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Abstract This paper is concerned with taking an engineering approach towards the appli-
cation of metaheuristic problem solving methods, i.e., heuristics that aim to solve a wide
variety of problems. How can a practitioner solve a problem using metaheuristic methods?
What choices do they have, and how are these choices influenced by the problem at hand?
Are there sensible universal choices which can be made, or are these choices always prob-
lem-dependent? The aim of this paper is to address questions such as these in the context
of a (soft) engineering design framework for the application of metaheuristics. The aim of
this framework is to make explicit the choices which a practitioner needs to make in apply-
ing these techniques, and to give some guidelines for how metaheuristics might be tuned to
problems by considering different problem- and solution-types.

Keywords Heuristics · Optimization · Artificial intelligence · Genetic algorithms ·
Operational research · Problem-solving

1 Introduction

The aim of this paper is to introduce a design framework for the application of metaheuristic
algorithms; that is, algorithms that aim to provide a heuristic search technique that can be
applied to a wide class of problems. The aim of such a framework is to allow a pragmatic
engineering approach to the application of metaheuristics to specific problems, by making
explicit the decisions which have to be taken in tailoring the metaheuristic to the problem
and making clear the different problem types and how they relate to these decisions.

The first main section of the paper reviews the idea of problem-solving using metaheu-
ristics and introduces the idea of a design framework. The next three sections introduce the
three main aspects of the framework: problem types, exploration of the search space, and
solution types. This is followed by a conclusion which draws the various aspects together.
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2 Problem solving via metaheuristics

Metaheuristics (Osman 1996) provide a third approach to problem-solving, alongside exact
methods and problem-specific heuristics. By problem-solving we typically mean the solution
of problems via a search method over a well-defined search space. Canonical examples are
standard operational research problems such as timetabling, scheduling, combinatorial opti-
mization, et cetera. Other, interactive-type problems will also be considered later in the paper.

Many problems can be solved exactly by specific exact methods: for example there are
various algorithms for calculating the shortest route through a graph (Wilson 1996). However
for many problems such exact methods cannot be used. Sometimes such methods are not
known. Sometimes methods are known, but are impractical, perhaps because the method
is computationally intractable when used on problems of realistic size—in such a case, the
computational complexity of exact methods means that other methods must been found that
approximate the solution that could be found using exact methods.

Because of such difficulties, many problems are solved using problem-specific heuristic
methods. Heuristic methods are not guaranteed to find an exact best answer to a problem; they
may miss some good solutions. Nonetheless, a good heuristic will find good solutions to most
problems most of the time. Clearly “good” and “most” depend on the particular requirements
of the problem. One way to consider heuristics is as “rules of thumb” which suggest how
to deal with non-pathological problems in a sensible fashion. Often heuristic methods will
involve some element of randomness, in which case the performance from run-to-run may
vary too.

An example of such a problem-specific heuristic method is the Lin-Kernighan method for
the TSP (Lin and Kernighan 1973). This makes a number of “sweeps” through the graph,
each attempting to improve the current solution by a number of local changes. Each sweep
through the graph finds the change which makes the best improvement; the nodes involved in
this are marked and the sweep begun again to find another local improvement not involving
those nodes. This is repeated until the nodes are exhausted, and then the whole process is
repeated until no more improvement takes place. This gives a good method for finding such a
route, but it can miss out on some larger-scale global changes which could modify the route
for the better.

Some heuristic techniques aim to be more generic. For example, combinatorial optimi-
zation (Papadimitriou and Steiglitz 2000) or heuristic methods for constraints (Freuder and
Wallace 1992) provide sets of methods that can be applied to a wide range of problems. One
specific strategy that is commonly adopted in the application of these methods is to reduce a
new problem to an already solved problem in one of these kinds, and then solve it using the
known methods.

Despite the success of such heuristic methods where exact methods are not available, an
individual heuristic still needs to be devised for each problem. Whilst much effort is likely to
be dedicated to the production of heuristics for important or generic problems, many prob-
lems are too specialized to be worth the expenditure of effort to create a specific heuristic.
Also one of the aims of computer science is to reduce the amount of individual effort which
needs to be put into the solution of particular problems. Whilst computational efficiency is
usually taken as synonymous with the amount of computational effort required to solve a
problem on the computer, it is often the complexity of setting up the computer to solve
the problem in the first place which provides the greatest challenge. For these reasons
the creation of metaheuristics is important.

Earlier we suggested that problem-specific heuristics are “rules of thumb” for solving a
particular problem. From a similar perspective metaheuristics can be seen as general “rules
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of thumb” for solving a wide range of problems. At a naïve level, at least, it is reasonable
to assume that such approaches exist. Examples are easy to produce: take an existing solu-
tion-attempt and attempt to improve it by making a small change to it, or by combining it
with another; never throw away the best attempt you have found so far; try generalizing an
attempt; make an attempt more specific; introduce some random element into the process
to redirect thinking; et cetera. Such general metaheuristic ideas have been used by writers
such as Polya (1945) and De Bono (1990) in teaching people how to become better problem
solvers or creative thinkers.

