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Multiobjective Evolutionary Algorithms:
A Comparative Case Study and
the Strength Pareto Approach

Eckart Zitzler and Lothar Thiele

Abstract—Evolutionary algorithms (EA's) are often well-suited ~ performance at high cost, an alternative low-cost architecture
fOI’_ op_tlmlzatl_on problems _mvolvmg s_everal, often conflicting might considerably increase power consumption—none of
objectives. Since 1985, various evolutionary approaches to mul-ynage solutions can be said to be superior if we do not include

tiobjective optimization have been developed that are capable f inf i ki f th biecti
of searching for multiple solutions concurrently in a single run. preference information (e.g., a ranking o e objectives).

However, the few comparative studies of different methods pre- Thus if no such information is available, it may be useful
sented up to now remain mostly qualitative and are often re- to have knowledge about those alternative architectures. A

stricted to a few approaches. In this paper, four multiobjective tool exploring the design space for Pareto-optimal solutions

EA’s are compared quantitatively where an extended 0/1 knap- j, reasonable time can essentially aid the decision maker in
sack problem is taken as a basis. Furthermore, we introduce . . .
arriving at a final design.

a new evolutionary approach to multicriteria optimization, the ‘ : , .
Strength Pareto EA (SPEA), that combines several features of ~ Evolutionary algorithms (EA’s) seem to be particularly
previous multiobjective EA’s in a unique manner. It is character-  suited for this task because they process a set of solutions

ized by a) storing nondominated solutions externally in a second, in parallel, possibly exploiting similarities of solutions by
continuously updated population, b) evaluating an individual's ocompination. Some researchers suggest that multiobjective

fithess dependent on the number of external nondominated points h and optimizati iaht b bl h EA’
that dominate it, ¢) preserving population diversity using the Search and optimization mig € a problem area where S

Pareto dominance relationship, and d) incorporating a clustering do better than other blind search strategies [1], [2]. Although
procedure in order to reduce the nondominated set without this statement must be qualified with regard to the “no free
destroying its characteristics. The proof-of-principle results ob- Junch” theorems [3], up to now there are few if any alternatives
tained on two artificial problems as well as a larger problem, the to EA-based multiobjective optimization [4].

synthesis of a digital hardware—software multiprocessor system, - . , . .
suggest that SPEA can be very effective in sampling from along Since the mid-1980's, there has been a growing interest

the entire Pareto-optimal front and distributing the generated N solving multicriteria optimization problems using evolu-
solutions over the tradeoff surface. Moreover, SPEA clearly out- tionary approaches. In the meantime, several multiobjective
performs the other four multiobjective EA’s on the 0/1 knapsack EA’s are available that are capable of searching for multiple
problem. Pareto-optimal solutions concurrently in a single run. They
Index Terms—Clustering, evolutionary algorithm, knapsack differ mainly in the fithess assignment, but the question of
problem, multiobjective optimization, niching, Pareto optimality. \which of these methods is better on what type of problem
is mostly unsettled. The few comparative studies that have

I INTRODUCTION been published up to now remain mostly qualitative and
i , _are often restricted to a few algorithms. Therefore, extensive
ANY real-world problems involve simultaneous opti-q antitative comparisons are needed in order to assess the

mization of several incommensurable and often co

. L . . i ) r'E)'erformance of the EA’s in a greater context. Previous effort
peting objectives. Often, there is no single optimal solut|0ﬂ1 this direction has been reported in [5]
but rather a set of alternative solutions. These solutions a9, the present study, we provide a comparison of five

optimal in the wider sense that no other solutions in the seargh isicriteria EA’s, four previously known and one new, by
space are superior to them whalh objectives are considered.qq\ing a multiobjective 0/1 knapsack problem. Thereby, two
They are known a@areto-opnmalsol_ut|ons. complementary quantitative measures are considered in order
Consider, for example, the design of a complex hargs pssess the performance of the algorithms concerning the
ware/software system. An optimal design might be an g, et surfaces produced. A random-search strategy as well
chitecture that minimizes cost and power consumption while 5 gingje-objective EA serve as additional points of reference.
maximizing the overall performance. However, these goaj§,e strength Pareto Evolutionary Algorithm (SPEA), the new
are generally conflicting: one architecture may achieve h'gﬂultiobjective approach proposed in this paper, has been
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The paper is organized as follows. Section Il introduceseveral multicriteria EA’s and compare different fithess assign-
key concepts used in the field of evolutionary multicriterianent strategies. In particular, they distinguish plain aggregat-
optimization and gives an overview of the multiobjectivéng approaches, population-based non-Pareto approaches, and
EA’s considered in this investigation. The comparison d?areto-based approaches.
the four multiobjective EA’s on the 0/1 knapsack problem Aggregation methods combine the objectives into a higher
is the subject of Section Ill, which itself is divided intoscalar function that is used for fithess calculation. Scalar-
three parts: description of the test problem, methodologgation is mandatory when applying an EA, but aggregation
of the comparison, and experimental results. Section IV &pproaches have the advantage of producing one single so-
devoted to SPEA and describes both underlying principlagion. On the other hand, defining the goal function in this
and the application to three problems (Schaffgr'sknapsack way requires profound domain knowledge that is often not
problem, and system-level synthesis). The last section offergilable. Popular aggregation methods are the weighted-sum
concluding remarks and future perspectives. approach, target vector optimization, and the method of goal
attainment [1], [6]. Neverthelesgureaggregation methods are
not considered here because they are not designed for finding
a family of solutions.

Population-based non-Pareto approaches, however, are able
to evolve multiple nondominated solutions concurrently in
a single simulation run. By changing the selection criterion

A general multiobjective optimization problem can be deduring the reproduction phase, the search is guided in several
scribed as a vector functiorf that maps a tuple ofn directions at the same time. Often, fractions of the mating pool
parameters (decision variables) to a tuple rofobjectives. are selected according to one of theobjectives [9], [10].

Il. MULTIOBJECTIVE OPTIMIZATION
USING EVOLUTIONARY ALGORITHMS

A. Definitions

Formally: Other non-Pareto algorithms use multiple linear combinations
) of the objectives in parallel [11], [12].
min/max y = f(z) = (f1(x), f2(2). ..., fu(®)) Pareto-based fitness assignment was first proposed in [13].

