5-D, N=5, mFE=100060 | f17 in 20-D, N=5, mFE=100493 f18 in 5-D, N=5, mFE=100018 | f18 in 20-D, N=5, mFE=100168
Af |# ERT 10% 90% RTguce |# ERT 10% 90% RTgsucc Af |# ERT 10% 90% RTguce |# ERT 10% 90% RTsucc
10 [ 5 5.2e0 2.2e¢0 7.8e0 5.2e0 5 1.le2 5.6el 1.8e2 1.1e2 10 [5 1.5e2 1.1e2 1.8e2 1.5e2 5 5.7e3 3.6e3 7.8e3 5.7e3
1 5 3.0e2 2.1e2 3.9e2 3.0e2 4 5.7e4 3.3e4 8.0e4 3.9e4 1 5 1.1le3 6.5e2 1.5e3 1.1e3 1 4.5e5 4.0e5 5.0e5 1.0e5
le—1| 5 1.5e3 1.2e3 1.8e3 1.5e3 0 55e-2 21e-2 10e-1 4.5e4 le—1| 5 7.6e3 4.8e3 1.0e4 7.6e3 0 12e-1 51e-2 30e-1 1.0e5
le—3| 5 1.6ed4 8.7e3 2.4e4d 1.6e4 . . . . le—3| 4 6.0ed4 4.0ed 8.2e4 5.6e4 . . . .
le—5| 4 6.0e4 3.9e4 8.4e4 4.9e4 le—5| 0 44e-6 17e-6 25e-3 7.9e4
le—8| 1 4.8e5 4.6e5 5.0e5 8.2e4 B B . . . le—8 . . . . . . . B B
f19 in 5-D, N=5, mFE=100056 | f19 in 20-D, N=5, mFE=100159 f20 in 5-D, N=5, mFE=100167 | f20 in 20-D, N=5, mFE=100925
Af |# ERT 10% 90% RTgucc |# ERT 10% 90% RTsucc Af |# ERT 10% 90% RTgsuce |# ERT 10% 90% RTsucc
10 5 1.0e0 1.0e0 1.0e0 1.0e0 5 1.0e0 1.0e0 1.0e0 1.0e0 10 5 6.0el 6.0el 6.1lel 6.0el 5 2.6e3 2.6e3 2.6e3 2.6e3
1 5 1.0e0 1.0e0 1.0e0 1.0e0 5 1.0e0 1.0e0 1.0e0 1.0e0 1 5 1.3e3 1.3e3 1.3e3 1.3e3 0 18e-1 18e-1 18e-1 6.3e4
le—1| 5 2.6e2 1.9e2 3.3e2 2.6e2 0 21e-2 18e-2 2le-2 5.6e4 le—1| 0 47e-2 4Te-2 47e-2 4.0e4
le—3| 1 4.4e5 3.9e5 5.0e5 1.0e5 B B . B le—3 . . B .
le—5| 0 16e-3 3le-5 5le-3 4.0e4 le—5
le—8| . . ) . . . . . . . le—8| . . . . . . . . B .
f21 in 5-D, N=5, mFE=100091 | f21 in 20-D, N=5, mFE=100673 f22 in 5-D, N=5, mFE=100105 | f22 in 20-D, N=5, mFE=100775
Af |# ERT 10% 90% RTsucc |# ERT 10% 90% RTsucc Af |# ERT 10% 90% RTsucc |# ERT 10% 90% RTsucc
10 | 5 4.1el 3.2el 5.0el 4.1el 5 1.8e3 1.4e3 2.4e3 1.8e3 10 [ 5 7.lel 5.3el 8.9el 7.lel 5 4.6e3 2.6e3 6.7e3 4.6e3
1 5 1.2e3 4.4e2 1.9e3 1.2e3 2 1.8e5 1.2e5 2.2e5 5.5e4 1 5 3.9e2 3.0e2 4.9e2 3.9e2 3 9.0e4 5.6e4 1.4eb 7.9e4
le—1| 5 1.8e3 6.8e2 2.9e3 1.8e3 0 19e-1 1le-2 54e-1 8.9e4 le—1| 5 1.led4 6.5e3 1.5e4 l.1e4 0 7le-2 69e-2 20e-1 8.9e4
le—3| 5 3.6e3 2.2e3 5.2e3 3.6e3 . . . B B le—3| 5 2.2e4 1.6e4 2.8e4 2.2e4 . . . .
le—5| 4 3.2e4 7.6e3 6.0e4 3.1le4 le—5| 3 1.3e5 1l.1e5 1.6e5 7.0e4
le—8| 4 3.3e4 9.1e3 5.7e4 3.2e4 B B . . . le—8| 1 4.4e5 3.9e5 5.0e5 1.0e5 . . . B B
f23 in 5-D, N=5, mFE=100044 | f23 in 20-D, N=5, mFE=100073 f24 in 5-D, N=5, mFE=100102 | f24 in 20-D, N=5, mFE=100091
Af |# ERT 10% 90% RTgucc |# ERT 10% 90% RTsucc Af |# ERT 10% 90% RTgucc |# ERT 10% 90% RTsucc
10 5 4.4e0 2.4e0 6.2e0 4.4e0 5 1.3el 4.2e0 2.3el 1.3el 10 5 1.2e4 3.0e3 2.2e4 1.2e4 0 15e+1 14e+1 17e+1 7.9e4
1 5 1.8e3 9.5e2 2.7e3 1.8e3 3 8.3e4 4.6e4 1.2e5 1.6e4 1 1 4.0e5 3.0e5 5.0e5 1.0e5 . B B B .
le—1| 3 8.1le4 3.8e4 1l.l1le5 4.6e4 0 38e-2 34e-2 13e-1 7.le4 le—1| 0 72e-1 75e-2 9le-1 T.led
le—3| 2 1.9e5 1.5e5 2.3e5 6.6e4 B B . B le—3| . . . B
le—5| 0 93e—4 1le-5 44e-2 8.9e4 le—5
le—8 . . le—8

Table 1: Shown are, for a given target difference to the optimal function value Af: the number of successful
trials (#); the expected running time to surpass fopt +Af (ERT, see Figure [2)); the 10%-tile and 90%-tile of the
bootstrap distribution of ERT; the average number of function evaluations in successful trials or, if none was
successful, as last entry the median number of function evaluations to reach the best function value (RTsucc)-
If fopt + Af was never reached, figures in italics denote the best achieved A f-value of the median trial and
the 10% and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes the maximum

of number of function evaluations executed in one trial. See Figure [2] for the names of functions.
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Figure 3: Empirical cumulative distribution functions (ECDFs), plotting the fraction of trials versus running
time (left) or Af. Left subplots: ECDF of the running time (number of function evaluations), divided by
search space dimension D, to fall below fo,t +Af with Af = 10*, where k is the first value in the legend. Right
subplots: ECDF of the best achieved Af divided by 10* (upper left lines in continuation of the left subplot),
and best achieved Af divided by 10~% for running times of D,10D,100D ... function evaluations (from right
to left cycling black-cyan-magenta). Top row: all results from all functions; second row: separable functions;
third row: misc. moderate functions; fourth row: ill-conditioned functions; fifth row: multi-modal functions
with adequate structure; last row: multi-modal functions with weak structure. The legends indicate the
number of functions that were solved in at least one trial. FEvals denotes number of function evaluations, D
and DIM denote search space dimension, and Af and Df denote the difference to the optimal function value.
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