
European Journal of Operational Research 151 (2003) 247–252

www.elsevier.com/locate/dsw
Preface

Guidelines for the use of meta-heuristics
in combinatorial optimization

Alain Hertz a,*, Marino Widmer b

a �EEcole Polytechnique de Montr�eeal – GERAD, 3000, Chemin de la Côote-Sainte-Catherine, Montr�eeal (QC), Canada H3T 2A7
b Universit�ee de Fribourg – DIUF Faucigny 2, CH-1700 Fribourg, Switzerland
Abstract

The 18th EURO Summer/Winter Institute (ESWI XVIII) took place during the spring 2000 in Switzerland. The

topic of ESWI XVIII, ‘‘Meta-heuristics in Combinatorial Optimization’’, was selected due to its great current scientific

interest: indeed, in recent years, several meta-heuristics have proved to be highly efficient for the solution of difficult

combinatorial optimization problems. The Institute was focused more particularly on the development and the use of

local search and population search algorithms. Applications of these meta-heuristics on academic or real life problems

were also discussed.

This special issue of EJOR contains papers written by the participants to ESWI XVIII. These papers have benefited

from fruitful discussions among the participants, the organizers and the invited speakers. We have tried to summarize

here below some guidelines that should help in the design of successful adaptations of meta-heuristics to difficult

combinatorial optimization problems.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Meta-heuristics; Local search methods; Population search methods
1. Introduction

Combinatorial optimization plays an important

role in decision-making since optimal decisions

often depend on a non-trivial combination of

various factors. Most combinatorial optimization
problems are NP-hard, and sharp bounds on the

optimal value are typically hard to derive. This

means that partial enumeration based exact algo-

rithms have a slow convergence rate, and they can
* Corresponding author.

E-mail addresses: alain.hertz@gerad.ca (A. Hertz), ma-

rino.widmer@unifr.ch (M. Widmer).

0377-2217/$ - see front matter � 2003 Elsevier B.V. All rights reserv

doi:10.016/S0377-2217(02)00823-8
solve only small instances to optimality. But

real-life combinatorial optimization problems are

typically of big size, and since exact approaches

are inadequate, heuristics are commonly used in

practice.

There has been a steady evolution over the past
forty years in the development of heuristics, which

produce solutions of reasonably good quality in a

reasonable amount of time. The first proposed

heuristics tried to systemize decision-making pro-

cesses done by hand. With the help of computers

which can test a huge amount of combinations in

a short amount of time, solutions could easily

be generated which turned to be of much better
quality when compared to what an expert in the
ed.

mail to: alain.hertz@gerad.ca


248 A. Hertz, M. Widmer / European Journal of Operational Research 151 (2003) 247–252
field could produce by hand. In these early heu-

ristics, much of the emphasis was put on quickly

obtaining a feasible solution and possibly applying

to it a post-optimization procedure.

Over the last 15 years much of the research ef-
fort has concentrated on the development of meta-

heuristics, using mainly two principles: local search

and population search. In local search methods, an

intensive exploration of the solution space is per-

formed by moving at each step from the current

solution to another promising solution in its

neighbourhood. Simulated annealing [7], tabu

search [3] and variable neighbourhood search [8]
are the most famous local search methods. Popu-

lation search consists of maintaining a pool of

good solutions and combining them in order to

produce hopefully better solutions. Classical ex-

amples are genetic algorithms [5] and adaptive

memory procedures [9].

Meta-heuristics are general combinatorial op-

timization techniques, which are not dedicated to
the solution of a particular problem, but are rather

designed with the aim of being flexible enough to

handle as many different combinatorial problems

as possible. These general techniques have rapidly

demonstrated their usefulness and efficiency in

solving hard problems. Success stories are reported

in many papers. While meta-heuristics can handle

in theory any combinatorial optimization prob-
lem, it is often the case that an important effort

must be put on finding the right way to adapt the

general ingredients of these methods to the par-

ticular considered problem.

We think that in order to be successful in the

adaptation of a meta-heuristic to a combinatorial

optimization problem, it is necessary to follow

some basic principles. We give in the next sections
some guidelines which may help in producing such

successful adaptations of local search and popu-

lation search methods for the solution of difficult

combinatorial optimization problems.
2. Guidelines for adaptations of local search meth-

ods

Let S be a set of solutions to a particular

problem, and let f be a cost function that mea-
sures the quality of each solution in S. The

neighbourhood NðsÞ of a solution s in S is defined

as the set of solutions which can be obtained from

s by performing simple modifications. Roughly

speaking, a local search algorithm starts off with
an initial solution in S and then continually tries to

find better solutions by searching neighbourhoods.