Metaheuristics have also been created by abstracting from heuristic method. This approach
proceedings by analysing a number of heuristic techniques applied in different problems and
abstracting out the common features. This then provides a framework that can be applied to
a wider range of problems than any of the original problem-specific heuristics from which
the metaheuristic has been abstracted.

Another fecund source of inspiration for metaheuristics has been abstraction from the nat-
ural world. Nature exhibits a rich complexity, and there are many systems in the world which
deal with that complexity, whether on a small timescale such as the reaction of the immune
system to an infection, or on a longer timescale such as the evolution of a species to survive
and reproduce (without planning or foresight) within a particular environmental niche. The
ways in which these systems adapt and process information about themselves and their envi-
ronment can be abstracted and used as the basis of a computational metaheuristic; for example
Genetic Algorithms (Goldberg 1989; Mitchell 1996), swarm search methods such as Ant Col-
ony Optimization and Particle Swarm Optimization (Bonabeau et al. 1999; Kennedy et al.
2001), problem-solving with Artificial Immune Systems (de Castro and Timmis 2002), Ant
Colony Optimization (Blum 2005; Dorigo and Stützle 2004) and Tabu Search (Glover 1989,
1990). The aim of the work in this paper is not to address specific issues concerned with one
of these algorithms as such, but to provide a general framework for applying these methods.

One danger with metaheuristic methods is that it is easy to forget that there are many of
choices to be made in using such a metaheuristic well. It is easy to think that the process to
be followed is to describe the problem in a way which is canonical for the metaheuristic at
hand, run a program which implements the metaheuristic, and read off the proposed solution.
However, there are many choices to be made in using a metaheuristic, and it is not clear
how these choices can be made, though works such as the recent book by Goldberg (2002)
attempt to give a theoretically grounded yet pragmatic attempt at this; a similar point has been
made in the context of mathematical programming methods, such as linear programming,
by Williams (1999). In particular the relationship between these choices and problem-types
needs to be made clearer.

The aim of this paper is to provide an (extensible) design framework for those choices.
Such a framework will consist of making explicit those choices and giving pragmatic and
theoretically grounded advice about how these choices might be made. It will also challenge
some of the default assumptions where it is usually assumed that there is no choice to be
made. The aim of these choices will be to enhance the ability of practitioners to tune meta-
heuristics to their particular problems, by providing a framework for thinking about these
choices and a number of methods to support that decision-making.

The aim of this is to provide a similar framework to that provided by Williams (1999) for
mathematical programming methods. In that book, he provides several lists of generic types
of entities that play a role in building a model in mathematical programming: for example,
a list of constraint types together with advice on how they can be turned into constraints of
the kind handled by such methods, and a description of different ways in which models can
be combined.
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This framework consists of three areas:

Describing problems how problems are presented to the metaheuristic.
Moving through the search space how the metaheuristic explores the search space.
Solution types The different kinds of generic problems that are tackled by metaheuristics

Within each of these areas we explore the decisions that need be made by the “metaheuristic
engineer” in adapting an off-the-shelf metaheuristic to their problem.

The approach taken is that of a “soft” engineering approach based on explicit enumeration
of the choices that need to be made at each stage in the application of a metaheuristic. This is
similar to the process used in methods such as Multiple Criteria Decision Analysis (MCDA)
(Belton and Stewart 2002); however, in the example in this paper the various dimensions
of decision criteria are orthogonal to one another, representing decisions taken at different
stages in the process of metaheuristic application. Therefore the MCDA methods that attempt
to minimize conflicts between different decision criteria are less relevant in this framework
than they would be in a framework with many interactions between the criteria. However,
such methods (in particular the Analytic Hierarchy Process (Saaty 1980)) could sensibly be
applied to other areas in metaheuristic engineering that we do not consider here, for example
the choice of the core metaheuristic technique to be used in a particular situation.

It is important to note that the framework is extensible. A number of choices which seem
to be of particular significance have been discussed here. However, more choices can be read-
ily incorporated into an extended framework, and the scope of choices within each choice
extended.

3 Describing problems

In the previous section we motivated the notion of metaheuristic using operational research-
style problems, as befits the history of the subject. In this section the notion of problem
will be broadened to encompass any problem which can be approached by a metaheuristic
approach. In particular we will focus on problems where the search space is well defined,
and where solving the problem can be viewed as searching that space. Orthogonally, we are
interested in those problems which do not admit an exact method of solution, and for which
the notion of an approximate or suboptimal solution is valid. Typically, these problems will
have some notion either of an objective function whereby a numerical solution quality can
be calculated, or at least a way in which to compare pairs of solutions. We will refer to this
as fitness in this paper.

