Article type: Advanced Review

Data Discretization: Taxonomy and Big
Data Challenge

Sergio Ramirez-Gallego ', Salvador Garcia '*, Héctor Mourifio-Talin 2,
David Martinez-Rego 23, Verénica Bolon-Canedo 2, Amparo Alonso-Betanzos
2. José Manuel Benitez !, Francisco Herrera !

1. Department of Computer Science and Artificial Intelligence, University of
Granada, 18071, Spain, {sramirez|salvagl|j.m.benitez|herrera}@decsai.ugr.es
2. Department of Computer Science, University of A Coruia, 15071 A Coruna,
Spain. {h.mtalin|dmartinez|veronica.bolon|ciamparo}@udc.es

3. Department of Computer Science, University College London, WC1E 6BT
London, United Kingdom.

*. Corresponding Author.

Keywords
Data Discretizacion, Taxonomy, Big Data, Data Mining, Apache Spark

Abstract

Discretization of numerical data is one of the most influential data preprocess-
ing tasks in knowledge discovery and data mining. The purpose of attribute
discretization is to find concise data representations as categories which are
adequate for the learning task retaining as much information in the original con-
tinuous attribute as possible. In this paper, we present an updated overview of
discretization techniques in conjunction with a complete taxonomy of the lead-
ing discretizers. Despite the great impact of discretization as data preprocessing
technique, few elementary approaches have been developed in the literature for
Big Data. The purpose of this paper is twofold: on the first part, a comprehen-
sive taxonomy of discretization techniques to help the practitioners in the use
of the algorithms; and moreover, on the second part of the paper our aim is
to demonstrate that standard discretization methods can be parallelized in Big
Data platforms like Apache Spark, boosting both performance and accuracy.
We thus propose a distributed implementation of one of the most well-known
discretizers based on Information Theory, and that obtains better results: the
entropy minimization discretizer proposed by Fayyad and Irani. Our scheme
goes beyond a simple parallelization and it is intended to be the first to face the
Big Data challenge.

INTRODUCTION

Data is present in diverse formats, for example in categorical, numerical or continuous
values. Categorical or nominal values are unsorted, whereas numerical or continuous

values are assumed to be sorted or represent ordinal data. It is well-known that Data
Mining (DM) algorithms depend very much on the domain and type of data. In this
way, the techniques belonging to the field of statistical learning prefer numerical data
(i.e., support vector machines and instance-based learning) whereas symbolic learning
methods require inherent finite values and also prefer to perform a branch of values
that are not ordered (such as in the case of decision trees or rule induction learning).
These techniques are either expected to work on discretized data or to be integrated
with internal mechanisms to perform discretization.

The process of discretization has aroused general interest in recent years (51; 23) and
has become one of the most effective data pre-processing techniques in DM (71).
Roughly speaking, discretization translates quantitative data into qualitative data, procur-
ing a non-overlapping division of a continuous domain. It also ensures an association
between each numerical value and a certain interval. Actually, discretization is con-
sidered a data reduction mechanism since it diminishes data from a large domain of
numeric values to a subset of categorical values.

There is a necessity to use discretized data by many DM algorithms which can only deal
with discrete attributes. For example, three of the ten methods pointed out as the top ten
in DM (75) demand a data discretization in one form or another: C4.5 (73), Apriori (8)
and Naive Bayes (41). Among its main benefits, discretization causes in learning meth-
ods remarkable improvements in learning speed and accuracy. Besides, some decision
tree-based algorithms produce shorter, more compact, and accurate results when using
discrete values (39; 23).

The specialized literature gathers a huge number of proposals for discretization. In fact,
some surveys have been developed attempting to organize the available pool of tech-
niques (51; 23; 43). It is crucial to determine, when dealing with a new real problem or
data set, the best choice in the selection of a discretizer. This will condition the success
and the suitability of the subsequent learning phase in terms of accuracy and simplicity
of the solution obtained. In spite of the effort made in (51) to categorize the whole fam-
ily of discretizers, probably the most well-known and surely most effective are included
in a new taxonomy presented in this paper, which has now been updated at the time of
writing.

Classical data reduction methods are not expected to scale well when managing huge
data -both in number of features and instances- so that its application can be under-
mined or even become impracticable (59). Scalable distributed techniques and frame-
works have appeared along with the problem of Big Data. MapReduce (26) and its
open-source version Apache Hadoop (62; 74) were the first distributed programming
techniques to face this problem. Apache Spark (64; 72) is one of these new frame-
works, designed as a fast and general engine for large-scale data processing based on
in-memory computation. Through this Spark’s ability, it is possible to speed up itera-
tive processes present in many DM problems. Similarly, several DM libraries for Big
Data have appeared as support for this task. The first one was Mahout (63) (as part of
Hadoop), subsequently followed by MLIib (67) which is part of the Spark project (64).
Although many state-of-the-art DM algorithms have been implemented in MLIib, it is
not the case for discretization algorithms yet.

In order to fill this gap, we face the Big Data challenge by presenting a distributed ver-
sion of the entropy minimization discretizer proposed by Fayyad and Irani in (6) using
Apache Spark, which is based on Minimum Description Length Principle. Our main ob-
jective is to prove that well-known discretization algorithms as MDL-based discretizer
(henceforth called MDLP) can be parallelized in these frameworks, providing good
discretization solutions for Big Data analytics. Furthermore, we have transformed the
iterativity yielded by the original proposal in a single-step computation. Notice that this
new version for distributed environments has supposed a deep restructuring of the origi-
nal proposal and a challenge for the authors. Finally, to demonstrate the effectiveness of
our framework, we perform an experimental evaluation with two large datasets, namely,
ECBDL14 and epsilon.

In order to achieve the goals mentioned, this paper is structured as follows. First we pro-
vide in the next Section (Background and Properties) an explanation of discretization,
its properties and the description of the standard MDLP technique. The next Section
(Taxonomy) presents the updated taxonomy of the most relevant discretization meth-
ods. Afterwards, in the Section Big Data Background, we focus on the background of
the Big Data challenge including the MapReduce programming framework as the most
prominent solution for Big Data. The following section (Distributed MDLP Discretiza-
tion) describes the distributed algorithm based on entropy minimization proposed for
Big Data. The experimental framework, results and analysis are given in last but one
section (Experimental Framework and Analysis). Finally, the main concluding remarks
are summarized.

BACKGROUND AND PROPERTIES

Discretization is a wide field and there have been many advances and ideas over the
years. This section is devoted to providing a proper background on the topic, including
an explanation of the basic discretization process and enumerating the main properties
that allow us to categorize them and to build a useful taxonomy.

Discretization Process

In supervised learning, and specifically in classification, the problem of discretization
can be defined as follows. Assuming a data set S consisting of N examples, M at-
tributes and c¢ class labels, a discretization scheme D 4 would exist on the continuous
attribute A € M, which partitions this attribute into & discrete and disjoint intervals:
{[do, d1], (d1,ds), ..., (dg,—1,dk]}, where dy and dj, , are, respectively, the minimum
and maximal value, and P4 = {dy,ds,...,dr,—1} represents the set of cut points of
A in ascending order.

We can associate a typical discretization as a univariate discretization. Although this
property will be reviewed in the next section, it is necessary to introduce it here for the

Evaluation

]
i i
i i
Continuous ! A I || Obtain Cut Point A
Attribute | Sort Attribute ™| or Adjacentiinterval Perform Evaluation
| b
I
J

%d
o
=
Ep
=]
<

Y

Measure
Check

yes

Discretized
Attribute

Stopping
Criterion

Fig. 1. Discretization Process.

basic understanding of the basic discretization process. Univariate discretization oper-
ates with one continuous feature at a time while multivariate discretization considers
multiple features simultaneously.