A local search process can be viewed as a walk in a

directed graph G ¼ ðS;AÞ where the vertex set S is

the set of solutions and there is an arc ðs; s0Þ in A if

and only if s0 is in NðsÞ. By considering the cost

function as an altitude, one gets a topology on

G ¼ ðS;AÞ.
The efficiency of a local search method depends

mostly on the modeling. A fine tuning of param-

eters will never balance a bad definition of the

solution set, of the neighbourhood, or of the cost

function. We give in this section some general

guidelines for successful adaptations of local

search methods.
It should be easy to generate solutions in S (a)
It is not rare that finding a feasible solution to a

combinatorial optimization problem is an NP-

hard problem. In such a case, it would be a very

bad idea to define S as the set of feasible solutions

to the considered problem since getting an initial
solution would be a complex task, and moving

from a solution to a neighbour one would not

be easier. For such problems, the search space S
should be defined by relaxing some constraints of

the original problem, and by adding a component

in the cost function that penalizes violations of

constraints. As an example to this first principle,

consider the course-timetabling problem. The
main constraint in this kind of problem requires

that courses given by the same teacher, or having

students in common do not overlap. It is typically

very difficult to generate timetables that do not

contain any overlapping situation. By relaxing

these constraints, it becomes much easier to pro-

duce timetables and neighbour solutions can easily

be obtained by moving a course to another period,
even if such a move induces many new overlapping

situations [4].



A. Hertz, M. Widmer / European Journal of Operational Research 151 (2003) 247–252 249
For each solution s in S, the graph GðS;AÞ
should contain a path linking s to an optimal so-

lution s� (b)

If the search process visits a solution that does not

satisfy this condition, then an optimal solution will

never be reached. As an illustration, consider the

vehicle routing problem in which a fixed number m
of vehicles with limited capacity are required to

visit customers in order to fulfill known customer

requirements. Assume that a solution is defined as

a set of m routes which satisfy all customer re-
quirements as well as the capacity constraints, and

suppose that a neighbour solution is obtained by

either moving a customer from one route to an-

other, or by permuting two clients from different

routes. Such a choice for S violates condition (a)

since finding a solution in S is equivalent to solving

a bin packing problem. Moreover, this adaptation

can also violate condition (b). Indeed, assume
there are three vehicles which can each transport 4

units of some product, and assume there are four

customers with a demand of 2 units, and four

customers with a demand of 1 unit. If the first

vehicle visits the four customers with a demand of

1 unit, while the two other vehicles both visit two

customers with a demand of 2 units, then no move

can be performed to modify the first route without
violating the capacity constraints. However, the

optimal solution might be one in which the first

two vehicles both visit two customers with a de-

mand of 1 unit and one customer with a demand

of 2 units, while the third vehicle visits two cus-

tomers with a demand of 2 units. Conditions (a)

and (b) can easily be satisfied by relaxing the ca-

pacity constraints [2].
The solutions in NðsÞ should be in some sense

close to s (c)

One could theoretically define NðsÞ as the set

containing all solutions s0 6¼ s in S. Such a neigh-

bourhood induces a complete graph GðS;AÞ in
which condition (b) is trivially satisfied, and it is

possible to move from any initial solution to any

optimal one in one step. However, NðsÞ is so big

that finding such an optimal move is a task which
is as difficult as the original problem. It is impor-

tant to define neighbourhoods NðsÞ in which it is

possible to determine the best solution within a

reasonably small amount of time. This goal can be
achieved by defining NðsÞ as the set of solutions

obtained by performing a simple modification on

s. The neighbourhood NðsÞ of s then contains so-

lutions which are in some sense close to s, and it is

often possible to compute the value of a neighbour

s0 of s by determining the cost difference between s
and s0, instead of re-computing the value of s0 from
scratch. For example, consider again the vehicle
routing problem, and assume that a neighbour

solution s0 of s is obtained by moving a customer C
from a route R1 to a route R2. The cost difference

between s and s0 can easily be obtained by com-

puting the saving induced by the removal of C
from R1, and by computing the cost induced by the

insertion of C into R2. There is an additional ad-

vantage of defining neighbours s0 2 NðsÞ by simple
modifications on s: if a neighbour s0 has a better

cost than s, this may indicate that the arc ðs; s0Þ
belongs to a short path in GðS;AÞ from s to an

optimal solution, and it becomes then possible to

guide the search towards an optimal solution.
The topology induced by the cost function on

GðS;AÞ should not be too flat (d)

