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Abstract— A univariate EDA denoted as “LSEDA-gl” for
large scale global optimization (LSGO) problems is proposed
in this paper. Three efficient strategies: sampling under mixed
Gaussian and Lévy probability distribution, Standard Deviation
Control strategy and restart strategy are adopted to improve the
performance of classical univariate EDA on LSGO problems.
The motivation of such work is to extend EDAs to LSGO
domain reasonably. Comparison among LSEDA-gl, EDA with
standard deviation control strategy only (EDA-STDC) and sim-
ilar EDA version “continuous univariate marginal distribution
algorithm” UMDAc is carried out on classical test functions.
Based on the general comparison standard, the strengths and
weaknesses of the algorithms are discussed. Besides, LSEDA-gl
is tested on 7 functions with 100, 500, 1000 dimensions provided
in the CEC’2008 Special Session on LSGO. This work is also
expected to provide a comparison result for the CEC’2008
special session.

I. INTRODUCTION

The notion of modelling the search space was first pro-

posed as an approach in the statistics and machine learning

domain. Recently, many works within Evolutionary Com-

putation community have employed probabilistic models

to describe the solution space [12]. These methods have

become known as Estimation of Distribution Algorithms

(EDAs). EDAs have been applied with significant success

to many numerical optimization problems with less than 100

dimensions in the past few years. Optimization by EDA can

be summarized into two major steps:

• 1 Model the promising area of solution space of the

optimization problem by learning from the superior

solutions found thus far;

• 2 Generate the population (i.e., offspring) for the next

generation by sampling under the estimated probabilistic

model and then, replace the old population (i.e., parents)

partially or fully.

These two steps can be regarded as a population-based

version of the classical generate-and-test method [3]. As is

shown in the above steps, there are no crossover or mutation

operators in EDAs in contrast to other classical EAs. The

evolution dynamics of EDAs depend on the distribution of
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the population directly. Therefore, the major advantage of

EDAs is that they can explicitly learn the promising area of

solution space of the optimization problem and then use this

structural information to efficiently generate new individuals

[14].

In the EDA domain, modelling the structure of the opti-

mization problem accurately has been a highly concerned

area recently. To overcome the disadvantage of limited

learning ability by univariate EDAs, such as PBIL [15],

SHCLVND [16] and UMDAc [17], EDAs whose dependen-

cies are considered in terms of pairwire or multiwire when

building probability model are proposed recently. The famous

examples are MIMIC [17], EGNAee [17], CEGDA[4] and

CEGNA [4]. Among the above algorithms, the learning abil-

ity of the EDAs is always considered as the major indicator

of the performance. However, the fundamental task of EDAs

is to search the global optimum of the given optimization

problem, rather than to only model the structure of the

optimization accurately. Further more, the computational cost

of conducting a complex model is too expensive for LSGO

problems, whose dimensional size (D) is usually more than

100. The reported studies on extending EDA to LSGO

domain are scarce so far.

In this paper, a robust univariate EDA denoted as “EDA

for large scalar global optimization” (LSEDA-gl) is proposed

for LSGO problems. In LSEDA-gl, an effective strategy,

sampling under mixed Gaussian and Lévy probability Dis-

tribution (SGLD), is introduced to balance the relationship

between optimization and learning. Compared with the pre-

vious version of LSEDA “EDA-STDC” without SGLD [18],

the convergence speed is accelerated by SGLD. It has been

observed that one fatal problem of EDAs when it is applied

to high dimensional problems is that standard deviations

of some variables often shrink dramatically to zero while

others are still large, this will cause the lost of diversity. For

this reason, Standard Deviation Control strategy (STDC) is

designed to improve the performance for univariate EDA on

LSGO problems. In order to prevent the algorithm from con-

verging to local optima, a restart strategy is also adopted here.

The major idea behind these three strategies is to force the

algorithms to sample individuals in a reasonably wider area,

and therefore, to maintain the exploration ability effectively.

Experimental results show that these three strategies can help

the univariate EDA to solve the high dimensional unimodal

and many multimodal problems efficiently and effectively.

The remainder of this paper is organized as follows: In

section II, the principle of LSEDA-gl is introduced, including

three strategies SGLD, STDC and restart strategy. In section
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III, comparison among LSEDA-gl, EDA-STDC and UMDAc

is carried out to evaluate how the incorporated strategies

improve performance respectively. In section IV, the perfor-

mance of LSEDA-gl is analyzed by 7 test functions of 100,

500, 1000 D provided in CEC’2008 special session on LSGO

and then, summarizes the experimental results and discusses

the strengths and weaknesses of LSEDA-gl. In section V, the

main features of LSEDA-gl are concluded.