A typical discretization process generally consists of four steps (seen in Figure 1): (1)
sorting the continuous values of the feature to be discretized, either (2) evaluating a cut
point for splitting or adjacent intervals for merging, (3) splitting or merging intervals of
continuous values according to some defined criterion, and (4) stopping at some point.
Next, we explain these four steps in detail.

— Sorting: The continuous values for a feature are sorted in either descending or as-
cending order. It is crucial to use an efficient sorting algorithm with a time com-
plexity of O(NlogN). Sorting must be done only once and for the entire initial
process of discretization. It is a mandatory treatment and can be applied when the
complete instance space is used for discretization.

— Selection of a Cut Point: After sorting, the best cut point or the best pair of adja-
cent intervals should be found in the attribute range in order to split or merge in
a following required step. An evaluation measure or function is used to determine
the correlation, gain, improvement in performance or any other benefit according
to the class label.

— Splitting/Merging: Depending on the operation method of the discretizers, intervals
either can be split or merged. For splitting, the possible cut points are the different
real values present in an attribute. For merging, the discretizer aims to find the best
adjacent intervals to merge in each iteration.

— Stopping Criteria: It specifies when to stop the discretization process. It should
assume a trade-off between a final lower number of intervals, good comprehension
and consistency.

Discretization Properties

In (51; 23; 43), various pivots have been used in order to make a classification of dis-
cretization techniques. This sections reviews and describes them, underlining the major
aspects and alliances found among them. The taxonomy presented afterwards will be
founded on these characteristics (acronyms of the methods correspond with those pre-
sented in Table 1):

— Static vs. Dynamic: This property refers to the level of independence between the
discretizer and the learning method. A static discretizer is run prior to the learning
task and is autonomous from the learning algorithm (23), as a data preprocessing
algorithm (71). Almost all isolated known discretizers are static. By contrast, a dy-
namic discretizer responds when the learner requires so, during the building of the
model. Hence, they must belong to the local discretizer’s family (see later) embed-
ded in the learner itself, producing an accurate and compact outcome together with
the associated learning algorithm. Good examples of classical dynamic techniques
are ID3 discretizer (73) and ITFP (31).

— Univariate vs. Multivariate: Univariate discretizers only operate with a single at-
tribute simultaneously. This means that they sort the attributes independently, and
then, the derived discretization disposal for each attribute remains unchanged in the
following phases. Conversely, multivariate techniques, concurrently consider all or
various attributes to determine the initial set of cut points or to make a decision
about the best cut point chosen as a whole. They may accomplish discretization
handling the complex interactions among several attributes to decide also the at-
tribute in which the next cut point will be split or merged. Currently, interest has
recently appeared in developing multivariate discretizers since they are decisive
in complex predictive problems where univariate operations may ignore important
interactions between attributes (68; 69) and in deductive learning (56).

— Supervised vs. Unsupervised: Supervised discretizers consider the class label whereas
unsupervised ones do not. The interaction between the input attributes and the class
output and the measures used to make decisions on the best cut points (entropy,
correlations, etc.) will define the supervised manner to discretize. Although most
of the discretizers proposed are supervised, there is a growing interest in unsuper-
vised discretization for descriptive tasks (48; 56). Unsupervised discretization can
be applied to both supervised and unsupervised learning, because its operation does
not require the specification of an output attribute. Nevertheless, this does not occur
in supervised discretizers, which can only be applied over supervised learning. Un-
supervised learning also opens the door to transfering the learning between tasks
since the discretization is not tailored to a specific problem.

— Splitting vs. Merging: These two options refer to the approach used to define or
generate new intervals. The former methods search for a cut point to divide the

domain into two intervals among all the possible boundary points. On the contrary,
merging techniques begin with a pre-defined partition and search for a candidate
cut point to mix both adjacent intervals after removing it. In the literature, the terms
Top-Down and Bottom-up are highly related to these two operations, respectively.
In fact, top-down and bottom-up discretizers are thought for hierarchical discretiza-
tion developments, so they consider that the process is incremental, property which
will be described later. Splitting/merging is more general than top-down/bottom-up
because it is possible to have discretizers whose procedure manages more than one
interval at a time (33; 35). Furthermore, we consider the hybrid category as the way
of alternating splits with merges during running time (9; 69).

Global vs. Local: In the time a discretizer must select a candidate cut point to
be either split or merged, it could consider either all available information in the
attribute or only partial information. A local discretizer makes the partition decision
based only on partial information. MDLP (6) and ID3 (73) are classical examples of
local methods. By definition, all the dynamic discretizers and some top-down based
methods are local, which explains the fact that few discretizers apply this form.
The dynamic discretizers search for the best cut point during internal operations
of a certain DM algorithm, thus it is impossible to examine the complete data set.
Besides, top-down procedures are associated with the divide-and-conquer scheme,
in such manner that when a split is considered, the data is recursively divided,
restricting access to partial data.

Direct vs. Incremental: For direct discretizers, the range associated with an interval
must be divided into k intervals simultaneously, requiring an additional criterion to
determine the value of k. One-step discretization methods and discretizers which
select more than a single cut point at every step are included in this category. How-
ever, incremental methods begin with a simple discretization and pass through an
improvement process, requiring an additional criterion to determine when it is the
best moment to stop. At each step, they find the best candidate boundary to be used
as a cut point and, afterwards, the rest of the decisions are made accordingly.
Evaluation Measure: This is the metric used by the discretizer to compare two
candidate discretization schemes and decide which is more suitable to be used. We
consider five main families of evaluation measures:

e [nformation: This family includes entropy as the most used evaluation measure
in discretization (MDLP (6), ID3 (73), FUSINTER (18)) and others derived
from information theory (Gini index, Mutual Information) (40).

e Statistical: Statistical evaluation involves the measurement of dependency/correlation
among attributes (Zeta (15), ChiMerge (5), Chi2 (17)), interdependency (27),
probability and bayesian properties (13) (MODL (32)), contingency coefficient
(36), etc.

e Rough Sets: This class is composed of methods that evaluate the discretiza-
tion schemes by using rough set properties and measures (66), such as class
separability, lower and upper approximations, etc.

o Wrapper: This collection comprises methods that rely on the error provided by
a classifier or a set of classifiers that are used in each evaluation. Representative
examples are MAD (52), IDW (55) and EMD (69).

e Binning: In this category of techniques, there is no evaluation measure. This
refers to discretizing an attribute with a predefined number of bins in a simple
way. A bin assigns a certain number of values per attribute by using a non
sophisticated procedure. EqualWidth and EqualFrequency discretizers are the
most well-known unsupervised binning methods.

Table 1 Most Important Discretizers.

Acronym |Ref.| Acronym |Ref.| Acronym |Ref.
EqualWidth | (1) ||EqualFrequency| (1) Chou91 @

D2 3) ChiMerge %) IR @)

ID3 (73) MDLP (6) CADD)
MDL-Disc |(10) Bayesian (13)|| Friedman96 |(12)
ClusterAnalysis|(11) Zeta (15) Distance [(14)

Chi2 (17)| CM-NFD |(16)|| FUSINTER |(18)
MVD (19)|| Modified Chi2 |(24) USD (22)
Khiops |(25) CAIM |(27)||Extended Chi2|(30)
Heter-Disc |(28) UCPD |(29)|| MODL |(32)
ITPF (31)|| HellingerBD |(33)|| DIBD [(34)
IDD (35) CACC |36)|| Ameva |(38)
Unification | (40) PKID 1) FFD 41)
CACM |(46) DRDS |@47)|| EDISC |(50)

U-LBG |(48) MAD (52) IDF (55)
IDW (55)|| NCAIC |(60)|| Sangl4 [(58)
IPD (56)|| SMDNS [(66)|| TD4C |(68)
EMD (69)

Minimum Description Length-based Discretizer

Minimum Description Length-based discretizer (MDLP) (6), proposed by Fayyad and
Irani in 1993, is one of the most important splitting methods in discretization. This
univariate discretizer uses the Minimum Description Length Principle to control the
partitioning process. This also introduces an optimization based on a reduction of whole
set of candidate points, only formed by the boundary points in this set.