An important part of solving a problem on a computer is giving some kind of description
of the problem to the machine. Clearly in general this encompasses the whole of computer
programming. We can narrow this down by asking a more focused question: what (if any) is
the best way to describe a particular problem to a metaheuristic algorithm?

One approach to this is to suggest that this process consists of taking some ill-defined
problem in the world and making the problem more “formal” or “exact”. Some problems (or
aspects thereof) are capable of being described compactly in such a format: a robot should
not be allowed to operate outside a particular area; a timetable should not expect the same
person to be in two places at once; a program should identify whether a particular record is
in a database or not. Problems which can most naturally be described in these terms can be
called specification-defined problems.

However not all problems fit into this category of specification-defined problems. Many
problems are essentially defined by data, as noted by Partridge and colleagues (Partridge
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1992, 1997; Partridge and Yates 1997; Partridge and Galton 1995). These can be termed
data-defined problems:

Many problems, however, are manifest as little more than sets of input-output data.
They exist in systems of high complexity where our knowledge of the underlying mech-
anisms is both crude and fragmentary. Some examples of data-defined problems are:
human face recognition; signature recognition; prediction of periodic fluctuations in
water consumption of electricity demand for a city; optimal control of chemical pro-
cesses and manufacturing plants; adjustment of treatment dosage on the basis of bodily
response to last dosage, etc. In all of these cases, it is far easier to collect examples of
the data (both good and bad examples) than it is to determine in more than a very rough
and fragmentary manner precisely how the output depends on the input. (Partridge and
Yates 1997)

The danger with such problems is that it is tempting to force them through a specification
bottleneck (Partridge’s term). In this situation the practitioner takes a number of examples of
the problem at hand and constructs an artificial specification which abstracts from the original
data. In some instances of this the process may be good, because in the process of abstraction
the practitioner-as-expert adds in expert knowledge which is not easily to extract from the
examples alone. Often, however, this is an entirely artificial exercise which can easily remove
aspects of the original data which are important but not obvious to the specification-maker.

For example, in attempting to solve a problem concerned with recognizing handwritten
digits, the problem-solver might attempt to solve this problem by specifying the various com-
ponents that should be recognised by a solution to the problem. For example, the solution
should be able to identify a shape that contains two regions, and classifies this. However, the
simpler way to present these kinds of problems is simply to gather a training set of images
tagged with the number that they represent.

However there is a converse danger when dealing with specification-defined problems,
which could be termed a data bottleneck. This problem arises when the user takes a specifi-
cation and trains the metaheuristic using a sample of training data which satisfies the spec-
ification; this is a very common practice in machine learning. Again, the problem has been
presented to the metaheuristic in a way which does not respect the structure of the problem.

For example, consider a metaheuristic learning to solve a control problem for some indus-
trial plant, where there is a safety constraint on the temperature of some component: for
example, it should never have a temperature greater than 60◦C. The data-defined way to deal
with this would be to check whether this constraint is satisfied each time a test case is run.
A better way, which would be of particular relevance to safety-critical systems, would be
to (automatically) analyse the model to ensure that the constraint always holds; this is an
example of what we mean by specification-defined.

It would seem to be ideal to present both data-defined and specification-defined prob-
lems to the metaheuristic in a way which retains this structure. How this can be achieved is
discussed below.

A third type of problem which does not fit naturally into either the specification-defined
or data-defined category the class of problems which are interactively defined. Attempts at
the “solution” of such “problems” (those terms are rather problematic in this context) are
defined not with respect to a predefined notion of quality, but defined via interaction with an
operator as the individuals are generated.

There are a number of reasons why this interaction might be a core part of how success
is defined. One reason, as demonstrated by the examples in recent books by Bentley and
Corne (2002) and Bentley (1999) is that an aesthetic judgement needs to be made about the
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objects generated: are they beautiful, are they engaging, do they blend harmoniously with
other objects? For example, an algorithm that is meant to evolve a picture or a musical melody.

A second, related, kind of search is a search for individuals which have some subjectively
assessed quality. For example a metaheuristic applied to music synthesis may have the aim of
producing a sound which is melancholy in quality. Finally the aim of a particular application
may be to exploit the ability of humans to pick out patterns in complex environments. This
idea has been applied by Venturini et al. (1997) in data mining, where various views on a
dataset are provided to a human user and the user interactively evolves those which pick out
particular interesting features of the dataset.

Again there are problems if problems which are naturally interactively defined are pre-
sented to metaheuristics in a different way. An interactively defined problem can be forced
through a specification bottleneck. For example the user might try and define what a mel-
ancholy melody might be: slow, in a minor key, et cetera. Or in can be forced through a
data bottleneck, for example by giving lots of examples and training the machine via some
measure of similarity to those examples. However, neither of these seem to get at the core of
what an interactively defined problem is.