All approaches of this type explicitly use Pareto dominance
in order to determine the reproduction probability of each
Y= (92 ) EY (1) individual. While non-Pareto EA’s are often sensitive to the
nonconvexity of Pareto-optimal sets, this is not the case for
Pareto-based EA's [1].

subject tox = (z1,x2,...,2m) € X

where z is called thedecision vectar X is the parameter
space y is theobjective vectarandY” is the objective spacé Finally, some multiobjective EA’s also make use of com-

The se_t of solutlons_o_f a multiobjective _optlmlzatlon prob inations of the presented fitness assignment strategies (e.g.,
lem consists of all decision vectors for which the correspon 4], [15])

ing objective vectors cannot be improved in any dimension
without degradation in another—these vectors are known
as Pareto optimal Mathematically, the concept of Paretec \ultimodal Optimization and Preservation of Diversity

optimality is as follows: Assume, without loss of generality, Wh ider th f findinsetof nondominated
a maximization problem and consider two decision vectors €n we consider the case o findingetot nondominate

a,b € X. Then,a is said todominateb (also written ag: > b) SO|EJ'[IOI’IS rather than a smgl'e-pomt solution, multiobjective
iff EA’s have to perform a multimodal search that samples the

Pareto-optimal set uniformly. Unfortunately, a simple (elitist)
Vie{1,2,...,n}: fila) > fi(b) A EA tends to converge toward a single solution and often
) N loses solutions due to three effects [16]: selection pressure
3y 1,2 ... 2 fi (D). 2 : . ; . !
j€il2, . nt fi(a) > £(8) @ selection noise, and operator disruption. To overcome this
Additionally, in this studya is said tocoverd (a > b) iff problem, several methods have been developed that can be

a = bor fla) = f(b). All decision vectors which are not divided into niching techniques and nonniching techniques

dominated by any other decision vector of a given set afb]- BOth types aim at preserving diversity in the population
called nondominatedregarding this set. If it is clear from (@nd therefore try to prevent from premature convergence),
the context which set is meant, we simply leave it out. THRUt in addition niching techniques are characterized by their
decision vectors that are nondominated within the entire seaft@Pability of promoting the formulation and maintenance of

space are denoted &areto optimaland constitute the so- Stable subpopulationsiiches. o
called Pareto-optimal sebr Pareto-optimal front Fitness sharing[17] is used most frequently, which is a
niching technique based on the idea that individuals in a

particular niche have to share the available resources. The

more individuals are located in the neighborhood of a cer-
In their excellent review of evolutionary approaches to mutain individual, the more its fitness value is degraded. The

tiobjective optimization, Fonseca and Fleming [1] categorigighborhood is defined in terms of a distance mead{itg)

nd specified by the so-calletdche radiuseo. . Dependin
1The definitions and terms presented in this section correspond to tle"‘le P y share P 9

mathematical formulations most widespread in multiobjective EA literau@n Whether the distance functio&lﬁi,.j) operates on the geno-
(e.g., [6], [1]). For more detailed information, we refer to [7] and [8]. types or the phenotypes, one distinguishes betvgegotypic

B. Fitness Assignment Strategies
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sharing and phenotypic sharingphenotypic sharing can beindividuals are picked at random from the population; the size
performed on the decision vectors or the objective vectod. the comparison set is given by the paramétgy,. If one
Currently, most multiobjective EA’s implement fitness sharingf the competing individuals is dominated by any member
(e.g., [11], [14], [18], [6], [15], [19], [20)). of the set and the other is not, then the latter is chosen as
Among the nonniching techniquegstricted matings the winner of the tournament. Iboth individuals are dominated
most common in multicriteria function optimization. Basically(or not dominated), the result of the tournament is decided
two individuals are allowed to mate only if they are within &y sharing: The individual that has the least individuals in
certain distance (given by the parameigr,;.) to each other. its niche (defined byog...) iS selected for reproduction.
This mechanism may avoid the formation of lethal individualslorn and Nafpliotis [18], [26] used phenotypic sharing on
and therefore improve the online performance. Neverthelese objective vectors.
as mentioned in [1], it does not appear to be widespread in theThis algorithm seems to be widespread and has been often
field of multiobjective EA’s (e.g., [11], [14], [21]). taken as reference in recent publications [2], [21], [20], hence,
To our knowledge, other niching methods likeowding it is also examined here.
[22] and its derivatives as well as nonniching techniques as4) Nondominated Sorting Genetic AlgorithnSrinivas and
isolation by distancg23] have never been applied to EA’sDeb [6] also developed an approach based on [13], called
with multiple objectives (an exception is offered in [24], cfnondominated sorting genetic algorithm (NSGA). Analogously
Section IV-D). to [13], the fitness assignment is carried out in several steps. In
each, the nondominated solutions constituting a nondominated
front are assigned the same dummy fitness value. These solu-
D. Four Population-Based Approaches tions are shared with their dummy fitness values (phenotypic
In the following we present the multiobjective EA's appliecsharing on the decision vectors) and ignored in the further
to the knapsack problem in our comparison. For a thoroug§l@ssification process. Finally, the dummy fitness is set to a
discussion of other evolutionary approaches, we refer to [yf,alue less than the smallest shared fitness value in the current
[25], and [4]. nondominated front. Then the next front is extracted. This
1) Vector Evaluated Genetic AlgorithnSchaffer [9] pre- Pprocedure is repeated until all individuals in the population
sented a multimodal EA called vector evaluated genetic &@re classified. In the original study [6], this fitness assignment
gorithm (VEGA) that carries out selection for each objectivlethod was combined with a stochastic remainder selection.
separately. In detail, the mating pool is divided intoparts ~ We have selected NSGA as the second Pareto-based EA,
of equal size; part is filled with individuals that are chosenalthough there are also other Pareto-based approaches that
at random from the current population according to objectiv@ay be under consideration for the comparison, e.g., the
i. Afterwards, the mating pool is shuffled and crossover afaultiobjective EA presented in [14].
mutation are performed as usual. Schaffer implemented this
method in combination with fitness proportionate selection.

Although some serious drawbacks are known, this algorithm [ll. PERFORMANCE COMPARISON
has been a strong point of reference up to now. Therefore, itin the following, the case study is described that has been
was included in this investigation. carried out using the above four multiobjective EA's for

2) Aggregation by Variable Objective Weightingnother  solying an extended 0/1 knapsack problem. The comparison
non-Pareto approach was introduced in [11] (in the followingycyses on the effectiveness in finding multiple Pareto-optimal
referred to as HLGA—Hajela’s and Lin’s genetic algorithm)so|utions, disregarding their number. Nevertheless, in the case
that used the weighted-sum method for fitness assignmefht the tradeoff surface is continuous or contains many points,
Thereby, each objective is assigned a weight |0, 1[, such the distribution of the nondominated solutions achieved is
that 3 w; = 1, and the scalar fitness value is calculated by|so important. Although we do not consider the distribution

summing up the weighted objective values - fi(z). To explicitly, it influences the performance of the EA indirectly.
search for multiple solutions in parallel, the weights are not

fixed but instead encoded in the genotype. The diversity of o
the weight combinations is promoted by phenotypic fitneds The Multiobjective 0/1 Knapsack Problem
sharing. As a consequence, the EA evolves solutions andA test problem for a comparative investigation like this has
weight combinations simultaneously. Finally, [11, p. 102fo be chosen carefully. The problem should be understandable
emphasized mating restrictions to be necessary in orderatod easy to formulate so that the experiments are repeatable
“both speed convergence and impart stability to the genetind verifiable. It should also be a rather general problem
search.” and ideally represent a certain class of real-world problems.
Several other multiobjective EA’'s make use of weighted3oth conditions apply to the knapsack problem: the problem
sum aggregation (e.g., [12]). We have chosen HLGA ftdescription is simple, yet the problem itself is difficult to solve
represent this class of multiobjective EA’s. (NP-hard). Moreover, due to its practical relevance it has been
3) Niched Pareto Genetic AlgorithmThe niched Pareto subject to several investigations in various fields. In particular,
genetic algorithm (NPGA) proposed in [18] and [26] combinethere are some publications in the domain of evolutionary
tournament selection and the concept of Pareto dominancemputation related to the knapsack problem [27]-[29], even
Two competing individuals and a comparison set of othém conjunction with multiobjective optimization [30].
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1) Formulation as Multiobjective Optimization Problem:experiments should be performed on both kinds of knapsack
Generally, a 0/1 knapsack problem consists of a set of itenegpacities, we decided to implement a greedy repair method
weight and profit associated with each item, and an uppdat produced the best outcomes among all algorithms under
bound for the capacity of the knapsack. The task is to firmbnsideration when both capacity types are regarded. This
a subset of items which maximizes the total of the profits imethod is based on a vector representation and repairs infea-
the subset, yet all selected items fit into the knapsack, i.e., gible solutions according to a predefined scheme. We adopted
total weight does not exceed the given capacity [31]. this approach with a slightly modified repair mechanism.