Let A(e) denote the value for attribute A in the example e. A boundary point b €
Dom(A) can be defined as the midpoint value between A(u) and A(v), assuming that
in the sorted collection of points in A, two examples exist u, v € S with different class
labels, such that A(u) < b < A(v); and the other example w € S does not exist, such
that A(u) < A(w) < A(v). The set of boundary points for attribute A is defined as
By.

This method also introduces other important improvements. One of them is related
to the number of cut points to derive in each iteration. In contrast to discretizers like

ID3 (73), the authors proposed a multi-interval extraction of points demonstrating that
better classification models -both in error rate and simplicity- are yielded by using these
schemes.

It recursively evaluates all boundary points, computing the class entropy of the parti-
tions derived as quality measure. The objective is to minimize this measure to obtain
the best cut decision. Let b,, be a boundary point to evaluate, S; C S be a subset where
Va' € Sy, A(a’) < by, and Sy be equal to S — Sy. The class information entropy
yielded by a given binary partitioning can be expressed as:

S S
EP(A,bo, S) = '|§|E<sl> + '|;'E<Sz>,)

where E represents the class entropy ! of a given subset following Shannon’s defini-
tions (21).

Finally, a decision criterion is defined in order to control when to stop the partitioning
process. The use of MDLP as a decision criterion allows us to decide whether or not to
partition. Thus a cut point b,, will be applied iff:

logy(N — 1) . A(A, by, S)

G(A, by, S) > N N ,

()
where A(A, by, S) =1log2(3°) — [cE(S) — 1 E(S1) — c2aE(S2)], ¢1 and ¢, the number
of class labels in Sy and Ss, respectively; and G(A, by, S) = E(S) — EP(A, by, S).

TAXONOMY

Currently, more than 100 discretization methods have been presented in the specialized
literature. In this section, we consider a subgroup of methods which can be considered
the most important from the whole set of discretizers. The criteria adopted to charac-
terize this subgroup are based on the repercussion, availability and novelty they have.
Thus, the precursory discretizers which have served as inspiration to others, those which
have been integrated in software suites and the most recent ones are included in this tax-
onomy.

Table 1 enumerates the discretizers considered in this paper, providing the name ab-
breviation and reference for each one. We do not include the descriptions of these dis-
cretizers in this paper. Their definitions are contained in the original references, thus
we recommend consulting them in order to understand how the discretizers of interest
work. In Table 1, 30 discretizers included in KEEL software are considered. Addition-
ally, implementations of these algorithms in Java can be found (37).

! Logarithm in base 2 is used in this function

a4id
anid
Aduanbaugenby
og71-n yipimenbs q»
4 103¥ia
IVDILSILVLS ONINNIE oﬁ_w_m_ﬁwm 4
Q3SIAYIANSNN
adl 4 aAn 4 adon 4
NOILVINYO4NI NOILVINYO4NI IVDILSILVLS
1o3¥ia IV.LNIWIUDNI 103¥ia
1va01D va01D va01D
ONIDYIN QNigAH EFE& 4
Q3SIAYIANSNN
sisAjeuyaaisn|d 4 y1bues 4
S13S HONOY IVDILSILVLS
an3 SNAWS 4
96ueWpaLY 4
4 WIddVHM S13S HONOY
NOILVINYO4NI
IVANIWIADNI 1o341a IVANIWIADNI
va01D va01D vdo1D
DNILLITdS QIIFAH ﬁ ONIDYIN
QasIAY3dNS

JLVIRIVAILINN

‘AWOUOXE], UONBZNAIISI(T * "SI

ELAN)

€al
oval 4 16M04D 4
NOILVIYOANI NOILVINYOANI
IVLINIWIADNI IVLINIWIEDNI
Vo0l IvoO01
DNILLITdS ONILLITdS
@3siAY3dNS

a3siAY3adns

ALVIVAILTININ JLVIIVAINN

DINVNAQ

asn

DNINNIg

¥ILNISNS

agsabulljpH

T NOLLYWYOANI

NOILYYOANI
103d1d TVANIWIADNI 4
vao1o

aavd

Sa¥a q

IVOILSILVLS

TVLINIWIADNI
va01d

Al¥aAH

avin

Y

d3ddVim

4 1aonw
21y papualx3
sdoiyy
214D payIpoi

2y
ab1aNIYD

Y

AVOILSILVLS

DNIDYIN

—

mai

Y

d3ddViIm
JIVON
[e)%)
Elel} eAIWY
2s1g-4939H 20V
2510-1aW 4 WIVD 4
NOILVIWYO4NI AVOILSILVLS

IVANIWTAONI

aal
T

DNINNIg

Q4N-WD
ez

uejsaheg 4
NOILVINIOANI E

103¥1a

vao1D
AN L

N [eE]
4

Y

ONILLIdS
4

[CENUVEENN

'

JLVIIVAINN 4

|

JILV1S

:EVANER DN [C]

In the previous section, we studied the properties which could be used to classify the
discretizers proposed in the literature. Given a predefined order among the seven char-
acteristics studied before, we can build a taxonomy of discretization methods. All tech-
niques enumerated in Table 1 are collected in the taxonomy depicted in Figure 2. It
represents a hierarchical categorization following the next arrangement of properties:
static / dynamic, univariate / multivariate, supervised / unsupervised, splitting / merg-
ing / hybrid, global / local, direct / incremental and evaluation measure.

The purpose of this taxonomy is two-fold. Firstly, it identifies the subset of most repre-
sentative state-of-the-art discretizers for both researchers and practitioners who want to
compare with novel techniques or require discretization in their applications. Secondly,
it characterizes the relationships among techniques, the extension of the families and
possible gaps to be filled in future developments.

When managing huge data, most of them become impracticable in real settings, due
to the complexity they cause (for example, in the case of MDLP, among others). The
adaptation of these classical methods implies a thorough redesign that becomes manda-
tory if we want to exploit the advantages derived from the use of discrete data on large
datasets (42; 44). As reflected in our taxonomy, no relevant methods in the field of Big
Data have been proposed to solve this problem. Some works have tried to deal with
large-scale discretization. For example, in (53) the authors proposed a scalable imple-
mentation of Class-Attribute Interdependence Maximization algorithm by using GPU
technology. In (61), a discretizer based on windowing and hierarchical clustering is pro-
posed to improve the performance of classical tree-based classifiers. However, none of
these methods have been proved to cope with the data magnitude presented here.

BIG DATA BACKGROUND

The ever-growing generation of data on the Internet is leading us to managing huge col-
lections using data analytics solutions. Exceptional paradigms and algorithms are thus
needed to efficiently process these datasets (65) so as to obtain valuable information,
making this problem one of the most challenging tasks in Big Data analytics.

Gartner (20) introduced the popular denomination of Big Data and the 3V terms that
define it as high volume, velocity and variety of information that require a new large-
scale processing. This list was then extended with 2 additional terms. All of them are
described in the following: Volume, the massive amount of data that is produced every
day is still exponentially growing (from terabytes to exabytes); Velocity, data needs
to be loaded, analyzed and stored as quickly as possible; Variety, data comes in many
formats and representations; Veracity, the quality of data to process is also an important
factor. The Internet is full of missing, incomplete, ambiguous, and sparse data; Value,
extracting value from data is also established as a relevant objective in big analytics.

The unsuitability of many knowledge extraction algorithms in the Big Data field has
meant that new methods have been developed to manage such amounts of data effec-
tively and at a pace that allows value to be extracted from it.