The discussion of problem types has been concerned with problems which are defined
directly by the user of the system (whether in advance or interactively). A further class of
problems can be defined via interaction amongst a set of agents. A good example of this is the
use of genetic algorithms in a coevolutionary framework where the fitness of one individual
depends on the state of others (Hillis 1990; Potter and De Jong 1994; Paredis 1996; Olsson
1998; Rosin and Belew 1996). Another related class of problems is given by work on endoge-
nous fitness (Menczer et al. 1994; Menczer and Belew 1996), where there is no explicit fitness
function but individuals interact within a complex environment related to the problem.

We have defined three problem-types: data-defined, specification-defined, and interac-
tively defined. Some problems may involve aspects of each. To summarize this section so
far here are examples of each of the problem types and combinations thereof, drawn from
mobile robotics.

Pure specification A robot should move from point A to point B, without hitting any
obstacles.
Pure data The robot should move towards a particular person, regardless of where they
are in the room.
Pure interactive The robot should trace out an interesting pattern with the pen attached
to it.
Specification and data The robot should chase another robot, whilst not leaving a predefined
area.
Specification and interactive The robot should trace out an interesting pattern, but never
move further than 1 m in each minute.
Data and interactive The robot should recognize another robot in its environment and
interact with that robot in a style which engages the attention of an audience.
Specification, data and interactive The robot should recognize another robot in its envi-
ronment and interact with that robot in a style which engages the attention of an audience,
whilst not moving out of a metre-wide square on the floor.

It would seem natural that in introducing such problems to metaheuristics each of these
three problem-types need to be treated in a way which is natural for that particular problem.
Moreover it is important that combinations of these problem-types can be processed by the
metaheuristic in a way which allows the various aspects to be processed in the way that is
most natural to them. This is one of the reasons why the various bottlenecks are often resorted
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to: for example a metaheuristic is designed to take problems in the form of training data, so
when a user wants to specify something which is naturally a piece of specification (e.g., a
safety constraint) they translate that into the input language of the metaheuristic by providing
a set of examples.

It is in the assessment of putative solutions to problems by the metaheuristic that these
different problem types become important. Such an assessment is part of most metaheuristic
approaches, for example the calculation of fitness in genetic algorithms. These assessments
typically offer a numeric quality score or (for population-based methods) a ranking of the
current solution-attempts in the population.

Data-defined problems fit most naturally into this framework. The data used in defining
the problem provides a natural set of “fitness cases” against which the solution-attempt can
be assessed.

Specification-defined problems fit less naturally. Traditionally such problems are pre-
sented to metaheuristics by creating a number of fitness cases which are compatible with the
specification. For example, in a safety-critical system, solutions generated by the metaheu-
ristic might be tested against a sample of safe and unsafe scenarios, rather than being verified
for safety directly against the specification.

This leads to a number of problems; in particular the solutions can become overfitted to
the fitness cases and not generalize, and there is no guarantee given to the user that the spec-
ification is satisfied outside of the particular fitness cases (Johnson 2002b). Instead we need
to find ways of assessing directly whether a solution-attempt satisfies the specification or not.

One approach to this is through the use of computational techniques such as static pro-
gram analysis (Nielson et al. 1999) (which checks that certain properties of a program are
satisfied regardless of input data) or model checking (Clarke et al. 1999; Huth and Ryan 2000)
(which checks whether certain logical formulae about the entities in the solution and their
relationships over time are always satisfied) in the determination of fitness. That is, instead
of running the generated program on a set of test cases, the fitness is assessed by running an
analysis on the program which checks whether the program is compatible with statements
in the specification, regardless of input data. Thus the specification is never driven through
the data bottleneck in being assessed. Such techniques have been applied in the evolution
of sorting algorithms (Huelsbergen 2000), robot control systems (Johnson 2004) and layout
problems (Johnson 2002a).

This technique allows the specification-defined problem to be handled naturally, that is
a direct check is made on whether the program satisfies the specification rather than this
being checked indirectly. Nonetheless there are problems with this approach. Firstly there
is the problem that specification-satisfaction is very often a binary true–false condition:
either the program satisfies the condition or it does not. This could potentially make it dif-
ficult for a search algorithm within a metaheuristic to get a grip on how close a particular
attempt is to satisfying the specification. There are a number of approaches to this; for exam-
ple for some problems there may be many small, easy-to-satisfy-individually specification
statements, and it is bringing all of these together into a single satisfactory specification
which is the difficulty. In these cases a count of the number of specification statements pro-
vides a fitness measure. Secondly it may be possible to devise weaker specification which
smooth out the fitness landscape, e.g., by breaking down a complex specification statement
into a number of sub-statements. An example of work similar to this is the recent work by
Harman et al. (2002) on evolutionary testing which smoothes out the fitness landscape by
ensuring that rarely visited areas of code are visited more frequently by adjusting the input
space. Thirdly some of the analysis approaches give additional information when they fail
to be satisfied. For example a failed attempt at model-checking provides a counter-example
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to the set of logical statements being checked; these could be subsequently analysed to guide
the search.

