
Metaheuristics in Combinatorial Optimization: Overview
and Conceptual Comparison

CHRISTIAN BLUM

Université Libre de Bruxelles

AND

ANDREA ROLI

Università degli Studi di Bologna

The field of metaheuristics for the application to combinatorial optimization problems is
a rapidly growing field of research. This is due to the importance of combinatorial
optimization problems for the scientific as well as the industrial world. We give a survey
of the nowadays most important metaheuristics from a conceptual point of view. We
outline the different components and concepts that are used in the different
metaheuristics in order to analyze their similarities and differences. Two very
important concepts in metaheuristics are intensification and diversification. These are
the two forces that largely determine the behavior of a metaheuristic. They are in some
way contrary but also complementary to each other. We introduce a framework, that we
call the I&D frame, in order to put different intensification and diversification
components into relation with each other. Outlining the advantages and disadvantages
of different metaheuristic approaches we conclude by pointing out the importance of
hybridization of metaheuristics as well as the integration of metaheuristics and other
methods for optimization.

Categories and Subject Descriptors: G.2.1 [Discrete Mathematics]: Combinatorics—
combinatorial algorithms; I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—heuristic methods

General Terms: Algorithms

Additional Key Words and Phrases: Metaheuristics, combinatorial optimization,
intensification, diversification.

C. Blum acknowledges support by the “Metaheuristics Network,” a Research Training Network funded by
the Improving Human Potential program of the CEC, contract HPRN-CT-1999-00106.
A. Roli acknowledges support by the CEC through a “Marie Curie Training Site” fellowship, contract HPMT-
CT-2000-00032.
The information provided is the sole responsibility of the authors and does not reflect the Community’s opin-
ion. The Community is not responsible for any use that might be made of data appearing in this publication.
Authors’ addresses: C. Blum, Université Libre de Bruxelles, IRIDIA, Avenue Franklin Roosevelt 50, CP
194/6, 1050 Brussels, Belgium; email: cblum@ulb.ac.be; A. Roli, DEIA—Università degli Studi di Bologna,
Viale Risorgimento, 2-Bologna, Italy; email: aroli@deis.unibo.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage and
that copies show this notice on the first page or initial screen of a display along with the full citation. Copy-
rights for components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or
permissions@acm.org.
c©2003 ACM 0360-0300/03/0900-0268 $5.00

ACM Computing Surveys, Vol. 35, No. 3, September 2003, pp. 268–308.

Metaheuristics in Combinatorial Optimization 269

1. INTRODUCTION

Many optimization problems of practical
as well as theoretical importance con-
sist of the search for a “best” configu-
ration of a set of variables to achieve
some goals. They seem to divide naturally
into two categories: those where solutions
are encoded with real-valued variables,
and those where solutions are encoded
with discrete variables. Among the lat-
ter ones we find a class of problems
called Combinatorial Optimization (CO)
problems. According to Papadimitriou and
Steiglitz [1982], in CO problems, we are
looking for an object from a finite—or pos-
sibly countably infinite—set. This object
is typically an integer number, a subset, a
permutation, or a graph structure.

Definition 1.1. A Combinatorial Opti-
mization problem P = (S, f) can be de-
fined by:

—a set of variables X = {x1, . . . , xn};
—variable domains D1, . . . , Dn;
—constraints among variables;
—an objective function f to be minimi-

zed,1 where f : D1 × · · · × Dn→ IR+;

The set of all possible feasible assignments
is

S = {s = {(x1, v1), . . . , (xn, vn)} | vi ∈ Di, s
satisfies all the constraints}.

S is usually called a search (or solution)
space, as each element of the set can be
seen as a candidate solution. To solve a
combinatorial optimization problem one
has to find a solution s∗ ∈ S with minimum
objective function value, that is, f (s∗) ≤
f (s) ∀s∈ S. s∗ is called a globally optimal
solution of (S, f) and the set S∗ ⊆ S is
called the set of globally optimal solutions.

Examples for CO problems are the
Travelling Salesman problem (TSP), the
Quadratic Assignment problem (QAP),
Timetabling and Scheduling problems.
Due to the practical importance of CO

1As maximizing an objective function f is the same
as minimizing− f , in this work we will deal, without
loss of generality, with minimization problems.

problems, many algorithms to tackle them
have been developed. These algorithms
can be classified as either complete or
approximate algorithms. Complete algo-
rithms are guaranteed to find for every
finite size instance of a CO problem an
optimal solution in bounded time (see
Papadimitriou and Steiglitz [1982] and
Nemhauser and Wolsey [1988]). Yet, for
CO problems that are NP-hard [Garey
and Johnson 1979], no polynomial time
algorithm exists, assuming that P 6=NP.
Therefore, complete methods might need
exponential computation time in the
worst-case. This often leads to computa-
tion times too high for practical purposes.
Thus, the use of approximate methods to
solve CO problems has received more and
more attention in the last 30 years. In ap-
proximate methods we sacrifice the guar-
antee of finding optimal solutions for the
sake of getting good solutions in a signifi-
cantly reduced amount of time.

Among the basic approximate meth-
ods we usually distinguish between con-
structive methods and local search meth-
ods. Constructive algorithms generate
solutions from scratch by adding—to
an initially empty partial solution—
components, until a solution is complete.
They are typically the fastest approximate
methods, yet they often return solutions
of inferior quality when compared to lo-
cal search algorithms. Local search algo-
rithms start from some initial solution and
iteratively try to replace the current solu-
tion by a better solution in an appropri-
ately defined neighborhood of the current
solution, where the neighborhood is for-
mally defined as follows:

Definition 1.2. A neighborhood struc-
ture is a function N : S → 2S that assigns
to every s ∈ S a set of neighbors N (s) ⊆ S.
N (s) is called the neighborhood of s.

The introduction of a neighborhood
structure enables us to define the concept
of locally minimal solutions.

Definition 1.3. A locally minimal so-
lution (or local minimum) with respect to
a neighborhood structure N is a solution
ŝ such that ∀ s ∈ N (ŝ) : f (ŝ) ≤ f (s). We

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

270 C. Blum and A. Roli

call ŝ a strict locally minimal solution if
f (ŝ)< f (s) ∀ s∈N (ŝ).

In the last 20 years, a new kind
of approximate algorithm has emerged
which basically tries to combine basic
heuristic methods in higher level frame-
works aimed at efficiently and effec-
tively exploring a search space. These
methods are nowadays commonly called
metaheuristics.2 The term metaheuristic,
first introduced in Glover [1986], derives
from the composition of two Greek words.
Heuristic derives from the verb heuriskein
(ευρισκειν) which means “to find”, while
the suffix meta means “beyond, in an up-
per level”. Before this term was widely
adopted, metaheuristics were often called
modern heuristics [Reeves 1993].

This class of algorithms includes3—but
is not restricted to—Ant Colony Opti-
mization (ACO), Evolutionary Computa-
tion (EC) including Genetic Algorithms
(GA), Iterated Local Search (ILS), Sim-
ulated Annealing (SA), and Tabu Search
(TS). Up to now there is no commonly ac-
cepted definition for the term metaheuris-
tic. It is just in the last few years that some
researchers in the field tried to propose a
definition. In the following we quote some
of them:

“A metaheuristic is formally defined
as an iterative generation process which
guides a subordinate heuristic by combin-
ing intelligently different concepts for ex-
ploring and exploiting the search space,
learning strategies are used to struc-
ture information in order to find effici-
ently near-optimal solutions.” [Osman and
Laporte 1996].

“A metaheuristic is an iterative master
process that guides and modifies the op-
erations of subordinate heuristics to effi-
ciently produce high-quality solutions. It
may manipulate a complete (or incom-
plete) single solution or a collection of so-
lutions at each iteration. The subordinate

2The increasing importance of metaheuristics is un-
derlined by the biannual Metaheuristics Interna-
tional Conference (MIC). The 5th is being held in
Kyoto in August 2003 (http://www-or.amp.i.kyoto-
u.ac.jp/mic2003/).
3In alphabetical order.

heuristics may be high (or low) level pro-
cedures, or a simple local search, or just a
construction method.” [Voß et al. 1999].

“Metaheuristics are typically high-level
strategies which guide an underlying,
more problem specific heuristic, to in-
crease their performance. The main goal
is to avoid the disadvantages of iterative
improvement and, in particular, multiple
descent by allowing the local search to es-
cape from local optima. This is achieved by
either allowing worsening moves or gener-
ating new starting solutions for the local
search in a more “intelligent” way than
just providing random initial solutions.
Many of the methods can be interpreted
as introducing a bias such that high qual-
ity solutions are produced quickly. This
bias can be of various forms and can be
cast as descent bias (based on the ob-
jective function), memory bias (based on
previously made decisions) or experience
bias (based on prior performance). Many
of the metaheuristic approaches rely on
probabilistic decisions made during the
search. But, the main difference to pure
random search is that in metaheuris-
tic algorithms randomness is not used
blindly but in an intelligent, biased form.”
[Stützle 1999b].

“A metaheuristic is a set of concepts that
can be used to define heuristic methods
that can be applied to a wide set of dif-
ferent problems. In other words, a meta-
heuristic can be seen as a general algo-
rithmic framework which can be applied to
different optimization problems with rel-
atively few modifications to make them
adapted to a specific problem.” [Meta-
heuristics Network Website 2000].

Summarizing, we outline fundamen-
tal properties which characterize meta-
heuristics:

—Metaheuristics are strategies that
“guide” the search process.

—The goal is to efficiently explore the
search space in order to find (near-)
optimal solutions.

—Techniques which constitute meta-
heuristic algorithms range from sim-
ple local search procedures to complex
learning processes.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Metaheuristics in Combinatorial Optimization 271

—Metaheuristic algorithms are approxi-
mate and usually non-deterministic.

—They may incorporate mechanisms to
avoid getting trapped in confined areas
of the search space.

—The basic concepts of metaheuristics
permit an abstract level description.

—Metaheuristics are not problem-specific.
—Metaheuristics may make use of

domain-specific knowledge in the form
of heuristics that are controlled by the
upper level strategy.

—Todays more advanced metaheuristics
use search experience (embodied in
some form of memory) to guide the
search.

In short, we could say that metaheuris-
tics are high level strategies for explor-
ing search spaces by using different meth-
ods. Of great importance hereby is that a
dynamic balance is given between diversi-
fication and intensification. The term di-
versification generally refers to the explo-
ration of the search space, whereas the
term intensification refers to the exploita-
tion of the accumulated search experience.
These terms stem from the Tabu Search
field [Glover and Laguna 1997] and it is
important to clarify that the terms ex-
ploration and exploitation are sometimes
used instead, for example in the Evo-
lutionary Computation field [Eiben and
Schippers 1998], with a more restricted
meaning. In fact, the notions of exploita-
tion and exploration often refer to rather
short-term strategies tied to randomness,
whereas intensification and diversifica-
tion also refer to medium- and long-term
strategies based on the usage of mem-
ory. The use of the terms diversification
and intensification in their initial mean-
ing becomes more and more accepted by
the whole field of metaheuristics. There-
fore, we use them throughout the article.
The balance between diversification and
intensification as mentioned above is im-
portant, on one side to quickly identify re-
gions in the search space with high qual-
ity solutions and on the other side not
to waste too much time in regions of the
search space which are either already ex-

plored or which do not provide high quality
solutions.

The search strategies of different meta-
heuristics are highly dependent on the
philosophy of the metaheuristic itself.
Comparing the strategies used in differ-
ent metaheuristics is one of the goals
of Section 5. There are several differ-
ent philosophies apparent in the existing
metaheuristics. Some of them can be seen
as “intelligent” extensions of local search
algorithms. The goal of this kind of meta-
heuristic is to escape from local minima
in order to proceed in the exploration of
the search space and to move on to find
other hopefully better local minima. This
is for example the case in Tabu Search,
Iterated Local Search, Variable Neighbor-
hood Search, GRASP and Simulated An-
nealing. These metaheuristics (also called
trajectory methods) work on one or sev-
eral neighborhood structure(s) imposed on
the members (the solutions) of the search
space.

We can find a different philosophy in
algorithms like Ant Colony Optimization
and Evolutionary Computation. They in-
corporate a learning component in the
sense that they implicitly or explicitly
try to learn correlations between deci-
sion variables to identify high quality ar-
eas in the search space. This kind of
metaheuristic performs, in a sense, a bi-
ased sampling of the search space. For in-
stance, in Evolutionary Computation this
is achieved by recombination of solutions
and in Ant Colony Optimization by sam-
pling the search space in every iteration
according to a probability distribution.

The structure of this work is as follows:
There are several approaches to classify
metaheuristics according to their proper-
ties. In Section 2, we briefly list and sum-
marize different classification approaches.
Section 3 and Section 4 are devoted to a
description of the most important meta-
heuristics nowadays. Section 3 describes
the most relevant trajectory methods and,
in Section 4, we outline population-based
methods. Section 5 aims at giving a unify-
ing view on metaheuristics with respect
to the way they achieve intensification
and diversification. This is done by the

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

272 C. Blum and A. Roli

introduction of a unifying framework, the
I&D frame. Finally, Section 6 offers some
conclusions and an outlook to the future.

We believe that it is hardly possible to
produce a completely accurate survey of
metaheuristics that is doing justice to ev-
ery viewpoint. Moreover, a survey of an
immense area such as metaheuristics has
to focus on certain aspects and therefore
has unfortunately to neglect other aspects.
Therefore, we want to clarify at this point
that this survey is done from the concep-
tual point of view. We want to outline the
different concepts that are used in differ-
ent metaheuristics in order to analyze the
similarities and the differences between
them. We do not go into the implementa-
tion of metaheuristics, which is certainly
an important aspect of metaheuristics
research with respect to the increas-
ing importance of efficiency and software
reusability. We refer the interested reader
to Whitley [1989], Grefenstette [1990],
Fink and Voß [1999], Schaerf et al. [2000],
and Voß and Woodruff [2002].

2. CLASSIFICATION OF METAHEURISTICS

There are different ways to classify and
describe metaheuristic algorithms. De-
pending on the characteristics selected
to differentiate among them, several
classifications are possible, each of them
being the result of a specific viewpoint.
We briefly summarize the most important
ways of classifying metaheuristics.

Nature-inspired vs. non-nature in-
spired. Perhaps, the most intuitive way
of classifying metaheuristics is based on
the origins of the algorithm. There are
nature-inspired algorithms, like Genetic
Algorithms and Ant Algorithms, and
non nature-inspired ones such as Tabu
Search and Iterated Local Search. In
our opinion this classification is not very
meaningful for the following two reasons.
First, many recent hybrid algorithms do
not fit either class (or, in a sense, they
fit both at the same time). Second, it is
sometimes difficult to clearly attribute an
algorithm to one of the two classes. So,
for example, one might ask the question if

the use of memory in Tabu Search is not
nature-inspired as well.

Population-based vs. single point search.
Another characteristic that can be used
for the classification of metaheuristics is
the number of solutions used at the same
time: Does the algorithm work on a popu-
lation or on a single solution at any time?
Algorithms working on single solutions
are called trajectory methods and encom-
pass local search-based metaheuristics,
like Tabu Search, Iterated Local Search
and Variable Neighborhood Search. They
all share the property of describing a tra-
jectory in the search space during the
search process. Population-based meta-
heuristics, on the contrary, perform search
processes which describe the evolution of
a set of points in the search space.

Dynamic vs. static objective function.
Metaheuristics can also be classified ac-
cording to the way they make use of the
objective function. While some algorithms
keep the objective function given in the
problem representation “as it is”, some
others, like Guided Local Search (GLS),
modify it during the search. The idea be-
hind this approach is to escape from lo-
cal minima by modifying the search land-
scape. Accordingly, during the search the
objective function is altered by trying to in-
corporate information collected during the
search process.

One vs. various neighborhood structures.
Most metaheuristic algorithms work on
one single neighborhood structure. In
other words, the fitness landscape topol-
ogy does not change in the course of the
algorithm. Other metaheuristics, such as
Variable Neighborhood Search (VNS), use
a set of neighborhood structures which
gives the possibility to diversify the search
by swapping between different fitness
landscapes.

Memory usage vs. memory-less methods.
A very important feature to classify meta-
heuristics is the use they make of the
search history, that is, whether they use
memory or not.4 Memory-less algorithms

4Here we refer to the use of adaptive memory, in con-
trast to rather rigid memory, as used for instance in
Branch & Bound.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Metaheuristics in Combinatorial Optimization 273

perform a Markov process, as the infor-
mation they exclusively use to determine
the next action is the current state of the
search process. There are several different
ways of making use of memory. Usually we
differentiate between the use of short term
and long term memory. The first usually
keeps track of recently performed moves,
visited solutions or, in general, decisions
taken. The second is usually an accumu-
lation of synthetic parameters about the
search. The use of memory is nowadays
recognized as one of the fundamental ele-
ments of a powerful metaheuristic.

In the following, we describe the most
important metaheuristics according to
the single point vs. population-based
search classification, which divides meta-
heuristics into trajectory methods and
population-based methods. This choice is
motivated by the fact that this categoriza-
tion permits a clearer description of the al-
gorithms. Moreover, a current trend is the
hybridization of methods in the direction
of the integration of single point search al-
gorithms in population-based ones. In the
following two sections, we give a detailed
description of nowadays most important
metaheuristics.

3. TRAJECTORY METHODS

In this section we outline metaheuristics
called trajectory methods. The term trajec-
tory methods is used because the search
process performed by these methods is
characterized by a trajectory in the search
space. Hereby, a successor solution may or
may not belong to the neighborhood of the
current solution.

The search process of trajectory meth-
ods can be seen as the evolution in (dis-
crete) time of a discrete dynamical sys-
tem [Bar-Yam 1997; Devaney 1989]. The
algorithm starts from an initial state (the
initial solution) and describes a trajectory
in the state space. The system dynamics
depends on the strategy used; simple al-
gorithms generate a trajectory composed
of two parts: a transient phase followed
by an attractor (a fixed point, a cycle or
a complex attractor). Algorithms with ad-
vanced strategies generate more complex

s← GenerateInitialSolution()
repeat

s← Improve(N (s))
until no improvement is possible

Fig. 1 . Algorithm: Iterative
Improvement.

trajectories which can not be subdivided
in those two phases. The characteristics of
the trajectory provide information about
the behavior of the algorithm and its effec-
tiveness with respect to the instance that
is tackled. It is worth underlining that
the dynamics is the result of the combina-
tion of algorithm, problem representation
and problem instance. In fact, the problem
representation together with the neigh-
borhood structures define the search land-
scape; the algorithm describes the strat-
egy used to explore the landscape and,
finally, the actual search space character-
istics are defined by the problem instance
to be solved.

We will first describe basic local search
algorithms, before we proceed with the
survey of more complex strategies. Fi-
nally, we deal with algorithms that are
general explorative strategies which may
incorporate other trajectory methods as
components.

3.1. Basic Local Search: Iterative
Improvement

The basic local search is usually called it-
erative improvement, since each move5 is
only performed if the resulting solution is
better than the current solution. The algo-
rithm stops as soon as it finds a local mini-
mum. The high level algorithm is sketched
in Figure 1.

