
Multilevel Cooperative Coevolution for Large Scale Optimization

Zhenyu Yang, Ke Tang and Xin Yao

Abstract— In this paper, we propose a multilevel cooperative
coevolution (MLCC) framework for large scale optimization
problems. The motivation is to improve our previous work on
grouping based cooperative coevolution (EACC-G) [1], which
has a hard-to-determine parameter, group size, in tackling
problem decomposition. The problem decomposer takes group
size as parameter to divide the objective vector into low dimen-
sional subcomponents with a random grouping strategy. In the
MLCC, a set of problem decomposers is constructed based on
the random grouping strategy with different group sizes. The
evolution process is divided into a number of cycles, and at
the start of each cycle MLCC uses a self-adapted mechanism
to select a decomposer according to its historical performance.
Since different group sizes capture different interaction levels
between the original objective variables, MLCC is able to self-
adapt among different levels. The efficacy of the proposed
MLCC is evaluated on the set of benchmark functions provided
by CEC’2008 special session [2].

I. INTRODUCTION

EVOLUTIONARY optimization has achieved great suc-
cess on many numerical and combinatorial optimization

problems in recent years [3]. However, classical evolutionary
algorithms (EAs) often lose their efficacy and advantages
when applied to large and complex problems, e.g., those
with high dimensions. Their performance deteriorates rapidly
as the dimensionality of the search space increases [4].
Although cooperative coevolution [5] has been proposed
as a promising framework for tackling high-dimensional
optimization problems, only limited studies were reported
by decomposing a high-dimensional problem into single
variables or some low dimensional subcomponents [1], [6].

The cooperative coevolution (CC) [5] framework adopts
a divide-and-conquer strategy to solve large and complex
problems. High-dimensional optimization by CC can be
summarized into three major steps [1]:

1) Problem Decomposition: Decompose the high dimen-
sional objective vector into smaller subcomponents.

2) Subcomponent Optimization: Evolve each subcom-
ponent separately using a certain EA.

3) Subcomponents Coadaptation: Execute coadapta-
tion, i.e., coevolution, to capture interdependencies
between different subcomponents.

Since Step 2) has plenty of candidate EAs and Step 3) is often
embedded in the fitness evaluation operations, the problem
decomposition issue becomes a critical step in the CC
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framework [7]. Initial efforts in tackling high-dimensional
problems used two simple problem decomposition methods,
i.e., the one-dimensional based and splitting-in-half strategies
[6], [8], [9]. The one-dimensional based strategy decomposes
a high-dimensional vector into single variables. Since it did
not consider interdependencies among variables, it is unable
to tackle nonseparable problems, in which interaction exists
between objective variables. The splitting-in-half strategy
always decompose a high-dimensional vector into two equal
halves and thus reducing an n-dimensional problems into two
n
2

-dimensional problems. If n is large, the n
2

-dimensional
problems would still be very large and challenging to solve.

In [1], we proposed a grouping based CC framework
(EACC-G) for high-dimensional optimization problems. It
adopts a random grouping for problem decomposition. Vari-
ables in the high-dimensional objective vector are divided
into several groups randomly according to predefined group
size, and each group of variables is optimized by a certain
EA. EACC-G is always able to decompose the original prob-
lem into small-enough subproblems, and it always provides
non-zero probability that interacting variables are optimized
together (by assigning them into the same group). So it is
promising to perform better than the original CC framework
with the one-dimensional based and splitting-in-half problem
decomposition strategies.

However, it is often hard to determine an appropriate
group size of EACC-G in practice, because the optimal group
size is somewhat problem dependent. The small group size
is proper for separable problems (the lower the dimension
of subproblems, the easier it is to optimize). In contrast,
large group sizes are good for nonseparable problems, since
it can provide higher probabilities for grouping interacting
variables together. Moreover, even for a single problem at
different evolution stages, the choice of group size might
be a dilemma as well. At the early stages, small group size
is helpful to find good regions quickly; but in later stages,
large group size, which helps subproblems contain more
global information, is important for fine tuning. It would
be ideal if the algorithm can adapt to an appropriate group
size depending on the objective function, evolution stage and
feature characteristics.