Finally, interactively defined problems are superficially easy to fit into a framework of fit-
ness-assessment, but there are a number of issues which need to be considered more carefully.
The previous two problem-types were consistent in their fitness evaluation, in the sense that
the same individual presented to the fitness-evaluation algorithm would be scored the same
(or ranked the same relative to others). This is not true for interactively defined problems. In
these problems the whim of the human assessor or the context of a particular individual in
a population can change the assessment of its fitness. Indeed there is some evidence (May
2000) for an implicit fitness scaling effect in such systems; initially the user will give a
high fitness score to anything that is vaguely like a desired/desirable output. However as the
population becomes occupied by “better” individuals, individuals which scored highly early
may be scored less well relative to the more converged population. These are interesting
issues, but they are not difficulties with the use of metaheuristics for interactively defined
problems. Indeed they are natural ways of interacting with individuals in this situation. For
example it is more natural to make aesthetic judgements in a comparative fashion (A is
better/more exciting/more beautiful/more interesting than B) than to give absolute ratings.
Indeed it seems reasonable to say that the above issues are advantages, because they deal with
these interactively defined problems in a natural way, rather than forcing them to be dealt
with using concepts such as consistency of evaluation which are more suited to the other two
types of problems.

Nonetheless there are difficulties with using metaheuristics for interactively defined prob-
lems. One difficulty, notable particularly with population-based approaches, is that users
become bored with making appraisals of many different individuals. One possible solution
to this is to embed the evolutionary within a natural context such as a virtual environment
(Rowland and Biocca 2002) or a performance setting (Biles and Eign 1995; Biles 1998). This
could be enhanced by the use of affective computing techniques (Picard 1997) to directly
assess user’s affective response to individuals.

As briefly discussed earlier, some problems have aspects which belong to more than
one category. For example a problem can easily have its task specified in a data-defined
fashion whilst also needing to satisfy some constraints which are given in a specification-
defined way. This is where the use of metaheuristics in the way described above can do
things which are difficult for other methods. Typically methods of creating software are
tied closely to problem type. So for example specifications can be converted into programs
which satisfy that specification using a formal method such as refinement (Morgan 1994;
Derrick and Boiten 2001). However once we have committed to developing a piece of soft-
ware in that fashion, it becomes difficult to incorporate aspects of the problem which are
naturally defined e.g., in a data-defined way. The metaheuristic approach makes combination
of methods much easier to achieve. For example, such techniques have been applied
(Johnson 2004) in using evolutionary computing to automatically generate programs which
solve a robot control task whilst also guaranteeing that the robot will operate within a safe
region. This is done by evolving programs using a genetic programming-style system, where
the fitness of a program is a combination (in this case a weighted sum, though potentially any
multi-criterion optimization method could be used) of a data-driven test for the control task,
together with a calculation as to whether the program always stays within a safety bound.

This section has introduced the idea that there are natural ways of describing problems,
and given three examples of such descriptions (data-defined, specification-defined and inter-
actively defined) which cover a wide range of real-world problems. The disadvantages of
solving problems by putting them through a bottleneck and forcing them into a different
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framework has been outlined and examples given. This classification of problem types has
then been placed into the context of metaheuristics, and the way in which such metaheuris-
tics can treat problems of different kinds has been discussed. In particular it is argued that
metaheuristics provide a natural framework in which to solve problems which have a number
of aspects which are naturally defined in different ways.

This choice between the various problem-types, and the different ways of evaluating fit-
ness which fit naturally with those problem types, will form the first component of the design
framework.

4 Measuring fitness and moving through the search space

The previous section discussed how problems can be presented to metaheuristics, in par-
ticular focusing on the idea that metaheuristics can be applied in a way which respects the
structure of the problem. This argument can be extended from the initial setup of the problem
to the way in which the metaheuristic progresses from initialization to solution.

A metaheuristic improves the solution-attempts in its population (which might be a degen-
erate population with one member as in hillclimbing algorithms) by moving that population
to areas of the search space which are inferred to be likely to be better than the current position
of the population in search space. The processes which effect these changes can be called
moves (Tuson 1999) in the search space.