10

MapReduce Model and Other Distributed Frameworks The MapReduce frame-
work (26), designed by Google in 2003, is currently one of the most relevant tools in
Big Data analytics. It was aimed at processing and generating large-scale datasets, au-
tomatically processed in an extremely distributed fashion through several machines?.
The MapReduce model defines two primitives to work with distributed data: Map and
Reduce. These two primitives imply two stages in the distributed process, which we de-
scribe below. In the first step, the master node breaks up the dataset into several splits,
distributing them across the cluster for parallel processing. Each node then hosts sev-
eral Map threads that transform the generated key-value pairs into a set of intermediate
pairs. After all Map tasks have finished, the master node distributes the matching pairs
across the nodes according to a key-based partitioning scheme. Then, the Reduce phase
starts, combining those coincident pairs so as to form the final output.

Apache Hadoop (62; 74) is presented as the most popular open-source implementation
of MapReduce for large-scale processing. Despite its popularity, Hadoop presents some
important weaknesses, such as poor performance on iterative and online computing,
and a poor inter-communication capability or inadequacy for in-memory computation,
among others (49). Recently, Apache Spark (64; 72) has appeared and integrated with
the Hadoop Ecosystem. This novel framework is presented as a revolutionary tool capa-
ble of performing even faster large-scale processing than Hadoop through in-memory
primitives, making this framework a leading tool for iterative and online processing and,
thus, suitable for DM algorithms. Spark is built on distributed data structures called Re-
silient Distributed Datasets (RDDs), which were designed as a fault-tolerant collection
of elements that can be operated in parallel by means of data partitioning.

DISTRIBUTED MDLP DISCRETIZATION

In the Background Section, a discretization algorithm based on an information entropy
minimization heuristic was presented (6). In this work, the authors proved that multi-
interval extraction of points and the use of boundary points can improve the discretiza-
tion process, both in efficiency and error rate. Here, we adapt this well-known algo-
rithm for distributed environments, proving its discretization capability against real-
world large problems.

One important point in this adaption is how to distribute the complexity of this algorithm
across the cluster. This is mainly determined by two time-consuming operations: on the
one hand, the sorting of candidate points, and, on the other hand, the evaluation of these
points. The sorting operation conveys a O(|Allog(|A|)) complexity (assuming that all
points in A are distinct), whereas the evaluation conveys a O(|B 4 |?) complexity. In the
worst case, it implies a complete evaluation of entropy for all points.

Note that the previous complexity is bounded to a single attribute. To avoid repeating the
previous process on all attributes, we have designed our algorithm to sort and evaluate
all points in a single step. Only when the number of boundary points in a attribute is

2 For a complete description of this model and other distributed models, please review (54).

11

higher than the maximum per partition, computation by feature is necessary (which is
extremely rare according to our experiments).

Spark primitives extend the idea of MapReduce to implement more complex operations
on distributed data. In order to implement our method, we have used some extra primi-
tives from Spark’s API, such as: mapPartitions, sortByKey, flatMap and reduceByKey>.

Main discretization procedure

Algorithm 1 explains the main procedures in our discretization algorithm. The algo-
rithm calculates the minimum-entropy cut points by feature according to the MDLP
criterion. It uses a parameter to limit the maximum number of points to yield.

Algorithm 1 Main discretization procedure

Input: S Data set 12: first « first_by_part(sorted)
Input: M Feature indexes to discretize 13: bds < get_boundary(sorted, first)
Input: mb Maximum number of cut points to 14: bds <
select 15: mapb € bds
Input: mc Maximum number of candidates 16: < (att,point),q >« b
per partition 17: EMIT < (att, (point,q)) >
Output: Cut points by feature 18: end map
l: comb <+ 19: (SM, BI) <+ divide_atts(bds, mc)
2: maps€S 20: sth +
3: v « zeros(|c|) 21: mapsa € SM
4: ci < class_index(v) 22: th < select_ths(SM (sa), mb, mc)
5: v(ci) + 1 23: EMIT < (sa,th) >
6: forall A € M do 24: end map
7: EMIT < (A, A(s)),v > 25: bth + ()
8: end for 26: for all ba € BI do
9: end map 27: bth < bth + select_ths(ba, mb, mc)
10: distinct < reduce(comb, sum_vectors) 28: end for
11: sorted « sort_by_key(distinct) 29: return(union(bth, sth))

The first step creates combinations from instances through a Map function in order to
separate values by feature. It generates tuples with the value and the index for each
feature as key and a class counter as value (< (A, A(s)),v >). Afterwards, the tuples
are reduced using a function that aggregates all subsequent vectors with the same key,
obtaining the class frequency for each distinct value in the dataset. The resulting tuples
are sorted by key so that we obtain the complete list of distinct values ordered by feature
index and feature value. This structure will be used later to evaluate all these points in a
single step. The first point by partition is also calculated (line 11) for this process. Once
such information is saved, the process of evaluating the boundary points can be started.

3For a complete description of Spark’s operations, please refer to Spark’s API:
https://spark.apache.org/docs/latest/api/scala/index.html

12

Boundary points selection

Algorithm 2 (get_boundary) describes the function in charge of selecting those points
falling in the class borders. It executes an independent function on each partition in
order to parallelize the selection process as much as possible so that a subset of tuples is
fetched in each thread. The evaluation process is described as follows: for each instance,
it evaluates whether the feature index is distinct from the index of the previous point; if
it is so, this emits a tuple with the last point as key and the accumulated class counter as
value. This means that a new feature has appeared, saving the last point from the current
feature as its last threshold. If the previous condition is not satisfied, the algorithm
checks whether the current point is a boundary with respect to the previous point or
not. If it is so, this emits a tuple with the midpoint between these points as key and the
accumulated counter as value.

Algorithm 2 Function to generate the boundary points (get_boundary)

Input: points An RDD of tuples (< 12: end if
(att,point),q >), where att represents 13: < (la,lp),lg >+< (a,p),q >
the feature index, point the point to con- 14: accq <+ accq + q
sider and q the class counter. 15: end for
Input: first A vector with all first elements 16: index + get_index(part)
by partition 17: if index < mnpartitions(points)
Output: An RDD of points. then
1: boundaries + 18: < (a,p),q >« first(index + 1)
2: map partitions part € points 19: if a <> la then
3: < (la,lp),lqg >« next(part) 20: EMIT < (la,lp),accq >
4. accq <+ lq 21: else
5 for all < (a,p),q >€ part do 22: EMIT < (la,(p +
6: if a <> la then lp)/2), accq >
7: EMIT < (la,lp),accq > 23: end if
8: accq < () 24: else
9: else if is_boundary(q, lq) then 25: EMIT < (la,lp),accqg >
10: EMIT < (la,(p + 26: end if
Ip)/2), accq > 27: end map
11: aceq <+ () 28: return(boundaries)

Finally, some evaluations are performed over the last point in the partition. This point is
compared with the first point in the next partition to check whether there is a change in
the feature index -emitting a tuple with the last point saved-, or not -emitting a tuple with
the midpoint- (as described above). All tuples generated by the partition are then joined
into a new mixed RDD of boundary points, which is returned to the main algorithm as
bds.

In Algorithm 1 (line 14), the bds variable is transformed by using a Map function,
changing the previous key to a new key with a single value: the feature index (<
(att, (point,q)) >). This is done to group the tuples by feature so that we can divide

13

them into two groups according to the total number of candidate points by feature. The
divide_atts function is then aimed to divide the tuples in two groups (big and small)
depending on the number of candidate points by feature (count operation). Features in
each group will be filtered and treated differently according to whether the total num-
ber of points for a given feature exceeds the threshold mc or not. Small features will be
grouped by key so that these can be processed in a parallel way. The subsequent tuples
are now re-formatted as follows: (< point, q >).