II. PRINCIPLES OF LSEDA-GL

The classical EDAs have been proven to be effective on

most classical test functions with less than 100 D. However,

the Ds of practical engineering and scientific optimization

problems are usually very large. Similar to other EAs, EDA

often suffers from the curse of dimensionality, which implies

that its performance deteriorates quickly as the dimension-

ality of search space increases [1]. Several strategies, such

as cooperative co-evolution in which only a subgroup of

variables are optimized in cooperative co-evolution in one

iteration, were proposed to make GA [8] and DE [9] more

effective for high dimensional problems. However, our study

focuses on solving LSGO problems by EDA, all of the

variables are optimized quickly and synchronously during

the optimization process.

A. Framework of Estimation of Distribution Algorithm for

Large Scale Optimization

To reduce the complexity of conducting the probabilistic

model, the univariate EDA whose variables are considered

independently is adopted in the framework of our algorithm.

Similar to UMDAc, the joint probability distribution over a

set of random variables x = {xi} where i = 1, 2, ..., D for

D dimensional space is defined as follows:

P (�x) =

M∏
i=1

P (xi); (1)

The probability distribution used to model each variable

P (xi) is a single Gaussian distribution defined as follows:

N(μ, ν) =
1

(2πν2)1/2
e(−

|x−μ|2

2ν2
). (2)

In this formula, N(μ, ν) stands for a Gaussian distribution

with mean μ and standard deviation ν. In contrast to IDEA

[10] developed by Bosman which requires computing all

elements of covariance matrix to adapt an arbitrary Gaussian,

LSEDA-gl abandons adapting the non-diagonal elements in

covariance matrix, which reduces the computational cost

remarkably for LSGO problems.

Unlike some other EDAs, the Gaussian probability model

P (�x) for LSEDA-gl is built by the current population only.

Given current population Sparent including NP individuals,

a subpopulation Ssel including N individuals X1,X2, ..., XN

(N < NP ) with top fitness values are selected to update the

model for the next generation. Then, the mean vector X and

the standard deviation vector δ are generated by eq.(3) and

eq.(4) respectively:

X =
1

N

N∑
i=1

Xi, (3)

δ = {V ar(x1), V ar(x2), ..., V ar(xm)}, (4)

where N is the size of the selected subpopulation, and Xi

stands for the ith individual of the selected subpopulation.

The V ar operator is to determine the variance of each vari-

able to form the standard deviation vector δ. The variances

of population X are verified in the following formula:

V ar(xi) =
1

N − 1

N∑
j=1

(Xji − Xi)
2, (5)

Xji stands for the ith element of the jth individual and

Xi denotes the ith element of the mean vector X . The

new population Sparent of the next generation are sampled

under a mixed Gaussian and lévy distribution. For LSEDA-

gl, selected proportion Psel is used to truncate the best

(Psel · NP ), e.g. N, population. Through a large number

of experiments, it is observed that the selected proportion is

not sensitive in most cases. The procedure of LSEDA-gl is

described as follows and the details of the SGLD, STDC

and restart strategies will be introduced in the following

subsections.

Framework of LSEDA-gl:

input:

• LSGO problem;
• weight vector W (for SGLD);
• a stopping criterion (for restart);
• a termination condition;

• population size NP and selected population size N .

output: global optimum.

• Step1 Randomly initialize Sparent including NP individuals
and then, generate the Gaussian probability model P (�x),

which is defined by the mean vector X and the standard devia-
tion vector δ in typical single Gaussian probability distribution
model, by Sparent;

• Step2 Create the new population X based on the mixed
Gaussian and Lévy distribution probability model P ′(�x)
(SGLD);

• Step3 Evaluate the objective function f(X) for each solution
Xi in population X of which the population size is NP :
F = f(X1), ..., f(XNP );

• Step4 Update P (x) with the best (N ) individuals selected
to estimate the current distribution. Where N is the selected
population size set beforehand, and NP is the size of the
whole population;

• Step5 Standard deviation control strategy (STDC);
• Step6 If the stopping criterion is met, restart strategy is

adopted;

• Step7 Go to step 2 (until termination condition).

B. Sampling under mixed Gaussian and Lévy Distribution

Definition: Consider a process represented by a set Yi of

identically distributed random variables. If the sum of these

random variables has the same probability distribution as
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individual random variables, then this process is called stable

[7].

The Gaussian process is a typical example of stable

process with finite second moment which would lead to

a characteristic scale and the Gaussian behavior for the

probability density through the central limit theorem [7].