Based on the motivations above, we propose a multilevel
CC framework (MLCC) in this paper. In the MLCC, we first
design several problem decomposers based on different group
sizes to form a decomposer pool. Each decomposer in the
pool implies different interaction levels between objective
variables. The evolution process is divided into a number
of cycles. At the beginning of each cycle, MLCC selects
a decomposer from the decomposer pool based on their
performance records. And then, MLCC uses the selected
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decomposer to divide the objective vector problem into
several subcomponents, and evolves each of them with a
certain EA. At the end of each cycle, the performance record
of the selected decomposer is updated with its performance
in current cycle. With such a mechanism, MLCC is able to
self-adapt to proper interaction level in spite of the features
objective problems and evolution stages.

The rest of this paper is organized as follows: Section II
gives the preliminaries; Section III describes the proposed
MLCC framework; Section IV presents the experimental
results; Finally, Section V concludes this paper briefly.

II. PRELIMINARIES ON COOPERATIVE COEVOLUTION

“As evolutionary algorithms are applied to the solution of
increasingly complex systems, explicit notions of modularity
must be introduced to provide reasonable opportunities for
solutions to evolve in the form of interacting coadapted
subcomponents.”[5] Examples of this show up in the need
for rule hierarchies in classifier systems and subroutines in
genetic programming [8]. CC is a general framework for
applying EAs to large and complex problems using a divide-
and-conquer strategy. In CC, the objective system (such as
a vector) is decomposed into smaller modules and each of
them is assigned to a species (i.e. subpopulation). The species
are evolved mostly separately with the only cooperation
happening during fitness evaluations.

The original CC framework for high-dimensional opti-
mization can be summarized as follows [6], [8], [9]:

1) Decompose an objective vector into m low dimen-
sional subcomponents.

2) Set i = 1 to start a new cycle.
3) Optimize the i-th subcomponent with a certain EA for

a predefined number of fitness evaluations (FEs).
4) If i < m then i + +, and go to Step 3.
5) Stop if halting criteria are satisfied; otherwise go to

Step 2 for the next cycle.

Here a cycle consists of one complete evolution of all
subcomponents. The main idea is to decompose a high-
dimensional problem into some low-dimensional subcompo-
nents and evolve these subcomponents cooperatively for a
predefined number of cycles. The cooperation occurs only
during fitness evaluation. The size of each subcomponent
should be within the optimization ability of the EA used.

Potter applied CC to concept learning and neural network
construction [5]. Garcı́a-Pedrajas et al. proposed COVNET,
which is a new CC model for evolving artificial neural net-
works [10]. In the domain of learning multiagent behaviors,
CC represents a natural approach to applying traditional
evolutionary computation [11], [12]. Besides, CC has also
been employed in real-world applications, e.g. Cao et al.
adopt a CC-based approach in their pedestrian detection
system [13].

High-dimensional optimization is another appropriate ap-
plication of CC. Several CC EAs have been proposed to
optimize high-dimensional problems. However, as pointed
out in Section I, works in [6], [8], [9] only adopt two simple

problem decomposition methods i.e., the one-dimensional
based and splitting-in-half strategies. The one-dimensional
based strategy decomposes a high-dimensional vector into
single variables. Since it did not consider interdependen-
cies among variables, it is unable to tackle nonseparable
problems, in which interaction exists between objective
variables. The splitting-in-half strategy always decompose
a high-dimensional vector into two equal halves and thus
reducing an n-dimensional problems into two n

2
-dimensional

problems. If n is large, the n
2

-dimensional problems would
still be very large and challenging to solve. Our previous
work on grouping based CC framework (EACC-G) [1] adopts
a random grouping strategy for problem decomposition. It
divides the objective variables into several groups randomly
according to a predefined group size, and then each group of
variables is optimized by a certain EA. The decomposition
method in EACC-G is more general and promising, but it
introduces the “group size” as a hard-to-determine parameter
in practice.

III. MULTILEVEL COOPERATIVE COEVOLUTION

A. MLCC: The Multilevel Framework

To overcome the shortcomings of existing CC EAs on
high-dimensional optimization problems, we propose a new
multilevel cooperative coevolution (MLCC) framework. In
the MLCC, we first design several problem decomposers
based on different group size to form a decomposer pool.
Each decomposer in the pool implies different interaction
levels between objective variables. The evolution process is
divided into a number of cycles. At the beginning of each
cycle, MLCC selects a decomposer from the decomposer
pool based on their performance records. And then, MLCC
uses the selected decomposer to decompose the objective
vector problem into several subcomponents, and evolves each
of them with a certain EA. At the end of each cycle, the per-
formance record of the selected decomposer is updated with
its performance in current cycle. With such a mechanism,
MLCC is able to self-adapt to proper interaction level in
spite of features objective problems and evolution stages.