This single-objective problem can be extended directly to In particular, a binary strings of length m is used to
the multiobjective case by allowing an arbitrary number afncode the solutiom € {0,1}™. Since many codings lead
knapsacks. Formally, the multiobjective 0/1 knapsack problaim infeasible solutions, a simple repair methods applied
considered here is defined in the following way: Given a st the genotypes: £ = »(s). The repair algorithm removes
of m items and a set ofi knapsacks, with items from the solution coded by step by step until all

capacity constraints are fulfilled. The order in which the items

pi,; = profit of item j according to knapsack are deleted is determined by the maximum profit/weight ratio

w; ; = weight of itemj according to knapsack per item; for item; the maximum profitweight ratiay; is
¢; = capacity of knapsack given by the equatich
find a vectorz = (z1,22,...,2,) € {0,1}™, such that qj = m’éx{ Pij } (6)
=1 wz,]
Vie {1,2,...,n}: wa ;< ¢ (3) The items are considered in increasing order of ghei.e.,
=t those achieving the lowest profit per weight unit are removed
] ) ) first. This mechanism intends to fulfill the capacity constraints
a?]d for whichf(z) = (f1(2), f2(2), ..., fa(2)) Is maximum, \yhile diminishing the overall profit as little as possible.
where
lids B. Methodology
fil@) = i (4) : . . -
o In the context of this comparison, several questions arise:

What quantitative measures should be used to express the

andz; = 1 iff item j is selected. quality of the results so that the EA’s can be compared in a

2) Test Data: In order to obtain reliable and sound resultsneaningful way? What is the outcome of a multiobjective EA
we used nine different test problems where both the numh@garding a set of runs? How can side effects caused by differ-
of knapsacks and the number of items were vafi@ivo, ent selection schemes or mating restrictions be precluded, such
three, and four objectives were taken under consideration,tiht the comparison is not falsified? How can the parameters
combination with 250, 500, and 750 items. of the EA, particularly the niche radius, be set appropriately?

Following suggestions in [31]uncorrelated profits and |n the following, we treat these problems.
weights were chosen, whege; andw; ; are random integers 1) performance MeasuresTwo complementary measures

in the interval[10, 100]. The knapsack capacities were set tere used to evaluate the tradeoff fronts produced by the
half the total weight regarding the corresponding knapsackyarious EA’s.

_os - . Size of the space coveretlet X' = (x1,2,,...,%;) C
G = ")Zw”' ®) X be a set ofk decision vectors. The functio(X”)
=t gives the volume enclosed by the union of the polytopes
As reported in [31], about half of the items are expected to p1, po, ..., pr, Where eactp; is formed by the intersections
be in the optimal solution (of the single-objective problem) of the following hyperplanes arising out af, along with
when this type of knapsack capacity is used. We also examinedhe axes: for each axis in the objective space, there exists a
more restrictive capacitieéc; = 200) where the solutions hyperplane perpendicular to the axis and passing through the
contain only a few items. As this had no significant influence point (f1(z;), f2(x;),. .., fu(%:)). In the two-dimensional
on the relative performance of the EA’s, we only present the (2-D) case, eaclp; represents a rectangle defined by the
results concerning the former type of knapsack capacity in thepoints (0,0) and (fi(z;), fa(=;)).
following.

3) Implementation:Concerning the chromosome coding as
well as the constraint handling, we drew upon results publishe
in [28], which examined EA’s with different representation
mappings and constraint handling techniques on the (single- C(X, XY = {a" € X";3d' € X' :a' = a"}]
objective) 0/1 knapsack problem. Concluding from the exper- ’ ' | X7 )
iments in [28], penalty functions achieve best results on dataThe valueC(X’, X”) = 1 means that all points inY”

se_ts with capacme§ of half the t.Otal welght;_howev_er, they are dominated by or equal to points X'. The opposite,
fail on problems with more restrictive capacities. Since the
3This is a straightforward extension to the single-objective approach

2The test data sets are available from the authors. presented in [28] wherg; = p1 /w1 ;.

Coverage of two setstet X', X C X be two sets of
ddecision vectors. The functiod maps the ordered pair
(X', X' to the interval[0, 1]

(7)
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C(X',X") = 0, represents the situation when none of the
points in X are covered by the seX’. Note that both
C(X',X") and C(X”,X") have to be considered, since
C(X’, X") is not necessarily equal &y X", X') (e.g., if X’

PARAMETER SPACE 0,

TABLE |
PARAMETERS THAT WERE ADJUSTED TO THEPROBLEM COMPLEXITY:
PopuLATION SizE (IV), NICHE RADIUS (OBJECTIVE SPACE Oghares

*
share

261

), AND DOMINATION PRESSURE(%dom )

. number of | parameters number of items
dominatesX” thenC(X’, X”) = 1 andC(X", X") = 0). knapsacks 250 | 500 750
. 5 250
The first measureS has the advantage that each EA can N 150 200 5
- , 2 O share 0.4924 | 0.4943 | 0.4954
be evaluated independently of the other EA’s; however, con- — 5 536 =7
vex regions may be preferred to concave regions, possibly tlh = 10 B
. . . aom
overrating certain solutions. The second measuogercomes in 200 250 300
this drawback and can be used to show that the outcomes of Y <
X ; . Tehare 0.4933 | 0.4946 | 0.4962
one algorithm dominate the outcomes of another algorithm, o, 113 533 351
. . . snare
although it does not tell how much better it is. tom 30 35 15
Since in this comparison the focus is on finding the Pareto- N 250 300 350
optimal set rather than obtaining a uniform distribution along 4 Oohmce 0.4940 | 0.4950 | 0.4967
the tradeoff surface, we did not consider the online perfor- T hare 112 232 352
mance of the EA’s but rather the offline performance. Thus tdom 50 75 35