These moves can take a number of forms. Some move-types consist of changing a single
individual. For example in steepest-ascent hillclimbing (Winston 1992), the individual solu-
tion-attempt will be moved by sampling a number of points in its neighbourhood and moving
to the point which gives the largest fitness improvement. In genetic algorithms the mutation
operator can be seen as a move which makes a number of random changes to the geno-
type of individuals in the population with the aim of exploring local changes in phenotype
space (amongst other things; mutation has a role in ensuring that total convergence at an allele
cannot occur, for example). For example, if we consider a system for timetabling within a
school or university, a mutation operator would make small changes to the timetable: swap-
ping two classes, exchanging one tutor for another qualified in the same subject. These small
changes only affect a small number of students and tutors, and so can be used for “local”
exploration. By contrast, sometimes small changes in the representation can make a large
change to the result. For example, if the solution to a problem is encoded as a number, then
flipping the most significant bit can change the number encoded by the population member
hugely (hence the motivation to use representations that have a more uniform effect, such as
Gray-coded numbers).

Other move-types involve the combination of information from multiple members of the
population. A canonical example here is the recombination move in genetic algorithms,
which takes the genotypic representation of one individual and exchanges parts of it with
that of another individual. In population-based incremental learning and similar methods
(Baluja 1994; Baluja and Caruna 1995; Abbattista and Dalbis 1998; Robillard and Fonlupt
2000) the whole population is involved in moves: the population is summarized as a vector
of weights and new individuals created by regeneration from that vector to give a new pop-
ulation with statistical properties the same as the original population. For example, consider
the application of a metaheuristic to design a mechanical device such as a flow nozzle, where
the representation is by a sequence of floating-point numbers representing the diameter at
n positions along the tube. Each individual population member would be a vector of float-
ing-point numbers; the population summary would be of the same type, with each number
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representing the average of the diameters at that position across the population members,
with perhaps a second vector to represent the variance at each position. This distribution
would then be used to recreate a new population of vectors.

It would seem to be important to choose these move operators carefully. Is there a way of
doing this so that the moves work well, without needing to design problem-specific moves for
each new problem (or at least a way of assessing automatically generated move operators)?

An important distinction in this discussion is the relationship between the action of a move
in the space of encodings of the problem (what in genetic algorithms is called genotype-space)
versus the effects of that move on the underlying problem (phenotype-space). Sometimes the
mapping from one to the other is simple, in other cases the connection between the two can
be complicated, with e.g., multiple regions of genotype-space mapping to the same point
in phenotype-space. A number of ways of measuring this have been explored by Rothlauf
(2002).

Generic move operators such as mutation and crossover in genetic algorithms are defined in
genotype space. However it seems implicit that there is some connection between these geno-
type-space moves and how they transform the population phenotypically. This is reflected in
the following description by Goldberg of crossover:

Thus, the action of crossover with previous reproduction speculates on new ideas con-
structed from the high-performance building-blocks (notions) of past trials. (Goldberg
1989, p. 13)

It is interesting here to note the implied equivalence between the genotypic concept of “build-
ing-blocks” and the phenotypic concept of “notions”. He goes on to describe the crossover
process as “exchanging of notions to form new ideas” (Goldberg 1989, p. 13). There is
an implication here that the genotypically defined crossover process implies some kind of
exchange of ideas in the phenotype—though it is recognised that this may happen in “highly
nonlinear and complex ways” (Goldberg 1989, p. 13).

A similar idea can be found for the concept of mutation. Goldberg describes mutation as “an
insurance policy against premature loss of important notions” (Goldberg 1989, p. 13). Another
example is given by Rothlauf: “[m]utation operators are important for local search” (Rothlauf
2002, p. 18). Again mutation is being described in terms of a desired phenotypic trait (avoid-
ing loss of “notions”, “local search”) as well as in terms of the direct effect it has on the
genotype of individuals.

If we want to make a design framework for making problem-centered choices for applying
a metaheuristic to a particular problem, then it would seem to be important to consider the
effect of the move operators chosen on the phenotype (typically this effect will be indirect,
because the moves will be defined genotypically). If this is not considered the statement at
the beginning of this paragraph seems meaningless: the problem at hand is defined by the
structure of the phenotype-space, and so to make a rational choice of how to move in a way
which respects the structure of the problem must involve some consideration of how the
moves affect points in phenotype-space. This is not to say that the moves must be defined
directly in phenotype-space. To the contrary, the moves will still typically be defined in terms
of transformations of the genotype; but the choice of which moves to use will be done with
respect to the changes the make on the phenotype.

Another way of phrasing the above discussion is in terms of syntax and semantics. As in
conventional programming, the work done by a metaheuristic is the the syntactic domain; the
individuals and moves are defined in syntactic terms. Nonetheless the reason for doing this
is to have a semantic effect, that is to find an individual which solves the problem at hand.
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Therefore, it seems reasonable that the syntactic representations and moves should correlate
with moves which are meaningful in terms of the semantics of the problem.