The function Improve(N (s)) can be in the
extremes either a first improvement, or
a best improvement function, or any in-
termediate option. The former scans the
neighborhood N (s) and chooses the first
solution that is better than s, the latter ex-
haustively explores the neighborhood and
returns one of the solutions with the low-
est objective function value. Both methods

5A move is the choice of a solution s′ from the neigh-
borhood N (s) of a solution s.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

274 C. Blum and A. Roli

s← GenerateInitialSolution()
T ← T0

while termination conditions not met do
s′ ← PickAtRandom(N (s))
if (f (s′) < f (s)) then

s← s′ % s′ replaces s
else

Accept s′ as new solution with probability p(T, s′, s)
endif
Update(T)

endwhile

Fig. 2 . Algorithm: Simulated Annealing (SA).

stop at local minima. Therefore, their per-
formance strongly depends on the defini-
tion of S, f and N . The performance of
iterative improvement procedures on CO
problems is usually quite unsatisfactory.
Therefore, several techniques have been
developed to prevent algorithms from get-
ting trapped in local minima, which is
done by adding mechanisms that allow
them to escape from local minima. This
also implies that the termination con-
ditions of metaheuristic algorithms are
more complex than simply reaching a lo-
cal minimum. Indeed, possible termina-
tion conditions include: maximum CPU
time, a maximum number of iterations,
a solution s with f (s) less than a prede-
fined threshold value is found, or the max-
imum number of iterations without im-
provements is reached.

3.2. Simulated Annealing

Simulated Annealing (SA) is commonly
said to be the oldest among the meta-
heuristics and surely one of the first al-
gorithms that had an explicit strategy to
escape from local minima. The origins of
the algorithm are in statistical mechan-
ics (Metropolis algorithm) and it was first
presented as a search algorithm for CO
problems in Kirkpatrick et al. [1983] and
Cerny [1985]. The fundamental idea is to
allow moves resulting in solutions of worse
quality than the current solution (uphill
moves) in order to escape from local min-
ima. The probability of doing such a move
is decreased during the search. The high
level algorithm is described in Figure 2.

The algorithm starts by generating an
initial solution (either randomly or heuris-

tically constructed) and by initializing the
so-called temperature parameter T . Then,
at each iteration a solution s′ ∈ N (s) is ran-
domly sampled and it is accepted as new
current solution depending on f (s), f (s′)
and T . s′ replaces s if f (s′)< f (s) or, in case
f (s′) ≥ f (s), with a probability which is a
function of T and f (s′)− f (s). The proba-
bility is generally computed following the
Boltzmann distribution exp(− f (s′)− f (s)

T).
The temperature T is decreased6 during

the search process, thus at the beginning
of the search the probability of accepting
uphill moves is high and it gradually de-
creases, converging to a simple iterative
improvement algorithm. This process is
analogous to the annealing process of met-
als and glass, which assume a low en-
ergy configuration when cooled with an
appropriate cooling schedule. Regarding
the search process, this means that the
algorithm is the result of two combined
strategies: random walk and iterative im-
provement. In the first phase of the search,
the bias toward improvements is low and
it permits the exploration of the search
space; this erratic component is slowly de-
creased thus leading the search to con-
verge to a (local) minimum. The probabil-
ity of accepting uphill moves is controlled
by two factors: the difference of the ob-
jective functions and the temperature. On
the one hand, at fixed temperature, the
higher the difference f (s′)− f (s), the lower
the probability to accept a move from s to
s′. On the other hand, the higher T , the
higher the probability of uphill moves.

The choice of an appropriate cooling
schedule is crucial for the performance of
the algorithm. The cooling schedule de-
fines the value of T at each iteration k,
Tk+1= Q(Tk , k), where Q(Tk , k) is a func-
tion of the temperature and of the itera-
tion number. Theoretical results on non-
homogeneous Markov chains [Aarts et al.
1997] state that under particular condi-
tions on the cooling schedule, the algo-
rithm converges in probability to a global

6T is not necessarily decreased in a monotonic fash-
ion. Elaborate cooling schemes also incorporate an
occasional increase of the temperature.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Metaheuristics in Combinatorial Optimization 275

minimum for k→∞. More precisely:

∃0 ∈ IR such that
lim

k→∞
p(global minimum found after

k steps) = 1

iff
∞∑

k=1

exp
(
0

Tk

)
= ∞

A particular cooling schedule that fulfils
the hypothesis for the convergence is the
one that follows a logarithmic law: Tk+1 =

0
log(k+k0) (where k0 is a constant). Unfortu-
nately, cooling schedules which guarantee
the convergence to a global optimum are
not feasible in applications, because they
are too slow for practical purposes. There-
fore, faster cooling schedules are adopted
in applications. One of the most used fol-
lows a geometric law: Tk+1 = αTk , where
α ∈ (0, 1), which corresponds to an expo-
nential decay of the temperature.

The cooling rule may vary during the
search, with the aim of tuning the bal-
ance between diversification and intensi-
fication. For example, at the beginning of
the search, T might be constant or lin-
early decreasing, in order to sample the
search space; then, T might follow a rule
such as the geometric one, to converge to
a local minimum at the end of the search.
More successful variants are nonmono-
tonic cooling schedules (e.g., see Osman
[1993] and Lundy and Mees [1986]). Non-
monotonic cooling schedules are charac-
terized by alternating phases of cooling
and reheating, thus providing an oscillat-
ing balance between diversification and
intensification.

The cooling schedule and the initial tem-
perature should be adapted to the partic-
ular problem instance, since the cost of
escaping from local minima depends on
the structure of the search landscape. A
simple way of empirically determining the
starting temperature T0 is to initially sam-
ple the search space with a random walk
to roughly evaluate the average and the
variance of objective function values. But
also more elaborate schemes can be imple-
mented [Ingber 1996].

The dynamic process described by SA is
a Markov chain [Feller 1968], as it follows

s← GenerateInitialSolution()
TabuList← ∅
while termination conditions not met do

s← ChooseBestOf(N (s) \ TabuList)
Update(TabuList)

endwhile

Fig. 3 . Algorithm: Simple Tabu Search (TS).

a trajectory in the state space in which
the successor state is chosen depending
only on the incumbent one. This means
that basic SA is memory-less. However,
the use of memory can be beneficial for
SA approaches (see, e.g., Chardaire et al.
[1995]).

SA has been applied to several CO prob-
lems, such as the Quadratic Assignment
Problem (QAP) [Connolly 1990] and the
Job Shop Scheduling (JSS) problem [Van
Laarhoven et al. 1992]. References to
other applications can be found in Aarts
and Lenstra [1997], Ingber [1996] and
Fleischer [1995]. SA is nowadays used as a
component in metaheuristics, rather than
applied as stand-alone search algorithm.
Variants of SA called Threshold Accept-
ing and The Great Deluge Algorithm were
presented by Dueck and Scheuer [1990]
and Dueck [1993].

3.3. Tabu Search

Tabu Search (TS) is among the most cited
and used metaheuristics for CO prob-
lems. TS basic ideas were first introduced
in Glover [1986], based on earlier ideas for-
mulated in Glover [1977].7 A description of
the method and its concepts can be found
in Glover and Laguna [1997]. TS explicitly
uses the history of the search, both to es-
cape from local minima and to implement
an explorative strategy. We will first de-
scribe a simple version of TS, to introduce
the basic concepts. Then, we will explain a
more applicable algorithm and finally we
will discuss some improvements.

The simple TS algorithm (see Figure 3)
applies a best improvement local search
as basic ingredient and uses a short term
memory to escape from local minima and

7Related ideas were labelled steepest ascent/mildest
descent method in Hansen [1986].

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

276 C. Blum and A. Roli

to avoid cycles. The short term memory
is implemented as a tabu list that keeps
track of the most recently visited solu-
tions and forbids moves toward them. The
neighborhood of the current solution is
thus restricted to the solutions that do not
belong to the tabu list. In the following
we will refer to this set as allowed set.
At each iteration the best solution from
the allowed set is chosen as the new cur-
rent solution. Additionally, this solution is
added to the tabu list and one of the so-
lutions that were already in the tabu list
is removed (usually in a FIFO order). Due
to this dynamic restriction of allowed so-
lutions in a neighborhood, TS can be con-
sidered as a dynamic neighborhood search
technique [Stützle 1999b]. The algorithm
stops when a termination condition is met.
It might also terminate if the allowed set
is empty, that is, if all the solutions inN (s)
are forbidden by the tabu list.8

The use of a tabu list prevents from
returning to recently visited solutions,
therefore it prevents from endless cycling9

and forces the search to accept even up-
hill moves. The length l of the tabu list
(i.e., the tabu tenure) controls the mem-
ory of the search process. With small tabu
tenures the search will concentrate on
small areas of the search space. On the
opposite, a large tabu tenure forces the
search process to explore larger regions,
because it forbids revisiting a higher num-
ber of solutions. The tabu tenure can be
varied during the search, leading to more
robust algorithms. An example can be
found in Taillard [1991], where the tabu
tenure is periodically reinitialized at ran-
dom from the interval [lmin, lmax]. A more
advanced use of a dynamic tabu tenure is
presented in Battiti and Tecchiolli [1994]
and Battiti and Protasi [1997], where
the tabu tenure is increased if there
is evidence for repetitions of solutions
(thus a higher diversification is needed),

8Strategies for avoiding to stop the search when the
allowed set is empty include the choice of the least
recently visited solution, even if it is tabu.
9Cycles of higher period are possible, since the tabu
list has a finite length l which is smaller than the
cardinality of the search space.

while it is decreased if there are no im-
provements (thus intensification should
be boosted). More advanced ways to cre-
ate dynamic tabu tenure are described
in Glover [1990].

However, the implementation of short
term memory as a list that contains com-
plete solutions is not practical, because
managing a list of solutions is highly in-
efficient. Therefore, instead of the solu-
tions themselves, solution attributes are
stored.10 Attributes are usually compo-
nents of solutions, moves, or differences
between two solutions. Since more than
one attribute can be considered, a tabu
list is introduced for each of them. The set
of attributes and the corresponding tabu
lists define the tabu conditions which are
used to filter the neighborhood of a solu-
tion and generate the allowed set. Storing
attributes instead of complete solutions is
much more efficient, but it introduces a
loss of information, as forbidding an at-
tribute means assigning the tabu status to
probably more than one solution. Thus, it
is possible that unvisited solutions of good
quality are excluded from the allowed set.
To overcome this problem, aspiration cri-
teria are defined which allow to include a
solution in the allowed set even if it is for-
bidden by tabu conditions. Aspiration cri-
teria define the aspiration conditions that
are used to construct the allowed set. The
most commonly used aspiration criterion
selects solutions which are better than the
current best one. The complete algorithm,
as described above, is reported in Figure 4.

Tabu lists are only one of the possible
ways of taking advantage of the history
of the search. They are usually identi-
fied with the usage of short term memory.
Information collected during the whole
search process can also be very useful,
especially for a strategic guidance of the
algorithm. This kind of long-term mem-
ory is usually added to TS by referring to
four principles: recency, frequency, quality
and influence. Recency-based memory
records for each solution (or attribute)

10In addition to storing attributes, some longer term
TS strategies also keep complete solutions (e.g., elite
solutions) in the memory.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Metaheuristics in Combinatorial Optimization 277

s← GenerateInitialSolution()
InitializeTabuLists(TL1, . . . , TLr)
k← 0
while termination conditions not met do

AllowedSet(s, k)← {s′ ∈ N (s) | s does not violate a tabu condition,
or it satisfies at least one aspiration condition}

s← ChooseBestOf(AllowedSet(s, k))
UpdateTabuListsAndAspirationConditions()
k← k + 1

endwhile

Fig. 4 . Algorithm: Tabu Search (TS).

while termination conditions not met do
s← ConstructGreedyRandomizedSolution() % see Figure 6
ApplyLocalSearch(s)
MemorizeBestFoundSolution()

endwhile

Fig. 5 . Algorithm: Greedy Randomized Adaptive Search Procedure (GRASP).

the most recent iteration it was involved
in. Orthogonally, frequency-based mem-
ory keeps track of how many times each
solution (attribute) has been visited. This
information identifies the regions (or the
subsets) of the solution space where the
search was confined, or where it stayed for
a high number of iterations. This kind of
information about the past is usually ex-
ploited to diversify the search. The third
principle (i.e., quality) refers to the ac-
cumulation and extraction of information
from the search history in order to identify
good solution components. This informa-
tion can be usefully integrated in the so-
lution construction. Other metaheuristics
(e.g., Ant Colony Optimization) explicitly
use this principle to learn about good com-
binations of solution components. Finally,
influence is a property regarding choices
made during the search and can be used
to indicate which choices have shown to be
the most critical. In general, the TS field is
a rich source of ideas. Many of these ideas
and strategies have been and are currently
adopted by other metaheuristics.

TS has been applied to most CO prob-
lems; examples for successful applica-
tions are the Robust Tabu Search to the
QAP [Taillard 1991], the Reactive Tabu
Search to the MAXSAT problem [Battiti
and Protasi 1997], and to assignment
problems [Dell’Amico et al. 1999]. TS ap-

proaches dominate the Job Shop Schedu-
ling (JSS) problem area (see, e.g., Nowicki
and Smutnicki [1996]) and the Vehicle
Routing (VR) area [Gendreau et al. 2001].
Further current applications can be found
at [Tabu Search website 2003].

3.4. Explorative Local Search Methods

In this section, we present more recently
proposed trajectory methods. These are
the Greedy Randomized Adaptive Search
Procedure (GRASP), Variable Neighbor-
hood Search (VNS), Guided Local Search
(GLS) and Iterated Local Search (ILS).

3.4.1. GRASP. The Greedy Randomized
Adaptive Search Procedure (GRASP), see
Feo and Resende [1995] and Pitsoulis and
Resende [2002], is a simple metaheuristic
that combines constructive heuristics and
local search. Its structure is sketched in
Figure 5. GRASP is an iterative procedure,
composed of two phases: solution construc-
tion and solution improvement. The best
found solution is returned upon termina-
tion of the search process.

The solution construction mechanism
(see Figure 6) is characterized by two
main ingredients: a dynamic constructive
heuristic and randomization. Assuming
that a solution s consists of a subset of
a set of elements (solution components),

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

278 C. Blum and A. Roli

s← ∅ % s denotes a partial solution in this case
α← DetermineCandidateListLength() % definition of the RCL length
while solution not complete do

RCLα ← GenerateRestrictedCandidateList(s)
x ← SelectElementAtRandom(RCLα)
s← s ∪ {x}
UpdateGreedyFunction(s) % update of the heuristic values (see text)

endwhile

Fig. 6 . Greedy randomized solution construction.

the solution is constructed step-by-step by
adding one new element at a time. The
choice of the next element is done by pick-
ing it uniformly at random from a can-
didate list. The elements are ranked by
means of a heuristic criterion that gives
them a score as a function of the (my-
opic) benefit if inserted in the current par-
tial solution. The candidate list, called re-
stricted candidate list (RCL), is composed
of the best α elements. The heuristic val-
ues are updated at each step, thus the
scores of elements change during the con-
struction phase, depending on the possi-
ble choices. This constructive heuristic is
called dynamic, in contrast to the static
one which assigns a score to elements only
before starting the construction. For in-
stance, one of the static heuristics for the
TSP is based on arc costs: the lower the
cost of an arc, the higher its score. An ex-
ample of a dynamic heuristic is the cheap-
est insertion heuristic, where the score of
an element is evaluated depending on the
current partial solution.

The length α of the restricted candi-
date list determines the strength of the
heuristic bias. In the extreme case of α= 1
the best element would be added, thus
the construction would be equivalent to
a deterministic Greedy Heuristic. On the
opposite, in case α=n the construction
would be completely random (indeed, the
choice of an element from the candidate
list is done at random). Therefore, α is
a critical parameter which influences the
sampling of the search space. In Pitsoulis
and Resende [2002] the most important
schemes to define α are listed. The sim-
plest scheme is, trivially, to keep α con-
stant; it can also be changed at each iter-
ation, either randomly or by means of an
adaptive scheme.

The second phase of the algorithm is a
local search process, which may be a ba-
sic local search algorithm such as iterative
improvement, or a more advanced tech-
nique such as SA or TS. GRASP can be
effective if two conditions are satisfied:

—the solution construction mechanism
samples the most promising regions of
the search space;

—the solutions constructed by the con-
structive heuristic belong to basins of
attraction of different locally minimal
solutions;

The first condition can be met by the
choice of an effective constructive heuris-
tic and an appropriate length of the can-
didate list, whereas the second condition
can be met by choosing the constructive
heuristic and the local search in a way
such that they fit well.

The description of GRASP as given
above indicates that a basic GRASP does
not use the history of the search process.11

The only memory requirement is for stor-
ing the problem instance and for keep-
ing the best so-far solution. This is one
of the reasons why GRASP is often out-
performed by other metaheuristics. How-
ever, due to its simplicity, it is generally
very fast and it is able to produce quite
good solutions in a very short amount of
computation time. Furthermore, it can be
successfully integrated into other search
techniques. Among the applications of
GRASP, we mention the JSS problem

11However, some extensions in this direction are
cited in Pitsoulis and Resende [2002], and an ex-
ample for a metaheuristic method using an adap-
tive greedy procedure depending on search history
is Squeaky Wheel Optimization (SWO) [Joslin and
Clements 1999].

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Metaheuristics in Combinatorial Optimization 279

Select a set of neighborhood structures Nk , k = 1, . . . , kmax

s← GenerateInitialSolution()
while termination conditions not met do

k← 1
while k < kmax do % Inner loop

s′ ← PickAtRandom(Nk (s)) % Shaking phase
s
′′ ← LocalSearch(s′)

if (f (s
′′
) < f (s)) then

s← s
′′

k← 1
else

k← k + 1
endif

endwhile
endwhile

Fig. 7 . Algorithm: Variable Neighborhood Search
(VNS).

[Binato et al. 2001], the graph pla-
narization problem [Resende and Ribeiro
1997] and assignment problems [Prais
and Ribeiro 2000]. A detailed and anno-
tated bibliography references many more
applications [Festa and Resende 2002].

3.4.2. Variable Neighborhood Search. Vari-
able Neighborhood Search (VNS) is a
metaheuristic proposed in Hansen and
Mladenović [1999, 2001], which explicitly
applies a strategy based on dynamically
changing neighborhood structures. The al-
gorithm is very general and many degrees
of freedom exist for designing variants and
particular instantiations.12

At the initialization step, a set of neigh-
borhood structures has to be defined.
These neighborhoods can be arbitrarily
chosen, but often a sequence |N1|< |N2|<
· · ·< |Nkmax | of neighborhoods with increas-
ing cardinality is defined.13 Then an initial
solution is generated, the neighborhood
index is initialized and the algorithm iter-
ates until a stopping condition is met (see
Figure 7). VNS’ main cycle is composed
of three phases: shaking, local search and
move. In the shaking phase a solution s′
in the kth neighborhood of the current
solution s is randomly selected. Then, s′

12The variants described in the following are also de-
scribed in Hansen and Mladenović [1999, 2001].
13In principle they could be one included in the other,
N1 ⊂ N2 ⊂ · · · ⊂ Nkmax . Nevertheless, such a se-
quence might produce an inefficient search, because
a large number of solutions could be revisited.

becomes the local search starting point.
The local search can use any neighbor-
hood structure and is not restricted to the
set of neighborhood structures Nk , k =
1, . . . , kmax. At the end of the local search
process (terminated as soon as a prede-
fined termination condition is verified) the
new solution s′′ is compared with s and, if
it is better, it replaces s and the algorithm
starts again with k = 1. Otherwise, k is in-
cremented and a new shaking phase starts
using a different neighborhood.