the nondominated set regardiayj individuals generated over
all generations was taken as the output of an optimizatibe dependent on the complexity of the test problem, as can
run. Altogether 30 independent runs were performed per B seen in Table I: the more knapsacks and items involved,
and test problem in order to restrict the influence of randothe greater the value foV. Following the guidelines in
effects. Another randomly created initial population was takgB4], the niche radius was calculated based on normalized
each time, and for each test problem all EA’s operated on tHestance, assuming the formation of ten (15 and 20, respec-
same 30 initial populations. tively) independent niches in the case of two (three and four,
2) Selection and Mating Restrictionsctually, each mul- respectively) knapsacks. In Tablest; . . relates to sharing on
tiobjective EA should be combined with the selection schentlee parameter space, which is implemented in NSGA, while
originally applied. But the influence of the selection schemey,are Stands for the niche radii used by HLGA and NPGA.
on the outcome of an EA cannot be neglected, e.g., fitndsgally, the domination pressutg.,, a parameter of NPGA,
proportionate selection, which is used in VEGA, is well knowwas determined experimentally. All NPGA simulations were
to have serious disadvantages [32]. In order to guarantried out five times, each time using another valuetdgs,
a fair comparison, all EA’s considered were implemente@®, 10, 15, 20, and 25% of the population size). At the end,
with the same selection scheme: binary tournament selectfbge parameter value which achieved the best results foSthe
with replacement. This selection method turned out to eeasure was chosen per test problem (cf. Table I).
superior to both stochastic remainder selection (used in [6])
and linear ranking selection on our test problems—that h&s Experimental Results

been confirmed experimentally. As additional points of reference, two further methods were
Unfortunately, a conventional combination of fitness sharingynsidered in this comparison: random sampling and multiple
and tournament selection may lead to chaotic behavior of tiﬁ%iependent sampling. The first algorithm (RAND) randomly
EA [33]. Therefore, both NSGA and HLGA were implementegenerates a certain number of individuals per generation,
using a slightly modified version of sharing, calledntin- according to the rate of crossover and mutation (though neither
uously updated sharingwhich was proposed by the sameyrossover, mutation, nor selection are performed). Hence the
researchers. Thereby, the partly filled next generation is us@gmber of fitness evaluations was the same as for the EA’s.
to calculate the niche count rather than the current generatighe second algorithm is an elitist single-objective EA using
Horn and Nafpliotis [18], [26] introduced this concept inyeighted-sum aggregation. In contrast to the other algorithms
NPGA as well. under consideration, 100 independent runs were performed per
Another problem is the influence of mating restrictionsest problem, each run optimizing toward another randomly
While Hajela and Lin [11] found it necessary to restricthosen linear combination of the objectives. The nondomi-
mating, the other EA’s under consideration do not explicitlated solutions among all solutions generated in the 100 runs
incorporate this concept. We decided not to use mating ferm the tradeoff front achieved on a particular test problem.
strictions in this study, since the effectiveness of the differepurthermore, two versions of the single-objective EA were
fitness assignment and niching methods should be compaiedestigated: one with 100 generations per linear combination
In addition, it was experimentally verified that no significan¢(SO-1) and another one that terminated after 500 generations
improvement could be observed when running HLGA witin every single optimization run (SO-5).
mating restrictions. The results concerning th& measure (size of the space
3) Parameter SettingsOn all test problems, 500 generacovered) are shown in Fig. 3, the direct comparison of the
tions were simulated per optimization run, the probabilitiedifferent algorithms based on th@ measure (coverage) is
of crossover (one-point) and mutation were fixed (0.8 ardkpicted in Fig. 2. For each algorithm and ordered pair of
0.01, respectively). The population siZ€ was chosen to algorithms, respectively, there is a sample ofS30espectively
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Fig. 1. Tradeoff fronts for two knapsacks: here, the nondominated solutions regarding the first five runs are plotted. For better visualizatiots, the po
achieved by a particular method are connected by dashed lines and RAND is not included in the figure. Note that SPEA and SP-S are described later.

C, values per test problem according to the 30 runs performe@. quartile deviations than the medians associated with the
Here, box plots[35] are used to visualize the distribution ofEA’'s when the maximum quartile deviation of all samples is
these samples. A box plot consists of a box summarizing 50%nsidered.
of the data. The upper and lower ends of the box are the uppeAmong the multiobjective EA’'s, NSGA seems to provide
and lower quartiles, while a thick line within the box encodethe best performance. The median of thealues is for each
the median. Dashed appendages summarize the spread tastproblem greater than the corresponding medians of the
shape of the distribution, and dots represent outside valuesther three EA’s by more than five quartile deviations. In
Generally, the simulation results prove that all multiobjeaddition, on eight of the nine test problems NSGA covers
tive EA’s do better than the random search strategy. Fig.n2ore than 70% of the fronts computed by HLGA, NPGA, and
shows that the tradeoff fronts achieved by RAND are entireiEGA in more than 75% of the runs; in 99% of the runs it
dominated by the fronts evolved by HLGA, NPGA, andovers more than 50%. In contrast, those three EA’s cover less
NSGA (with regard to the same population). Concerning thiean 10% of the NSGA outcomes in 75% of all runs and less
S distributions, the RAND median is less by more thathan 25% in 99% of the runs (on eight of the nine problems).
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Fig. 2. Box plots based on the measure. Each rectangle contains nine box plots representing the distribution(fvéitees for a certain ordered pair

of algorithms; the three box plots to the left relate to two knapsacks and (from left to right) 250, 500, and 750 items; correspondingly the threexmiddle

plots relate to three knapsacks and the three to the right to four knapsacks. The scale is 0 at the bottom and 1 at the top per rectangle. Furthermore, each
rectangle refers to algorithm associated with the corresponding row and algoritBnassociated with the corresponding column and gives the fraction

of B covered byA (C(A,B)). Note that SPEA and SP-S are introduced later.

For four knapsacks and 250 items, the coverage rates scafarthermore, both algorithms generate better assessments in
more, however, NSGA achieves higltevalues in comparison comparison with HLGA. With three and four knapsacks, the
with the other multiobjective EA’s. fronts produced by HLGA are dominated by the NPGA and
Comparing NPGA and VEGA, there is no clear evidencéEGA fronts by 99% (cf. Fig. 2), and the medians of the
that one algorithm outperforms the other, although VEGA values associated with HLGA are more than ten quartile
seems to be slightly superior to NPGA. Only on two of thedeviations less than th& medians related to NPGA and
test problems (two knapsacks, 500 and 750 items) do tWM&GA. For two knapsacks, th& distributions are closer
medians of theS distributions of the two EA’s deviate by together; however, th€ measure indicates clear advantages
more than three quartile deviations (in favor of VEGA). In thef NPGA and VEGA over HLGA.
direct comparison based on teneasure, VEGA covers more Finally, the fact that SO-5 covers on average more than
than 50% of the NPGA outcomes on average, while NPG20% of the nondominated solutions computed by HLGA,
achieves less than 25% coverage regarding VEGA on avera®GA, VEGA, and NSGA and achieves significantly greater
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the four multiobjective EA’s and otherwise the differences between those algorithms would be blurred.

S values (the median is greater by more than 21 quarti@n the other hand, SPEA is unique in four respects.

deviations than the other medians per test problem) suggests |t combines the above three techniques in a single algo-
that none of the multiobjective EA’s converge to the Pareto-

optimal front using the chosen parameter settings. This can
also be observed in Fig. 1, where the tradeoff fronts obtained

in five runs are plotted for the 2-D problems. Note that the

computational effort needed by SO-5 to produce the depicted
fronts is 20 times higher than the one for the multiobjective »

EA's.