MDLP evaluation

Features in each group are evaluated differently from that mentioned before. Small fea-
tures are evaluated in a single step where each feature corresponds with a single parti-
tion, whereas big features are evaluated iteratively since each feature corresponds with
a complete RDD with several partitions. The first option is obviously more efficient,
however, the second case is less frequent due to the fact the number of candidate points
for a single feature fits perfectly in one partition. In both cases, the select_ths function
is applied to evaluate and select the most relevant cut points by feature. For small fea-
tures, a Map function is applied independently to each partition (each one represents a
feature) (arr_select_ths). In case of big features, the process is more complex and each
feature needs a complete iteration over a distributed set of points (rdd_select_ths).

Algorithm 3 (select_ths) evaluates and selects the most promising cut points grouped
by feature according to the MDLP criterion (single-step version). This algorithm starts
by selecting the best cut point in the whole set. If the criterion accepts this selection, the
point is added to the result list and the current subset is divided into two new partitions
using this cut point. Both partitions are then evaluated, repeating the previous process.
This process finishes when there is no partition to evaluate or the number of selected
points is fulfilled.

Algorithm 4 (arr_select_ths) explains the process that accumulates frequencies and
then selects the minimum-entropy candidate. This version is more straightforward than
the RDD version as it only needs to accumulate frequencies sequentially. Firstly, it ob-
tains the total class counter vector by aggregating all candidate vectors. Afterwards, a
new iteration is necessary to obtain the accumulated counters for the two partitions gen-
erated by each point. This is done by aggregating the vectors from the most-left point
to the current one, and from the current point to the right-most point. Once the accumu-
lated counters for each candidate point are calculated (in form of < point, q,lq, rq >),
the algorithm evaluates the candidates using the select_best function.

Algorithm 5 (rdd_select_ths) explains the selection process; in this case for “big” fea-
tures (more than one partition). This process needs to be performed in a distributed
manner since the number of candidate points exceeds the maximum size defined. For
each feature, the subset of points is hence re-distributed in a better partition scheme to
homogenize the quantity of points by partition and node (coalesce function, line 1-2).
After that, a new parallel function is started to compute the accumulated counter by
partition. The results (by partition) are then aggregated to obtain the total accumulated

14

Algorithm 3 Function to select the best cut points for a given feature (select_ths)

Input: cands A RDD/array of tuples (< 6: if type(set) = 'array’ then
point,q >), where point represents acan- 7: bd < arr_select_ths(set,lth)
didate point to evaluate and ¢ the class §: else
counter. 9: bd < rdd_select_ths(set, lth, mc)

Input: mb Maximum number of intervals or 10: end if
bins to select 11: if bd <> () then

Input: mc Maximum number of candidates to 12: result < result + bd
eval in a partition 13: (left,right) < divide(set,bd)

Output: An array of thresholds for a given 14: st + enqueue(st, (left, bd))
feature 15: st < enqueue(st, (right, bd))

1: st < enqueue(st, (candidates, ())) 16: end if

2: result < () 17: endif

3: while |st| > 0 & |result| < mbdo 18: end while

4: (set,lth) < dequeue(st) 19: return(sort(result))
5: if |set| > 0 then

Algorithm 4 Function to select the best cut point according to MDLP criterion (single-
step version) (arr_select_ths)
Input: cands An array of tuples (< 3: for < point,q >€ cands do

point,q >), where point represents a 4: lacc < lacc+ q

candidate point to evaluate and g the class 5: fregs < fregs+(point, q,lacc, total—

counter. lacc)
Output: The minimum-entropy cut point 6: end for
1: total + sum_fregs(cands) 7: return(select_best(cands, freqs))

2: lace < ()

frequency for the whole subset. In line 9, a new distributed process is started with the
aim of computing the accumulated frequencies at points on both sides (as explained in
Algorithm 4). In this procedure, the process accumulates the counter from all previous
partitions to the current one to obtain the first accumulated value (the left one). Then
the function computes the accumulated values for each inner point using the counter
for points in the current partition, the left value and the total values (line 7). Once these
values are calculated (< point, q,lq, rq >), the algorithm evaluates all candidate points
and their associated accumulators using the select_best function (as above).

Algorithm 6 evaluates the discretization schemes yielded by each point by computing
the entropy for each partition generated, also taking into account the MDLP criterion.
Thus, for each point*, the entropy is calculated for the two generated partitions (line 8)
as well as the total entropy for the whole set (lines 1-2). Using these values, the entropy
gain for each point is computed and its MDLP condition, according to Equation 2. If
the point is accepted by MDLP, the algorithm emits a tuple with the weighted entropy

* If the set is an array, it is used as a loop structure, else it is used as a distributed map function

15

Algorithm 5 Function that selects the best cut points according to MDLP criterion

(RDD version) (rdd_select_ths)

Input: cands An RDD of tuples (<
point,q >), where point represents a
candidate point to evaluate and ¢ the class
counter.

Input: mc Maximum number of candidates to
eval in a partition

Output: The minimum-entropy cut point

npart < round(|cands|/mc)

cands < coalesce(cands, npart)

. totalpart

map partitions partition € cands

return(sum(partition))

end map

. total < sum(totalpart)

. fregs <

b A A T o

9: map partitions partition € cands
10: index <+ get_index(partition)
11: ltotal + ()

12 fregs < ()

13: for i = 0 until index do

14: ltotal < ltotal + totalpart(i)
15: end for

16: for all < point, q >€ partition do
17: fregs — freqs +

(point, g, ltotal + g, total — ltotal)
18: end for
19: return(fregs)
20: end map
21: return(select_best(cands, fregqs))

average of partition and the point itself. From the set of accepted points, the algorithm
selects the one with the minimum class information entropy.

Algorithm 6 Function that calculates class entropy values and selects the minimum-

entropy cut point (select_best)

Input: fregs An array/RDD of tuples (<
point, q,lq,rq >), where point represents
a candidate point to evaluate, leftq the left
accumulated frequency, rightq the right ac-
cumulated frequency and q the class fre-
quency counter.

Input: total Class frequency counter for all
the elements

Output: The minimum-entropy cut point

I: n « sum(total)

2: totalent < ent(total,n)

3: k « |total]

4: accp + ()

5: for all < point, q,lq,7q >€ freqs do

6: k1< |lg|;k2 < |rq|

7: sl + sum(lq); s2 + sum(rq);

8: entl <« ent(sl,kl);ent2 <«
ent(s2,k2)

9: partent < (sl x entl + s2 x ent2)/s

10: gain < totalent — partent

11: delta + log2(3* —2) — (k*hs — k1 %
entl — k2 x ent2)

12: accepted < gain > ((log2(s — 1)) +

delta)/n
13: if accepted = true then
14: accp < acep + (partent, point)
15: endif
16: end for

17: return(min(accp))

The results produced by both groups (small and big) are joined into the final point set

of cut points.

16

Analysis of efficiency

In this section, we analyze the performance of the main operations that determined the
overall performance of our proposal. Note that the first two operations are quite costly
from the point of view of network usage, since they imply shuffling data across the
cluster (wide dependencies). Nevertheless, once data are partitioned and saved, these
remain unchanged. This is exploited by the subsequent steps, which take advantage of
the data locality property. Having data partitioned also benefits operations like group-
ByKey, where the grouping is performed locally. The list of such operations (showed in
Algorithm 1) is presented below:

1. Distinct points (lines 1-10): this is an standard map-reduce operation that fetches
all the points in the dataset. The map phase generates and distributes tuples us-
ing a hash partitioning scheme (linear distributed complexity). The reduce phase
fetches the set of coincident points and sums up the class vectors (linear distributed
complexity).

2. Sorting operation (line 11): this operation uses a more complex primitive of Spark:
sortByKey. This samples the set and produces a set of bounds to partition this set.
Then, a shuffling operation is started to re-distribute the points according to the
previous bounds. Once data are re-distributed, a local sorting operation is launched
in each partition (loglinear distributed order).

3. Boundary points (lines 12-13): this operation is in charge of computing the subset
candidate of points to be evaluted. Thanks to the data partitioning scheme generated
in the previous phases, the algorithm can yield the boundary points for all attributes
in a distributed manner using a linear map operation.