As explained above, the cost function can be

considered as an altitude, and it therefore induces

a topology on G ¼ ðS;AÞ with mountains, valleys

and plateaus. It is difficult for a local search to

escape from large plateaus since any solution that

is not in the boarder of such a plateau has the same
cost value as its neighbours, and it is therefore

impossible to guide the search towards an optimal

solution. A common way to avoid this kind of

topology on GðS;AÞ is to add a component to the

cost function which discriminates between solu-

tions having the same value according to the

original cost function. As an example, consider the

job shop scheduling problem where operations
have to be ordered on machines, such that the

maximal completion time of all operations, called

makespan, is minimized. For a solution s, let CkðsÞ
denote the time at which all operations are



250 A. Hertz, M. Widmer / European Journal of Operational Research 151 (2003) 247–252
completed on machine k. Then the cost f ðsÞ of

solution s (i.e., its makespan) is equal to max

fC1ðsÞ;C2ðsÞ; . . . ;CmðsÞg. If two solutions have the

same makespan, then the second largest value in
fC1ðsÞ;C2ðsÞ; . . . ;CmðsÞg can help discriminating

between them. Another possibility is to minimize

C1ðsÞ2 þ C2ðsÞ2 þ � � � þ CmðsÞ2 in order to penalize

solutions having too many machines whose com-

pletion time is close to the makespan [6].
3. Guidelines for adaptations of population search
methods

Population search methods are iterative solu-

tion techniques that handle a population of indi-

viduals and make them evolve according to some

rules that have to be clearly specified. At each it-

eration, periods of self-adaptation alternate with

periods of co-operation. Self-adaptation means
that individuals evolve independently while co-

operation implies an exchange of information

among the individuals. Many different algorithms

can be described within this framework. For ex-

ample, the selection and crossover operators of

genetic algorithms can be seen as co-operation

procedures while the mutation operator is part of

the self-adaptation process.
As for local search methods, the efficiency of a

population search depends mostly on the model-

ing. We give in this section some general guidelines

for successful adaptations of population search

methods.
Pertinent information should be transmitted

during the co-operation phase (e)

In the co-operation phase, groups of individuals

exchange pieces of information and new offspring

solutions are created that should combine the best

features of the parent solutions. This means that

the information that is transmitted during the co-

operation phase should be pertinent. Consider for
example the k-colouring problem where a colour in

f1; . . . ; kg must be assigned to each vertex of a

graph G so that there are as few edges as possible

in G having both endpoints with the same colour,
such edges being called conflicting edges. An off-

spring solution s00 can be created from two parent

solutions s and s0 by colouring some vertices

(chosen at random) as in s, and the others as in s0.
However, such a combination operator typically

produces results of poor quality. Indeed, all col-

ours are equivalent up to a permutation, which

means that the colour of a vertex is not a pertinent

information. A more useful information is the fact

that pairs or subsets of vertices have the same

colour. A solution to the k-coloring problem is in

fact a partition of the vertex set into k subsets,
called colour classes, and the aim is to determine a

partition so that as few edges have both endpoints

in the same colour class. Nowadays, the best

population search algorithms for the k-coloring
problem create offspring solutions by copying

colour classes in parent solutions [1].
The combination of two equivalent parent solu-

tions should not produce an offspring that is dif-

ferent from the parents (f)

Since an offspring solution receives information

from parent solutions, it is reasonable to expect

that the combination of two parent solutions

containing equivalent information produces an
offspring which is also equivalent to its parents. To

illustrate a situation where condition (f) is not

satisfied, consider again the k-coloring problem,

and let G be a graph with four vertices v1, v2, v3, v4
and three edges v1v2, v2v3, and v3v4. Let s be the 2-
coloring of G in which v1 and v3 have colour 1 and

v2 and v4 have colour 2, and let s0 be the 2-coloring
of G obtained from s by permuting colours 1 and
2. Solutions s and s0 can be considered as equiva-

lent since they correspond to the same colouring,

up to a permutation of the two colours. If one now

copies the colours of v1 and v2 in s and those of v3
and v4 in s0, one gets a solution s00 in which vertices

v1 and v4 have colour 1 and vertices v2 and v3 have
colour 2. Solution s00 is totally different from the

two equivalent parent solutions s and s0 since both
s and s0 are optimal solutions (i.e., they have no

conflicting edge), while v2v3 is a conflicting edge in

s00. This example shows once again that it is a bad

idea to create an offspring solution s00 from two



A. Hertz, M. Widmer / European Journal of Operational Research 151 (2003) 247–252 251
parent solutions s and s0 by colouring some verti-