IV. THE STRENGTH PARETO APPROACH

We propose a new approach to multiobjective optimization,
the Strength Pareto Evolutionary AlgorithSPEA). SPEA
uses a mixture of established and new techniques in orderAlgorithm
to find multiple Pareto-optimal solutions in parallel. On one The flow of the algorithm is as follows.
hand, similarly to other multiobjective EA’s, it:

« stores the nondominated solutions found so far externally

(e.g., [10], [12], [19));
« uses the concept of Pareto dominance in order to assigrtep 3) Remove solutions withid® which are covered by
scalar fithess values to individuals;
 performs clustering to reduce the number of nondomi- Step 4) If the number of externally stored nondominated

nated solutions stored without destroying the characteris-

tics of the tradeoff front [20].

rithm.

The fitness of an individual is determined only from
the solutions stored in the external nondominated set;
whether members of the population dominate each other
is irrelevant.

All solutions in the external nondominated set participate
in the selection.

¢ A new niching method is provided in order to preserve

diversity in the population; this method is Pareto-based
and does not require any distance parameter (like the
niche radius for sharing).

Step 1) Generate an initial populatio®® and create the
empty external nondominated sEt.
Step 2) Copy nondominated members #fto P’.

any other member of”’.

solutions exceeds a given maximuli, prune P’
by means of clustering.
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Fig. 4. Two scenarios for a maximization problem with two objectives. The number associated with each solution gives the fitness (and strength in
case of nondominated points).

Step 5) Calculate the fitness of each individualihas well of the subset cover in common. For instance, the dark-
as in P'. shaded rectangle in the lower-left corner is covered by all

Step 6) Select individuals from? + P’ (multiset union), three nondominated points, while the upper left bright-shaded
until the mating pool is filled. In this study, binaryrectangle is only covered by one nondominated point. We
tournament selection with replacement is used. consider these areas as niches, and the goal is to distribute

Step 7) Apply problem-specific crossover and mutation opthe individuals over this “grid” such that:
erators as usual.

Step 8) If the maximum number of generations is reached,
then stop, else go to Step 2.

In the next two subsections, the fithess assignment as well

as the clustering procedure are described in detalil.
1) Fitness AssignmentThe fithess assignment procedure

a) (brighter shaded) areas covered by only a few non-
dominated points contain more individuals than (darker
shaded) rectangles that are covered by many nondomi-
nated points, and

b) an area comprises as many individuals as the other
] i S aos g (equally shaded) rectangles that are covered by the same
is a two-stage pro/cess. First, the individuals in _the_ gxternal number of nondominated points.
:Lo?ﬁgrggnpi[;?ijﬁ aarl;eer\?:IEZ?é dA.\fterwards, the individuals This mechanism intuitively reflects the idea of preferring
o . _ individuals near the Pareto-optimal front and distributing them
Step 1) Each solutioni € I is fssgned a re_al valueat the same time along the tradeoff surface. In Fig. 4(a), the
si € [0,1), called stre_ngth 5i 1S ‘proport|0na_l 0 st aspect is illustrated: Individuals located in the bright areas
Ehf ?uaneti(jlr g;gg?euItizogurg]%rg:)gﬁng\j%zgg%] achieve better fitness values than the remaining population
thatjf;lre covered by and assumeV is the size of members. _Fig. 4(b.) prqvides an example _for. the segqnd as-
P. Thens; is defined as; — <. The fitnessf; pecF and dlrectly wsuahz_es th_e s_trength prlnC|p_Ie: Individuals
of i is eqaal 0 its strengzthfi A:J’; ¢ h_avmg many neighbors in their n_|che are pengllzed due_ to the
Step 2) The fitness of an individual € P is calculated by ‘r‘ngh streTgth value O.f the assomgted nondomlﬂl'ated” point; the
summing the strengths of all external nondominate(:&(;[\r/(;rr'ggringi\zgzggmmated solution, the less “fitter” are the
. p P .
f;lglu?:Sérgeftc:hgfj:;\ﬁ;‘g \'[/LIZtar?]den(:rt;irtsO]é?e The main difference to fithess sharing is that niches are
have better fitness than members Bf(note that not defined in terms of distance but Pareto dominance. This
fitness is to be minimized, i.e., small fithess valug€nders the setting of a distance parameter superfluous, al-
correspond to high reproduction probabilities) though the parametelN’ influences the niching capability
as we will discuss in the next section. Furthermore, it has
fi=1+ Z Si where f; € [1,N). to be mentioned that this kind of fitness assignment using
i,47] two interacting populations has been inspired by [37]-[41].
To make the effect of this ranking method clear, take a loﬁfgdalid[4slr10\snfgg|$r?atths§/rrl:;; tiocf ;:OOIES(;?]Uzgnpsggéztlﬁgsthlg
at Fig. 4. The objective space which is covered by the thr
nondgominated st)Iutions Fs divided into distinct r)clectangle§.ear0h process. In [37]-{40], a similar concept was applied to
Each subset of”’ defines one such area that all membei§imune system models where two cooperative populations
. _ , _ _ were used to maintain population diversity; [39] reported
This term is adopted from [36] where it was introduced in the context

classifier systems; it stands for a quantity summarizing the usefulness (ﬁ@t this mgthOd has emergent properties that are similar to
rule. Here, it reflects the usefulness of a nondominated point. fitness sharing.
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2) Reducing the Pareto Set by Clusterinip certain prob- B. A Simple Test Function: Schafferfs
lems, the Pareto-optimal set can be extremely large or every yery simple test function for multiobjective optimizers

contain an infinite number of solutions. However, from th% the well-known functionf, used by Schaffer [44]. It is
decision maker’s point of view, presenting all nondominate§hfined as follows:

solutions found is useless when their number exceeds reason-

able bounds. Moreover, the size of the external nondominated minimize fo(x) = (g(z), h(z))
set influences the behavior of SPEA. On the one hand, since whereg(z) = 2
P’ participates in selection, too many nondominated solutions hz) = (2 — 2)? (®)

might reduce selection pressure and slow down the search [20].

On the other hand, the str“en_gt,h niching mechanism relies opygyiously, the Pareto-optimal points are located in the range
uniform granularity of the “grid” defined by the nondominated, o [0, 2]. Outside this intervalg as well ash are increasing,
solutions (cf. Fig. 4); if the points i are not distributed \hjle within the interval, there is a tradeoff between the two
uniformly, the fitness assignment method is possibly biasgshctions (one is increasing, the other one is decreasing).
toward certain regions of the search space, leading to0 anrg test SPEA onf,, we used a 14-bit chromosome which

unbalanced distribution in the population. Thus pruning thg gecoded to a real number betweeé and6. The bit string
external nondominated set while maintaining its characteristiggy00000000000 encodesz = —6 and 11111111111111

might be necessary or even mandatory. stands forz = 6. Furthermore, the following parameters were
A method that has been applied to this problem successfull¥eq for SPEA:

and studied extensively in the same context is cluster analysis
[42], [43]. In general, cluster analysis partitions a collection of Population sizeV): 95/70/30

m elements intox groups of relatively homogeneous elements, Size of external nondominated €e¥"): 5/30/70
wheren < m. Theaverage linkage method?2], a clustering

X Crossover probability: 1.0
approach that has proven to perform well on this problem (cf. Mutation probability: 00
[42]), has been chosen in this paper. Number of generations: 100

Step 1) Initialize cluster set”; each external nondominated

pointi € P’ constitutes a distinct cluster:

C = Uit Altogether, we tried three different combinations &f and
B ANEES N’, where N + N’ equaled 100 in each case. In order

Step 2) If |C] < N/, go to Step 5, else go to Step 3. . X :
p2If|C] < N, g . P, 90 P to examine the effectiveness of SPEA alone, no mutation
Step 3) Calculate the distance of all possible pairs of clus- . L
. operator was applied to the individuals. Instead, we used a
ters. The distancé of two clustersc; andecy; € C

is o . irs GpSsover probability of 1.0. In addition, VEGA ran on this
given as the average distance between pairs 0 o .
individuals across the two clusters problem with |_dent|cal parametet(si\f_ = 100). In order to
guarantee a fair comparison, the offline performance of VEGA
1 is considered here, i.e., the final tradeoff front is formed by
d=—= > |iL—ia the nondominated solutions fouretliring a run, not only by
el -le2l ;e the Pareto-optimal points in generation 100.