It is acknowledged that Gaussian probability distribution

plays an important role in modelling the structures of the

continuous optimization problems and sampling the solutions

for the next generation. Different from Gaussian probability

distribution whose variance can be denoted as a finite scalar,

a class of probability distributions with an infinite second

moment that also yields a stable process are discovered by

P. Lévy in the 1930s [5] [6]. The formal representation for

such class of probability can be respected as follows [5] [6]:

Łα,γy =
1

π

∫
∞

0

e−γqα

cos(qy)dq y ∈ R, (6)

where γ is the scaling factor satisfying γ > 0, and α controls

the shape of the distribution, requiring 0 < α < 2. More

analytic details about the Lévy distribution are available in

[5] [6] and [7]. The Cauchy probability distribution which is

adopted in FEP, is a special case of the Lévy probability dis-

tribution with α = 1. For the limit of α = 2, the distribution

is reduced to be the classical Gaussian distribution which is

not included in Lévy probability distribution class.
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Fig. 1. Comparison among mixed Lévy α = 1 and Gaussian distribu-
tion, Lévy probability distribution with α = 1 and Gaussian probability
distribution. The vertical coordinate is of log scale and γ = 1.

Although the analytic form of the integral is still unknown

for general α, it has been known for the rules of changes

in the sharps with different α: the smaller is the parame-

ter α, the longer is the tail. The characteristic of infinite

second moment in Lévy probability provides a much wider

distribution. LSEDA mix Gaussian distribution with Lévy

distribution (α = 1, γ = 1) to form a new probability

distribution NL shown as eq.(7) for sampling offspring of

the next generation.

randnum = rand;

Pm =
10 · randnum

D

NL =

{
0.9 · N(0, 1) + 0.1 · L1,1, if D < 100
(1 − Pm) · N(0, 1) + Pm · L1,1, otherwise,

(7)

where N(0, 1) stands for the Gaussian distribution with mean

0 and standard deviation 1; L1,1 is the Lévy probability

with α = 1, γ = 1; D is the dimensional size of the

problem; randnum is generated randomly based on uniform

distribution between (0, 1). The probability distribution for

creating each offspring on different dimensional size is self-

adapted as shown in eq.(7): a smaller mixture probability Pm

is likely adopted for a larger dimensional size. A comparison

of the sharps among the most bias mixed Gaussian and Lévy

α = 1 distribution, Lévy probability distribution with α = 1
and Gaussian probability distribution is shown in Fig.1. It

is obvious that the sharp of the mixed distribution in the

area near the mean is similar to the Gaussian distribution

which is able to maintain the previous model in a great

measure. Taking advantage of the characteristic of Lévy

distribution, the mixed distribution is also equipped with

an infinite second moment. It is beneficial when the global

optimum is sufficiently far away from the current search

point and therefore, speed up the convergence rate. Moreover,

it remarkably reduces the probability of the model being

trapped in some of the local optima.

The formal way of sampling operator in LSEDA-gl is

defined as follows:

Xji = Xi + δ
1

2

i · NL, (8)

where Xi is the ith element of the mean vector X . In eq.(8),

the ith element of jth individual is sampled under mixed

Gaussian and Lévy distribution model NL. Compared with

UMDAc, whose sampling operator is denoted as Xji = Xi+

δ
1

2

i · N(0, 1), the standard Gaussian probability N(0, 1) is

replaced with the mixed Gaussian and Lévy distribution NL.

C. Standard Deviation Control Strategy

The main idea of STDC strategy is to estimate a common

threshold of standard deviations for all variables at every

iteration of the optimization process to control their shrinking

speeds and therefore, to control the decreasing speed of

diversity. The variables that have lower standard deviation

values than the corresponding thresholds will be forced to set

their standard deviations to be the corresponding thresholds.

The weighted mean of the standard deviations of all variables

is used as a control standard here. The details of STDC are

shown as follows:

Pseudo code of STDC

for j=1:D // D stands for the size of the dimensions

if δj < W (j) × δ

δj = W (j) × δ

/* δ is the mean of the whole dimensions */

/* W is a weight vector set beforehand */

end if

end for

W is a weight vector set beforehand. For simple problems

, ( e.g., Sphere function and Ackley function), W (i) = 0,
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i = 1, ...D are proper for the algorithm to converge to the

global optimum quickly, while W (i) = 1, i = 1, ...D are also

effective and steadier for such simple problems although a

little longer time is needed and the accuracy is a bit worse. δ

is the mean of standard deviations of the whole variables. The

application of STDC provides a much better performance

for hard problems, such as Schwefel function, Rosenbrock

function and Rastrigin function.