The objective of the shaking phase is
to perturb the solution so as to provide a
good starting point for the local search.
The starting point should belong to the
basin of attraction of a different local min-
imum than the current one, but should
not be “too far” from s, otherwise the al-
gorithm would degenerate into a simple
random multi-start. Moreover, choosing s′
in the neighborhood of the current best so-
lution is likely to produce a solution that
maintains some good features of the cur-
rent one.

The process of changing neighborhoods
in case of no improvements corresponds
to a diversification of the search. In par-
ticular the choice of neighborhoods of
increasing cardinality yields a progres-
sive diversification. The effectiveness of
this dynamic neighborhood strategy can
be explained by the fact that a “bad”
place on the search landscape given by
one neighborhood could be a “good” place
on the search landscape given by an-
other neighborhood.14 Moreover, a solu-
tion that is locally optimal with respect
to a neighborhood is probably not locally
optimal with respect to another neighbor-
hood. These concepts are known as “One
Operator, One Landscape” and explained
in Jones [1995a, 1995b]. The core idea
is that the neighborhood structure deter-
mines the topological properties of the
search landscape, that is, each neighbor-
hood defines one landscape. The proper-
ties of a landscape are in general different
from those of other landscapes, therefore

14A “good” place in the search space is an area from
which a good local minimum can be reached.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

280 C. Blum and A. Roli

Fig. 8 . Two search landscapes defined by two different neighborhoods. On the landscape that is
shown in the graphic on the left, the best improvement local search stops at ŝ1, while it proceeds
till a better local minimum ŝ2 on the landscape that is shown in the graphic on the right.

a search strategy performs differently on
them (see an example in Figure 8).

This property is directly exploited by
a local search called Variable Neighbor-
hood Descent (VND). In VND a best im-
provement local search (see Section 3.1)
is applied, and, in case a local minimum
is found, the search proceeds with an-
other neighborhood structure. The VND
algorithm can be obtained by substituting
the inner loop of the VNS algorithm (see
Figure 7) with the following pseudo-code:

s′ ← ChooseBestOf(Nk(s))
if (f (s

′
) < f (s))

then % i.e., if a better solution is found in Nk(s)
s← s

′

else % i.e., s is a local minimum
k← k + 1

endif

As can be observed from the description
as given above, the choice of the neigh-
borhood structures is the critical point of
VNS and VND. The neighborhoods cho-
sen should exploit different properties and
characteristics of the search space, that is,
the neighborhood structures should pro-
vide different abstractions of the search
space. A variant of VNS is obtained by se-
lecting the neighborhoods in such a way
as to produce a problem decomposition
(the algorithm is called Variable Neigh-
borhood Decomposition Search—VNDS).
VNDS follows the usual VNS scheme, but
the neighborhood structures and the lo-
cal search are defined on sub-problems.
For each solution, all attributes (usually
variables) are kept fixed except for k of
them. For each, k, a neighborhood struc-

ture Nk is defined. Local search only re-
gards changes on the variables belonging
to the sub-problem it is applied to. The in-
ner loop of VNDS is the following:

s′ ← PickAtRandom(Nk(s)) % s and s′ differ in k
attributes

s′′ ← LocalSearch(s′,Attributes) % only moves
involving the k
attributes are
allowed

if (f (s′′) < f (s)) then
s← s′′
k← 1

else
k← k + 1

endif

The decision whether to perform a move
can be varied as well. The acceptance cri-
terion based on improvements is strongly
steepest descent-oriented and it might not
be suited to effectively explore the search
space. For example, when local minima
are clustered, VNS can quickly find the
best optimum in a cluster, but it has no
guidance to leave that cluster and find an-
other one. Skewed VNS (SVNS) extends
VNS by providing a more flexible accep-
tance criterion that takes also into account
the distance from the current solution.15

The new acceptance criterion is the fol-
lowing: besides always accepting improve-
ments, worse solutions can be accepted if
the distance from the current one is less
than a value αρ(s, s′′). The function ρ(s, s′′)
measures the distance between s and s′′

15A distance measure between solutions has thus to
be formally defined.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Metaheuristics in Combinatorial Optimization 281

Fig. 9 . Basic GLS idea: Escaping from a valley in the landscape by increas-
ing the objective function value of its solutions.

and α is a parameter that weights the
importance of the distance between the
two solutions in the acceptance criterion.
The inner loop of SVNS can be sketched as
follows:

if (f (s
′′
)− αρ(s, s

′′
) < f (s)) then

s← s
′′

k← 1
else

k← k + 1
endif

VNS and its variants have been success-
fully applied to graph based CO problems
such as the p-Median problem [Hansen
and Mladenović 1997], the degree con-
strained minimum spanning tree prob-
lem [Ribeiro and Souza 2002], the Steiner
tree problem [Wade and Rayward-Smith
1997] and the k-Cardinality Tree (KCT)
problem [Mladenović and Urošević 2001].
References to more applications can be
found in Hansen and Mladenović [2001].

3.4.3. Guided Local Search. Tabu Search
and Variable Neighborhood Search ex-
plicitly deal with dynamic neighborhoods
with the aim of efficiently and effectively
exploring the search space. A different
approach for guiding the search is to
dynamically change the objective func-
tion. Among the most general methods
that use this approach is Guided Local
Search (GLS) [Voudouris and Tsang 1999;
Voudouris 1997].

The basic GLS principle is to help the
search to gradually move away from lo-
cal minima by changing the search land-
scape. In GLS, the set of solutions and
the neighborhood structure are kept fixed,
while the objective function f is dynami-
cally changed with the aim of making the
current local optimum “less desirable”. A
pictorial description of this idea is given in
Figure 9.

The mechanism used by GLS is based
on solution features, which may be any
kind of properties or characteristics that
can be used to discriminate between solu-
tions. For example, solution features in the
TSP could be arcs between pairs of cities,
while in the MAXSAT problem they could
be the number of unsatisfied clauses. An
indicator function Ii(s) indicates whether
the feature i is present in solution s:

Ii(s) =
{ 1 : if feature i is present in

: solution s
0 : otherwise.

The objective function f is modified to
yield a new objective function f

′
by adding

a term that depends on the m features:

f
′
(s) = f (s)+ λ

m∑
i=1

pi · Ii(s),

where pi are called penalty parame-
ters and λ is called the regularization

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

282 C. Blum and A. Roli

s← GenerateInitialSolution()
while termination conditions not met do

s← LocalSearch(s, f
′)

for all feature i with maximum utility Util(s, i) do
pi ← pi + 1

endfor
Update(f ′, p) % p is the penalty vector

endwhile

Fig. 10 . Algorithm: Guided Local Search (GLS).

parameter. The penalty parameters
weight the importance of the features:
the higher pi, the higher the importance
of feature i, thus the higher the cost of
having that feature in the solution. The
regularization parameter balances the re-
levance of features with respect to the
original objective function.

The algorithm (see Figure 10) works as
follows: It starts from an initial solution
and applies a local search method until a
local minimum is reached. Then the array
p = (p1, . . . , pm) of penalties is updated
by incrementing some of the penalties and
the local search is started again. The pe-
nalized features are those that have the
maximum utility:

Util(s, i) = Ii(s) · ci

1+ pi
,

where ci are costs assigned to every feature
i giving a heuristic evaluation of the rel-
ative importance of features with respect
to others. The higher the cost, the higher
the utility of features. Nevertheless, the
cost is scaled by the penalty parameter to
prevent the algorithm from being totally
biased toward the cost and to make it sen-
sitive to the search history.

The penalties update procedure can be
modified by adding a multiplicative rule
to the simple incrementing rule (that is
applied at each iteration). The multiplica-
tive rule has the form: pi ← pi · α, where
α ∈ (0, 1). This rule is applied with a lower
frequency than the incrementing one (for
example every few hundreds of iterations)
with the aim of smoothing the weights of
penalized features so as to prevent the
landscape from becoming too rugged. It is
important to note that the penalties up-

date rules are often very sensitive to the
problem instance.

GLS has been successfully applied to
the weighted MAXSAT [Mills and Tsang
2000], the VR problem [Kilby et al. 1999],
the TSP and the QAP [Voudouris and
Tsang 1999].

3.4.4. Iterated Local Search. We conclude
this presentation of explorative strate-
gies with Iterated Local Search (ILS), the
most general scheme among the explo-
rative strategies. On the one hand, its gen-
erality makes it a framework for other
metaheuristics (such as VNS); on the other
hand, other metaheuristics can be eas-
ily incorporated as subcomponents. ILS is
a simple but powerful metaheuristic al-
gorithm [Stützle 1999a,1999b; Lourenço
et al. 2001,2002; Martin et al. 1991]. It
applies local search to an initial solution
until it finds a local optimum; then it per-
turbs the solution and it restarts local
search. The importance of the perturba-
tion is obvious: too small a perturbation
might not enable the system to escape
from the basin of attraction of the local op-
timum just found. On the other side, too
strong a perturbation would make the al-
gorithm similar to a random restart local
search.

A local search is effective if it is able to
find good local minima, that is, if it can
find the basin of attraction of those states.
When the search space is wide and/or
when the basins of attraction of good local
optima are small,16 a simple multi-start
algorithm is almost useless. An effective
search could be designed as a trajectory
only in the set of local optima Ŝ, instead
of in the set S of all the states. Unfortu-
nately, in most cases there is no feasible
way of introducing a neighborhood struc-
ture for Ŝ. Therefore, a trajectory along
local optima ŝ1, ŝ2, . . . , ŝt is performed,
without explicitly introducing a neighbor-
hood structure, by applying the following
scheme:

16The basin of attraction size of a point s (in a finite
space), is defined as the fraction of initial states of
trajectories which converge to point s.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Metaheuristics in Combinatorial Optimization 283

s0 ← GenerateInitialSolution()
ŝ← LocalSearch(s0)
while termination conditions not met do

s′ ← Perturbation(ŝ, history)
ŝ′ ← LocalSearch(s′)
ŝ← ApplyAcceptanceCriterion(ŝ, ŝ′, history)

endwhile

Fig. 11 . Algorithm: Iterated Local Search
(ILS).

(1) Execute local search (LS) from an ini-
tial state s until a local minimum ŝ is
found.

(2) Perturb ŝ and obtain s′.
(3) Execute LS from s′ until a local mini-

mum ŝ′ is reached.
(4) On the basis of an acceptance criterion

decide whether to set ŝ← ŝ′.
(5) Goto step 2.

The requirement on the perturbation of ŝ is
to produce a starting point for local search
such that a local minimum different from
ŝ is reached. However, this new local min-
imum should be closer to ŝ than a local
minimum produced by a random restart.
The acceptance criterion acts as a counter-
balance, as it filters and gives feedback to
the perturbation action, depending on the
characteristics of the new local minimum.
A high level description of ILS as it is de-
scribed in Lourenço et al. [2002] is given
in Figure 11. Figure 12 shows a possible
(lucky) ILS step.

The design of ILS algorithms has sev-
eral degrees of freedom in the choice of
the initial solution, perturbation and ac-
ceptance criteria. A key role is played by
the history of the search which can be ex-
ploited both in form of short and long term
memory.

The construction of initial solutions
should be fast (computationally not ex-
pensive), and initial solutions should be a
good starting point for local search. The
fastest way of producing an initial solu-
tion is to generate it at random; how-
ever, this is the easiest way for problems
that are constrained, whilst in other cases
the construction of a feasible solution re-
quires also constraint checking. Construc-
tive methods, guided by heuristics, can
also be adopted. It is worth underlining

that an initial solution is considered a good
starting point depending on the particu-
lar LS applied and on the problem struc-
ture, thus the algorithm designer’s goal is
to find a trade-off between speed and qual-
ity of solutions.

The perturbation is usually non-
deterministic in order to avoid cycling.
Its most important characteristic is the
strength, roughly defined as the amount of
changes made on the current solution. The
strength can be either fixed or variable.
In the first case, the distance between
ŝ and s′ is kept constant, independently
of the problem size. However, a variable
strength is in general more effective,
since it has been experimentally found
that, in most of the problems, the bigger
the problem size, the larger should be
the strength. More sophisticated schemes
are possible; for example, the strength
can be adaptive: it increases when more
diversification is needed and it decreases
when intensification seems preferable.
VNS and its variants belong to this cat-
egory. A second choice is the mechanism
to perform perturbations. This may be a
random mechanism, or the perturbation
may be produced by a (semi-)deterministic
method (e.g., a LS different from the one
used in the main algorithm).

The third important component is the
acceptance criterion. Two extreme exam-
ples consist in (1) accepting the new local
optimum only in case of improvement and
(2) in always accepting the new solution.
In-between, there are several possibilities.
For example, it is possible to adopt a kind
of annealing schedule: accept all the im-
proving new local optima and accept also
the nonimproving ones with a probability
that is a function of the temperature T and
the difference of objective function values.
In formulas:

p(Accept(ŝ, ŝ′, history))

=

1 if f (ŝ′)< f (ŝ)

exp
(
− f (ŝ′)− f (ŝ)

T

)
otherwise

The cooling schedule can be either
monotonic (non-increasing in time) or

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

284 C. Blum and A. Roli

Fig. 12 . A desirable ILS step: the local minimum ŝ is perturbed, then LS
is applied and a new local minimum is found.

non-monotonic (adapted to tune the bal-
ance between diversification and intensifi-
cation). The nonmonotonic schedule is par-
ticularly effective if it exploits the history
of the search, in a way similar to the Re-
active Tabu Search [Taillard 1991] men-
tioned at the end of the section about Tabu
Search. When intensification seems no
longer effective, a diversification phase is
needed and the temperature is increased.

Examples for successful applications of
ILS are to the TSP [Martin and Otto
1996; Johnson and McGeoch 1997], to
the QAP [Lourenço et al. 2002], and to
the Single Machine Total Weighted Tardi-
ness (SMTWT) problem [den Besten et al.
2001]. References to other applications
can be found in Lourenço et al. [2002].

4. POPULATION-BASED METHODS

Population-based methods deal in every it-
eration of the algorithm with a set (i.e.,
a population) of solutions17 rather than
with a single solution. As they deal with a
population of solutions, population-based
algorithms provide a natural, intrinsic
way for the exploration of the search
space. Yet, the final performance depends
strongly on the way the population is ma-
nipulated. The most studied population-

17In general, especially in EC algorithms, we talk
about a population of individuals rather than
solutions.

based methods in combinatorial optimiza-
tion are Evolutionary Computation (EC)
and Ant Colony Optimization (ACO). In
EC algorithms, a population of individu-
als is modified by recombination and mu-
tation operators, and in ACO a colony of
artificial ants is used to construct solu-
tions guided by the pheromone trails and
heuristic information.

4.1. Evolutionary Computation

Evolutionary Computation (EC) algo-
rithms are inspired by nature’s capabil-
ity to evolve living beings well adapted
to their environment. EC algorithms can
be succinctly characterized as computa-
tional models of evolutionary processes. At
each iteration a number of operators is ap-
plied to the individuals of the current po-
pulation to generate the individuals of the
population of the next generation (itera-
tion). Usually, EC algorithms use opera-
tors called recombination or crossover to
recombine two or more individuals to pro-
duce new individuals. They also use muta-
tion or modification operators which cause
a self-adaptation of individuals. The driv-
ing force in evolutionary algorithms is the
selection of individuals based on their fit-
ness (this can be the value of an objec-
tive function or the result of a simulation
experiment, or some other kind of qual-
ity measure). Individuals with a higher

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Metaheuristics in Combinatorial Optimization 285

fitness have a higher probability to be cho-
sen as members of the population of the
next iteration (or as parents for the gen-
eration of new individuals). This corre-
sponds to the principle of survival of the
fittest in natural evolution. It is the capa-
bility of nature to adapt itself to a chang-
ing environment, which gave the inspira-
tion for EC algorithms.

There has been a variety of slightly dif-
ferent EC algorithms proposed over the
years. Basically they fall into three differ-
ent categories which have been developed
independently from each other. These are
Evolutionary Programming (EP) devel-
oped by Fogel [1962] and Fogel et al.
[1966], Evolutionary Strategies (ES) pro-
posed by Rechenberg [1973] and Genetic
Algorithms initiated by Holland [1975]
(see Goldberg [1989], Mitchell [1998],
Reeves and Rowe [2002], and Vose [1999]
for further references). EP arose from the
desire to generate machine intelligence.
While EP originally was proposed to op-
erate on discrete representations of finite
state machines, most of the present vari-
ants are used for continuous optimization
problems. The latter also holds for most
present variants of ES, whereas GAs are
mainly applied to solve combinatorial op-
timization problems. Over the years, there
have been quite a few overviews and sur-
veys about EC methods. Among those are
the ones by Bäck [1996], Fogel [1994],
Spears et al. [1993] and Michalewicz and
Michalewicz [1997]. Calégary et al. [1999]
propose a taxonomy of EC algorithms.

In the following we provide a “combina-
torial optimization”-oriented introduction
to EC algorithms. For doing this, we fol-
low an overview work by Hertz and Kobler
[2000], which gives, in our opinion, a good
overview of the different components of
EC algorithms and of the possibilities to
define them.

Figure 13 shows the basic structure of
every EC algorithm. In this algorithm,
P denotes the population of individuals.
A population of offspring is generated
by the application of recombination and
mutation operators and the individuals
for the next population are selected from
the union of the old population and the

P ← GenerateInitialPopulation()
Evaluate(P)
while termination conditions not met do

P ′ ← Recombine(P)
P ′′ ← Mutate(P ′)
Evaluate(P ′′)
P ← Select(P ′′ ∪ P)

endwhile

Fig. 13 . Algorithm: Evolutionary Com-
putation (EC).

offspring population. The main features
of an EC algorithm are outlined in the
following.

Description of the Individuals. EC algo-
rithms handle populations of individuals.
These individuals are not necessarily solu-
tions of the considered problem. They may
be partial solutions, or sets of solutions,
or any object which can be transformed
into one or more solutions in a structured
way. Most commonly used in combinato-
rial optimization is the representation of
solutions as bit-strings or as permutations
of n integer numbers. Tree-structures or
other complex structures are also possible.
In the context of Genetic Algorithms, indi-
viduals are called genotypes, whereas the
solutions that are encoded by individuals
are called phenotypes. This is to differen-
tiate between the representation of solu-
tions and solutions themselves. The choice
of an appropriate representation is cru-
cial for the success of an EC algorithm.
Holland’s [1975] schema analysis and
Radcliffe’s [1991] generalization to formae
are examples of how theory can help to
guide representation choices.