The results produced by the algorithms using the same initial
where the metrid] - || reflects the distance betweerpopulation are showr_1 in Fig. Bt can be ot_)served that SPEA
two individualsi; andi, (in this study an Euclidean S able tQ well approximate the Pare_to-optlmal front, depe_ndlng
metric on the objective space is used). on the size of the external nondoml_nated set: In comparison to

Step 4) Determine two clusters: and ¢, with minimal VEGA, it evolved more .Pareto—optlmal solutlions (VEGA:20,
distanced; the chosen clusters amalgamate into §PEA:5/30/70) and distributed them more uniformly along the

larger clusterC' = C'\ {c1, 2} U {c; Ues}. Go to  tradeoff front.
Step 2.
Step 5) Compute the reduced nondominated set by sé- Performance on the 0/1 Knapsack Problem
lecting a representative individual per cluster. We The same parameters as for the other multiobjective EA’s
consider the centroid (the point with minimal avwere used for SPEA on the 0/1 knapsack problem. For reasons
erage distance to all other points in the cluster) af fairness,V was set to4/5 and N’ to 1/4 of the population
representative solution. size given in Table 1. In addition, a slightly modified version of
Cunhaet al. [20] also combined a multiobjective EA with aSPEA was examined (SP-S) whefé does not participate in
clustering approach in order to achieve reasonably sized Partbi® selection phase; there, the population size was the same as
sets. This algorithm, however, uses a different clusteririgr the other EA’s, and the size of the external nondominated
method which has been proposed in [43]; thereby, for easht was restricted té/4 - N.
objective, a tolerance value has to be specified. Moreover, itThe results concerning th& measure (size of the space
differs from SPEA with regard to the following two aspectscovered) are depicted in Fig. 6, the direct comparison of SPEA
a) The nondominated solutions are not stored externally, ang

b) f|tne§s Sha”ng 1S mcorporated to preserve dlverS|ty In trﬂ@vertheless, the results were similar when the experiments were repeated
population. with different initial populations.

Certainly, only limited weight can be given to a single run per algorithm.
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Fig. 5. Performance of SPEA and VEGA on Schaffefs.

with the other algorithms based on temeasure (coverage)

is shown in Fig. 2. Furthermore, Fig. 1 gives the plots of the
2-D tradeoff fronts achieved by SPEA and the other EA’s. The

main observations can be summarized as follows.

e SPEA achieves the best assessments among the mul-
tiobjective EA’s. It covers 100% of the nondominated
solutions found by HLGA, NPGA, VEGA, and NSGA
with eight of the nine test problems; for four knapsacks
and 250 items at least 87% are covered. On the other
hand, those algorithms cover less than 5% of the SPEA
outcomes in all 270 runs. Concerning the size of the
covered space, the medians of $ialistributions related
to SPEA are greater than the corresponding medians of
the other multiobjective EA’s by more than ten quartile
deviations. Although the Pareto-optimal fronts of the
test problems considered here are all convex, we have
shown recently [45] that SPEA also has advantages over
the other EA’'s for different types of problems (e.g.,
nonconvex functions).

As Fig. 1 indicates, SPEA can find solutions that are
closer to the Pareto-optimal front than those produced by

267

VEGA <N=100>

10

SO-5 in spite of less computational effort. This observa-
tion is supported by the fact that SO-5 covers only 48% of
the SPEA front with eight of the nine test problems (SO-
1 less than 12%). However, the fronts found by multiple
single-objective searches contain many more solutions
and are wider in the sense that the size of the covered
space is significantly greater (cf. Fig. 6). Whether SPEA
can outperform a single-objective EA with substantially
less computation time is the subject of future work;
however, it was shown recently [45] that this is the case
for 2-D problems of different characteristics.

Elitism seems to be important for the effectiveness of
the search, as SP-S performs substantially worse than
SPEA. Nevertheless, SP-S appears to do slightly better
than NSGA on the three- and four-dimensional problems.
Both the & values (the median distance to NSGA is
greater than three quartile deviations) and ¢healues
suggest a slight advantage for SP-S over NSGA. For two
knapsacks, the results are ambiguous and do not allow a
final conclusion to be made.
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Fig. 6. SPEA in comparison with the other algorithms with regard to the size of the covered
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S values achieved in the 30 optimization runs.

D. Application to System-Level Synthesis time I(a,b) that is necessary to execute taskon

The third application is a larger problem in the domain of

resourceb.

computer engineering that is concerned with computer-basE#e optimization goal is to find an implementation which
system-level synthesis. Blicklet al. [24], [46], [47] have Simultaneously minimizes cost and execution time; thereby,
presented an evolutionary approach to this problem which @8 implementation is described by:

use as the basis for the SPEA implementation. 1) the set of the selected resources and structural objects

1)

Problem Description:In [47], system-level synthesis is (allocation);

considered as the problem of optimally mapping a task-2) the mapping of the algorithm onto the selected architec-
level specification onto a heterogeneous hardware/software ture (inding);
architecture. The input consists of three parts. 3) the schedule that defines the start times of the tasks on

1)

2)

3)

A behavioral description of a hardware/software system the selected resources.

to synthesize. The behavior is defined in terms of func- An example that visualizes the relations between input
tional objectives such as algorithms, tasks, proceduresd output is provided in Fig. 7. The behavioral specification
or processes together with their data interdependencidgscribed by means of a directed graph contains seven func-
A structural specification of the system & class of pos- tional objects, where shaded nodes stand for communication
sible architectures) where structural objects are generaperations. The architecture, which includes a RISC processor,
or special-purpose processors, application-specific inte-digital signal processor (DSP), and an application-specific
grated circuits (ASIC’s), buses, and memories. Witmtegrated circuit (ASIC), interconnected by two buses, is
each structural object, a fixed cost is associated trelso modeled by a directed graph. Finally, the functien
arises when the particular resource is realized. is represented by edges between nodes of the two graphs.
A Boolean functiorvn of the set of functional objects For instance, Algorithm 4 can be mapped to any chip while
to the set of structural objects that defines the spaédgorithm 1 has to be executed on the RISC processor. On
of possible mappings; whem(a,b) = 1, the taska the right-hand side of Fig. 7, a sample implementation is
can be mapped to the resourkeotherwise it cannot. depicted. All resources except Bus 2 are selected, thus all
Additionally, a latency function gives the estimated communications are handled by Bus 1 (this is also reflected

space. The box plots represent the distributions of the
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Fig. 8. An evolutionary algorithm for system-level synthesis (diagram taken
from [24, p. 174]). Depicted is the process of fitness evaluation. In the
first step, an allocation is derived from the information encoded in the
individual. The binding, which is computed in the second step, depends on
mappings binding both the encoded information and the allocation. Afterwards, the schedule
is determined heuristically and the resulting implementation is assessed
concerning the design criteria, possibly taking user-defined constraints into
algorithms architectures schedule allocation account.