4. Division of attributes (lines 14-19): once the reduced set of boundary points is
generated, it is necessary to separate the attributes into two sets. To do that, several
operations are started to complete this part. All these sub-operations are performed
linearly using distributed operations.

5. Evaluation of small attributes (lines 20-24): this is mainly formed by two suboper-
ations: one for grouping the tuples by key (done locally thanks to the data locality),
and one map operation to evaluate the candidate points. In the map operation, each
feature starts an independent process that, like the sequential version, is quadratic.
The main advantage here is the parallelization of these processes.

6. Evaluation of big features (lines 26-28): The complexity order for each feature is
the same as in the previous case. However, in this case, the evaluation of features is
done iteratively.

EXPERIMENTAL FRAMEWORK AND ANALYSIS

This section describes the experiments carried out to demonstrate the usefulness and
performance of our discretization solution over two Big Data problems.

17

Experimental Framework

Two huge classification datasets are employed as benchmarks in our experiments. The
first one (hereinafter called ECBDLI4) was used as a reference at the ML competition
of the Evolutionary Computation for Big Data and Big Learning held on July 14, 2014,
under the international conference GECCO-2014. This consists of 631 characteristics
(including both numerical and categorical attributes) and 32 million instances. It is a
binary classification problem where the class distribution is highly imbalanced: 2% of
positive instances. For this problem, the MapReduce version of the Random OverSam-
pling (ROS) algorithm presented in (57) was applied in order to replicate the minority
class instances from the original dataset until the number of instances for both classes
was equalized. As a second dataset, we have used epsilon, which consists of 500 000
instances with 2000 numerical features. This dataset was artificially created for the Pas-
cal Large Scale Learning Challenge in 2008. It was further pre-processed and included
in the LibSVM dataset repository (45).

Table 2 gives a brief description of these datasets. For each one, the number of examples
for training and test (#Train Ex., #Test Ex.), the total number of attributes (#Atts.), and
the number of classes (#Cl) are shown. For evaluation purposes, Naive Bayes (70) and
two variants of Decision Tree (2) —with different impurity measures— have been chosen
as reference in classification, using the distributed implementations included in MLIib
library (67). The recommended parameters of the classifiers, according to their authors’
speciﬁcations, are shown in Table 3.

Table2 Summary description for classification

datasets

Data Set ||#Train Ex.||#Test Ex. ||#Atts.|[#CI.
epsilon 400 000 100 000 || 2000 || 2
ECBDL14 (ROS)||65 003 913||12 897 917|| 631 2

Table 3 Parameters of the algorithms used

Method Parameters

Naive Bayes lambda = 1.0

Decision Tree - gini (DTg) impurity = gini, max depth = 5, max bins = 32
Decision Tree - entropy (DTe) impurity = entropy, max depth = 5, max bins = 32
Distributed MDLP max intervals = 50, max by partition = 100,000

As evaluation criteria, we use two well-known evaluation metrics to assess the quality
of the underlying discretization schemes. On the one hand, Classification accuracy is

> https://spark.apache.org/docs/latest/api/scala/index.html

18

used to evaluate the accuracy yielded by the classifiers -number of examples correctly
labeled divided by the total number of examples-. On the other hand, in order to prove
the time benefits of using discretization, we have employed the overall classification
runtime (in seconds) in training as well as the overall time in discretization as addi-
tional measures.

For all experiments we have used a cluster composed of twenty computing nodes and
one master node. The computing nodes hold the following characteristics: 2 processors
x Intel Xeon CPU E5-2620, 6 cores per processor, 2.00 GHz, 15 MB cache, QDR
InfiniBand Network (40 Gbps), 2 TB HDD, 64 GB RAM. Regarding software, we
have used the following configuration: Hadoop 2.5.0-cdh5.3.1 from Cloudera’s open-
source Apache Hadoop distribution®, Apache Spark and MLIib 1.2.0, 480 cores (24
cores/node), 1040 RAM GB (52 GB/node). Spark implementation of the algorithm can
be downloaded from the first author’ GitHub repository’. The design of the algorithm
has been adapted to be integrated in MLIib Library.

Experimental Results and Analysis

Table 4 shows the classification accuracy results for both datasets®. According to these
results, we can assert that using our discretization algorithm as a preprocessing step
leads to an improvement in classification accuracy with Naive Bayes, for the two datasets
tested. It is specially relevant in ECBDL14 where there is a improvement of 5%. This
shows the importance of discretization in the application of some classifiers like Naive
Bayes. For the other classifiers, our algorithm is capable of getting the same competitive
results as those performed implicitly by the decision trees.

Table 4 Classification accuracy values
Dataset NB NB-disc DTg DTg-disc DTe DTe-disc

ECBDLI4 0.6276 0.7260 0.7347 0.7339 0.7459 0.7508
epsilon 0.6550 0.7065 0.6616 0.6623 0.6611 0.6624

Table 5 shows classification runtime values for both datasets distinguishing whether
discretization is applied or not. As we can see, there is a slight improvement in both
cases on using MDLP, but not enough significant. According to the previous results,
we can state that the application of MDLP is relevant at least for epsilon, where the
best accuracy result has been achieved by using Naive Bayes and our discretizer. For
ECBDL14, it is better to use the implicit discretization performed by the decision trees,
since our algorithm is more time-consuming and obtains similar results.

® http://www.cloudera.com/content/cloudera/en/documentation/cdh5/v5-0-0/CDH5-
homepage.html

7 https://github.com/sramirez/SparkFeatureSelection

8 In all tables, the best result by column (best by method) is highlighted in bold.

19

Table 5 Classification time values: with vs. w/o discretiza-
tion (in seconds)

Dataset NB NB-disc DTg DTg-disc DTe DTe-disc

ECBDLI431.06 26.39 347.76 262.09 281.05 264.25
epsilon 572 499 68.83 63.23 7444 39.28

Table 6 shows discretization time values for the two versions of MDLP, namely, se-
quential and distributed. For the sequential version on ECBDL14, the time value was
estimated from small samples of this dataset, since its direct application is unfeasi-
ble. A graphical comparison of these two versions is shown in Figure 3. Comparing
both implementations, we can notice the great advantage of using the distributed ver-
sion against the sequential one. For ECBDL14, our version obtains a speedup ratio
(speedup = sequential /distributed) of 271.86 whereas for epsilon the ratio is equal
to 12.11. This shows that the bigger the dataset, the higher the efficiency improvement;
and, when the data size is large enough, the cluster can distribute fairly the computa-
tional burden across its machines. This is notably the case study of ECBDL14, where
the resolution of this problem was found to be impractical using the original approach.

Table 6 Sequential vs. distributed discretization
time values (in seconds)

Dataset Sequential Distributed Speedup Rate

ECBDLI14 295 508 1087 271.86
epsilon 5764 476 12.11

Conclusion

Discretization, as an important part in DM preprocessing, has raised general
interest in recent years. In this work, we have presented an updated taxon-
omy and description of the most relevant algorithms in this field. The aim of
this taxonomy is to help the researchers to better classify the algorithms that
they use, on the one hand, while also helping to identify possible new future
research lines. At this respect, and although Big Data is currently a trending
topic in science and business, no distributed approach has been developed in
the literature, as we have shown in our taxonomy.

Here, we propose a completely distributed version of the MDLP discretizer with
the aim of demonstrating that standard discretization methods can be paral-
lelized in Big Data platforms, boosting both performance and accuracy. This
version is capable of transforming the iterativity yielded by the original proposal
in a single-step computation through a complete redesign of the original ver-
sion. According to our experiments, our algorithm is capable of performing 270

20

(1]

(2]

epsilon

Sequential

ECBDL14

1 100 10,000 1,000,000

Discretization Time (seconds)

Fig. 3. Discretization time: sequential vs. distributed (logaritmic scale).

times faster than the sequential version, improving the accuracy results in all
used datasets. For future works, we plan to tackle the problem of discretization
in large-scale online problems.