Based on the basic ideas above, the details of the frame-
work can be summarized as follows:

1) Assign a set of group sizes, S = {s1, · · · , st}. Each si

determines a decomposer based on random grouping
strategy, which means the objective variables will be
divided into several groups, and each group has ap-
proximately si variables.

2) Create a performance record list R = {r1, · · · , rt}.
Each si ∈ S is connected to a ri ∈ R. Here ri is set
to 1 initially, and will be updated according to:

ri =
(v − v′)

|v|
(1)

where v is the best fitness of last cycle, while v′ is the
best fitnest of current cycle.

3) Assign a population to the objective vector:

U = {U(i, j) | i = (1, · · · ,NP), j = (1, · · · , n)}
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where NP denotes the population size, and n denotes
the dimension of objective vector.

4) Evaluate the population U to record the best fitness
value v of current population.

5) If (r < ε, ∀r ∈ R), go to Step 2 for restart. Here ε is a
small value to control the lower bound of performance
record.

6) Compute the selection probabilities of each decom-
poser in the decomposer pool:

p = {p1, p2, · · · , pt}

pi =
e7∗ri

∑t

j=1
e7∗rj

, i = {1, 2, · · · , t} (2)

where constant numbers e and 7 are empirical values.
The p provides a rather high probability to select the
decomposer with the best performance, while still gives
some chances to the other decomposers for keeping
selection diversity.

7) Select sk from S based on p, where k is the index of
sk in S.

8) Divide the n-dimensional objective vector into several
groups randomly [1] based on the group size sk, i.e.,
G = {G1,G2, · · · ,Gm} (assuming n = sk ∗ m).
Obviously, each Gi represents a subcomponents of the
original objective vector.

9) set c = 1.
10) Construct the subpopulation U′ based on the popula-

tion U and subcomponent Gc:

U′ = {U(i, j) | i ∈ {1, · · · ,NP}, j ∈ Gc}

11) Optimize the subcomponent Gc with subpopulation U′

using a certain EA for a predefined number of FEs.
12) If c < m then c + +, and go to Step 10.
13) Evaluate population U to record the best fitness value

v′ of current population.
14) Update rk according to Eq. (1), i.e.:

rk =
(v − v′)

|v|

Assuming we are tackling minimization problems, and
v �= 0. After rk is updated, renew v with v = v′.

15) Stop if the halting criterion is satisfied; otherwise go
to Step 6 for the next cycle.

Choosing an EA as the subcomponent optimizer in Step 11,
we immediately get a complete MLCC algorithm for high-
dimensional optimization problems. In general, one may
employ any existing EA in MLCC. In this paper, we prefer
using a recent variant of Differential Evolution (DE) [14], the
Self-adaptive Neighbourhood Search DE (SaNSDE) [15].

IV. EXPERIMENTAL STUDIES

A. Experimental Setup

We evaluate the performance of the proposed MLCC
algorithm on the test suites provided by CEC’2008 special
session on Large Scale Gobal Optimization [2]. It includes 7

scalable functions, where 2 of them are unimodal problems
and other 5 are multimodal problems. Functions f1, f4 and
f6 are separable, while other functions are nonseparable.
Details of these functions can be found in [2]. For control
parameters of MLCC: the population size NP is set to 50;
the performance lower bound ε is set to 1e-4; and the pool
of group sizes are set to S = {5, 10, 25, 50, 100}, which is
based on the scalability of subcomponent optimizer SaNSDE
[15].

Experiments are conducted on 100-D, 500-D and 1000-D
of these functions. The maximal fitness evaluation numbers
(FEs) of them are set to 5e+5, 2.5e+6 and 5.0+6, respectively.
We conducted the experiments for 25 independent runs, and
the functions error values defined in [2] are recorded. We are
participating in the WCCI’2008 competition on large scale
global optimization, so the experimental comparisons with
other algorithms will be carried out later by the competition
committee.

B. Simulation Results on CEC’2008 Benchmark Functions

The results of 25 independent runs are listed in Tables I–II
for 100-D problems, Tables III–IV for 500-D problems and
Tables V–VI for 1000-D problems.