Evolution Process. In each iteration, it
has to be decided which individuals will
enter the population of the next iteration.
This is done by a selection scheme. To
choose, the individuals for the next po-
pulation exclusively from the offspring is
called generational replacement. If it is
possible to transfer individuals of the cur-
rent population into the next population,
then we deal with a so-called steady state
evolution process.

Most EC algorithms work with pop-
ulations of fixed size keeping at least
the best individual always in the current

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

286 C. Blum and A. Roli

population. It is also possible to have a
variable population size. In case of a con-
tinuously shrinking population size, the
situation where only one individual is left
in the population (or no crossover partners
can be found for any member of the popu-
lation) might be one of the stopping condi-
tions of the algorithm.

Neighborhood Structure. A neighbor-
hood function NEC : I → 2I on the set of
individuals I assigns to every individual
i ∈ I a set of individualsNEC(i) ⊆ I which
are permitted to act as recombination
partners for i to create offspring. If an indi-
vidual can be recombined with any other
individual (as for example in the simple
GA) we talk about unstructured popula-
tions, otherwise we talk about structured
populations. An example for an EC al-
gorithm that works on structured popu-
lations is the Parallel Genetic Algorithm
proposed by Mühlenbein [1991].

Information Sources. The most com-
mon form of information sources to cre-
ate offspring (i.e., new individuals) is a
couple of parents (two-parent crossover).
But there are also recombination oper-
ators that operate on more than two
individuals to create a new individual
(multi-parent crossover), see Eiben et al.
[1994]. More recent developments even
use population statistics for generat-
ing the individuals of the next popu-
lation. Examples are the recombination
operators called Gene Pool Recombina-
tion [Mühlenbein and Voigt 1995] and
Bit-Simulated Crossover [Syswerda 1993]
which make use of a distribution over the
search space given by the current popula-
tion to generate the next population.

Infeasibility. An important characteris-
tic of an EC algorithm is the way it deals
with infeasible individuals. When recom-
bining individuals, the offspring might be
potentially infeasible. There are basically
three different ways to handle such a sit-
uation. The most simple action is to re-
ject infeasible individuals. Nevertheless,
for many problems (e.g., for timetabling
problems) it might be very difficult to find
feasible individuals. Therefore, the strat-
egy of penalizing infeasible individuals in
the function that measures the quality of

an individual is sometimes more appropri-
ate (or even unavoidable). The third pos-
sibility consists in trying to repair an in-
feasible solution (see Eiben and Ruttkay
[1997] for an example).

Intensification Strategy. In many appli-
cations it proved to be quite beneficial to
use improvement mechanisms to improve
the fitness of individuals. EC algorithms
that apply a local search algorithm to ev-
ery individual of a population are often
called Memetic Algorithms [Moscato 1989,
1999]. While the use of a population en-
sures an exploration of the search space,
the use of local search techniques helps to
quickly identify “good” areas in the search
space.

Another intensification strategy is
the use of recombination operators that
explicitly try to combine “good” parts of in-
dividuals (rather than, e.g., a simple one-
point crossover for bit-strings). This may
guide the search performed by EC algo-
rithms to areas of individuals with certain
“good” properties. Techniques of this kind
are sometimes called linkage learning
or building block learning (see Goldberg
et al. [1991], van Kemenade [1996],
Watson et al. [1998], and Harik [1999] as
examples). Moreover, generalized recom-
bination operators have been proposed in
the literature, which incorporate the no-
tion of “neighborhood search” into EC. An
example can be found in Rayward-Smith
[1994].

Diversification Strategy. One of the ma-
jor difficulties of EC algorithms (especially
when applying local search) is the prema-
ture convergence toward sub-optimal solu-
tions. The most simple mechanism to di-
versify the search process is the use of a
mutation operator. The simple form of a
mutation operator just performs a small
random perturbation of an individual, in-
troducing a kind of noise. In order to avoid
premature convergence there are ways
of maintaining the population diversity.
Probably the oldest strategies are crowd-
ing [DeJong 1975] and its close relative,
preselection. Newer strategies are fitness
sharing [Goldberg and Richardson 1987],
respectively niching, whereby the repro-
ductive fitness allocated to an individual

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Metaheuristics in Combinatorial Optimization 287

Initial Phase:
SeedGeneration()
repeat

DiversificationGenerator()
Improvement()
ReferenceSetUpdate()

until the reference set is of cardinality n

Scatter Search/Path Relinking Phase:
repeat

SubsetGeneration()
SolutionCombination()
Improvement()
ReferenceSetUpdate()

until termination criteria met

Fig. 14 . Algorithm: Scatter Search and
Path Relinking.

in a population is reduced proportion-
ally to the number of other individuals
that share the same region of the search
space.

This concludes the list of the main
features of EC algorithms. EC algorithms
have been applied to most CO problems
and optimization problems in general.
Recent successes were obtained in the
rapidly growing bioinformatics area (see,
e.g., Fogel et al. [2002]), but also in multi-
objective optimization [Coello Coello
2000], and in evolvable hardware [Sipper
et al. 1997]. For an extensive collection
of references to EC applications, we refer
to Bäck et al. [1997]. In the following two
sections, we are going to introduce two
other populations-based methods that
are sometimes also regarded as being EC
algorithms.

4.1.1. Scatter Search and Path Relinking.
Scatter Search and its generalized form
called Path Relinking [Glover 1999;
Glover et al. 2000] differ from EC al-
gorithms mainly by providing unifying
principles for joining (or recombining) so-
lutions based on generalized path con-
structions in Euclidean or neighborhood
spaces. They also incorporate some ideas
originating from Tabu Search methods, as,
for example, the use of adaptive memory
and associated memory-exploiting mech-
anisms. The template for Scatter Search
(respectively, Path Relinking) is shown in
Figure 14.

Scatter Search (respectively, Path Re-
linking) is a search strategy that gener-
ates a set of solutions from a chosen set
of reference solutions corresponding to fea-
sible solutions to the problem under con-
sideration. This is done by making com-
binations of subsets of the current set of
reference solutions. The resulting solu-
tions are called trial solutions. These trial
solutions may be infeasible solutions and
are therefore usually modified by means of
a repair procedure that transforms them
into feasible solutions. An improvement
mechanism is then applied in order to try
to improve the set of trial solutions (usu-
ally this improvement procedure is a lo-
cal search). These improved solutions form
the set of dispersed solutions. The new set
of reference solutions that will be used
in the next iteration is selected from the
current set of reference solutions and the
newly created set of dispersed solutions.
The components of the pseudo-code, which
is shown in Figure 14, are explained in the
following:

SeedGeneration(): One or more seed so-
lutions, which are arbitrary trial solu-
tions, are created and used to initiate the
remainder of the method.

DiversificationGenerator(): This is a pro-
cedure to generate a collection of diverse
trial solutions from an arbitrary trial so-
lution (or seed solution).

Improvement(): In this procedure, an im-
provement mechanism—usually a local
search—is used to transform a trial solu-
tion into one or more enhanced trial solu-
tions. Neither the input nor the output so-
lutions are required to be feasible, though
the output solutions will more usually be
expected to be so. It might be necessary
to apply repair methods to infeasible solu-
tions.

ReferenceSetUpdate(): The procedure
for updating the reference set is respon-
sible for building and maintaining a refer-
ence set consisting of a number of “best”
solutions found in the course of the al-
gorithm. The attribute “best” covers fea-
tures such as quality of solutions and di-
versity of solutions (the solutions in the
reference set should be of good quality and
they should be diverse).

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

288 C. Blum and A. Roli

SubsetGeneration(): This method oper-
ates on the reference set, to produce a sub-
set of its solutions as a basis for creating
combined solutions.

SolutionCombination(): A procedure to
transform a given subset of solutions pro-
duced by the subset generation method
into one or more combined solutions. In
Scatter Search, which was introduced for
solutions encoded as points in the Eu-
clidean space, new solutions are created
by building linear combinations of refer-
ence solutions using both positive and neg-
ative weights. This means that trial solu-
tions can be both, inside and outside the
convex region spanned by the reference
solutions. In Path Relinking, the concept
of combining solutions by making linear
combinations of reference points is gen-
eralized to neighborhood spaces. Linear
combinations of points in the Euclidean
space can be re-interpreted as paths be-
tween and beyond solutions in a neigh-
borhood space. To generate the desired
paths, it is only necessary to select moves
that satisfy the following condition: upon
starting from an initiating solution, the
moves must progressively introduce at-
tributes contributed by a guiding solution.
Multiparent path generation possibilities
emerge in Path Relinking by consider-
ing the combined attributes provided by
a set of guiding solutions, where these at-
tributes are weighted to determine which
moves are given higher priority.

Scatter Search enjoys increasing inter-
est in recent years. Among other prob-
lems, it has been applied to multi-
objective assignment problems [Laguna
et al. 2000] and the Linear Ordering Prob-
lem (LOP) [Campos et al. 2001]. For fur-
ther references, we refer to [Glover et al.
2002]. Path relinking is often used as
a component in metaheuristics such as
Tabu Search [Laguna et al. 1999] and
GRASP [Aiex et al. 2003; Laguna and
Martı́ 1999].

4.1.2. Estimation of Distribution Algorithms.
In the last decade, more and more re-
searchers tried to overcome the draw-
backs of usual recombination operators
of EC algorithms, which are likely to

P ← InitializePopulation()
while termination criteria not met do

Psel ← Select(P) % Psel ⊆ P
p(x) = p(x | Psel)← EstimateProbabilityDistribution()
P ← SampleProbabilityDistribution()

endwhile

Fig. 15 . Algorithm: Estimation of Distribution Al-
gorithms (EDAs).

break good building blocks. So, a num-
ber of algorithms—sometimes called Esti-
mation of Distribution Algorithms (EDA)
[Mühlenbein and Paaß 1996]—have been
developed (see Figure 15 for the algorith-
mic framework). These algorithms, which
have a theoretical foundation in probabil-
ity theory, are also based on populations
that evolve as the search progresses. EDAs
use probabilistic modelling of promising
solutions to estimate a distribution over
the search space, which is then used to pro-
duce the next generation by sampling the
search space according to the estimated
distribution. After every iteration, the dis-
tribution is re-estimated. For a survey of
EDAs, see [Pelikan et al. 1999b].

One of the first EDAs that was proposed
for Combinatorial Optimization is called
Population-based Incremental Learning
(PBIL) [Baluja 1994; Baluja and Caruana
1995]. The objective of this method is to
create a real valued probability vector
(each position corresponds to a binary
decision variable) which—when used to
sample the search space—generates high
quality solutions with high probability.
Initially, the values of the probability vec-
tor are initialized to 0.5 (for each variable
there is equal probability to be set to 0 or
1). The goal of shifting the values of this
probability vector in order to generate
high quality solutions is accomplished as
follows: a number of solution vectors are
generated according to the probability vec-
tor. Then, the probability vector is shifted
toward the generated solution vector(s)
with highest quality. The distance that
the probability vector is shifted depends
on the learning rate parameter. Then,
a mutation operator is applied to the
probability vector. After that, the cycle is
repeated. The probability vector can
be regarded as a prototype vector for
generating high-quality solution vectors

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Metaheuristics in Combinatorial Optimization 289

with respect to the available knowledge
about the search space. The drawback
of this method is the fact that it does
not automatically provide a way to deal
with constrained problems. In contrast
to PBIL, which estimates a distribution
of promising solutions assuming that
the decision variables are independent,
various other approaches try to estimate
distributions taking into account depen-
dencies between decision variables. An
example for EDAs regarding pairwise
dependencies between decision variables
is MIMIC [de Bonet et al. 1997] and an
example for multivariate dependencies
is the Bayesian Optimization Algorithm
(BOA) [Pelikan et al. 1999a].

The field of EDAs is still quite young
and much of the research effort is fo-
cused on methodology rather than high-
performance applications. Applications to
Knapsack problems, the Job Shop Schedu-
ling (JSS) problem, and other CO prob-
lems can be found in Larrañaga and
Lozano [2002].

4.2. Ant Colony Optimization

Ant Colony Optimization (ACO) is a meta-
heuristic approach proposed in Dorigo
1992, 1996, 1999. In the course of this
section, we keep close to the description
of ACO as given in Dorigo and Di Caro
[1999]. The inspiring source of ACO is
the foraging behavior of real ants. This
behavior—as described by Deneubourg
et al. [1990]—enables ants to find short-
est paths between food sources and their
nest. While walking from food sources to
the nest and vice versa, ants deposit a sub-
stance called pheromone on the ground.
When they decide about a direction to go,
they choose with higher probability paths
that are marked by stronger pheromone
concentrations. This basic behavior is the
basis for a cooperative interaction which
leads to the emergence of shortest paths.

ACO algorithms are based on a
parametrized probabilistic model—the
pheromone model—that is used to model
the chemical pheromone trails. Artificial
ants incrementally construct solutions
by adding opportunely defined solution

components to a partial solution under
consideration.18 For doing that, artificial
ants perform randomized walks on a com-
pletely connected graph G= (C, L) whose
vertices are the solution components C
and the set L are the connections. This
graph is commonly called construction
graph. When a constrained CO problem
is considered, the problem constraints
Ä are built into the ants’ constructive
procedure in such a way that in every step
of the construction process only feasible
solution components can be added to
the current partial solution. In most
applications, ants are implemented to
build feasible solutions, but sometimes it
is unavoidable to also let them construct
infeasible solutions. Components ci ∈ C
can have associated a pheromone trail
parameter Ti, and connections li j ∈L can
have associated a pheromone trail param-
eter Ti j . The set of all pheromone trail
parameters is denoted by T . The values
of these parameters—the pheromone
values—are denoted by τi, respectively
τi j . Furthermore, components and connec-
tions can have associated a heuristic value
ηi, respectively ηij, representing a priori
or run time heuristic information about
the problem instance. We henceforth
denote the set of all heuristic values byH.
These values are used by the ants to make
probabilistic decisions on how to move on
the construction graph. The probabilities
involved in moving on the construction
graph are commonly called transition
probabilities. The first ACO algorithm
proposed in the literature is called Ant
System (AS) [Dorigo et al. 1996]. The
pseudo-code for this algorithm is shown
in Figure 16. For the sake of simplicity, we
restrict the following description of AS to
pheromone trail parameters and heuristic
information on solution components.

In this algorithm, A denotes the set
of ants and sa denotes the solution con-
structed by ant a ∈A. After the initial-
ization of the pheromone values, at each
step of the algorithm each ant constructs a

18Therefore, the ACO metaheuristic can be applied to
any CO problem for which a constructive procedure
can be defined.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

290 C. Blum and A. Roli

InitializePheromoneValues(T)
while termination conditions not met do

for all ants a ∈ A do
sa ← ConstructSolution(T ,H)

endfor
ApplyOnlineDelayedPheromoneUpdate(T ,{sa | a ∈ A})

endwhile

Fig. 16 . Algorithm: Ant System (AS).

solution. These solutions are then used to
update the pheromone values. The compo-
nents of this algorithm are explained in
more detail in the following.

InitializePheromoneValues(T): At the be-
ginning of the algorithm the pheromone
values are initialized to the same small
value ph > 0.

ConstructSolution(T ,H): In the construc-
tion phase an ant incrementally builds a
solution by adding solution components to
the partial solution constructed so far. The
probabilistic choice of the next solution
component to be added is done by means
of transition probabilities, which in AS are
determined by the following state transi-
tion rule:

p(cr |sa[cl])

=

[ηr]α [τr]β∑

cu∈J (sa[cl]) [ηu]α [τu]β
if cr ∈ J (sa[cl])

0 otherwise
(1)

In this formula, α and β are parameters to
adjust the relative importance of heuris-
tic information and pheromone values and
J (sa[cl]) denotes the set of solution compo-
nents that are allowed to be added to the
partial solution sa[cl], where cl is the last
component that was added.

ApplyOnlineDelayedPheromoneUpdate
(T ,{sa |a ∈A}): Once all ants have con-
structed a solution, the online delayed
pheromone update rule is applied:

τ j ← (1− ρ) · τ j +
∑
a∈A

1τ
sa
j (2)

∀ T j ∈ T , where

1τ
sa
j =

{
F (sa) if c j is a component of sa
0 otherwise,

(3)

while termination conditions not met do
ScheduleActivities

AntBasedSolutionConstruction()
PheromoneUpdate()
DaemonActions() % optional

end ScheduleActivities
endwhile

Fig. 17 . Algorithm: Ant Colony Opti-
mization (ACO).

where F : S 7→ IR+ is a function that satis-
fies f (s)< f (s′)⇒ F (s)≥ F (s′), ∀s 6= s′ ∈
S. F (·) is commonly called the quality
function. Furthermore, 0<ρ≤ 1 is the
pheromone evaporation rate. This phero-
mone update rule aims at an increase of
pheromone on solution components that
have been found in high-quality solutions.

In the following, we describe the more
general ACO metaheuristic, which is
based on the same basic principles as AS.
The ACO metaheuristic framework that is
shown in Figure 17 covers all the improve-
ments and extensions of AS which have
been developed over the years. It consists
of three parts gathered in the Schedule-
Activities construct. The ScheduleActivities
construct does not specify how these three
activities are scheduled and synchronized.
This is up to the algorithm designer.

AntBasedSolutionConstruction(): An ant
constructively builds a solution to the
problem by moving through nodes of the
construction graph G. Ants move by apply-
ing a stochastic local decision policy that
makes use of the pheromone values and
the heuristic values on components and/or
connections of the construction graph (e.g.,
see the state transition rule of AS). While
moving, the ant keeps in memory the par-
tial solution it has built in terms of the
path it was walking on the construction
graph.

PheromoneUpdate(): When adding a
component c j to the current partial so-
lution, an ant can update the pheromone
trail(s) τi and/or τi j (in case the ant was
walking on connection li j in order to reach
component c j). This kind of pheromone
update is called online step-by-step phero-
mone update. Once an ant has built a so-
lution, it can retrace the same path back-
ward (by using its memory) and update

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Metaheuristics in Combinatorial Optimization 291

the pheromone trails of the used compo-
nents and/or connections according to the
quality of the solution it has built. This is
called online delayed pheromone update.
Pheromone evaporation is the process by
means of which the pheromone trail in-
tensity on the components decreases over
time. From a practical point of view, phe-
romone evaporation is needed to avoid a
too rapid convergence of the algorithm to-
ward a sub-optimal region. It implements
a useful form of forgetting, favoring the ex-
ploration of new areas in the search space.

DaemonActions(): Daemon actions can
be used to implement centralized actions
which cannot be performed by single ants.
Examples are the use of a local search pro-
cedure applied to the solutions built by the
ants, or the collection of global informa-
tion that can be used to decide whether it
is useful or not to deposit additional phe-
romone to bias the search process from
a nonlocal perspective. As a practical ex-
ample, the daemon can observe the path
found by each ant in the colony and choose
to deposit extra pheromone on the compo-
nents used by the ant that built the best
solution. Pheromone updates performed
by the daemon are called offline phero-
mone updates.