Acknowledgments

This work is supported by the National Research Project TIN2014-57251-P, TIN2012-
37954 and TIN2013-47210-P, and the Andalusian Research Plan P10-TIC-6858, P11-
TIC-7765 and P12-TIC-2958, and by the Xunta de Galicia through the research project
GRC 2014/035 (all projects partially funded by FEDER funds of the European Union).
S. Ramirez-Gallego holds a FPU scholarship from the Spanish Ministry of Education
and Science (FPU13/00047). D. Martinez-Rego and V. Bolén-Canedo acknowledge
support of the Xunta de Galicia under postdoctoral Grant codes POS-A/2013/196 and
EDA481B 2014/164-0.

References

Andrew K. C. Wong and David K. Y. Chiu. Synthesizing statistical knowledge
from incomplete mixed-mode data. /EEE Transactions on Pattern Analysis and
Machine Intelligence, 9:796—-805, 1987.

J.R. Quinlan. Induction of decision trees. In In Shavlik J.W. and Dietterich T.G.,
editors, Readings in Machine Learning. Morgan Kaufmann Publishers, 1990.
Originally published in Machine Learning 1:81-106, 1986.

21

[3] J. Catlett. On changing continuous attributes into ordered discrete attributes. In
European Working Session on Learning (EWSL), volume 482 of Lecture Notes
on Computer Science, pages 164—178. Springer-Verlag, 1991.

[4] Philip A. Chou. Optimal partitioning for classification and regression trees. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13:340-354, 1991.

[5] R. Kerber. Chimerge: Discretization of numeric attributes. In National Con-
ference on Artifical Intelligence American Association for Artificial Intelligence
(AAAl), pages 123—128, 1992.

[6] Usama M. Fayyad and Keki B. Irani. Multi-interval discretization of continuous-
valued attributes for classification learning. In Proceedings of the 13th Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pages 1022—-1029,
1993.

[7] Robert C. Holte. Very simple classification rules perform well on most com-
monly used datasets. Machine Learning, 11:63—90, 1993.

[8] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining asso-
ciation rules. In Proceedings of the 20th Very Large Data Bases conference
(VLDB), pages 487-499, 1994.

[9] John Y. Ching, Andrew K. C. Wong, and Keith C. C. Chan. Class-dependent dis-
cretization for inductive learning from continuous and mixed-mode data. /EEE
Transactions on Pattern Analysis and Machine Intelligence, 17:641—651, 1995.

[10] Bernhard Pfahringer. Compression-based discretization of continuous at-
tributes. In Proceedings of the 12th International Conference on Machine
Learning (ICML), pages 456—463, 1995.

[11] Michal R. Chmielewski and Jerzy W. Grzymala-Busse. Global discretization
of continuous attributes as preprocessing for machine learning. International
Journal of Approximate Reasoning, 15(4):319-331, 1996.

[12] Nir Friedman and Moises Goldszmidt. Discretizing continuous attributes while
learning bayesian networks. In Proceedings of the 13th International Confer-
ence on Machine Learning (ICML), pages 157—165, 1996.

[13] Xindong Wu. A bayesian discretizer for real-valued attributes. The Computer
Journal, 39:688—-691, 1996.

[14] Jesus Cerquides and Ramon Lopez De Mantaras. Proposal and empirical
comparison of a parallelizable distance-based discretization method. In Pro-
ceedings of the Third International Conference on Knowledge Discovery and
Data Mining (KDD), pages 139-142, 1997.

[15] K. M. Ho and Paul D. Scott. Zeta: A global method for discretization of contin-
uous variables. In Proceedings of the Third International Conference on Knowl-
edge Discovery and Data Mining (KDD), pages 191-194, 1997.

[16] Se June Hong. Use of contextual information for feature ranking and dis-
cretization. IEEE Transactions on Knowledge and Data Engineering, 9:718—
730, 1997.

[17] Huan Liu and Rudy Setiono. Feature selection via discretization. IEEE Trans-
actions on Knowledge and Data Engineering, 9:642—645, 1997.

[18] D. A. Zighed, S. Rabaséda, and R. Rakotomalala. FUSINTER: a method for
discretization of continuous attributes. International Journal of Uncertainty,
Fuzziness Knowledge-Based Systems, 6:307-326, 1998.

22

[19] Stephen D. Bay. Multivariate discretization for set mining. Knowledge Informa-
tion Systems, 3:491-512, 2001.

[20] M.A. Beyer and D. Laney. 3d data management: Controlling data volume, ve-
locity and variety, 2001. [Online; accessed March 2015].

[21] C. E. Shannon. A mathematical theory of communication. SIGMOBILE Mob.
Comput. Commun. Rev., 5(1):3-55, January 2001.

[22] R. Giraldez, J.S. Aguilar-Ruiz, J.C. Riquelme, F.J. Ferrer-Troyano, and D.S.
Rodriguez-Baena. Discretization oriented to decision rules generation. In Fron-
tiers in Artificial Intelligence and Applications 82, pages 275-279, 2002.

[23] Huan Liu, Farhad Hussain, Chew Lim Tan, and Manoranjan Dash. Discretiza-
tion: An enabling technique. Data Mining and Knowledge Discovery, 6(4):393—
423, 2002.

[24] F. E. H. Tay and L. Shen. A modified chi2 algorithm for discretization. IEEE
Transactions on Knowledge and Data Engineering, 14:666—670, 2002.

[25] Marc Boulle. Khiops: A statistical discretization method of continuous at-
tributes. Machine Learning, 55:53—69, 2004.

[26] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing
on large clusters. In OSDI 2004, pages 137—-150, 2004.

[27] Lukasz A. Kurgan and Krzysztof J. Cios. CAIM discretization algorithm. IEEE
Transactions on Knowledge and Data Engineering, 16(2):145—-153, 2004.

[28] Xiaoyan Liu and Huaiging Wang. A discretization algorithm based on a het-
erogeneity criterion. IEEE Transactions on Knowledge and Data Engineering,
17:1166—-1173, 2005.

[29] Sameep Mehta, Srinivasan Parthasarathy, and Hui Yang. Toward unsuper-
vised correlation preserving discretization. |EEE Transactions on Knowledge
and Data Engineering, 17:1174-1185, 2005.

[30] Chao-Ton Su and Jyh-Hwa Hsu. An extended chi2 algorithm for discretization
of real value attributes. IEEE Transactions on Knowledge and Data Engineer-
ing, 17:437—-441, 2005.

[31] Wai-Ho Au, Keith C. C. Chan, and Andrew K. C. Wong. A fuzzy approach
to partitioning continuous attributes for classification. /|EEE Transactions on
Knowledge Data Engineering, 18(5):715-719, 2006.

[32] Marc Boullé. MODL: A bayes optimal discretization method for continuous
attributes. Machine Learning, 65(1):131-165, 2006.

[33] Chang-Hwan Lee. A hellinger-based discretization method for numeric at-
tributes in classification learning. Knowledge-Based Systems, 20:419-425,
2007.

[34] QingXiang Wu, David A. Bell, Girijesh Prasad, and Thomas Martin McGinnity.
A distribution-index-based discretizer for decision-making with symbolic ai ap-
proaches. IEEE Transactions on Knowledge and Data Engineering, 19:17-28,
2007.

[35] F. J. Ruiz, C. Angulo, and N. Agell. IDD: A supervised interval Distance-Based
method for discretization. IEEE Transactions on Knowledge and Data Engineer-
ing, 20(9):1230-1238, 2008.

[36] Cheng-Jung Tsai, Chien-I. Lee, and Wei-Pang Yang. A discretization algo-
rithm based on class-attribute contingency coefficient. Information Sciences,
178:714-731, 2008.