TABLE I

EXPERIMENTAL RESULTS OF 25 INDEPENDENT RUNS ON f1 – f4 , WITH

DIMENSION D = 100.

100D f1 f2 f3 f4

1
st 2.2129e+04 8.1707e+01 1.2170e+09 5.5031e+02

5 7th 4.4666e+04 1.3307e+02 3.6113e+09 7.6014e+02
e 13

th 4.8992e+04 1.4268e+02 4.9784e+09 9.3292e+02
+ 19th 5.4269e+04 1.5356e+02 6.7713e+09 1.0277e+03
3 25

th 6.3880e+04 1.6532e+02 9.8543e+09 1.1246e+03
M 4.7179e+04 1.3342e+02 5.2407e+09 8.8588e+02
Std 1.0278e+04 2.8612e+01 2.1745e+09 1.7925e+02

1st 1.8444e-02 3.8225e+01 5.4118e+02 5.9340e+01
5 7

th 2.8947e-02 4.4734e+01 8.6516e+02 6.5629e+01
e 13th 3.6860e-02 4.8974e+01 1.7987e+03 6.9058e+01
+ 19

th 5.8983e-02 5.3913e+01 6.6882e+03 7.8802e+01
4 25th 3.3201e-01 6.4411e+01 1.2914e+04 1.0055e+02

M 7.1643e-02 4.9838e+01 3.8738e+03 7.3530e+01
Std 8.8372e-02 7.0032e+00 4.1263e+03 1.1015e+01

1st 5.6843e-14 1.3481e+01 1.2258e+00 2.8422e-13
5 7

th 5.6843e-14 1.7326e+01 1.2479e+02 3.4106e-13
e 13th 5.6843e-14 2.3186e+01 1.4218e+02 4.5475e-13
+ 19th 5.6843e-14 3.3394e+01 1.8704e+02 4.5475e-13
5 25

th 1.1369e-13 4.3485e+01 2.6005e+02 6.8212e-13
M 6.8212e-14 2.5262e+01 1.4984e+02 4.3883e-13
Std 2.3206e-14 8.7273e+00 5.7214e+01 9.2126e-14

From the results, we can see that the MLCC performs
similarly on the same function with different dimensions,
while different performance can be observed on different
functions. The MLCC algorithm performs quite well for 4 out
the 7 tested functions, including one nonseparable function
f5, and three separable functions f1, f4 and f6. However,
MLCC failed to get close enough to the optima of two other
functions f2 and f3. Functions f2 and f3 are completely
nonseparable functions, in which interaction exists between
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TABLE II

EXPERIMENTAL RESULTS OF 25 INDEPENDENT RUNS ON f5 – f7 , WITH

DIMENSION D = 100.

100D f5 f6 f7

5.0e+03

1st 1.9758e+02 1.5667e+01 -1.1698e+03
7

th 2.5907e+02 1.8582e+01 -1.0633e+03
13th 3.6682e+02 1.9070e+01 -9.7477e+02
19th 4.2131e+02 1.9752e+01 -8.7255e+02
25

th 4.7317e+02 2.0377e+01 -8.4297e+02
M 3.5036e+02 1.8929e+01 -9.8691e+02
Std 9.2022e+01 1.1758e+00 1.1181e+02

5.0e+04

1
st 6.6698e-03 1.5374e-02 -1.3806e+03

7th 1.1329e-02 2.6049e-02 -1.3555e+03
13

th 1.7136e-02 4.1944e-02 -1.3483e+03
19th 3.5749e-02 6.5952e-02 -1.3277e+03
25

th 1.4486e-01 1.1556e+00 -1.2692e+03
M 2.9245e-02 9.3159e-02 -1.3393e+03
Std 2.9457e-02 2.2333e-01 2.5128e+01

5.0e+05

1st 2.8422e-14 8.5265e-14 -1.5480e+03
7

th 2.8422e-14 1.1369e-13 -1.5451e+03
13th 2.8422e-14 1.1369e-13 -1.5448e+03
19

th 2.8422e-14 1.1369e-13 -1.5425e+03
25th 5.6843e-14 1.1369e-13 -1.5372e+03
M 3.4106e-14 1.1141e-13 -1.5439e+03
Std 1.1603e-14 7.8697e-15 2.5283e+00

TABLE III

EXPERIMENTAL RESULTS OF 25 INDEPENDENT RUNS ON f1 – f4 , WITH

DIMENSION D = 500.