Within the ACO metaheuristic frame-
work, as shortly described above, the cur-
rently best performing versions in prac-
tise are Ant Colony System (ACS) [Dorigo
and Gambardella 1997] andMAX -MIN
Ant System (MMAS) [Stützle and Hoos
2000]. In the following, we are going to
briefly outline the peculiarities of these al-
gorithms.

Ant Colony System (ACS). The ACS al-
gorithm has been introduced to improve
the performance of AS. ACS is based on
AS but presents some important differ-
ences. First, the daemon updates phero-
mone trails offline: At the end of an iter-
ation of the algorithm—once all the ants
have built a solution—pheromone is added
to the arcs used by the ant that found the
best solution from the start of the algo-
rithm. Second, ants use a different deci-
sion rule to decide to which component to
move next in the construction graph. The
rule is called pseudo-random-proportional

rule. With this rule, some moves are cho-
sen deterministically (in a greedy man-
ner), others are chosen probabilistically
with the usual decision rule. Third, in
ACS, ants perform only online step-
by-step pheromone updates. These up-
dates are performed to favor the emer-
gence of other solutions than the best so
far.
MAX -MIN Ant System (MMAS).
MMAS is also an extension of AS. First,
the pheromone trails are only updated of-
fline by the daemon (the arcs that were
used by the iteration best ant or the best
ant since the start of the algorithm receive
additional pheromone). Second, the phero-
mone values are restricted to an interval
[τmin, τmax] and the pheromone trails are
initialized to their maximum value τmax.
Explicit bounds on the pheromone trails
prevent that the probability to construct a
solution falls below a certain value greater
than 0. This means that the chance of find-
ing a global optimum never vanishes dur-
ing the course of the algorithm.

Recently, researchers have been deal-
ing with finding similarities between
ACO algorithms and probabilistic learn-
ing algorithms such as EDAs. An im-
portant step into this direction was the
development of the Hyper-Cube Frame-
work for Ant Colony Optimization (HC-
ACO) [Blum et al. 2001]. An extensive
study on this subject has been presented
in Zlochin et al. [2004], where the au-
thors present a unifying framework for
so-called Model-Based Search (MBS) al-
gorithms. Also, the close relation of algo-
rithms like Population-Based Incremen-
tal Learning (PBIL) [Baluja and Caruana
1995] and the Univariate Marginal Dis-
tribution Algorithm (UMDA) [Mühlenbein
and Paaß 1996] to ACO algorithms in the
Hyper-Cube Framework has been shown.
We refer the interested reader to Zlochin
et al. [2004] for more information on this
subject. Furthermore, connections of ACO
algorithms to Stochastic Gradient Descent
(SGD) algorithms are shown in Meuleau
and Dorigo [2002].

Successful applications of ACO include
the application to routing in communi-
cation networks [Di Caro and Dorigo

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

292 C. Blum and A. Roli

1998], the application to the Sequential
Ordering Problem (SOP) [Gambardella
and Dorigo 2000], and the application to
Resource Constraint Project Scheduling
(RCPS) [Merkle et al. 2002]. Further refer-
ences to applications of ACO can be found
in Dorigo and Stützle [2002, 2003].

5. A UNIFYING VIEW ON INTENSIFICATION
AND DIVERSIFICATION

In this section, we take a closer look at
the concepts of intensification and diversi-
fication as the two powerful forces driving
metaheuristic applications to high perfor-
mance. We give a view on metaheuristics
that is characterized by the way inten-
sification and diversification are imple-
mented. Although the relevance of these
two concepts is commonly agreed, so far
there is no unifying description to be found
in the literature. Descriptions are very
generic and metaheuristic specific. There-
fore most of them can be considered incom-
plete and sometimes they are even oppos-
ing. Depending on the paradigm behind
a particular metaheuristic, intensification
and diversification are achieved in differ-
ent ways. Even so, we propose a unifying
view on intensification and diversification.
Furthermore, this discussion could lead to
the goal-directed development of hybrid
algorithms combining concepts originat-
ing from different metaheuristics.

5.1. Intensification and Diversification

Every metaheuristic approach should be
designed with the aim of effectively and
efficiently exploring a search space. The
search performed by a metaheuristic ap-
proach should be “clever” enough to both
intensively explore areas of the search
space with high quality solutions, and to
move to unexplored areas of the search
space when necessary. The concepts for
reaching these goals are nowadays called
intensification and diversification. These
terms stem from the TS field [Glover and
Laguna 1997]. In other fields—such as the
EC field—related concepts are often de-
noted by exploitation (related to intensifi-
cation) and exploration (related to diversi-

fication). However, the terms exploitation
and exploration have a somewhat more re-
stricted meaning. In fact, the notions of
exploitation and exploration often refer to
rather short term strategies tied to ran-
domness, whereas intensification and di-
versification refer to rather medium and
long term strategies based on the usage of
memory. As the various different ways of
using memory become increasingly impor-
tant in the whole field of metaheuristics,
the terms intensification and diversifica-
tion are more and more adopted and un-
derstood in their original meaning.

An implicit reference to the concept of
“locality” is often introduced when inten-
sification and diversification are involved.
The notion of “area” (or “region”) of the
search space and of “locality” can only be
expressed in a fuzzy way, as they always
depend on the characteristics of the search
space as well as on the definition of metrics
on the search space (distances between
solutions).

The literature provides several high
level descriptions of intensification and
diversification. In the following, we cite
some of them.

“Two highly important components
of Tabu Search are intensification and
diversification strategies. Intensification
strategies are based on modifying choice
rules to encourage move combinations
and solution features historically found
good. They may also initiate a return to
attractive regions to search them more
thoroughly. Since elite solutions must be
recorded in order to examine their imme-
diate neighborhoods, explicit memory is
closely related to the implementation of
intensification strategies. The main dif-
ference between intensification and
diversification is that during an in-
tensification stage the search focuses
on examining neighbors of elite solu-
tions. [· · ·] The diversification stage
on the other hand encourages the
search process to examine unvisited
regions and to generate solutions
that differ in various significant ways
from those seen before.” [Glover and
Laguna 1997]

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Metaheuristics in Combinatorial Optimization 293

Later in the same book, Glover and
Laguna write: “In some instances we may
conceive of intensification as having the
function of an intermediate term strat-
egy, while diversification applies to con-
siderations that emerge in the longer
run.”

Furthermore, they write: “Strategic os-
cillation is closely linked to the origins
of tabu search, and provides a means
to achieve an effective interplay be-
tween intensification and diversifica-
tion.”

“After a local minimizer is encountered,
all points in its attraction basin lose
any interest for optimization. The search
should avoid wasting excessive computing
time in a single basin and diversification
should be activated. On the other hand,
in the assumptions that neighbors have
correlated cost function values, some ef-
fort should be spent in searching for better
points located close to the most recently
found local minimum point (intensifica-
tion). The two requirements are con-
flicting and finding a proper balance
of diversification and intensification
is a crucial issue in heuristics.”
[Battiti 1996].

“A metaheuristic will be successful
on a given optimization problem if it
can provide a balance between the ex-
ploitation of the accumulated search
experience and the exploration of the
search space to identify regions with
high quality solutions in a problem
specific, near optimal way.” [Stützle
1999b].

“Intensification is to search carefully
and intensively around good solutions
found in the past search. Diversification,
on the contrary, is to guide the search
to unvisited regions. These terminologies
are usually used to explain the basic ele-
ments of Tabu Search, but these are essen-
tial to all the metaheuristic algorithms. In
other words, various metaheuristic ideas
should be understood from the viewpoint
of these two concepts, and metaheuris-
tic algorithms should be designed so
that intensification and diversifica-

tion play balanced roles.” Yagiura and
Ibaraki [2001].

“Holland frames adaption as a ten-
sion between exploration (the search for
new, useful adaptations) and exploitation
(the use and propagation of these adapta-
tions). The tension comes about since any
move toward exploration—testing previ-
ously unseen schemas or schemas whose
instances seen so far have low fitness—
takes away from the exploitation of tried
and true schemas. In any system (e.g., a
population of organisms) required to face
environments with some degree of un-
predictability, an optimal balance be-
tween exploration and exploitation
must be found. The system has to keep
trying out new possibilities (or else it could
“over-adapt” and be inflexible in the face
of novelty), but it also has to continually
incorporate and use past experience as a
guide for future behavior.”—M. Mitchell
citing J.H. Holland in Mitchell [1998].

All these descriptions share the com-
mon view that there are two forces for
which an appropriate balance has to be
found. Sometimes these two forces were
described as opposing forces. However,
lately some researchers raised the ques-
tion on how opposing intensification and
diversification really are.

In 1998, Eiben and Schippers [1998]
started a discussion about that in the field
of Evolutionary Computation. They ques-
tion the common opinion about EC algo-
rithms, that they explore the search space
by the genetic operators, while exploita-
tion is achieved by selection. In their pa-
per they give examples of operators that
one cannot unambiguously label as be-
ing either intensification or diversifica-
tion. So, for example, an operator using
a local search component to improve in-
dividuals is not merely a mechanism of di-
versification because it also comprises a
strong element of intensification (e.g., in
Memetic Algorithms). Another example is
the heuristically guided recombination of
good quality solutions. If the use of the
accumulated search experience is identi-
fied with intensification, then a recombi-
nation operator is not merely a means of

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

294 C. Blum and A. Roli

Fig. 18 . The I&D frame provides a unified view on intensification and diversification in meta-
heuristics (OG = I&D components solely guided by the objective function, NOG = I&D components
solely guided by one or more function other than the objective function, R = I&D components solely
guided by randomness).

diversification, it also—as in the exam-
ple above—has a strong intensification
component.

Especially the TS literature advocates
the view that intensification and diversifi-
cation cannot be characterized as opposing
forces. For example, in Glover and Laguna
[1997], the authors write: “Similarly, as we
have noted, intensification and diversifica-
tion are not opposed notions, for the best
form of each contains aspects of the other,
along a spectrum of alternatives.”

Intensification and diversification can
be considered as effects of algorithm
components. In order to understand sim-
ilarities and differences among meta-
heuristics, a framework may be helpful in
providing a unified view on intensification
and diversification components. We define
an I&D component as any algorithmic or
functional component that has an inten-
sification and/or a diversification effect
on the search process. Accordingly, exam-
ples of I&D components are genetic opera-
tors, perturbations of probability distribu-
tions, the use of tabu lists, or changes in
the objective function. Thus, I&D compo-
nents are operators, actions, or strategies
of metaheuristic algorithms.

In contrast to the still widely spread
view that there are components that have
either an intensification or a diversifica-
tion effect, there are many I&D compo-
nents that have both. In I&D components
that are commonly labelled as intensifi-
cation, the intensification component is
stronger than the diversification com-

ponent, and vice versa. To clarify this,
we developed a framework to put I&D
components of different metaheuristics
into relation with each other. We called
this framework—shown in Figure 18—the
I&D frame.

We depict the space of all I&D compo-
nents as a triangle with the three corners
corresponding to three extreme examples
of I&D components. The corner denoted by
OG corresponds to I&D components solely
guided by the objective function of the
problem under consideration. An example
of an I&D component which is located very
close to the corner OG is the steepest de-
scent choice rule in local search. The cor-
ner denoted by NOG covers all I&D com-
ponents guided by one or more functions
other than the objective function, again
without using any random component. An
example for such a component is a de-
terministic restart mechanism based on
global frequency counts of solution com-
ponents. The third corner, which is de-
noted by R, comprises all I&D compo-
nents that are completely random. This
means that they are not guided by any-
thing. For example, a restart of an EC
approach with random individuals is lo-
cated in that corner. From the description
of the corners, it becomes clear that cor-
ner OG corresponds to I&D components
with a maximum intensification effect and
a minimum diversification effect. On the
other hand, corners NOG, R and the seg-
ment between the two corners correspond
to I&D components with a maximum

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Metaheuristics in Combinatorial Optimization 295

diversification effect and a minimum in-
tensification effect.19 All I&D components
can be located somewhere on or inbetween
the three corners, where the intensifica-
tion effect is becoming smaller the further
away a mechanism is located from OG. At
the same time the diversification effect is
growing. In step with this gradient is the
use I&D components make of the objec-
tive function. The less an I&D component
is using the objective function, the further
away from corner OG it has to be located.
There is also a second gradient to be found
in this frame (which is shown in the second
graphic of Figure 18). Corner R stands for
complete randomness. The less random-
ness is involved in an I&D component, the
further away from corner R it has to be lo-
cated. Finally, a third gradient describes
the influence of criteria different from the
objective function, which generally stem
from the exploitation of the search history
that is in some form kept in the memory. In
the following, we analyze some basic I&D
components intrinsic to the basic versions
of the metaheuristics with respect to the
I&D frame.

5.2. Basic I&D Components
of Metaheuristics

The I&D components occurring in meta-
heuristics can be divided in basic (or in-
trinsic) ones and strategic ones. The basic
I&D components are the ones that are de-
fined by the basic ideas of a metaheuris-
tic. On the other side, strategic I&D com-
ponents are composed of techniques and
strategies the algorithm designer adds to
the basic metaheuristic in order to im-
prove the performance by incorporating
medium- and long-term strategies. Many
of these strategies were originally devel-
oped in the context of a specific meta-
heuristic. However, it becomes more and
more apparent that many of these strate-
gies can also be very useful when applied
in other metaheuristics. In the following,
we exemplary choose some basic I&D com-

19There is no quantitative difference between
corners NOG and R. The difference is rather
qualitative.

ponents that are inherent to a metaheuris-
tic and explain them in the context of the
I&D frame. With that, we show that most
of the basic I&D components have an in-
tensification character as well as a diver-
sification character.

For many components and strategies of
metaheuristics, it is obvious that they in-
volve an intensification as well as a diver-
sification component, because they make
an explicit use of the objective function.
For example, the basic idea of TS is a
neighbor choice rule using one or more
tabu lists. This I&D component has two ef-
fects on the search process. The restriction
of the set of possible neighbors in every
step has a diversifying effect on the search,
whereas the choice of the best neighbor
in the restricted set of neighbors (the best
non-tabu move) has an intensifying effect
on the search. The balance between these
two effects can be varied by the length of
the tabu list. Shorter tabu lists result in
a lower influence of the diversifying ef-
fect, whereas longer tabu lists result in an
overall higher influence of the diversifying
effect. The location of this component in
Figure 18 is on the segment between cor-
ner OG and NOG. The shorter the tabu
lists, the closer is the location to corner
OG, and vice versa.

Another example for such an I&D com-
ponent is the probabilistic acceptance cri-
terion in conjunction with the cooling
schedule in SA. The acceptance criterion
is guided by the objective function and it
also involves a changing amount of ran-
domness. The decrease of the tempera-
ture parameter drives the system from di-
versification to intensification eventually
leading to a convergence20 of the system.
Therefore, this I&D component is located
in the interior of the I&D space between
corners OG, NOG and R.

A third example is the following one.
Ant Colony Optimization provides an I&D
component that manages the update of the
pheromone values. This component has

20Here, we use the term convergence in the sense
of getting stuck in the basin of attraction of a local
minimum.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

296 C. Blum and A. Roli

the effect of changing the probability dis-
tribution that is used to sample the search
space. It is guided by the objective func-
tion (solution components found in better
solutions than others are updated with
a higher amount of pheromone) and it is
also influenced by a function applying the
pheromone evaporation. Therefore, this
component is located on the line between
corners OG and NOG. The effect of this
mechanism is basically the intensification
of the search, but there is also a diversify-
ing component that depends on the greed-
iness of the pheromone update (the less
greedy or deterministic, the higher is the
diversifying effect).

For other strategies and components
of metaheuristics, it is not immediately
obvious that they have both, an intensi-
fication and a diversification effect. An
example is the random selection of a
neighbor from the neighborhood of a cur-
rent solution, as it is done for example in
the kick-move mechanism of ILS. Initially
one might think that there is no intensifi-
cation involved and that this mechanism
has a pure diversification effect caused
by the use of randomness. However, for
the following reason, this is not the case.
Many strategies (such as the kick-move
operator mentioned above) involve the ex-
plicit or implicit use of a neighborhood. A
neighborhood structures the search space
in the sense that it defines the topology
of the so-called fitness landscape [Stadler
1995, 1996; Jones 1995a; Kauffman
1993], which can be visualized as a
labelled graph. In this graph, nodes are
solutions (labels indicate their objective
function value) and arcs represent the
neighborhood relation between states.21

A fitness landscape can be analyzed by
means of statistical measures. One of the
common measures is the auto-correlation,
that provides information about how
much the fitness will change when a move
is made from one point to a neighboring

21The discussion of definitions and analysis of fitness
landscapes is beyond the scope of this article. We for-
ward the interested reader to Stadler [1995,1996];
Jones [1995a, 1995b]; Fonlupt et al. [1999], Hordijk
[1996], Kauffman 1993], and Reeved [1999].

one. Different landscapes differ in their
ruggedness. A landscape with small (av-
erage) fitness differences between neigh-
boring points is called smooth and it will
usually have just a few local optima. In
contrast, a landscape with large (average)
fitness differences is called rugged and
it will be usually characterized by many
local optima. Most of the neighborhoods
used in metaheuristics provide some de-
gree of smoothness that is higher than the
one of a fitness landscape defined by a ran-
dom neighborhood. This means that such
a neighborhood is, in a sense, preselecting
for every solution a set of neighbors for
which the average fitness is not too dif-
ferent. Therefore, even when a solution is
randomly selected from a set of neighbors,
the objective function guidance is implic-
itly present. The consequence is that even
for a random kick-move there is some de-
gree of intensification involved, as far as
a nonrandom neighborhood is considered.

For a mutation operator of an EC
method that is doing a random change of
a solution, it is neither immediately clear
that it can have both, an intensification
as well as a diversification effect. In the
following, we assume a bit-string repre-
sentation and a mutation operator that
is characterized by flipping every bit of
a solution with a certain probability. The
implicit neighborhood used by this opera-
tor is the completely connected neighbor-
hood. However, the neighbors have differ-
ent probabilities to be selected. The ones
that are (with respect to the Hamming dis-
tance) closer to the solution to which the
operator is applied to, have a higher proba-
bility to be generated by the operator. With
this observation, we can use the same ar-
gument as above in order to show an im-
plicit use of objective function guidance.
The balance between intensification and
diversification is determined by the proba-
bility to flip each bit. The higher this prob-
ability, the higher the diversification effect
of the operator. In contrast, the lower this
probability, the higher the intensification
effect of this operator.

On the other side, there are some strate-
gies that are often labelled as intensi-
fication supposedly without having any

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Metaheuristics in Combinatorial Optimization 297

diversifying effect. One example is the se-
lection operator in EC algorithms. How-
ever, nearly all selection operators involve
some degree of randomness (e.g., propor-
tionate selection, tournament selection)
and are therefore located somewhere be-
tween corners OG, NOG and R of the I&D
frame. This means that they also have a di-
versifying effect. The balance between in-
tensification and diversification depends
on the function that assigns the selection
probabilities. If the differences between
the selection probabilities are quite high,
the intensification effect is higher, and
similarly for the other extreme of having
only small differences between the selec-
tion probabilities.