Under a great deal of experimental experiences, the ad-

vantages of STDC may be summarized into two aspects:

1) STDC strategy may control the decreasing speed of

population diversity adaptively via controlling the shrinking

speed of standard deviation of Gaussian variables; 2) By

sharing the common threshold of standard deviation, which is

the weighted mean of standard deviation of all variables, the

STDC strategy makes it possible that the variation of each

variable is controlled (or influenced) by states of all other

variables. This enables the communication among variables.

After analyzing a great deal of W values for each D,

LSEDA-gl applies a self-adapted setting of initial W0 value

for problems ofdifferent Ds as shown in eq.(9):

W0 = 0.55 − elg( D

105
) (9)

In formula eq.(9), the metric W0 is determined by D only,

that means a larger W0 is adopted for problems of lower D.

W = W0 and W = 0 are adopted by turns in LSEDA-gl.

After one restart, the value W changes to other one. The

formal procedure of STDC is presented as follows:

Rules of change W value

Initialize W = W0 by eq.(9).

if a restart happens /*W value changes in each restart*/

if W == W0

W = 0
else if W == 0

W = W0

end if

end if

end

D. Restart Strategy

For the restart strategy, the LSEDA is stopped whenever

stopping criterion described below is met, and a restart is

launched with the model of which the mean vector is the

same as the previous one and the standard deviation vector

is set to be initial standard deviation decreased by a factor

of 2.

To decide when to restart, the following criteria are used:

1.Stop if the best objection function value obtained keeps

unchanged for 100 generation;

2.Stop if the previous mean of standard deviations of all

variables is more than the double of that 100 generation

before.

The convergence graphs for worst run by LSEDA on

4 test functions provided in CEC’2008 special session are

shown in Fig.2 and Fig.3. With restart strategy, the LSEDA

is able to accomplish more than one searches within the fixed
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Fig. 2. Convergence graph for worst run of LSEDA for sphere function
on the left and schwefel function on the right
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Fig. 3. Convergence graph for worst run of LSEDA for Griewank function
on the left and Ackley function on the right

maximum number of fitness evaluation (FES). Particularly,

the performance of LSEDA is improved significantly on shift

Griewank function.

III. COMPARISON AMONG LSEDA-GL, EDA-STDC AND

UMDAC ON CLASSICAL BENCHMARK FUNCTIONS

To provide experimental evidence to study how the in-

corporated strategies SGLD and STDC improve the per-

formance respectively, we compare LSEDA-gl, EDA-STDC

and UMDAc on the first experimental group that comprises

7 classical benchmark problems taken from the standard

literature with D scaling from 100 to 200, which is also

adopted in [19]. The formal definition of the benchmark

functions are summarized in Table I. Function 1-4 are uni-

modal functions, and function 5-7 are multimodal functions.

The average experimental results of 50 runs are summarized

in Table II. In Table II, the best result for each function

is written in boldface. Based on the above introduction,

SGLD makes it possible to adopt small NP to handle a

high dimensional problem while STDC reduces the metric

Psel sufficiently. Therefore, we set NP = 100 for LSEDA-gl

while NP = 500 for the other algorithms; set Psel = 0.4 for

UMDAc while Psel = 0.2 for the other algorithms. Without

general, FES=1000 × D is adopted for all functions.

For unimodal functions 1-3, LSEDA-gl provides the most

superior results within fixed FES among all of the considered

algorithms, while either of the other two algorithms could

obtain a comparable result on any one function. For the

dimensional size scaling to 200, LSEDA-gl shows a steady

performance that no significant unstable indication is appar-

ent. For discontinuous problem function 4, UMDAc without

STDC or SGLD fails to converge to global optimum in all

runs. LSEDA-gl provides the worst result on function 5,
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TABLE I