This emphasis on the semantics of move operators allows us to define those operators
primarily in terms of their phenotypic effect. So for example a mutation operator in genetic
algorithms can be defined (in a problem-free way) as an operator which makes small explor-
atory changes to individuals. A recombination operator can be similarly defined as one which
brings together aspects of two distinct solutions.

It is also important to note that the choices of move operators and the representation of
the solutions as members of genotype space are essentially two aspects of the same problem.
Any change in representation can be effected by retaining the original representation and
changing the move operators so that they have the same effect as the original move operators
would have on the new representation.

One way to make such choices is by reasoning about the problem domain and choosing
move operators which have a known effect on members of the phenotype. This can be found
e.g., in the work of Martin and Otto (1996) on the TSP, which incorporates local moves
known as 4-opt moves within a simulated annealing framework.

However for many problems this approach is not practical. This may be because the
relationship between the genotype and phenotype is complex, so it is difficult to predict the
effects of genotypically defined moves on the phenotype. Alternatively this may be a practical
matter: there is not enough human effort available in order to design and test such moves.
For both of these reasons methods of automatically designing or choosing move operators
and representations is useful.

Three strategies can be employed. The first is statistical analysis of proposed indirect
fitness measurements. For example in recent work on metaheuristic counterexample-search
in pure mathematics (Johnson 2003) the fitness cannot be measured directly. Instead it must
(by the nature of the problem) be assessed indirectly via the calculation of invariants on
members of the population (which consists of geometrical objects). There is a choice of such
invariants, and the problem at hand is a two-criteria optimization problem where the aim is
to minimize one fitness criterion whilst whilst maximizing another.

In order to choose between the invariants, each was applied to a large set of randomly
chosen examples from the search space. The two fitness criteria were then measured for each
of this set of randomly chosen invariants, and each of the two fitness measures calculated
for each example. For each invariant correlation coefficient was then calculated between
the datasets corresponding to the two fitness measures, and the invariant chosen which had
the least correlation between the measures. This was chosen so that the search algorithm can
search for both criteria with as little interference as possible between them. Such an approach
has potential to be applied more broadly, for example in the choice of representations for
multi-criterion optimization problems.

The second strategy is a target analysis of proposed move operators and associated rep-
resentations. A target analysis (Laguna and Glover 1993; Glover 1986) is a way of tuning
(meta)heuristics to a particular problem or set of problems. The target analysis begins with
the construction of a target solution. If the aim is to solve many similar problems, then the
target solution might be a one example from that set of problems, which has been analysed
with more effort (computational or human) than can be applied normally. So for example
the target solution to the chosen problem might be created via an enumerative search, which
might be feasible for a single problem but not for day-to-day use. Alternatively there may
be some examples in the set of problems which are solvable using some analytic technique;
these solutions could then be used as target solutions. A third type of target solution are
solutions to a related, easier problem: for example, in choosing which operators to apply for

123



174 C. G. Johnson

a hard problem involving a search space structured as a graph, simpler problems which also
involve searching a graph might be investigated.

This target solution is then used to tune a metaheuristic to the solution of that problem.
For example, the inverse of move operators might be tested on the target solution, to see if
the solution is likely to be found by making a move using that move operator. Essentially the
metaheuristic is “reverse engineered” from the target solution.

This tuned metaheuristic is then applied to the other problem(s). The hypothesis under-
lying this is that the tuned metaheuristic will work better on such related problems than an
arbitrary metaheuristic would; we have added problem-specific information into the meta-
heuristic, albeit indirectly and possibly imperfectly via related problems. This has been
shown empirically (Laguna and Glover 1993; Glover 1986) to have an effect on the ability of
metaheuristics to solve problems. Clearly there are a number of caveats to this method—in
particular the notion of “related problems” is a difficulty: problems which seem related to
the practitioner might not have an underlying structural similarity. Also, the target solution
may be untypical, particularly if the reason it can be solved easily also implies that it has
some structural uniqueness within the problem-set which is also exploited in its solution by
the metaheuristic—but overall it seems to be a valuable method of putting problem-specific
information into a metaheuristic.

A third, more formal, approach is to develop problem-specific operators by exploiting the
results of forma analysis of heuristics. These ideas have been applied to hillclimbing (Tuson
1999), evolutionary (Gong and Tuson 2006, 2007) and particle-swarm (Gong and Tuson
2008) search methods.

The idea of forma analysis Radcliffe (1991, 1994) is to describe the search space for a
particular problem in terms of a set of equivalence relations, that is, subsets of the search
space that have a feature in common. A search space can then be described by a set of these
equivalence relations, called a basis. Such a basis provides a way of describing points in the
search space using problem-relevant features.

Radcliffe (1994) describes a number of generic operators that can be combined with a basis
to form a problem-specific operator. For example, he defines a mutation operator in terms of
a basis that makes a change to the minimum-possible change in the number of equivalence
classes that are changed by the operator. Other such operators are provided for moves such as
recombination of two individuals. By combining the problem-specific information encoded
in the choice of basis with the generically defined operators, problem-specific operators can
be automatically generated.