ASIC

Fig. 7. System-level synthesis: problem statement (slightly modified ex-

ample from [24]). Given is a set of algorithms together with their data TABLE I

interdependencies, a superset of possible architectures, and a set of possi:o Copec NONDOMINATED SOLUTIONS FOUND BY THE THREE DIFFERENT
mappings of algorithms to computing resources. The goal is to find an \Meryops IN EacH CoLUMN, THE PAIRS SET IN ITALIC MARK POINTS
implementation that is described by the selected architecture (allocation), the s ARE INFERIOR TO ANY POINT IN THE OTHER TWO COLUMNS. THE

selected mapping (binding), and a schedule for the algorithms to be executegy rcomes oF THE SINGLE-OBJECTIVE EA ARE TAKEN EROM [24, p. 203]
on the architecture.

SPEA | single-objective EA RTS +
Pareto ranking

by the binding that maps the communication nodes 5, 7, and (180,166) (180,166) (180,166)
6 to Bus 1). For each functional object, a start time is given (230,114) (230,114) (230,114)
(280,78) (280,78) (280,78)

(schedule). 330.48 930,54 (530,54)
2) EA Implementation:The overall picture of the EA is 55(40’363 ?),4023 (:?fs();")gé)
depicted in Fig. 8. Each individual encodes both allocation and (350:22) (350,22) (370,22)

binding, whereas the schedule is computed deterministically
by a heuristic list-scheduling algorithm incorporating loop

plpellnlng An allocation is intuitively represented as a binarand to the algorithm proposed in [24]. The synthesis of a
string, the length of which corresponds to the number @fdeo codec, based on the H.261 standard (cf. [24, ch. 9]),
specified resources in the set of possible architectures. In orglgfs chosen as test problem; the search space of this problem
to reduce the number of unfeasible solutions, allocations agntains about.9 - 1027 possible bindings.
partially repaired by a heuristic whenever an individual is de- All algorithms ran with a population size of 30 (SPEA: 20
coded. For the same reason, bindings are not encoded diregfih ten externally stored nondominated solutions), a crossover
using one chromosome but rather indirectly based on sevesgdbability of 0.5, and a mutation probability of 0.2. In
chromosomes: one chromosome including a permutation gfse of the two multiobjective EA’s, the offline performance
all tasks in the behavioral description determines the orderdier ten independent runs with 100 generations each was
which the tasks are mapped to the resources with respectémsidered. The single-objective EA was used to optimize each
the repaired allocation. Further lists, permutations of the ssibjective separately; for the other objective, a maximum value,
of resources, define separately for each task which resourca isonstraint, was defined. We examined 11 different latency
to be checked next for mapping. constraints when minimizing cost and 11 cost constraints in
To obtain the entire Pareto-optimal front (design space ethe case of latency optimization. For each constraint, the best
ploration), [24] used the same Pareto ranking method proposedult out of ten independent runs (100 generations each)
in [14]: An individual's fithess is equal to the number ofwas taken, and the nondominated solutions of all 22 single-
population members that dominate it. For the purpose ofobjective results constituted the final Pareto set.
diverse population, he incorporated a niching technique whichSPEA covers 100% and dominates 50% of the solutions
has been rather seldom usedstricted tournament selectionfound by the combination of RTS and Pareto ranking as shown
(RTS) [48]. RTS is a special binary tournament selectian Table Il. Although Blickle [24] ran the algorithm with a
for steady-state EA’s where two individuals hold tournamepopulation size of 100 and a maximum number of 200 gener-
with the most similar individual of a randomly chosen groupgtions, the results he reported are the same as generated by the
winners replace inferior individuals in the population. single-objective EA (Table I, second column). Moreover, in
3) Experimental ResultsThe presented EA has been imspite of significantly lower computational effort, SPEA covers
plemented with the Strength Pareto approach for multiobjet90% and dominates 33% of the nondominated front achieved
tive optimization and compared both to a single-objective EBy the single-objective EA.
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Among these multicriteria EA’s, the nondominated sortingis] E. Zitzler and L. Thiele, “Multiobjective optimization using evolutionary
genetic algorithm [6] achieved the best results on all test algorithms—A comparative case study,” Bth Int. Conf. Parallel
problems. It was followed by VEGA (9] which seems fo have 90T SoMro fom Natve (PSR £ Eben T Bk M
slight advantages over the niched Pareto genetic algorithm \erlag, 1998, pp. 292-301.
[18], [26] on this type of problem. Compared with Hajela’s [6] N. Srinivas and K. Deb, “Multiobjective optimization using nondomi-
and Lin's weighted-sum approach [11], both VEGA and ggtle_dzjgrt'fggf genetic algorithmsE2vol. Comput. vol. 2, no. 3, pp-
NPGA were assessed as better regarding the two performangeg R. E. SteuerMultiple Criteria Optimization: Theory, Computation, and
measures considered here. 8] :]ApflICRa}ﬂgj?Jes?ﬁmt?{)(;:jlgcmlegp]ﬁﬁgétion' Behavioral and Computa-
Furthermore, a new evolutionary approach to multiobjectivé tional Considerations Boston, MA: Kluwer, 1992.
optimization has been provided (SPEA) that differs from[9] M. P. Fourman, “Compaction of symbolic layout using genetic algo-
existing multicriteria EA’s in the kind of fitness assignment 5”thé:e'?eﬁ;’g&'e”tEgo";-itggﬂfgtﬁ ’?:'2"333’2 f_”zdewl‘gg?ppp;'ci‘ggﬁss
based on principles of coevolution and the niching technique sboﬁsored by Texas Instruments and U.S. Navy’ Center for Applied’
founded on the concept of Pareto dominance. As shown on Research in Artificial Intelligence (NCARAL). o
three applications, SPEA is capable of efficientl guiding rl T Kirsauve, "Eualon stateges for vesir optmizaton, froc,
search toward the Pareto-optimal front. On the 0/1 knapsack | vy, Eds., National Chiao Tung University, Hsinchu, Taiwan, 1992,
problem, it outperformed the other four multiobjective EA’'s  pp. 187-193.
by a wide margin. Moreover, the experimental results indicatkt! P- Hajela and C.-¥. Lin, “Genetic search strategies in multicriterion op-
that SPEA can even find solutions that are closer to the ngeg i%s;%”'pg”%;”_‘fg?' Optimizationvol. 4. New York: Springer,
globally optimal trade-off surface than solutions evolved bit2] H. IS_hibugﬁ_i and T. Murata, “Multi-objective genetic local search
a single-objective EA optimizing a linear combination of the Zgggg’g)" I;?Ssg?gwiigg J"Elagy'rz‘g_gg?fig'g‘g‘?";g?r‘ﬁgjgrp“ta“on
objectives. [13] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and Ma-
With regard to future perspectives, it may be worthwhile tg  chine Learning Reading, MA: Addison-Wesley, 1989. o
investigate the following issues. 4l Cptinization: Formuation, discussion and generalization pioc. St
« If possible, other probabilistic search algorithms like Int. Conf. Genetic AlgorithmsS. Forrest, Ed. San Mateo, CA: Morgan
simulated annealing, hill climbing, tabu search, etc., éa%mgr;zé#\zgiapg. él6H_u42§rid J. G. D’Ambrosio, “Fitness functions
well as “exact” methods (e.g., integer linear program- ~ for multiple objecfive optimiyzation problems: Combining preferences
ming, branch-and-bound) and deterministic heuristics (cf. with pareto rankings,” ifFoundations of Genetic Algorithms 4 (FOGA-
[31]) should be tested on the multiobjective 0/1 knapsack 22! R K- Betew a;g e, Bs. San Francisco, GA: Mofgan
problem. This would permit a more precise assessment[@é] S. w. Mahfoud, “Niching methods for genetic algorithms,” Ph.D.
the performance of the EA's. dissertation, Univ. IIIinois,_Urbana-Ch“ampaign, 1995. ) ]
« The distribution of the obtained nondominated sets shoutt!! f[:)'r i'uﬁﬂggz[?uﬁggoﬂ'O?t‘i’rgf'zrgfigg:,, i%inneet{fc f%%?itt?]r;ss ;":g'Tshh;:mg
be included in the comparison. Although the size of
the covered space is a performance measure that takes
this property into account, it does not allow separaigg
evaluation of the distribution.
Comparative studies should also be performed on the
basis of other test problems with different characteristié%g]
(e.g., nonconvexity). First steps in this direction have
already been made [45]. (20]