STANDARD BENCHMARK PROBLEMS TO BE MINIMIZED, WITH DIMENSIONAL SIZE D= 100, 200

Num Problems Bounds Objective function Global location Global optimum

fun1 Sphere [-100,100] f1(x) = n

i=1
x2

i xi = 0 0

fun2 Schwefel [-10,10] f2(x) = n

i=1
|xi| +

n

i=1
|xi| xi = 0 0

fun3 [-100,100] f3(x) = n

i=1
( i

j=1
x2

j ) xi = 0 0

fun4 Step [-100,100] f4(x) = n

i=1
| xi + 0.5 |2 xi = −0.5 0

fun5 Rastrigin [-5.12, 5.12] f5(x) = n

i=1
(x2

i ) − 10cos(2πxi) + 10 xi = 0 0

fun6 Ackley [-32,32] f6(x) = −20 · exp(−0.2 1

n

n

i=1
x2

i ) xi = 0 0

+e − exp( 1

n

n

i=1
cos(2πxi)) + 20

fun7 Griewank [-600,600] f7(x) = 1

4000

n

i=1
x2

i + 1 − n

i=1
cos( xi√

i
) xi = 0 0

TABLE II

MEAN OF EXPERIMENTAL RESULTS OVER 50 RUNS ON CLASSICAL FUNCTION WITH D=100 AND D=200

Algorithms Metric fun1 fun2 fun3 fun4 fun5 fun6 fun7

D=100

LSEDA-gl mean 3.2684E-35 2.6528E-17 1.0189E-31 0.0000E+00 1.0887E+03 1.1546E-14 0.0000E+00

1E5 FES std 2.1599E-35 2.0777E-17 1.5799E-31 0.0000E+00 2.9026E+01 0.0000E+00 0.0000E+00

EDA-STDC mean 4.1389E-08 1.9383E-06 1.3435E-11 0.0000E+00 9.3562E+00 5.0662E-06 2.0319E-13

1E5 FES std 1.3088E-07 2.3480E-07 2.1947E-12 0.0000E+00 2.7035E+00 1.5713E-05 4.1959E-14

UMDAc mean 1.1731E-05 7.6133E-03 4.7472E-04 0.0000E+00 2.4011E+02 5.3620E-04 7.1796E-06

1E5 FES std 1.2481E-06 5.1813E-04 6.9361E-05 0.0000E+00 4.3914E+01 3.3068E-05 1.2193E-06

D=200

LSEDA-gl mean 9.7380E-44 5.7504E-24 9.9185E-33 0.0000E+00 3.8401E+02 2.2204E-14 0.0000E+00

2E5 FES std 8.4729E-44 5.2535E-24 3.1363E-32 0.0000E+00 3.9718E+01 3.3495E-15 0.0000E+00

EDA-STDC mean 1.7872E-19 2.4482E-09 1.5686E-17 0.0000E+00 3.5637E+01 4.8374E-11 0.0000E+00

2E5 FES std 1.7082E-20 2.5145E-10 5.5739E-18 0.0000E+00 6.9373E+00 3.2422E-12 0.0000E+00

UMDAc mean 3.0427E-09 2.1107E-04 2.5604E-07 3.1380E+00 1.4737E+02 6.7739E-01 1.0093E-09

2E5 FES std 3.7945E-10 1.1624E-05 3.0173E-08 1.2172E+00 3.9309E+02 2.1421E+00 1.4219E-10

the reason may be summarized as follows: SGLD strategy

prevents the whole population from being trapped by any

of the local optima as other algorithms which lowers the

accuracy of the last result. For the other two multimodal

problems function 6 and 7, LSEDA-gl is able to solve them

kindly. In summary, the reasons of implementing multiform

strategies are summarized explicitly:

• 1) STDC mainly focuses on controlling the decreasing

speed of population diversity and enabling the commu-

nication among variables.

• 2) SGLD makes it possible to accelerate the conver-

gence speed remarkably, and it also exhibits the similar

effect as STDC on escaping from the local optima.

IV. EXPERIMENT FOR CEC’08 COMPETITION ON LSGO

A. Configuration

The benchmark suite for experiment consists of 7 test func-

tions defined in [1]. Functions 1 and Function 2 are unimodal

functions and Functions 3- 6 are multimodal functions. To

prevent exploitation of symmetry of the search space and of

the typical zero value associated with the global optimum,

the local optima of classical functions are shifted to a value

different from zero and the function values of the global

optima are non-zero [2]. Function 7 is a complicated problem

of which the global optima is unknown so far.

The FES is defined by 5000×D, where D is the dimen-

sional size of the problem. The error value recorded finally is

the absolute margin between the fitness of the best solution

found and the fitness of the global optimum. Experimental

results of 25 independent runs for each problems with 100,

500 and 1000 D are recorded and storage in the appendix

Tables III - V following the format required. The initial

population were randomly generated within the search space

and the value of variables sampled outside the search space

during the evolution process were reset to the correspond-

ing boundaries. Experiments were conducted by LSEDA-

gl presented above. The hardware was workstation (Inter(R)

Core(TM) 2.0 GHZ, Quad CPU Q 6600, @ 2.4GHZ, 3.93GB

RAM) running Windows.