500D f1 f2 f3 f4

2 1st 1.2481e+05 1.7139e+02 8.1379e+09 2.8353e+03
· 7

th 1.8909e+05 1.7866e+02 2.6216e+10 4.0651e+03
5 13th 2.3669e+05 1.7945e+02 3.0158e+10 4.6832e+03
e 19

th 2.5030e+05 1.8201e+02 4.0499e+10 5.0131e+03
+ 25th 2.9364e+05 1.8486e+02 5.2804e+10 5.2395e+03
4 M 2.2164e+05 1.7954e+02 3.1363e+10 4.4834e+03

Std 5.0277e+04 3.5011e+00 1.1718e+10 7.4321e+02

2 1
st 4.8597e-02 1.5112e+02 2.9761e+03 3.0562e+02

· 7th 1.4446e-01 1.5638e+02 3.5668e+03 3.5974e+02
5 13

th 1.9936e-01 1.5989e+02 3.8968e+03 3.8171e+02
e 19th 3.7172e-01 1.6092e+02 4.5706e+03 3.9312e+02
+ 25

th 1.2894e+00 1.6504e+02 9.8119e+03 4.6318e+02
5 M 3.2160e-01 1.5882e+02 4.3684e+03 3.8089e+02

Std 2.9735e-01 3.5741e+00 1.5756e+03 3.8054e+01

2 1
st 3.9790e-13 5.8375e+01 6.8225e+02 1.2506e-12

· 7th 3.9790e-13 6.2115e+01 8.3771e+02 1.4211e-12
5 13th 4.5475e-13 6.4780e+01 8.9215e+02 1.5916e-12
e 19

th 4.5475e-13 7.1790e+01 9.7592e+02 2.0464e-12
+ 25th 5.1159e-13 7.8811e+01 1.5924e+03 3.0383e-10
6 M 4.2974e-13 6.6663e+01 9.2466e+02 1.7933e-11

Std 3.3145e-14 5.6992e+00 1.7263e+02 6.3110e-11

TABLE IV

EXPERIMENTAL RESULTS OF 25 INDEPENDENT RUNS ON f5 – f7 , WITH

DIMENSION D = 500.

500D f5 f6 f7

2.5e+04

1st 9.2379e+02 1.8470e+01 -5.5215e+03
7

th 1.2122e+03 1.9192e+01 -4.8561e+03
13th 1.9680e+03 1.9599e+01 -4.4780e+03
19th 2.3047e+03 1.9808e+01 -4.2241e+03
25

th 2.5094e+03 2.0563e+01 -3.9551e+03
M 1.7640e+03 1.9515e+01 -4.5761e+03
Std 5.1614e+02 5.1069e-01 4.7230e+02

2.5e+05

1
st 5.9812e-03 2.6027e-02 -6.6159e+03

7th 1.9208e-02 8.2382e-02 -6.5421e+03
13

th 3.0395e-02 1.7418e-01 -6.4616e+03
19th 5.6041e-02 8.2173e-01 -6.3814e+03
25

th 1.6378e-01 1.3966e+00 -6.1436e+03
M 4.0365e-02 4.1481e-01 -6.4473e+03
Std 3.5373e-02 4.7439e-01 1.2893e+02

2.5e+06

1st 1.7053e-13 4.2633e-13 -7.4503e+03
7

th 1.9895e-13 4.8317e-13 -7.4420e+03
13th 1.9895e-13 5.1159e-13 -7.4342e+03
19

th 2.2737e-13 5.6843e-13 -7.4299e+03
25th 2.5580e-13 6.8212e-13 -7.4195e+03
M 2.1259e-13 5.3433e-13 -7.4350e+03
Std 2.4777e-14 7.0100e-14 8.0308e+00

TABLE V

EXPERIMENTAL RESULTS OF 25 INDEPENDENT RUNS ON f1 – f4 , WITH

DIMENSION D = 1000.