23

[37] J. Alcala-Fdez, L. Sanchez, S. Garcia, M. J. del Jesus, S. Ventura, J. M.
Garrell, J. Otero, C. Romero, J. Bacardit, V. M. Rivas, J. C. Fernandez, and
F. Herrera. KEEL: a software tool to assess evolutionary algorithms for data
mining problems. Soft Computing, 13(3):307-318, 2009.

[38] L. Gonzéalez-Abril, F. J. Cuberos, F. Velasco, and J. A. Ortega. Ameva: An au-
tonomous discretization algorithm. Expert Systems with Applications, 36:5327—
5332, 2009.

[39] Hsiao-Wei Hu, Yen-Liang Chen, and Kwei Tang. A dynamic discretization ap-
proach for constructing decision trees with a continuous label. |[EEE Transac-
tions on Knowledge and Data Engineering, 21(11):1505-1514, 2009.

[40] Ruoming Jin, Yuri Breitbart, and Chibuike Muoh. Data discretization unifica-
tion. Knowledge and Information Systems, 19:1-29, 2009.

[41] Ying Yang and Geoffrey I. Webb. Discretization for naive-bayes learning: man-
aging discretization bias and variance. Machine Learning, 74(1):39-74, 2009.

[42] Verdnica Bolon-Canedo, Noelia Sanchez-Marofio, and Amparo Alonso-
Betanzos. On the effectiveness of discretization on gene selection of microar-
ray data. In International Joint Conference on Neural Networks, IJCNN 2010,
Barcelona, Spain, 18-23 July, 2010, pages 1-8, 2010.

[43] Ying Yang, Geoffrey |. Webb, and Xindong Wu. Discretization methods. In
Data Mining and Knowledge Discovery Handbook, pages 101-116. 2010.

[44] V. Bolén-Canedo, N. Sanchez-Marorio, and A. Alonso-Betanzos. Feature se-
lection and classification in multiple class datasets: An application to KDD Cup
99 dataset. Expert Syst. Appl., 38(5):5947-5957, May 2011.

[45] Chih-Chung Chang and Chih-den Lin. LIBSVM: A library for
support vector machines. ACM Transactions on Intelligent Sys-
tems and Technology, 2:27:1-27:27, 2011. Datasets available at

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

[46] M. Li, S. Deng, S. Feng, and J. Fan. An effective discretization based on class-
attribute coherence maximization. Pattern Recognition Letters, 32(15):1962—
1973, 2011.

[47] M. Gethsiyal Augasta and T. Kathirvalavakumar. A new discretization algo-
rithm based on range coefficient of dispersion and skewness for neural net-
works classifier. Applied Soft Computing, 12(2):619-625, 2012.

[48] A. J. Ferreira and M. A. T. Figueiredo. An unsupervised approach to feature
discretization and selection. Pattern Recognition, 45(9):3048-3060, 2012.

[49] Jimmy Lin. Mapreduce is good enough? if all you have is a hammer, throw
away everything that’s not a nail! CoRR, abs/1209.2191, 2012.

[50] Khurram Shehzad. EDISC: A class-tailored discretization technique for rule-
based classification. I|EEE Transactions on Knowledge Data Engineering,
24(8):1435-1447, 2012.

[51] Salvador Garcia, Julian Luengo, José Antonio Saez, Victoria Lépez, and Fran-
cisco Herrera. A survey of discretization techniques: Taxonomy and empirical
analysis in supervised learning. IEEE Transactions on Knowledge and Data
Engineering, 25(4):734-750, 2013.

[52] Murat Kurtcephe and H. Altay Glvenir. A discretization method based on max-
imizing the area under receiver operating characteristic curve. International
Journal of Pattern Recognition and Artificial Intelligence, 27(1), 2013.

24

[53] Alberto Cano, Sebastian Ventura, and Krzysztof J. Cios. Scalable CAIM dis-
cretization on multiple GPUs using concurrent kernels. The Journal of Super-
computing, 69(1):273-292, 2014.

[54] Alberto Fernandez, Sara del Rio, Victoria Lépez, Abdullah Bawakid,
Maria José del JesUs, José Manuel Benitez, and Francisco Herrera. Big data
with cloud computing: an insight on the computing environment, mapreduce,
and programming frameworks. Wiley Interdisc. Rew.: Data Mining and Knowl-
edge Discovery, 4(5):380—409, 2014.

[55] A. J. Ferreira and M. A. T. Figueiredo. Incremental filter and wrapper ap-
proaches for feature discretization. Neurocomputing, 123:60—-74, 2014.

[56] H.-V. Nguyen, E. Mdiller, J. Vreeken, and K. Béhm. Unsupervised interaction-
preserving discretization of multivariate data. Data Mining and Knowledge Dis-
covery, 28(5-6):1366—1397, 2014.

[57] S. Rio, V. Lopez, J.M. Benitez, and F. Herrera. On the use of mapreduce for
imbalanced big data using random forest. Information Sciences, (285):112—
137, 2014.

[58] Y. Sang, H. Qi, K. Li, Y. Jin, D. Yan, and S. Gao. An effective discretization
method for disposing high-dimensional data. Information Sciences, 270:73-91,
2014.

[59] Xindong Wu, Xingquan Zhu, Gong-Qing Wu, and Wei Ding. Data mining with
big data. IEEE Trans. on Knowl. and Data Eng., 26(1):97-107, 2014.

[60] D. Yan, D. Liu, and Y. Sang. A new approach for discretizing continuous at-
tributes in learning systems. Neurocomputing, 133:507-511, 2014.

[61] Yiqun Zhang and Yiu-Ming Cheung. Discretizing numerical attributes in deci-
sion tree for big data analysis. In ICDM Workshops, pages 1150-1157, 2014.

[62] Apache Hadoop Project. Apache Hadoop, 2015. [Online; accessed March
2015].

[63] Apache Mahout Project. Apache Mahout, 2015. [Online; accessed March
2015].

[64] Apache Spark: Lightning-fast cluster computing. Apache spark, 2015. [Online;
accessed March 2015].

[65] Abdullah Gani, Aisha Siddiga, Shahaboddin Shamshirband, and Fariza
Hanum. A survey on indexing techniques for big data: taxonomy and perfor-
mance evaluation. Knowledge and Information Systems, pages 1—44, 2015.

[66] F. Jiang and Y. Sui. A novel approach for discretization of continuous attributes
in rough set theory. Knowledge-Based Systems, 73:324-334, 2015.

[67] Machine Learning Library (MLIib) for Spark. Mllib, 2015. [Online; accessed
March 2015].

[68] R. Moskovitch and Y. Shahar. Classification-driven temporal discretization of
multivariate time series. Data Mining and Knowledge Discovery. In press, DOI:
10.1007/510618-014-0380-z, 2015.

[69] S. Ramirez-Gallego, S. Garcia, J. M. Benitez, and F. Herrera. Multivariate dis-
cretization based on evolutionary cut points selection for classification. IEEE
Transactions on Cybernetics. In press, DOI: 10.1109/TCYB.2015.2410143,
2015.

[70] Richard O. Duda and Peter E. Hart. Pattern classification and scene analysis,
volume 3. Wiley New York, 1973.

25

[71] Salvador Garcia, Julidn Luengo, and Francisco Herrera. Data Preprocessing
in Data Mining. Springer, 2015.

[72] M. Hamstra, H. Karau, M. Zaharia, A. Konwinski, and P. Wendell. Learning
Spark: Lightning-Fast Big Data Analytics. O’Reilly Media, Incorporated, 2015.

[73] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann
Publishers Inc., 1993.

[74] T. White. Hadoop, The Definitive Guide. O’Reilly Media, Inc., 2012.

[75] Xindong Wu and Vipin Kumar, editors. The Top Ten Algorithms in Data Mining.
Chapman & Hall/CRC Data Mining and Knowledge Discovery, 2009.

26