Even an operator like the neighbor
choice rule of a steepest descent local
search, which might be regarded as pure
intensification, has a diversifying compo-
nent in the sense that the search is “mov-
ing” in the search space with respect to a
neighborhood. A neighborhood can be re-
garded as a function other than the objec-
tive function, making implicit use of the
objective function. Therefore, a steepest
descent local search is located between cor-
ners OG and NOG, and has both, a strong
intensification effect but also a weak di-
versification character.

Based on these observations we con-
clude that probably most of the basic I&D
components used in metaheuristics have
both, an intensification and a diversifica-
tion effect. However, the balance between
intensification and diversification might
be quite different for different I&D com-
ponents. Table 1 attempts to summarize
the basic I&D components that are inher-
ent to the different metaheuristics.

5.3. Strategic Control of Intensification
and Diversification

The right balance between intensification
and diversification is needed to obtain
an effective metaheuristic. Moreover, this
balance should not be fixed or only chang-
ing into one direction (e.g., continuously
increasing intensification). This balance
should rather be dynamical. This issue is
often treated in the literature, both implic-

Table 1. I&D-components intrinsic to the basic
metaheuristics

Metaheuristic I&D component
SA acceptance criterion

+ cooling schedule
TS neighbor choice (tabu lists)

aspiration criterion
EC recombination

mutation
selection

ACO pheromone update
probabilistic construction

ILS black box local search
kick-move
acceptance criterion

VNS black box local search
neighborhood choice
shaking phase
acceptance criterion

GRASP black box local search
restricted candidate list

GLS penalty function

itly and explicitly, when strategies to guide
search algorithms are discussed.

The distinction between intensification
and diversification is often interpreted
with respect to the temporal horizon of
the search. Short-term search strategies
can be seen as the iterative application of
tactics with a strong intensification char-
acter (for instance, the repeated applica-
tion of greedy moves). When the horizon
is enlarged, usually strategies referring
to some sort of diversification come into
play. Indeed, a general strategy usually
proves its effectiveness especially in the
long term.

The simplest strategy that coordinates
the interplay of intensification and diver-
sification and can achieve an oscillating
balance between them is the restart mech-
anism: under certain circumstances (e.g.,
local optimum is reached, no improve-
ments after a specific number of algorithm
cycles, stagnation, no diversity) the algo-
rithm is restarted. The goal is to achieve
a sufficient coverage of the search space
in the long run, thus the already visited
regions should not be explored again. The
computationally least expensive attempt
to address this issue is a random restart.
Every algorithm applying this naive di-
versification mechanism therefore incor-
porates an I&D component located in cor-
ner R of the I&D frame.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

298 C. Blum and A. Roli

Usually, the most effective restart ap-
proaches make use of the search history.
Examples for such restart strategies are
the ones based on concepts such as global
frequency and global desirability. The con-
cept of global frequency is well known from
TS applications. In this concept, the num-
ber of occurrences of solution components
is counted during the run of the algorithm.
These numbers, called the global fre-
quency numbers, are then used for chang-
ing the heuristic constructive method, for
example to generate a new population for
restarting an EC method or the initial so-
lution for restarting a trajectory method.
Similarly, the concept of global desirability
(which keeps for every solution component
the objective function value of the best so-
lution it had been a member of) can be used
to restart algorithms with a bias toward
good quality solutions. I&D components
based on global frequency can be located
in corner NOG, while global desirability-
based components are located along the
segment NOG-OG. Examples of the use
of nonrandom restarts can be found also
in population-based methods. In EC algo-
rithms, the new population can be gener-
ated by applying constructive heuristics22

(line R-OG). In ACO, this goal is ad-
dressed by smoothing or resetting phero-
mone values [Stützle and Hoos 2000]. In
the latter case, if the pheromone reset is
also based on the search history, the ac-
tion is located inside the I&D frame.

There are also strategies explicitly
aimed at dynamically changing the bal-
ance between intensification and diversi-
fication during the search. A fairly simple
strategy is used in SA, where an increase
in diversification and simultaneous de-
crease in intensification can be achieved
by “reheating” the system and then cool-
ing it down again (which corresponds to
increasing parameter T and decreasing
it again according to some scheme). Such
a cooling scheme is called nonmonotonic
cooling scheme (e.g., see Lundy and Mees
[1986] or Osman [1993]). Another exam-
ple can be found in Ant Colony System

22See, for example, Freisleben and Merz [1996] and
Grefenstette [1987].

(ACS). This ACO algorithm uses an ad-
ditional I&D component aimed at intro-
ducing diversification during the solution
construction phase. While an ant is walk-
ing on the construction graph to construct
a solution it reduces the pheromone val-
ues on the nodes/arcs of the construction
graph that it visits. This has the effect to
reduce for the other ants the probability of
taking the same path. This additional phe-
romone update mechanism is called step-
by-step online pheromone update rule. The
interplay between this component and the
other pheromone update rules (online de-
layed pheromone update rules and online
pheromone update rule) leads to an oscil-
lating balance between intensification and
diversification.

Some more advanced strategies can be
found in the literature. Often, they are
described with respect to the particular
metaheuristic in which they are applied.
However, many of them are very general
and can be easily adapted and reused also
in a different context. A very effective ex-
ample is Strategic Oscillation [Glover and
Laguna 1997].23 This strategy can be ap-
plied both to constructive methods and
improvement algorithms. Actions are in-
voked with respect to a critical level (os-
cillation boundary), which usually corre-
sponds to a steady state of the algorithm.
Examples for steady states of an algorithm
are local minima, completion of solution
constructions, or the situation were no
components can be added to a partial solu-
tion such that it can be completed to a fea-
sible solution. The oscillation strategy is
defined by a pattern indicating the way to
approach the critical level, to cross it and
to cross it again from the other side. This
pattern defines the distance of moves from
the boundary and the duration of phases
(of intensification and diversification). Dif-
ferent patterns generate different strate-
gies; moreover, they can also be adap-
tive and change depending on the current
state and history of the search process.
Other representative examples of general

23Indeed, in Glover and Laguna [1997] and in the lit-
erature related to TS, many strategies are described
and discussed.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Metaheuristics in Combinatorial Optimization 299

strategies that dynamically coordinate in-
tensification and diversification can be
found in Battiti and Protasi [1997] and
Blum [2002a, 2002b].

Furthermore, strategies are not re-
stricted to single actions (e.g., variable as-
signments, moves), but may also guide
the application of coordinated sequences
of moves. Examples of such a strategy
are given by so-called ejection chain pro-
cedures [Glover and Laguna 1997; Rego
1998, 2001]. These procedures provide a
mechanism to perform compound moves,
that is, compositions of different types of
moves. For instance, in a problem defined
over a graph (e.g., the VRP), it is possi-
ble to define two different moves: insertion
and exchange of nodes; a compound move
can thus be defined as the combination of
an insertion and an exchange move. These
procedures describe general strategies to
combine the application of different neigh-
borhood structures, thus they provide
an example of a general diversification/
intensification interplay. Further exam-
ples of strategies that can be interpreted
as mechanisms to produce compositions
of interlinked moves can also be found
in the literature concerning the integra-
tion of metaheuristics and complete tech-
niques [Caseau and Laburthe 1999; Shaw
1998].

In conclusion, we would like to stress
again that most metaheuristic compo-
nents have both an intensification and a
diversification effect. The higher the objec-
tive function bias, the higher the intensi-
fication effect. In contrast, diversification
is achieved by following guiding criteria
other than the objective function and also
by the use of randomness. With the in-
troduction of the I&D frame, metaheuris-
tics can be analyzed by their signature in
the I&D frame. This can be a first step to-
ward the systematic design of metaheuris-
tics, combining I&D components of differ-
ent origin.

5.4. Hybridization of Metaheuristics

We conclude our work by discussing a very
promising research issue: the hybridiza-
tion of metaheuristics. In fact, many of

the successful applications that we have
cited in previous sections are hybridiza-
tions. In the following, we distinguish dif-
ferent forms of hybridization. The first one
consists of including components from one
metaheuristic into another one. The sec-
ond form concerns systems that are some-
times labelled as cooperative search. They
consist of various algorithms exchanging
information in some way. The third form
is the integration of approximate and sys-
tematic (or complete) methods. For a tax-
onomy of hybrid metaheuristics, see Talbi
[2002].

Component Exchange Among Meta-
heuristics. One of the most popular ways
of hybridization concerns the use of trajec-
tory methods in population-based meth-
ods. Most of the successful applications
of EC and ACO make use of local search
procedures. The reason for that becomes
apparent when analyzing the respec-
tive strengths of trajectory methods and
population-based methods.

The power of population-based methods
is certainly based on the concept of re-
combining solutions to obtain new ones.
In EC algorithms and Scatter Search, ex-
plicit recombinations are implemented by
one or more recombination operators. In
ACO and EDAs, recombination is implicit,
because new solutions are generated by
using a distribution over the search space
which is a function of earlier populations.
This allows to make guided steps in the
search space, which are usually “larger”
than the steps done by trajectory meth-
ods. In other words, a solution resulting
from a recombination in population-based
methods is usually more “different” from
the parents than, say, a predecessor solu-
tion to a successor solution (obtained by
applying a move) in TS. We also have “big”
steps in trajectory methods like ILS and
VNS, but in these methods the steps are
usually not guided (these steps are rather
called “kick move” or “perturbation” indi-
cating the lack of guidance). It is interest-
ing to note, that in all population-based
methods there are mechanisms in which
good solutions found during the search
influence the search process in the hope
to find better solutions in-between those

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

300 C. Blum and A. Roli

solutions and current solutions. In Path
Relinking, this idea is implemented in the
most explicit way. The basic elements are
guiding solutions (which are the good solu-
tions found) and initiating solutions. New
solutions are produced by applying moves
to decrease the distance between the re-
sulting solution and the guiding solution.
In EC algorithms, this is often obtained by
keeping the best (or a number of best) so-
lution(s) found since the beginning of the
respective run of the algorithm in the po-
pulation. This is called a steady state evo-
lution process. Scatter Search performs a
steady state process by definition. In some
ACO implementations (see, e.g., Stützle
and Hoos [2000] and Blum [2002b]) a phe-
romone updating schedule is applied such
that in a situation where the algorithm
has nearly converged to a solution, only
the best found solution since the start of
the algorithm is used for updating the phe-
romone trails. This corresponds to “chang-
ing direction” and directing the search pro-
cess toward a very good solution in the
hope to find better ones on the way.

The strength of trajectory methods is
rather to be found in the way they explore
a promising region in the search space. As
in those methods local search is the driv-
ing component, a promising area in the
search space is searched in a more struc-
tured way than in population-based meth-
ods. In this way the danger of being close
to good solutions but “missing” them is not
as high as in population-based methods.

In summary, population-based methods
are better in identifying promising ar-
eas in the search space, whereas tra-
jectory methods are better in explor-
ing promising areas in the search space.
Thus, metaheuristic hybrids that in some
way manage to combine the advantage
of population-based methods with the
strength of trajectory methods are often
very successful.

Cooperative Search. A loose form of
hybridization is provided by cooperative
search [Hogg and Williams 1993; Hogg
and Huberman 1993; Bachelet and Talbi
2000; Denzinger and Offerman 1999;
Toulouse et al. 1999a, 1999b; Sondergeld
and Voß 1999] which consists of a search

performed by possibly different algo-
rithms that exchange information about
states, models, entire sub-problems, so-
lutions or other search space character-
istics. Typically, cooperative search algo-
rithms consist of the parallel execution
of search algorithms with a varying level
of communication. The algorithms can be
different or they can be instances of the
same algorithm working on different mod-
els or running with different parameters
setting. The algorithms composing a coop-
erative search system can be all approx-
imate, all complete, or a mix of approxi-
mate and complete approaches.

Cooperative search nowadays receives
more attention, which is among other rea-
sons due to the increasing research on
parallel implementations of metaheuris-
tics. The aim of research on paralleliza-
tion of metaheuristics is twofold. First,
metaheuristics should be redesigned to
make them suitable for parallel imple-
mentation in order to exploit intrinsic par-
allelism. Second, an effective combination
of metaheuristics has to be found, both
to combine different characteristics and
strengths and to design efficient commu-
nication mechanisms. Since the aim of this
article is to provide an overview of the
core ideas and strategies of metaheuris-
tics, we refer to Crainic and Toulouse
[2002a, 2002b] for a survey on the state-
of-the-art in parallel metaheuristics.

Integrating Metaheuristics and System-
atic Methods. Concluding this discus-
sion on hybrid metaheuristics, we briefly
overview the integration of metaheuristics
and systematic search techniques. This
approach has recently produced very ef-
fective algorithms especially when applied
to real-world problems. Discussions on
similarities, differences and possible in-
tegration of metaheuristics and system-
atic search can be found in Freuder et al.
[1995], Ginsberg [1993], Harvey [1995],
and Glover and Laguna [1997]. A very
successful example of such an integration
is the combination of metaheuristics and
Constraint Programming (CP) [Focacci
et al. 2002; Pesant and Gendreau 1996,
1999; De Backer et al. 2000]. CP en-
ables to model a CO problem by means of

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Metaheuristics in Combinatorial Optimization 301

variables, domains24 and constraints,
which can be mathematical or symbolic
(global). The latter ones involve a set
of variables and describe subproblems,
thus reducing the modelling complexity
by encapsulating well defined parts of the
problem into single constraints. Every
constraint is associated to a filtering al-
gorithm that deletes those values from a
variable domain that do not contribute
to feasible solutions. A CP system can
be seen as the interaction of components
(constraints) which communicate through
shared variables. Constraints are acti-
vated as soon as a the domain of any
variable involved has been changed. Then,
they perform a propagation phase, that is,
they apply the filtering algorithm. This be-
havior stops as soon as there are no more
values that can be removed from the do-
mains or at least one domain is empty (i.e.,
no feasible solution exists). Since the com-
plexity of the full constraint propagation
is often exponential, the filtering is usu-
ally not complete. Therefore, at the end of
the propagation phase, some domains may
still contain unfeasible values. Hence, a
search phase is started, such as Branch
& Bound. A survey on the integration
of metaheuristics and CP is provided by
Focacci et al. [2002].

There are three main approaches for the
integration of metaheuristics (especially
trajectory methods) and systematic tech-
niques (CP and tree search):

—A metaheuristic and a systematic
method are sequentially applied (their
execution can be also interleaved). For
instance, the metaheuristic algorithm is
run to produce some solutions that are
then used as heuristic information by
the systematic search. Vice-versa, the
systematic algorithm can be run to gen-
erate a partial solution which will then
be completed by the metaheuristic.

—Metaheuristics use CP and/or tree
search to efficiently explore the neigh-
borhood, instead of simply enumerating
the neighbors or randomly sampling the
neighborhood.

24We restrict the discussion to finite domains.

—The third possibility consists of intro-
ducing concepts or strategies from ei-
ther class of algorithms into the other.
For example, the concepts of tabu list
and aspiration criteria—defined in Tabu
Search—can be used to manage the list
of open nodes (i.e., the ones whose child
nodes are not yet explored) in a tree
search algorithm.

The first approach can be seen as an in-
stance of cooperative search and it repre-
sents a rather loose integration.

The second approach combines the ad-
vantages of a fast search space explo-
ration by means of a metaheuristic with
the efficient neighborhood exploration per-
formed by a systematic method. A promi-
nent example of such a kind of integra-
tion is Large Neighborhood Search and
related approaches [Shaw 1998; Caseau
and Laburthe 1999]. These approaches
are effective mainly when the neighbor-
hood to explore is very large. Moreover,
many real-world problems have additional
constraints (called side constraints) which
might make them unsuitable for usual
neighborhood exploration performed by
metaheuristics, since they usually just
sample the neighborhood or enumerate its
solutions. For instance, time window con-
straints often reduce the number of fea-
sible solutions in a neighborhood, which
might make a local search inefficient.
Thus, domain filtering techniques can
effectively support neighborhood explo-
ration. In fact, for such a kind of neigh-
borhoods, both sampling and enumeration
are usually inefficient. More examples can
be found in Pesant and Gendreau [1996,
1999] and Focacci et al. [2002].

The third approach preserves the search
space exploration based on a systematic
search (such as tree search), but sacri-
fices the exhaustive nature of the search
[Ginsberg 1993; Harvey 1995; Harvey and
Ginsberg 1995; Milano and Roli 2002].
The hybridization is usually achieved by
integrating concepts developed for meta-
heuristics (e.g., probabilistic choices, as-
piration criteria, heuristic construction)
into tree search methods. A typical ap-
plication of this integration is the use

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

302 C. Blum and A. Roli

of a probabilistic backtracking, instead
of a—deterministic—chronological back-
tracking. For instance, an extreme case is
the random choice of a backtracking move.
The list of possible backtracking moves
can also be sorted by means of a dynamic
heuristic or a sampling of the leaves of
the search tree. This sampling can be per-
formed by a metaheuristic: the result of
each possible backtracking move is chosen
as the starting point for producing a com-
plete solution by a metaheuristic (more
than one solution can be generated from
each partial solution). Then, the quality
of these complete solutions is used as
a score for—probabilistically—selecting a
backtracking move. Another prominent
example is the introduction of randomiza-
tion in systematic techniques, as described
in Gomes et al. [2000]. Many examples
of this approach can be found in Focacci
et al. [2002], Jussien and Lhomme [2002],
Schaerf [1997], Dell’Amico and Lodi
[2002], Prestwich [2002], and Della Croce
and T’kindt [2003].

6. CONCLUSIONS

In this work, we have presented and com-
pared the current most important meta-
heuristic methods. In Sections 3 and 4,
we have outlined the basic metaheuristics
as they are described in the literature.
In Section 5, we then proposed a con-
ceptual comparison of the different meta-
heuristics based on the way they imple-
ment the two main concepts for guiding
the search process: Intensification and di-
versification. This comparison is founded
on the I&D frame, where algorithmic com-
ponents can be characterized by the crite-
ria they depend upon (objective function,
guiding functions and randomization) and
their effect on the search process. Al-
though metaheuristics are different in the
sense that some of them are population-
based (EC, ACO), and others are trajec-
tory methods (SA, TS, ILS, VNS, GRASP),
and although they are based on differ-
ent philosophies, the mechanisms to effi-
ciently explore a search space are all based
on intensification and diversification. Nev-
ertheless, it is possible to identify “sub-

tasks” in the search process where some
metaheuristics perform better than oth-
ers. This has to be examined more closely
in the future in order to be able to produce
hybrid metaheuristics performing consid-
erably better than their “pure” parents. In
fact we can find this phenomenon in many
facets of life, not just in the world of al-
gorithms. Mixing and hybridizing is often
better than purity.

ACKNOWLEDGMENTS

We would like to thank Marco Dorigo, Joshua
Knowles, Andrea Lodi, Michela Milano, Michael
Sampels, and Thomas Stützle for suggestions and
useful discussions. We also would like to thank the
anonymous referees for many useful suggestions and
comments.

REFERENCES

AARTS, E. H. L., KORST, J. H. M., AND LAARHOVEN,
P. J. M. V. 1997. Simulated annealing. In
Local Search in Combinatorial Optimization,
E. H. L. Aarts and J. K. Lenstra, Eds. Wiley-
Interscience, Chichester, England, 91–120.