ces (chosen at random) as in s, and the others as

in s0.
Consider now the problem of finding the

smallest integer k for which there exists a k-col-
oring without conflicting edge. One can define a

solution as an ordering of the vertices: each or-

dering p can be transformed into a colouring by

means of a procedure that sequentially colours the

vertices according to the ordering defined by p,
always giving the smallest possible colour (i.e., the

smallest positive integer which is not yet used in
the neighbourhood of the considered vertex). For

example, both orderings s ¼ v1 < v2 < v3 < v4 and
s0 ¼ v3 < v4 < v1 < v2 of the above graph G pro-

duce a 2-coloring in which v1 and v3 have colour 1
and v2 and v4 have colour 2. These two orderings

can therefore be considered as equivalent. An off-

spring can then be created by placing some vertices

in the same position as in one of the parent solu-
tions, and by placing the other vertices according

to the ordering in the second parent solution. For

example, assume that an offspring is created from s
and s0 by copying the positions of v1 and v3 in s.
The offspring is then s00 ¼ v1 < v4 < v3 < v2, which
corresponds to a 3-coloring where vertices v1 and

v4 having colour 1, vertex v3 has colour 2, and

vertex v2 having colour 3. Hence, a 3-coloring is
obtained by combining two equivalent 2-colorings.

Such a situation should definitely be avoided.
Diversity should be preserved in the population

(g)

One of the major difficulties observed when using
population search algorithms is the premature

convergence of the process, all solutions in the

population having a natural tendency to become

equal to the best solution in it. If this occurs, then

the population search behaves more or less like

a local search since there is nothing to gain in

combining equivalent solutions. In order to pre-

vent such a phenomenon, it is important to im-
plement operators that preserve diversity in the

population. The mutation operator in genetic

algorithms is an example of such a tool, but it

usually generates random outputs, which is not
necessarily the best thing to do. A technique that

helps avoiding premature convergence is to forbid

the introduction of a solution in the population if

too many �similar� solutions already exist in it. But
this requires the development of measures of sim-

ilarity that properly detect when there is a danger

of premature convergence.
4. Conclusion

It is not possible to provide a general scheme
for the adaptation of a local search or a popu-

lation search to a combinatorial optimization

problem. We tried in these few pages to give some

guidelines that should help in the design of suc-

cessful adaptations.

This special issue of EJOR contains papers

written by the participants to ESWI XVIII. Each

participant had one hour and a half to describe a
preliminary paper and his research on the use of

meta-heuristics in combinatorial optimisation. The

final version of these papers have benefited from

fruitful discussions which took place between the

participants, the organizers, and the invited

speakers (Martin Gr€ootschel and Manuel Laguna),

as well as from the above guidelines.

As a conclusion, we want to mention that the
fantastic work atmosphere during ESWI XVIII

has given the energy to the participants to create a

new EURO working group called EU/ME (to be

pronounced You and Me): EUropean Chapter on

Meta-heuristics.
References

[1] P. Galinier, J.K. Hao, Hybrid evolutionary algorithms for

graph coloring, Journal of Combinatorial Optimization 3

(1999) 379–397.

[2] M. Gendreau, A. Hertz, G. Laporte, A tabu search heuristic

for the vehicle routing problem, Management Science 40

(1984) 1276–1290.

[3] F. Glover, Future paths for integer programming and links

to artificial intelligence, Computers & Operations Research

13 (1986) 433–549.

[4] A. Hertz, Finding a feasible course schedule using tabu

search, Discrete Applied Mathematics 35 (1992) 255–270.

[5] J.H. Holland, Adaptation in Natural and Artificial Systems,

University of Michigan Press, Ann Arbor, MI, 1975.



252 A. Hertz, M. Widmer / European Journal of Operational Research 151 (2003) 247–252
[6] A. Hertz, M. Widmer, An improved tabu search approach

for solving the job shop scheduling problem with tooling

constraints, Discrete Applied Mathematics 65 (1996) 319–

346.

[7] S. Kirkpatrick, C.D. Gellatt Jr., M.P. Vecchi, Optimization

by simulated annealing, Science 220 (1983) 671–680.
[8] N. Mladenovic, P. Hansen, Variable neighbourhood

search, Computers & Operations Research 34 (1997) 1097–

1100.

[9] Y. Rochat, E.D. Taillard, Probabilistic diversification and

intensification in local search for vehicle routing, Journal of

Heuristics 1 (1995) 147–167.


	Guidelines for the use of meta-heuristics in combinatorial optimization
	Introduction
	Guidelines for adaptations of local search methods
	Guidelines for adaptations of population search methods
	Conclusion
	References