1000D f1 f2 f3 f4

1st 2.5464e+05 1.7673e+02 1.6059e+10 5.5748e+03
5 7

th 3.4969e+05 1.8347e+02 5.4648e+10 7.6248e+03
e 13th 4.7100e+05 1.8534e+02 6.3491e+10 9.9253e+03
+ 19

th 4.8789e+05 1.8681e+02 7.9356e+10 1.0320e+04
4 25th 5.7902e+05 1.8932e+02 1.0032e+11 1.0540e+04

M 4.2257e+05 1.8482e+02 6.3426e+10 8.7958e+03
Std 9.9485e+04 2.7763e+00 2.3158e+10 1.8520e+03

1
st 1.0956e-01 1.5938e+02 5.8458e+03 5.8990e+02

5 7th 1.8695e-01 1.7115e+02 7.2477e+03 6.9701e+02
e 13

th 3.5893e-01 1.7308e+02 8.0254e+03 7.4242e+02
+ 19th 6.8615e-01 1.7401e+02 8.6413e+03 8.2982e+02
5 25

th 2.4695e+00 1.7922e+02 1.0406e+04 1.2198e+03
M 6.1471e-01 1.7207e+02 7.9146e+03 7.8290e+02
Std 6.5773e-01 4.0024e+00 1.1156e+03 1.4708e+02

1
st 7.3896e-13 9.9719e+01 1.4618e+03 2.3874e-12

5 7th 7.9581e-13 1.0517e+02 1.7275e+03 2.6148e-12
e 13th 8.5265e-13 1.0812e+02 1.8342e+03 2.8422e-12
+ 19

th 9.0950e-13 1.1123e+02 1.8952e+03 4.1496e-12
6 25th 9.0950e-13 1.1888e+02 2.0531e+03 1.1415e-09

M 8.4583e-13 1.0871e+02 1.7986e+03 1.3744e-10
Std 5.0095e-14 4.7544e+00 1.5809e+02 3.3716e-10
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Fig. 1. The evolution curves for functions f1–f6 with dimensions D =
100, 500, 1000. The results were averaged over 25 runs. The vertical axis
is the function error value and the horizontal axis is the number of FEs.

TABLE VI

EXPERIMENTAL RESULTS OF 25 INDEPENDENT RUNS ON f5 – f7 , WITH

DIMENSION D = 1000.

1000D f5 f6 f7

5.0e+04

1
st 2.3755e+03 1.8259e+01 -1.0767e+04

7th 3.1751e+03 1.9533e+01 -9.7903e+03
13th 4.1580e+03 2.0006e+01 -8.7385e+03
19

th 4.3487e+03 2.0237e+01 -7.9443e+03
25th 5.0832e+03 2.0506e+01 -7.7460e+03
M 3.8331e+03 1.9777e+01 -8.8983e+03
Std 8.6845e+02 5.9326e-01 1.0637e+03

5.0e+05

1st 3.8974e-03 2.5341e-02 -1.3021e+04
7

th 1.1500e-02 5.6260e-02 -1.2867e+04
13th 2.5602e-02 1.0277e-01 -1.2753e+04
19

th 3.9470e-02 1.7313e-01 -1.2624e+04
25th 8.7503e-02 1.3723e+00 -1.2319e+04
M 2.9769e-02 2.0227e-01 -1.2743e+04
Std 2.2644e-02 3.1404e-01 1.9377e+02

5.0e+06

1
st 3.6948e-13 9.0950e-13 -1.4733e+04

7th 3.9790e-13 1.0232e-12 -1.4712e+04
13

th 4.2633e-13 1.0232e-12 -1.4702e+04
19th 4.5475e-13 1.1369e-12 -1.4691e+04
25

th 4.5475e-13 1.1937e-12 -1.4680e+04
M 4.1837e-13 1.0607e-12 -1.4703e+04
Std 2.7847e-14 7.6844e-14 1.5175e+01
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Fig. 2. The evolution curve for function f7 with dimensions D = 100,
500, 1000. The results were averaged over 25 runs. The vertical axis is the
function error value and the horizontal axis is the number of FEs.

any two variables of the objective vector [2]. It is always
assumed that decomposition will not work well on such class
of problems, and in such a case we can only pursue a better
near-optimum with the decomposition based methods [15].
For another function f7, it is difficult to comment MLCC’s
performance since the global optimum of f7 is not known.
But the decrease of fitness values partially demonstrates the
efficacy of MLCC on this function The evolution process
curves of MLCC on the 7 tested functions are shown in
Figures 1 and 2. Besides, by comparing the curves from
100-D to 1000-D, we can see that MLCC shows quite good
scalability.
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Fig. 3. The self-adaptation curves of MLCC on f2, f4 and f6 with
dimensions D = 1000. The vertical axes are values of selected level, and
the horizontal axis is the number of cycles.