AARTS, E. H. L. AND LENSTRA, J. K., EDS. 1997.
Local Search in Combinatorial Optimization.
Wiley, Chichester, UK.

AIEX, R. M., BINATO, S., AND RESENDE, M. G. C. 2003.
Parallel GRASP with path-relinking for job shop
scheduling. Paral. Comput. To appear.

BACHELET, V. AND TALBI, E. 2000. Cosearch: A
co-evolutionary metaheuritics. In Proceedings
of Congress on Evolutionary Computation—
CEC’2000. 1550–1557.

BÄCK, T. 1996. Evolutionary Algorithms in The-
ory and Practice. Oxford University Press, New
York.

BÄCK, T., FOGEL, D. B., AND MACHALEWICZ, Z., EDS.
1997. Handbook of Evolutionary Computation.
Institute of Physics Publishing Ltd, Bristol, UK.

BALUJA, S. 1994. Population-based incremental
learning: A method for integrating genetic
search based function optimization and compet-
itive learning. Tech. Rep. No. CMU-CS-94-163,
Carnegie Mellon University, Pittsburgh, Pa.

BALUJA, S. AND CARUANA, R. 1995. Removing the
genetics from the standard genetic algorithm.
In The International Conference on Machine
Learning 1995, A. Prieditis and S. Russel,
Eds. Morgan-Kaufmann Publishers, San Mateo,
Calif., 38–46.

BAR-YAM, Y. 1997. Dynamics of Complex Systems.
Studies in nonlinearity. Addison–Wesley, Read-
ing, Mass.

BATTITI, R. 1996. Reactive search: Toward self-
tuning heuristics. In Modern Heuristic Search

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Metaheuristics in Combinatorial Optimization 303

Methods, V. J. Rayward-Smith, I. H. Osman,
C. R. Reeves, and G. D. Smith, Eds. Wiley, Chich-
ester, UK, 61–83.

BATTITI, R. AND PROTASI, M. 1997. Reactive Search,
A history-base heuristic for MAX-SAT. ACM J.
Exper. Algor. 2, Article 2.

BATTITI, R. AND TECCHIOLLI, G. 1994. The reactive
tabu search. ORSA J. Comput. 6, 2, 126–140.

BINATO, S., HERY, W. J., LOEWENSTERN, D., AND RESENDE,
M. G. C. 2001. A greedy randomized adaptive
search procedure for job shop scheduling. In Es-
says and Surveys on Metaheuristics, P. Hansen
and C. C. Ribeiro, Eds. Kluwer Academic
Publishers.

BLUM, C. 2002a. ACO applied to group shop sche-
duling: A case study on intensification and di-
versification. In Proceedings of ANTS 2002—
Third International Workshop on Ant Algo-
rithms, M. Dorigo, G. Di Caro, and M. Sam-
pels, Eds. Lecture Notes in Computer Science,
vol. 2463. Springer Verlag, Berlin, Germany,
14–27.

BLUM, C. 2002b. Ant colony optimization for the
edge-weighted k-cardinality tree problem. In
GECCO 2002: Proceedings of the Genetic and
Evolutionary Computation Conference, W. B.
Langdon, E. Cantú-Paz, K. Mathias, R. Roy,
D. Davis, R. Poli, K. Balakrishnan, V. Honavar,
G. Rudolph, J. Wegener, L. Bull, M. A. Potter,
A. C. Schultz, J. F. Miller, E. Burke, and
N. Jonoska, Eds. Morgan-Kaufmann, New York,
27–34.

BLUM, C., ROLI, A., AND DORIGO, M. 2001. HC–
ACO: The hyper-cube framework for ant colony
optimization. In Proceedings of MIC’2001—
Meta–heuristics International Conference. Vol. 2.
Porto, Portugal, 399–403.

CALÉGARY, P., CORAY, G., HERTZ, A., KOBLER, D., AND

KUONEN, P. 1999. A taxonomy of evolution-
ary algorithms in combinatorial optimization. J.
Heuristics 5, 145–158.

CAMPOS, V., GLOVER, F., LAGUNA, M., AND MARTı́, R.
2001. An experimental evaluation of a scatter
search for the linear ordering problem. J. Global
Opt. 21, 397–414.

CASEAU, Y. AND LABURTHE, F. 1999. Effective forget-
and-extend heuristics for scheduling problems.
In Proceedings of CP-AI-OR’02—Fourth Int.
Workshop on Integration of AI and OR tech-
niques in Constraint Programming for Combi-
natorial Optimization Problems. Ferrara (Italy).
Also available at: www.deis.unibo.it/Events/
Deis/Workshops/Proceedings.html.

CERNY, V. 1985. A thermodynamical approach to
the travelling salesman problem: An efficient
simulation algorithm. J. Optim. Theory Appl. 45,
41–51.

CHARDAIRE, P., LUTTON, J. L., AND SUTTER, A. 1995.
Thermostatistical persistency: A powerful im-
proving concept for simulated annealing algo-
rithms. Europ. J. Oper. Res. 86, 565–579.

COELLO COELLO, C. A. 2000. An updated survey

of GA-based multiobjective optimization tech-
niques. ACM Comput. Surv. 32, 2, 109–143.

CONNOLLY, D. T. 1990. An improved annealing
scheme for the QAP. Europ. J. Oper. Res. 46, 93–
100.

CRAINIC, T. G. AND TOULOUSE, M. 2002a. Intro-
duction to the special issue on parallel meta-
heuristics. J. Heuristics 8, 3, 247–249.

CRAINIC, T. G. AND TOULOUSE, M. 2002b. Parallel
strategies for meta-heuristics. In Handbook of
Metaheuristics, F. Glover and G. Kochenberger,
Eds. International Series in Operations Re-
search & Management Science, vol. 57. Kluwer
Academic Publishers, Norwell, MA.

DE BACKER, B., FURNON, V., AND SHAW, P. 2000. Solv-
ing Vehicle Routing Problems Using Constraint
Programming and Metaheuristics. J. Heuris-
tics 6, 501–523.

DE BONET, J. S., ISBELL JR., C. L., AND VIOLA, P. 1997.
MIMIC: Finding optima by estimating probabil-
ity densities. In Proceedings of the 1997 Confer-
ence on Advances in Neural Information Process-
ing Systems (NIPS’97), M. C. Mozer, M. I. Jor-
dan, and T. Petsche, Eds. MIT Press, Cambridge,
MA, 424–431.

DEJONG, K. A. 1975. An analysis of the behavior
of a class of genetic adaptive systems. Ph.D. the-
sis, University of Michigan, Ann Arbor, MI. Dis-
sertation Abstracts International 36(10), 5140B,
University Microfilms Number 76-9381.

DELLA CROCE, F. AND T’KINDT, V. 2003. A Recover-
ing Beam Search algorithm for the one machine
dynamic total completion time scheduling prob-
lem. J. Oper. Res. Soc. To appear.

DELL’AMICO, M. AND LODI, A. 2002. On the inte-
gration of metaheuristic strategies in constraint
programming. In Adaptive Memory and Evolu-
tion: Tabu Search and Scatter Search, C. Rego
and B. Alidaee, Eds. Kluwer Academic Publish-
ers, Boston, MA.

DELL’AMICO, M., LODI, A., AND MAFFIOLI, F. 1999. So-
lution of the cumulative assignment problem
with a well-structured tabu search method. J.
Heuristics 5, 123–143.

DEN BESTEN, M. L., STÜTZLE, T., AND DORIGO, M. 2001.
Design of iterated local search algorithms: An
example application to the single machine total
weighted tardiness problem. In Proceedings of
EvoStim’01. Lecture Notes in Computer Science.
Springer, 441–452.

DENEUBOURG, J.-L., ARON, S., GOSS, S., AND PASTEELS, J.-
M. 1990. The self-organizing exploratory pat-
tern of the argentine ant. J. Insect Behav. 3, 159–
168.

DENZINGER, J. AND OFFERMAN, T. 1999. On coopera-
tion between evolutionary algorithms and other
search paradigms. In Proceedings of Congress on
Evolutionary Computation—CEC’1999. 2317–
2324.

DEVANEY, R. L. 1989. An introduction to chaotic
dynamical systems, second ed. Addison–Wesley,
Reading, Mass.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

304 C. Blum and A. Roli

DI CARO, G. AND DORIGO, M. 1998. AntNet: Dis-
tributed stigmergetic control for communication
networks. J. Artif. Int. Res. 9, 317–365.

DORIGO, M. 1992. Optimization, learning and nat-
ural algorithms (in italian). Ph.D. thesis, DEI,
Politecnico di Milano, Italy. pp. 140.

DORIGO, M. AND DI CARO, G. 1999. The ant colony
optimization meta-heuristic. In New Ideas
in Optimization, D. Corne, M. Dorigo, and
F. Glover, Eds. McGraw-Hill, 11–32.

DORIGO, M., DI CARO, G., AND GAMBARDELLA, L. M.
1999. Ant algorithms for discrete optimization.
Art. Life 5, 2, 137–172.

DORIGO, M. AND GAMBARDELLA, L. M. 1997. Ant
colony system: A cooperative learning approach
to the travelling salesman problem. IEEE Trans.
Evolution. Comput. 1, 1 (Apr.), 53–66.

DORIGO, M., MANIEZZO, V., AND COLORNI, A. 1996.
Ant system: Optimization by a colony of cooper-
ating agents. IEEE Trans. Syst. Man Cybernet.—
Part B 26, 1, 29–41.

DORIGO, M. AND STÜTZLE, T. 2002. The ant colony
optimization metaheuristic: Algorithms, appli-
cations and advances. In Handbook of Meta-
heuristics, F. Glover and G. Kochenberger, Eds.
International Series in Operations Research &
Management Science, vol. 57. Kluwer Academic
Publishers, Norwell, MA, 251–285.

DORIGO, M. AND STÜTZLE, T. 2003. Ant Colony Opti-
mization. MIT Press, Boston, MA. To appear.

DUECK, G. 1993. New Optimization Heuristics. J.
Comput. Phy. 104, 86–92.

DUECK, G. AND SCHEUER, T. 1990. Threshold accept-
ing: A general purpose optimization algorithm
appearing superior to simulated annealing. J.
Comput. Phy. 90, 161–175.

EIBEN, A. E., RAUÉ, P.-E., AND RUTTKAY, Z. 1994.
Genetic algorithms with multi-parent recombi-
nation. In Proceedings of the 3rd Conference
on Parallel Problem Solving from Nature, Y.
Davidor, H.-P. Schwefel, and R. Manner, Eds.
Lecture Notes in Computer Science, vol. 866.
Springer, Berlin, 78–87.

EIBEN, A. E. AND RUTTKAY, Z. 1997. Constraint
satisfaction problems. In Handbook of Evolu-
tionary Computation, T. Bäck, D. Fogel, and
M. Michalewicz, Eds. Institute of Physics Pub-
lishing Ltd, Bristol, UK.

EIBEN, A. E. AND SCHIPPERS, C. A. 1998. On evo-
lutionary exploration and exploitation. Fund.
Inf. 35, 1–16.

FELLER, W. 1968. An Introduction to Probability
Theory and Its Applications. Wiley, New York.

FEO, T. A. AND RESENDE, M. G. C. 1995. Greedy ran-
domized adaptive search procedures. J. Global
Optim. 6, 109–133.

FESTA, P. AND RESENDE, M. G. C. 2002. GRASP: An
annotated bibliography. In Essays and Surveys
on Metaheuristics, C. C. Ribeiro and P. Hansen,
Eds. Kluwer Academic Publishers, 325–367.

FINK, A. AND VOß, S. 1999. Generic metaheuristics

application to industrial engineering problems.
Comput. Indust. Eng. 37, 281–284.

FLEISCHER, M. 1995. Simulated Annealing: past,
present and future. In Proceedings of the 1995
Winter Simulation Conference, C. Alexopoulos,
K. Kang, W. Lilegdon, and G. Goldsman, Eds.
155–161.

FOCACCI, F., LABURTHE, F., AND LODI, A. 2002. Local
search and constraint programming. In Hand-
book of Metaheuristics, F. Glover and G. Kochen-
berger, Eds. International Series in Opera-
tions Research & Management Science, vol. 57.
Kluwer Academic Publishers, Norwell, MA.

FOGEL, D. B. 1994. An introduction to simulated
evolutionary optimization. IEEE Trans. Neural
Netw. 5, 1 (Jan.), 3–14.

FOGEL, G. B., PORTO, V. W., WEEKES, D. G., FOGEL, D. B.,
GRIFFEY, R. H., MCNEIL, J. A., LESNIK, E., ECKER,
D. J., AND SAMPATH, R. 2002. Discovery of RNA
structural elements using evolutionary compu-
tation. Nucleic Acids Res. 30, 23, 5310–5317.

FOGEL, L. J. 1962. Toward inductive inference au-
tomata. In Proceedings of the International Fed-
eration for Information Processing Congress.
Munich, 395–399.

FOGEL, L. J., OWENS, A. J., AND WALSH, M. J. 1966.
Artificial Intelligence through Simulated Evolu-
tion. Wiley, New York.

FONLUPT, C., ROBILLIARD, D., PREUX, P., AND TALBI,
E. 1999. Fitness landscapes and performance
of meta-heuristics. In Meta-heuristics: advances
and trends in local search paradigms for op-
timization, S. Voß, S. Martello, I. Osman, and
C. Roucairol, Eds. Kluwer Academic.

FREISLEBEN, B. AND MERZ, P. 1996. A genetic lo-
cal search algorithm for solving symmetric and
asymmetric traveling salesman problems. In In-
ternational Conference on Evolutionary Compu-
tation. 616–621.

FREUDER, E. C., DECHTER, R., GINSBERG, M. L.,
SELMAN, B., AND TSANG, E. P. K. 1995. System-
atic versus stochastic constraint satisfaction. In
Proceedings of the 14th International Joint Con-
ference on Artificial Intelligence, IJCAI 1995.
Vol. 2. Morgan-Kaufmann, 2027–2032.

GAMBARDELLA, L. M. AND DORIGO, M. 2000. Ant
colony system hybridized with a new local search
for the sequential ordering problem. INFORMS
J. Comput. 12, 3, 237–255.

GAREY, M. R. AND JOHNSON, D. S. 1979. Computers
and Intractability; A Guide to the Theory of NP-
Completeness. W.H. Freeman.

GENDREAU, M., LAPORTE, G., AND POTVIN, J.-Y. 2001.
Metaheuristics for the vehicle routing problem.
In The Vehicle Routing Problem, P. Toth and
D. Vigo, Eds. SIAM Series on Discrete Mathe-
matics and Applications, vol. 9. 129–154.

GINSBERG, M. L. 1993. Dynamic backtracking. J.
Artif. Int. Res. 1, 25–46.

GLOVER, F. 1977. Heuristics for integer program-
ming using surrogate constraints. Dec. Sci. 8,
156–166.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Metaheuristics in Combinatorial Optimization 305

GLOVER, F. 1986. Future paths for integer pro-
gramming and links to artificial intelligence.
Comput. Oper. Res. 13, 533–549.

GLOVER, F. 1990. Tabu search Part II. ORSA J.
Comput. 2, 1, 4–32.

GLOVER, F. 1999. Scatter search and path relink-
ing. In New Ideas in Optimization, D. Corne,
M. Dorigo, and F. Glover, Eds. Advanced topics
in computer science series. McGraw-Hill.

GLOVER, F. AND LAGUNA, M. 1997. Tabu Search.
Kluwer Academic Publishers.

GLOVER, F., LAGUNA, M., AND MARTı́, R. 2000. Fun-
damentals of scatter search and path relinking.
Control, 29, 3, 653–684.

GLOVER, F., LAGUNA, M., AND MARTı́, R. 2002. Scat-
ter search and path relinking: Advances and
applications. In Handbook of Metaheuristics,
F. Glover and G. Kochenberger, Eds. Interna-
tional Series in Operations Research & Manage-
ment Science, vol. 57. Kluwer Academic Publish-
ers, Norwell, MA.

GOLDBERG, D. E. 1989. Genetic Algorithms in
Search, Optimization and Machine Learning.
Addison Wesley, Reading, MA.

GOLDBERG, D. E., DEB, K., AND KORB, B. 1991. Don’t
worry, be messy. In Proceedings of the 4th In-
ternational Conference on Genetic Algorithms.
Morgan-Kaufmann, La Jolla, CA.

GOLDBERG, D. E. AND RICHARDSON, J. 1987. Genetic
algorithms with sharing for multimodal function
optimization. In Genetic Algorithms and their
Applications, J. J. Grefenstette, Ed. Lawrence
Erlbaum Associates, Hillsdale, NJ, 41–49.

GOMES, C. P., SELMAN, B., CRATO, N., AND KAUTZ, H.
2000. Heavy-Tayled phenomena in Satisfiabil-
ity and Constraint Satisfaction Prpblems. J.
Automat. Reason. 24, 67–100.

GREFENSTETTE, J. J. 1987. Incorporating problem
specific knowledge into genetic algorithms. In
Genetic Algorithms and Simulated Annealing,
L. Davis, Ed. Morgan-Kaufmann, 42–60.

GREFENSTETTE, J. J. 1990. A user’s guide to GEN-
ESIS 5.0. Tech. rep., Navy Centre for Applied
Research in Artificial Intelligence, Washington,
D.C.

HANSEN, P. 1986. The steepest ascent mildest de-
scent heuristic for combinatorial programming.
In Congress on Numerical Methods in Combina-
torial Optimization. Capri, Italy.

HANSEN, P. AND MLADENOVIĆ, N. 1997. Variable
neighborhood search for the p-median. Loc.
Sci. 5, 207–226.

HANSEN, P. AND MLADENOVIĆ, N. 1999. An introduc-
tion to variable neighborhood search. In Meta-
heuristics: Advances and trends in local search
paradigms for optimization, S. Voß, S. Martello,
I. Osman, and C. Roucairol, Eds. Kluwer Aca-
demic Publishers, Chapter 30, 433–458.

HANSEN, P. AND MLADENOVIĆ, N. 2001. Variable
neighborhood search: Principles and applica-
tions. Europ. J. Oper. Res. 130, 449–467.

HARIK, G. 1999. Linkage learning via probabilistic
modeling in the ECGA. Tech. Rep. No. 99010,
IlliGAL, University of Illinois.

HARVEY, W. D. 1995. Nonsystematic backtrack-
ing search. Ph.D. thesis, CIRL, University of
Oregon.

HARVEY, W. D. AND GINSBERG, M. L. 1995. Limited
discrepancy search. In Proceedings of the 14th
International Joint Conference on Artificial In-
telligence, IJCAI 1995 (Montréal, Qué, Canada).
C. S. Mellish, Ed. Vol. 1. Morgan-Kaufmann,
607–615.

HERTZ, A. AND KOBLER, D. 2000. A framework
for the description of evolutionary algorithms.
Europ. J. Oper. Res. 126, 1–12.

HOGG, T. AND HUBERMAN, A. 1993. Better than the
best: The power of cooperation. In SFI 1992 Lec-
tures in Complex Systems. Addison-Wesley, 163–
184.