B. Parameters setting

To obtain better experimental results, the parameters such

as population size NP and selected population Ncan be

tuned to suit each problem. However, the structure of prac-

tical science and engineering problems are usually unknown

beforehand. In order to make our algorithm general for most
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problems, we choose parameters as consistently as possible.

It is obvious that for an easy problem (e.g., unimodel

problems and low dimensional problems), a small value of

NP is sufficient, but for difficult problems, a large value

of NP is recommended in order to avoid stagnation to a

local optimum. Benefit from these efficient strategies SGLD,

STDC and restart strategy, a much smaller population size

is sufficient to exploit structural information of high dimen-

sional search space efficiently compared to classical EDAs.

For conducting the experimental results, we set NP = 50,

N = 10 for 100 dimension problems, set NP = 100,

N = 20 for 500 dimension problems and set NP = 200,

N = 30 for 1000 dimension problems.

C. Results and Discussion

Experimental results conducted by LSEDA-gl are pre-

sented in the Appendix. Tables II-V show the 1st best, the

7th best, the 13th (median), the 19th best, the 25th (worst),

mean, and standard deviation values of 25 independent runs

under fixed max FES. Fig.4, show the convergence graphs

for functions 1 - 7 with 1000 D.

According to the results, LSEDA-gl is able to reach the

accuracy level (the error value is lower than 1.0E-8, which

is also adopted in [2]) with one tenth of the given FES on

Function 1, Function5 and Function6 of all dimensional size.

For Function 2 shift Schwefel problem whose optimization

difficulty arises sharply as D increase, LSEDA-gl provides

a steady convergence speed towards global optimum on all

dimensional setting, although completely convergence has

not been accomplished within the fixed FES. The results

achieved on Function 3 - 4 are dissatisfied, error values

were two orders of magnitude for 100D and more for

500 D and 1000 D. The reason may be that LSEDA-

gl is a single Gaussian probability model based algorithm,

so the simple model makes this algorithm more effective

for unimodal functions. For multimodal functions, Shifted

Griewank Function and Shifted Ackley Function can still

be solved kindly. However, the LSEDA-gl can’t explore the

structure of Rosenbrock fully, of which the valley from local

optimum to global optimum is very narrow. All runs will be

trapped by the huge local optima of Rastrigin problem. These

strategies are not sufficient enough to force the search area

close enough to the global optima on these high dimensional

problems.

V. CONCLUSION

A univariate EDA LSEDA-gl is proposed to extend EDA to

high dimensional problems in this paper. Compared to classi-

cal UMDAc, the major advantage of LSEDA-gl is to preserve

a reasonably wider search scope during the optimization

process. The reason may be that three major strategies SGLD,

STDC and restart strategy are able to control the decreasing

speed of population diversity adaptively via controlling the

shrinking speed of standard deviation of Gaussian variables.

Experimental results on classical functions show the advan-

tages of SGLD and STDC respectively. Moreover, results

of LSEDA-gl for the CEC’2008 Special session on LSGO

have been presented above. According to the results, the

performances of LSEDA-gl are steady for most problems.

Balancing the relationship between optimization and learn-

ing for EDAs is quite a difficult task because precision of

learning may delay the convergence speed or get caught up in

some of the local optima. Compared to the previous version

EDA-STDC [18], LSEDA-gl reduces the convergence time

significantly. Particularly, our SGLD strategy could be simply

incorporated into existing EDAs to accelerate the conver-

gence speed and escape from the local optima.
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TABLE III

ERROR VALUES ACHIEVED FOR PROBLEMS 1-7, WITH D=100

fun fun1 fun2 fun3 fun4 fun5 fun6 fun7

D=100 FES=5E3

1st 1.0122E+02 3.6016E+01 2.1437E+06 3.4703E+02 2.2446E+00 3.4733E+00 -8.4326E+02

7th 1.8363E+02 4.0512E+01 3.7601E+06 4.8406E+02 2.7479E+00 3.8003E+00 -8.1056E+02

13th 2.3501E+02 4.4353E+01 5.4631E+06 5.2039E+02 2.9647E+00 3.9725E+00 -8.0563E+02

19th 2.7841E+02 4.7180E+01 8.4354E+06 5.4399E+02 3.5713E+00 4.2279E+00 -7.9178E+02

25th 4.1218E+02 5.9915E+01 1.8838E+07 5.7664E+02 5.4630E+00 4.7065E+00 -7.7887E+02

mean 2.3646E+02 4.4466E+01 6.7034E+06 5.0693E+02 3.2183E+00 4.0313E+00 -8.0432E+02

std 7.6869E+01 5.7252E+00 3.7500E+06 5.4128E+01 7.8441E-01 3.3058E-01 1.6930E+01

D=100 FES=5E4

1st 5.6843E-14 6.9254E-02 1.7717E+02 6.4672E+01 2.8422E-14 6.5370E-13 -1.4691E+03