To gain a better understanding of how MLCC works,
Figure 3 shows its self-adaptation curves on functions f2, f4

and f6 with dimension D = 1000 (The situations for D = 100
and 500 were omitted to save spaces). For the nonseparable
function f2, it can be seen that MLCC keeps to rather high
level during evolution. This is consistent with the assumption
that nonseparable functions should adopt decomposer with
high interaction level. The situation on the separable function
f4 just verifies the above assumption from the other side:
low level decomposer is beneficial to optimizing separable
functions. The adaptation process on f6 is very interesting.
On this function, MLCC has been self-adapted from low level
to high level, and then to low level again. This might imply
that even for a single problem at different evolution stages,
preferred decomposers can be different as well. The efficacy
of MLCC on this function evidences that the designed self-
adaptation mechanism is capable of handling such complex
situations.

C. Comparison with Other Algorithms

We have also compared the performance of MLCC with
our previous work EACC-G [1] and a MLCC-R, which is
the same to MLCC except that the self-adaptive mechanism
is replaced with a random strategy to adapt between different
levels. The group size used for EACC-G is s = 5, or s = 50,
or s = 100. The results for D = 1000 are summarized in
Table VII.

In general, MLCC has shown better overall performance
on the tested set than the other algorithms. It achieved
significantly better results than all other algorithms on 5 (f2

– f6) out 7 of the functions. For the simple sphere function
f1, all algorithms showed good performance and there is
little difference between them. For the other function f7,
MLCC and EACC-G with group size s = 5 outperformed
others. It can be found that MLCC is better than MLCC-R

TABLE VII

COMPARISON BETWEEN MLCC, MLCC-R AND EACC-G, WITH

DIMENSION D = 1000. ALL RESULTS HAVE BEEN AVERAGED OVER 25

INDEPENDENT RUNS.

1000D MLCC MLCC-R
EACC-G EACC-G EACC-G
s = 5 s = 50 s = 100

f1 8.46e-13 8.00e-13 4.30e-12 9.27e-13 6.78e-13
f2 1.09e+02† 1.37e+02 1.43e+02 1.36e+02 1.24e+02
f3 1.80e+03† 2.00e+03 1.98e+03 2.18e+03 2.55e+03
f4 1.37e-10† 3.41e-01 1.85e-08 4.56e+02 3.09e+02
f5 4.18e-13† 2.16e-03 1.68e-03 2.21e-03 3.74e-03
f6 1.06e-12† 4.35e-02 1.32e-08 1.14e-12 1.46e+00
f7 -1.47e+04 -1.43e+04 -1.47e+04 -1.18e+04 -1.19e+04

† The result is significant better than all others in the same row with a two-tailed t-test
of 24 degrees of freedom, and significant at α = 0.05.

consistently on most all functions (except they are similar on
f1). This feature verifies the efficacy of the self-adaptation in
MLCC. The efficiency of MLCC in comparison to the other
algorithms can also be observed from the evolution curves
for f2–f7 in Figures 4 and 5 (The curve for f1 is omitted for
there is little difference between the compared algorithms).

V. CONCLUSIONS

In this paper, we proposed a multilevel cooperative co-
evolution (MLCC) framework for large scale optimization
problems. The motivation is to improve our previous work
on grouping based cooperative coevolution (EACC-G) [1]. In
tackling the crucial problem decomposition issue, EACC-G
adopts a random grouping strategy to divide the objective
variables into several groups. However, the key parame-
ter, i.e. the group size, of the grouping strategy is often
problem dependent and thus becomes hard to choose. In
the proposed MLCC, a set of group sizes are selected to
construct a problem decomposer pool. Each decomposer in
the pool is represented by a value indicating group size.
Different decomposers are able to produce subcomponents
with different interaction levels. The MLCC is designed
to self-adapt between different decomposers according to
their historical performance. The efficacy of the proposed
MLCC algorithm is evaluated on the benchmark functions
provided by CEC’2008 special session on Large Scale Global
Optimization [2], and the results are encouraging.
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