HOGG, T. AND WILLIAMS, C. 1993. Solving the really
hard problems with cooperative search. In Pro-
ceedings of AAAI93. AAAI Press, 213–235.

HOLLAND, J. H. 1975. Adaption in natural and artifi-
cial systems. The University of Michigan Press,
Ann Harbor, MI.

HORDIJK, W. 1996. A measure of landscapes. Evo-
lut. Comput. 4, 4, 335–360.

INGBER, L. 1996. Adaptive simulated annealing
(ASA): Lessons learned. Cont. Cybernet.—
Special Issue on Simulated Annealing Applied
to Combinatorial Optimization 25, 1, 33–54.

JOHNSON, D. S. AND MCGEOCH, L. A. 1997. The trav-
eling salesman problem: a case study. In Local
Search in Combinatorial Optimization, E. Aarts
and J. Lenstra, Eds. Wiley, New York, 215–310.

JONES, T. 1995a. Evolutionary algorithms, fitness
landscapes and search. Ph.D. thesis, Univ. of
New Mexico, Albuquerque, NM.

JONES, T. 1995b. One operator, one landscape.
Santa Fe Institute Tech. Rep. 95-02-025, Santa
Fe Institute.

JOSLIN, D. E. AND CLEMENTS, D. P. 1999. “Squeaky
Wheel” Optimization. J. Artif. Int. Res. 10, 353–
373.

JUSSIEN, N. AND LHOMME, O. 2002. Local search
with constraint propagation and conflict-based
heuristics. Artif. Int. 139, 21–45.

KAUFFMAN, S. A. 1993. The Origins of Order: Self-
Organization and Selection in Evolution. Oxford
University Press.

KILBY, P., PROSSER, P., AND SHAW, P. 1999. Guided
Local Search for the Vehicle Routing Prob-
lem with time windows. In Meta-heuristics: Ad-
vances and trends in local search paradigms for
optimization, S. Voß, S. Martello, I. Osman, and
C. Roucairol, Eds. Kluwer Academic, 473–486.

KIRKPATRICK, S., GELATT, C. D., AND VECCHI, M. P.
1983. Optimization by simulated annealing.
Science, 13 May 1983 220, 4598, 671–680.

LAGUNA, M., LOURENÇO, H., AND MARTı́, R. 2000. As-
signing Proctors to Exams with Scatter Search.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

306 C. Blum and A. Roli

In Computing Tools for Modeling, Optimization
and Simulation: Interfaces in Computer Science
and Operations Research, M. Laguna and J. L.
González-Velarde, Eds. Kluwer Academic Pub-
lishers, Boston, MA, 215–227.

LAGUNA, M. AND MARTı́, R. 1999. GRASP and path
relinking for 2-layer straight line crossing mini-
mization. INFORMS J. Comput. 11, 1, 44–52.

LAGUNA, M., MARTı́, R., AND CAMPOS, V. 1999. In-
tensification and diversification with elite tabu
search solutions for the linear ordering problem.
Comput. Oper. Res. 26, 1217–1230.

LARRAÑAGA, P. AND LOZANO, J. A., Eds. 2002. Es-
timation of Distribution Algorithms: A New
Tool for Evolutionary Computation. Kluwer Aca-
demic Publishers, Boston, MA.

LOURENÇO, H. R., MARTIN, O., AND STÜTZLE, T.
2001. A beginner’s introduction to Iterated
Local Search. In Proceedings of MIC’2001—
Meta–heuristics International Conference. Vol. 1.
Porto—Portugal, 1–6.

LOURENÇO, H. R., MARTIN, O., AND STÜTZLE, T. 2002.
Iterated local search. In Handbook of Meta-
heuristics, F. Glover and G. Kochenberger, Eds.
International Series in Operations Research &
Management Science, vol. 57. Kluwer Academic
Publishers, Norwell, MA, 321–353.

LUNDY, M. AND MEES, A. 1986. Convergence of an
annealing algorithm. Math. Prog. 34, 1, 111–124.

MARTIN, O. AND OTTO, S. W. 1996. Combining sim-
ulated annealing with local search heuristics.
Ann. Oper. Res. 63, 57–75.

MARTIN, O., OTTO, S. W., AND FELTEN, E. W. 1991.
Large-step Markov chains for the traveling
salesman problem. Complex Syst. 5, 3, 299–
326.

MERKLE, D., MIDDENDORF, M., AND SCHMECK, H.
2002. Ant colony optimization for resource-
constrained project scheduling. IEEE Trans.
Evolut. Comput. 6, 4, 333–346.

METAHEURISTICS NETWORK WEBSITE 2000. http://www.
metaheuristics.net/. Visited in January 2003.

MEULEAU, N. AND DORIGO, M. 2002. Ant colony opti-
mization and stochastic gradient descent. Artif.
Life 8, 2, 103–121.

MICHALEWICZ, Z. AND MICHALEWICZ, M. 1997. Evolu-
tionary computation techniques and their ap-
plications. In Proceedings of the IEEE Inter-
national Conference on Intelligent Processing
Systems, (Beijing, China). Institute of Elec-
trical & Electronics Engineers, Incorporated,
14–24.

MILANO, M. AND ROLI, A. 2002. On the relation
between complete and incomplete search: An
informal discussion. In Proceedings of CP-AI-
OR’02—Fourth Int. Workshop on Integration of
AI and OR techniques in Constraint Program-
ming for Combinatorial Optimization Problems
(Le Croisic, France). 237–250.

MILLS, P. AND TSANG, E. 2000. Guided local search
for solving SAT and weighted MAX-SAT Prob-

lems. In SAT2000, I. Gent, H. van Maaren, and
T. Walsh, Eds. IOS Press, 89–106.

MITCHELL, M. 1998. An Introduction to Genetic
Algorithms. MIT press, Cambridge, MA.

MLADENOVIĆ, N. AND UROŠEVIĆ, D. 2001. Variable
neighborhood search for the k-cardinality tree.
In Proceedings of MIC’2001—Meta–heuristics
International Conference. Vol. 2. Porto, Portugal,
743–747.

MOSCATO, P. 1989. On evolution, search, optimiza-
tion, genetic algorithms and martial arts: To-
ward memetic algorithms. Tech. Rep. Caltech
Concurrent Computation Program 826, Califor-
nia Institute of Technology,Pasadena, Calif.

MOSCATO, P. 1999. Memetic algorithms: A short in-
troduction. In New Ideas in Optimization, F. G.
D. Corne and M. Dorigo, Eds. McGraw-Hill.

MÜHLENBEIN, H. 1991. Evolution in time and
space—The parallel genetic algorithm. In Foun-
dations of Genetic Algorithms, G. J. E. Rawlins,
Ed. Morgan-Kaufmann, San Mateo, Calif.

MÜHLENBEIN, H. AND PAAß, G. 1996. From recombi-
nation of genes to the estimation of distributions.
In Proceedings of the 4th Conference on Paral-
lel Problem Solving from Nature—PPSN IV, H.-
M. Voigt, W. Ebeling, I. Rechenberg, and H.-P.
Schwefel, Eds. Lecture Notes in Computer Sci-
ence, vol. 1411. Springer, Berlin, 178–187.

MÜHLENBEIN, H. AND VOIGT, H.-M. 1995. Gene pool
recombination in genetic algorithms. In Proc. of
the Metaheuristics Conference, I. H. Osman and
J. P. Kelly, Eds. Kluwer Academic Publishers,
Norwell, USA.

NEMHAUSER, G. L. AND WOLSEY, A. L. 1988. Integer
and Combinatorial Optimization. Wiley, New
York.

NOWICKI, E. AND SMUTNICKI, C. 1996. A fast taboo
search algorithm for the job-shop problem. Man-
age. Sci. 42, 2, 797–813.

OSMAN, I. H. 1993. Metastrategy simulated an-
nealing and tabu search algorithms for the ve-
hicle routing problem. Ann. Oper. Res. 41, 421–
451.

OSMAN, I. H. AND LAPORTE, G. 1996. Metaheuristics:
A bibliography. Ann. Oper. Res. 63, 513–623.

PAPADIMITRIOU, C. H. AND STEIGLITZ, K. 1982. Com-
binatorial Optimization—Algorithms and Com-
plexity. Dover Publications, Inc., New York.

PELIKAN, M., GOLDBERG, D. E., AND CANTÚ-PAZ, E.
1999a. BOA: The Bayesian optimization al-
gorithm. In Proceedings of the Genetic and
Evolutionary Computation Conference GECCO-
99 (Orlando, Fla.). W. Banzhaf, J. Daida,
A. E. Eiben, M. H. Garzon, V. Honavar,
M. Jakiela, and R. E. Smith, Eds. Vol. I. Morgan-
Kaufmann Publishers, San Fransisco, CA, 525–
532.

PELIKAN, M., GOLDBERG, D. E., AND LOBO, F. 1999b.
A survey of optimization by building and using
probabilistic models. Tech. Rep. No. 99018, Illi-
GAL, University of Illinois.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

Metaheuristics in Combinatorial Optimization 307

PESANT, G. AND GENDREAU, M. 1996. A view of local
search in Constraint Programming. In Princi-
ples and Practice of Constraint Programming—
CP’96. Lecture Notes in Computer Science, vol.
1118. Springer-Verlag, 353–366.

PESANT, G. AND GENDREAU, M. 1999. A constraint
programming framework for local search meth-
ods. J. Heuristics 5, 255–279.

PITSOULIS, L. S. AND RESENDE, M. G. C. 2002.
Greedy randomized adaptive search proce-
dure. In Handbook of Applied Optimization, P.
Pardalos and M. Resende, Eds. Oxford Univer-
sity Press, 168–183.

PRAIS, M. AND RIBEIRO, C. C. 2000. Reactive
GRASP: An application to a matrix decompo-
sition problem in TDMA traffic assignment.
INFORMS J. Comput. 12, 164–176.

PRESTWICH, S. 2002. Combining the scalability of
local search with the pruning techniques of
systematic search. Ann. Oper. Res. 115, 51–
72.

RADCLIFFE, N. J. 1991. Forma Analysis and Ran-
dom Respectful Recombination. In Proceed-
ings of the Fourth International Conference
on Genetic Algorithms, ICGA 1991. Morgan-
Kaufmann, San Mateo, Calif., 222–229.

RAYWARD-SMITH, V. J. 1994. A unified approach to
tabu search, simulated annealing and genetic al-
gorithms. In Applications of Modern Heuristics,
V. J. Rayward-Smith, Ed. Alfred Waller Limited,
Publishers.

RECHENBERG, I. 1973. Evolutionsstrategie: Opti-
mierung technischer Systeme nach Prinzip-
ien der biologischen Evolution. Frommann-
Holzboog.

REEVES, C. R., Ed. 1993. Modern Heuristic Tech-
niques for Combinatorial Problems. Blackwell
Scientific Publishing, Oxford, England.

REEVES, C. R. 1999. Landscapes, operators and
heuristic search. Ann. Oper. Res. 86, 473–490.

REEVES, C. R. AND ROWE, J. E. 2002. Genetic Al-
gorithms: Principles and Perspectives. A Guide
to GA Theory. Kluwer Academic Publishers,
Boston (USA).

REGO, C. 1998. Relaxed Tours and Path Ejections
for the Traveling Salesman Problem. Europ. J.
Oper. Res. 106, 522–538.

REGO, C. 2001. Node-ejection chains for the ve-
hicle routing problem: Sequential and paral-
lel algorithms. Paral. Comput. 27, 3, 201–
222.

RESENDE, M. G. C. AND RIBEIRO, C. C. 1997. A
GRASP for graph planarization. Networks 29,
173–189.

RIBEIRO, C. C. AND SOUZA, M. C. 2002. Variable
neighborhood search for the degree constrained
minimum spanning tree problem. Disc. Appl.
Math. 118, 43–54.

SCHAERF, A. 1997. Combining local search and
look-ahead for scheduling and constraint satis-
faction problems. In Proceedings of the 15th In-

ternational Joint Conference on Artificial Intelli-
gence, IJCAI 1997. Morgan-Kaufmann Publish-
ers, San Mateo, CA, 1254–1259.

SCHAERF, A., CADOLI, M., AND LENZERINI, M. 2000.
LOCAL++: a C++ framework for local search al-
gorithms. Softw. Pract. Exp. 30, 3, 233–256.

SHAW, P. 1998. Using constraint programming and
local search methods to solve vehicle routing
problems. In Principle and Practice of Constraint
Programming—CP98, M. Maher and J.-F. Puget,
Eds. Lecture Notes in Computer Science, vol.
1520. Springer.

SIPPER, M., SANCHEZ, E., MANGE, D., TOMASSINI, M.,
PÉREZ-URIBE, A., AND STAUFFER, A. 1997. A
phylogenetic, ontogenetic, and epigenetic view
of bio-inspired hardware systems. IEEE Trans.
Evolut. Comput. 1, 1, 83–97.

SONDERGELD, L. AND VOß, S. 1999. Cooperative in-
telligent search using adaptive memory tech-
niques. In Meta-Heuristics: Advances and
Trends in Local Search Paradigms for Optimiza-
tion, S. Voss, S. Martello, I. Osman, and C.
Roucairol, Eds. Kluwer Academic Publishers,
Chapter 21, 297–312.

SPEARS, W. M., JONG, K. A. D., BÄCK, T., FOGEL, D. B.,
AND DE GARIS, H. 1993. An overview of evolu-
tionary computation. In Proceedings of the Euro-
pean Conference on Machine Learning (ECML-
93), P. B. Brazdil, Ed. Vol. 667. Springer Verlag,
Vienna, Austria, 442–459.

STADLER, P. F. 1995. Towards a theory of land-
scapes. In Complex Systems and Binary Net-
works, R. Lopéz-Peña, R. Capovilla, R. Garcı́a-
Pelayo, H. Waelbroeck, and F. Zertuche, Eds.
Lecture Notes in Physics, vol. 461. Springer-
Verlag, Berlin, New York, 77–163. Also available
as SFI preprint 95-03-030.

STADLER, P. F. 1996. Landscapes and their corre-
lation functions. J. Math. Chem. 20, 1–45. Also
available as SFI preprint 95-07-067.

STÜTZLE, T. 1999a. Iterated local search for the
quadratic assignment problem. Tech. rep. aida-
99-03, FG Intellektik, TU Darmstadt.

STÜTZLE, T. 1999b. Local Search Algorithms for
Combinatorial Problems—Analysis, Algorithms
and New Applications. DISKI—Dissertationen
zur Künstliken Intelligenz. infix, Sankt
Augustin, Germany.

STÜTZLE, T. AND HOOS, H. H. 2000. MAX -MI N
Ant System. Fut. Gen. Comput. Syst. 16, 8, 889–
914.

SYSWERDA, G. 1993. Simulated Crossover in Ge-
netic Algorithms. In Proceedings of the 2nd
Workshop on Foundations of Genetic Algorithms,
L. Whitley, Ed. Morgan-Kaufmann Publishers,
San Mateo, Calif., 239–255.

TABU SEARCH WEBSITE. 2003. http://www.tabusearch.
net. Visited in January 2003.

TAILLARD, E. 1991. Robust Taboo Search for the
Quadratic Assignment Problem. Paral. Com-
put. 17, 443–455.

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

308 C. Blum and A. Roli

TALBI, E.-G. 2002. A Taxonomy of Hybrid Meta-
heuristics. Journal of Heuristics 8, 5, 541–564.

TOULOUSE, M., CRAINIC, T., AND SANSÒ, B. 1999a.
An experimental study of the systemic behav-
ior of cooperative search algorithms. In Meta-
Heuristics: Advances and Trends in Local Search
Paradigms for Optimization, S. Voß, S. Martello,
I. Osman, and C. Roucairol, Eds. Kluwer Aca-
demic Publishers, Chapter 26, 373–392.

TOULOUSE, M., THULASIRAMAN, K., AND GLOVER, F.
1999b. Multi-level cooperative search: A new
paradigm for combinatorial optimization and ap-
plication to graph partitioning. In Proceedings
of the 5th International Euro-Par Conference
on Parallel Processing. Lecture Notes in Com-
puter Science. Springer-Verlag, New York, 533–
542.

VAN KEMENADE, C. H. M. 1996. Explicit filtering
of building blocks for genetic algorithms. In
Proceedings of the 4th Conference on Parallel
Problem Solving from Nature—PPSN IV, H.-
M. Voigt, W. Ebeling, I. Rechenberg, and H.-P.
Schwefel, Eds. Lecture Notes in Computer Sci-
ence, vol. 1141. Springer, Berlin, 494–503.

VAN LAARHOVEN, P. J. M., AARTS, E. H. L., AND LENSTRA,
J. K. 1992. Job Shop Scheduling by Simulated
Annealing. Oper. Res. 40, 113–125.

VOSE, M. 1999. The Simple Genetic Algorithm:
Foundations and Theory. Complex Adaptive Sys-
tems. MIT Press.

VOß, S., MARTELLO, S., OSMAN, I. H., AND ROUCAIROL,
C., Eds. 1999. Meta-Heuristics—Advances
and Trends in Local Search Paradigms for
Optimization. Kluwer Academic Publishers,
Dordrecht, The Netherlands.

VOß, S. AND WOODRUFF, D., Eds. 2002. Optimization
Software Class Libraries. Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands.

VOUDOURIS, C. 1997. Guided local search for com-
binatorial optimization problems. Ph.D. disser-
tation, Department of Computer Science, Uni-
versity of Essex. pp. 166.

VOUDOURIS, C. AND TSANG, E. 1999. Guided local
search. Europ. J. Oper. Res. 113, 2, 469–499.

WADE, A. S. AND RAYWARD-SMITH, V. J. 1997. Ef-
fective local search for the steiner tree prob-
lem. Studies in Locational Analysis 11, 219–
241. Also in Advances in Steiner Trees, ed. by
Ding-Zhu Du, J. M.Smith and J.H. Rubinstein,
Kluwer, 2000.

WATSON, R. A., HORNBY, G. S., AND POLLACK, J. B. 1998.
Modeling building-block interdependency. In
Late Breaking Papers at the Genetic Program-
ming 1998 Conference, J. R. Koza, Ed. Stanford
University Bookstore, University of Wisconsin,
Madison, Wisconsin, USA.

WHITLEY, D. 1989. The GENITOR algorithm and
selective pressure: Why rank-based allocation
of reproductive trials is best. In Proceedings of
the 3rd International Conference on Genetic Al-
gorithms, ICGA 1989. Morgan-Kaufmann Pub-
lishers, 116–121.

YAGIURA, M. AND IBARAKI, T. 2001. On metaheuris-
tic algorithms for combinatorial optimization
problems. Syst. Comput. Japan 32, 3, 33–
55.

ZLOCHIN, M., BIRATTARI, M., MEULEAU, N., AND DORIGO,
M. 2004. Model-based search for combinato-
rial optimization: A critical survey. Ann. Oper.
Res. To appear.

Received July 2002; revised February 2003; accepted June 2003

ACM Computing Surveys, Vol. 35, No. 3, September 2003.