7th 5.6843E-14 8.9067E-02 2.7404E+02 8.8552E+01 2.8422E-14 1.1369E-12 -1.4175E+03

13th 5.6843E-14 1.0481E-01 1.3085E+03 9.8451E+01 2.8422E-14 1.5632E-12 -1.4040E+03

19th 5.6843E-14 1.2303E-01 5.4224E+03 1.1443E+02 2.8422E-14 3.4390E-12 -1.3937E+03

25th 1.1369E-13 1.6408E-01 1.0835E+04 1.8406E+02 1.2321E-02 1.0900E-10 -1.3822E+03

mean 6.8212E-14 1.0526E-01 2.8947E+03 1.0353E+02 1.2815E-03 6.5779E-12 -1.4179E+03

std 2.3206E-14 2.3710E-02 3.6931E+03 2.4945E+01 3.6358E-03 2.1421E-11 2.4774E+01

D=100 FES=5E5

1st 5.6843E-14 1.7053E-13 8.2525E+01 6.4672E+01 2.8422E-14 8.5265E-14 -1.4896E+03

7th 5.6843E-14 2.2737E-13 9.3542E+01 8.8552E+01 2.8422E-14 8.5265E-14 -1.4740E+03

13th 5.6843E-14 2.2737E-13 1.2934E+02 9.8451E+01 2.8422E-14 8.5265E-14 -1.4672E+03

19th 5.6843E-14 2.2737E-13 1.6760E+02 1.1443E+02 2.8422E-14 1.1369E-13 -1.4601E+03

25th 5.6843E-14 2.8422E-13 1.4651E+03 1.8406E+02 2.8422E-14 1.1369E-13 -1.4433E+03

mean 5.6843E-14 2.2055E-13 2.8121E+02 1.0353E+02 2.8422E-14 9.7771E-14 -1.4638E+03

std 3.8646E-29 2.4994E-14 4.2642E+02 2.4945E+01 1.9323E-29 1.4399E-14 1.4513E+01

TABLE IV

ERROR VALUES ACHIEVED FOR PROBLEMS 1-7, WITH D=500

fun fun1 fun2 fun3 fun4 fun5 fun6 fun7

D=500 FES=2.5E4

1st 1.3826E+03 7.5339E+01 7.2480E+07 2.0964E+03 1.0688E+01 3.8726E+00 -5.1775E+03

7th 1.4794E+03 7.9429E+01 8.8098E+07 2.1108E+03 1.2981E+01 4.0073E+00 -5.1463E+03

13th 1.5868E+03 7.9866E+01 9.0523E+07 2.2141E+03 1.5213E+01 4.1157E+00 -5.1196E+03

19th 2.0062E+03 8.0884E+01 9.6228E+07 2.2668E+03 1.7053E+01 4.2178E+00 -5.1081E+03

25th 2.2616E+03 8.1648E+01 1.1577E+08 2.4284E+03 1.7677E+01 4.3164E+00 -4.9073E+03

mean 1.7315E+03 7.9566E+01 9.2665E+07 2.2228E+03 1.4955E+01 4.1082E+00 -5.1031E+03

std 3.3399E+02 2.0127E+00 1.5105E+07 1.1279E+02 2.4196E+00 1.4815E-01 8.2338E+01

D=500 FES=2.5E5

1st 2.2737E-13 4.8584E+00 1.1800E+03 7.7829E+02 1.1369E-13 4.7180E-12 -6.8512E+03

7th 2.2737E-13 5.0849E+00 1.2478E+03 8.2770E+02 1.4211E-13 8.3560E-12 -6.8290E+03

13th 2.8422E-13 5.3242E+00 1.3512E+03 8.6489E+02 1.4211E-13 1.0260E-11 -6.7963E+03

19th 2.8422E-13 5.6366E+00 1.6718E+03 8.8901E+02 1.4655E-08 2.2595E-11 -6.7438E+03

25th 2.8422E-13 6.0216E+00 1.9853E+03 9.2250E+02 9.8573E-03 1.2997E-10 -6.7382E+03

mean 2.6527E-13 5.3571E+00 1.4391E+03 8.5906E+02 1.9170E-03 2.5744E-11 -6.7917E+03

std 2.8422E-14 4.2051E-01 2.8073E+02 5.0120E+01 3.8534E-03 3.9651E-11 4.5021E+01

D=500 FES=2.5E6

1st 2.2737E-13 1.9588E-10 6.2806E+02 7.7788E+02 1.1369E-13 3.1264E-13 -6.8952E+03