These three techniques—choice of indirect fitness measures, target analysis, and con-
struction of operators via techniques based on forma analysis—provide the beginnings of a
rational approach to operator design. Combined with ad hoc ideas for operator design.

This section has given us another contribution towards a design framework for metaheu-
ristics based on using information about problems and their encodings to guide the choice of
moves make by the metaheuristic in its search.

5 Solution types

An earlier section of the paper discussed the different ways in which problems can be pre-
sented to metaheuristics. In this section the final part of the framework is introduced: the
choice of the kinds of solution which will be obtained from the metaheuristic.

In the discussion of problem types we discussed the notion of a bottleneck. In the problem
context a bottleneck is the conversion of a problem into a problem of a different type so that
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it can be approached via a metaheuristic method. We have argued above that this is a bad
thing, and that a preferable alternative is to adapt the metaheuristic so that it more naturally
accepts problems of that type.

A similar argument can be made for the output of the process as well as the input. A
metaheuristic should deliver the type of solution which is natural for the problem, rather
than forcing the user to reorganize the type of solution they require so that it is forced into a
particular solution framework.

An example of this is the dominance of optimization as a solution-type. Many solutions
are optimization-defined: the natural expression of the solution is as an optimal value of some
quantity. However many problems are not; nonetheless it is common, when approaching a
problem with a metaheuristic such as a genetic algorithm, to ask “what needs to be opti-
mized?”.

Nonetheless constructing an entirely new solution-type for every problem is excessive;
there is a lot of commonality between problems. At the input end we dealt with this by defin-
ing a number of broad problem-types: data-defined, specification-defined, and interactively
defined (leaving scope for additional types to be defined; there is no argument that this is
an exhaustive list). Similarly with solution-types we can say that problems can be placed
into a number of solution-types: e.g., optimization, search, multimodal optimization. This
list is short: would it be possible to add new solution-types to this list which provide good
natural representations for the types of solutions required by some real-world problems? Is it
then possible to adapt metaheuristics so that they can hunt for solutions of this type without
forcing the solution through a bottleneck?

An example of a new generic solution-type is qualitative example finding or coverage
(Johnson 2001a, b). The aim of this is to find one concrete example for each value of some
property within a large space; for example one route to each of many exits in a complex
maze, or one example of each environment which causes an autonomous agent to exhibit
one of a range of behaviours. This is not a problem which can be naturally solved using
optimization (because as soon as an example as been found there is nothing to optimize) or a
focused search (we are looking to cover the search space not narrow down on one solution).
For example, such a metaheuristic solution-type could be used to generate test-suites for
software, a web-search technique that looked for qualitatively different examples of objects
represented by a common search term, or a range of qualitatively different features to use in
a classification algorithm.

This ties in with ideas which emphasise that evolutionary algorithms are not primarily
optimization algorithms per se but are exploration/exploitation algorithms which can search
a space in a robust fashion (De Jong 1993; Harvey 1997).

This idea of choosing solution-types provides the final part of our design framework.
The availability of a number of other “generic” solution types, as typified by the coverage
example above, would increase the applicability of metaheuristic methods.

6 Summary and conclusions

A simplistic view of metaheuristics is that they are automatic problem solving machines. In
this view, problems are fed into the metaheuristic which processes the problem and gives an
output.

The discussion above has shown that this is an oversimplistic view of metaheuristics. How-
ever this additional thinking about how the user of a metaheuristic can involve themselves in

123



176 C. G. Johnson

the various processes has the potential to improve the performance of those metaheuristics
by putting more information about the problem into the process.

This meta-level discussion of metaheuristics has illustrated that the application of a meta-
heuristic to a particular problem can be seen as involving a number of choices. A guiding
principle in the above has been to say that these choices should reflect aspects of the problem
being solved; the metaheuristic should come to the problem rather than the problem being
twisted to fit the metaheuristic. Careful use of a framework for making these choices can
avoid the problem of bottlenecking where a problem is forced into a representation which
is not natural for it before it is presented to the metaheuristic, make clearer the relationship
between moves in genotype-space and their consequences in phenotype-space, and broaden
the range of solution-types available to practitioners.

The broader scope which is available under this perspective can be applied to the various
metaheuristic methods which are available. The influence of this larger view of the possible
choices in the context of genetic algorithms is illustrated via the example of genetic algorithms
in Fig. 1. This shows the change from a “traditional” perspective on genetic algorithms to a
perspective based on a larger number of choices, allowing the algorithm to be more carefully
tuned to the problem at hand.

Fig. 1 Broadening the scope of metaheuristics and clarifying design decisions through a design framework,
using genetic algorithms as an example
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