7th 2.2737E-13 2.4204E-10 7.6352E+02 8.2634E+02 1.1369E-13 3.1264E-13 -6.8659E+03

13th 2.2737E-13 2.6461E-10 8.5068E+02 8.5988E+02 1.1369E-13 3.1264E-13 -6.8262E+03

19th 2.2737E-13 3.1292E-10 9.2960E+02 8.8117E+02 1.1369E-13 3.1264E-13 -6.7792E+03

25th 2.2737E-13 3.2782E-10 1.1578E+03 9.2160E+02 1.1369E-13 3.1264E-13 -6.7672E+03

mean 2.2737E-13 2.7152E-10 8.6745E+02 8.5569E+02 1.1369E-13 3.1264E-13 -6.8276E+03

std 0.0000E+00 4.3927E-11 1.8731E+02 5.0784E+01 0.0000E+00 5.3550E-29 4.8356E+01
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Fig. 4. Convergence Graph for Functions 1-6 (D=1000) on the left and Function 7 (D=1000) on the right

TABLE V

ERROR VALUES ACHIEVED FOR PROBLEMS 1-7, WITH D=1000

fun fun1 fun2 fun3 fun4 fun5 fun6 fun7

D=1000 FES=5E4

1st 7.9782E+03 9.0491E+01 7.3785E+08 1.3377E+04 7.8257E+01 5.0921E+00 -9.8576E+03

7th 9.5240E+03 9.2269E+01 8.4886E+08 1.3515E+04 8.5312E+01 5.3769E+00 -9.7907E+03

13th 9.7459E+03 9.3182E+01 8.9688E+08 1.3571E+04 8.5907E+01 5.5497E+00 -9.6350E+03

19th 1.0792E+04 9.3441E+01 9.7637E+08 1.3606E+04 9.3398E+01 5.6247E+00 -9.5717E+03

25th 1.1641E+04 9.4133E+01 1.0641E+09 1.3743E+04 9.8897E+01 5.6792E+00 -9.4226E+03

mean 9.9496E+03 9.2770E+01 9.0548E+08 1.3572E+04 8.8254E+01 5.4650E+00 -9.6609E+03

std 1.0753E+03 1.1032E+00 9.8140E+07 9.3528E+01 7.9653E+00 2.1064E-01 1.4290E+02

D=1000 FES=5E5

1st 9.0949E-13 1.4794E+01 3.2512E+03 4.1730E+03 2.6432E-12 2.2746E-10 -1.3523E+04

7th 1.3074E-12 1.5004E+01 3.4149E+03 4.3835E+03 2.7285E-12 3.0505E-10 -1.3442E+04

13th 2.0464E-12 1.5570E+01 3.6160E+03 4.4663E+03 3.3822E-12 3.1912E-10 -1.3395E+04

19th 2.4443E-12 1.6470E+01 3.7164E+03 4.5557E+03 3.6380E-12 1.0010E-09 -1.3379E+04

25th 1.8922E-08 1.7482E+01 3.9721E+03 4.7459E+03 3.4362E-02 1.3253E-04 -1.3306E+04

mean 2.4691E-09 1.5888E+01 3.5853E+03 4.4866E+03 1.5724E-03 2.2890E-05 -1.3408E+04

std 6.2647E-09 1.0057E+00 2.3304E+02 1.3556E+02 1.5367E-02 4.7739E-05 6.1671E+01

D=1000 FES=5E6

1st 2.8422E-13 9.7908E-06 1.5707E+03 5.0549E+02 1.7053E-13 4.2633E-13 -1.3590E+04

7th 2.8422E-13 9.8559E-06 1.6403E+03 5.3529E+02 1.7053E-13 4.2633E-13 -1.3510E+04

13th 3.4106E-13 1.0435E-05 1.6755E+03 5.4532E+02 1.7053E-13 4.2633E-13 -1.3461E+04

19th 3.4106E-13 1.0552E-05 1.7979E+03 5.5618E+02 1.7053E-13 4.2633E-13 -1.3452E+04

25th 3.4106E-13 1.1178E-05 2.0059E+03 5.8106E+02 1.7053E-13 4.2633E-13 -1.3391E+04

mean 3.2211E-13 1.0394E-05 1.7288E+03 5.4493E+02 1.7053E-13 4.2633E-13 -1.3481E+04

std 2.8422E-14 5.1087E-07 1.4017E+02 1.7966E+01 0.0000E+00 0.0000E+00 5.7186E+01
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