Finally, as stated in [1], a theory of evolutionary multiobjec-
tive optimization is still required, examining different fitness
assignment methods in combination with different selectiond”
schemes.

[22]
ACKNOWLEDGMENT
The authors wish to thank D. B. Fogel and the anonymOL[sts]

reviewers for their helpful comments and suggestions.

Applications: Proceedings of the Second International Conference on
Genetic AlgorithmsJ. J. Grefenstette, Ed. Hillsdale, NJ: Lawrence
Erlbaum, 1987, pp. 41-49.

J. Horn and N. Nafpliotis, “Multiobjective optimization using the
niched pareto genetic algorithm,” IIliGAL Report 93005, lllinois Genetic
Algorithms Lab., Univ. Illinois, Urbana-Champaign, July 1993.

D. S. Todd and P. Sen, “A multiple criteria genetic algorithm for
containership loading,” irProc. 7th Int. Conf. Genetic Algorithmg.
Back, Ed. San Francisco, CA: Morgan Kaufmann, 1997, pp. 674-681.
A. G. Cunha, P. Oliviera, and J. Covas, “Use of genetic algorithms in
multicriteria optimization to solve industrial problems,”oc. 7th Int.
Conf. Genetic AlgorithmsT. Back, Ed. San Francisco, CA: Morgan
Kaufmann, 1997, pp. 682-688.

D. H. Loughlin and S. Ranjithan, “The neighborhood constraint-method:
A genetic algorithm-based multiobjective optimization technique,” in
Proc. 7th Int. Conf. Genetic Algorithm3. Back, Ed. San Francisco,
CA: Morgan Kaufmann, 1997, pp. 666-673.

K. A. De Jong, “An analysis of the bevavior of a class of genetic
adaptive systems,” Ph.D. dissertation, Univ. Michigan, Ann Arbor, 1975.
C. Ryan, “Niche and species formation in genetic algorithms,” in
Practical Handbook of Genetic Algorithmsol. 1, L. Chambers, Ed.
Boca Raton, FL: CRC, 1995, ch. 2, pp. 57-74.



ZITZLER AND THIELE: MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS

[24] T. Blickle, “Theory of evolutionary algorithms and application to[43]
system-synthesis,” Ph.D. dissertation, Swiss Federal Inst. Technol.
(ETH), Zurich, Switzerland, 1996, ETH diss no. 11894. [44]
H. Tamaki, H. Kita, and S. Kobayashi, “Multi-objective optimization

by genetic algorithms: A review,” inProc. 1996 IEEE Int. Conf.
Evolutionary Computation (ICEC'96)Piscataway, NJ, May 20-22, [45]
1996, pp. 517-522.

J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched pareto genetic
algorithm for multiobjective optimization,” inProc. 1st IEEE Conf.
Evolutionary Computation, IEEE World Congr. Computational Compuf46]
tation, Piscataway, NJ, June 27-29, 1994, vol. 1, pp. 82-87.

S. Khuri, T. Bick, and J. Heitltter, “The zero/one multiple knapsack
problem and genetic algorithms,” iRroc. 1994 ACM Symp. Applied
Computing E. Deaton, D. Oppenheim, J. Urban, and H. Berghel, Ed$47]
New York: ACM-Press, 1994, pp. 188-193.

Z. Michalewicz and J. Arabas, “Genetic algorithms for the 0/1 knapsack
problem,” in Methodologies for Intelligent Systems (ISMIS'9Z) W.  [48]
R& and M. Zemankova, Eds. Berlin, Germany-Verlag: Springer, 1994,
pp. 134-143.

R. Spillman, “Solving large knapsack problems with a genetic algo-
rithm,” in IEEE Int. Conf. Systems, Man and Cybernetiescataway,

NJ, Oct. 22-25, 1995, vol. 1, pp. 632-637.

M. Sakawa, K. Kato, and T. Shibano, “An interactive fuzzy satisficing
method for multiobjective multidimensional 0-1 knapsack problems
through genetic algorithms,” ifPfroc. 1996 IEEE Int. Conf. Evolution-
ary Computation (ICEC’'96) Piscataway, NJ, May 20-22, 1996, pp.
243-246. ‘
S. Martello and P. TottKnapsack Problems: Algorithms and Computer §
Implementations Chichester, U.K.: Wiley, 1990.

T. Blickle and L. Thiele, “A comparison of selection schemes used i
evolutionary algorithms,"Evol. Comput. vol. 4, no. 4, pp. 361-394,
1996.

C. K. Oei, D. E. Goldberg, and S.-J. Chang, “Tournament selectio
niching, and the preservation of diversity,” llliGAL Rep. 91011, Univ|
lllinois, Urbana-Champaign, Urbana, IL 61801, Dec. 1991.
K. Deb, and D. E. Goldberg, “An investigation of niche and species
formation in genetic function optimization,” iffroc. 3rd Int. Conf.
Genetic Algorithms J. D. Schaffer, Ed. San Mateo, CA: Morgan
Kaufmann, 1989, pp. 42-50.

J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. Tukey,
Graphical Methods for Data Analysis Pacific Grove, CA: Wadsworth
& Brooks/Cole, 1983.

J. H. Holland,Adaption in Natural and Artificial Systems Ann Arbor,
MI: Univ. Michigan Press, 1975.

S. Forrest and A. S. Perelson, “Genetic algorithms and the immu|
system,” in Parallel Problem Solving from Nature (PPSN, IH.-P.
Schwefel and R. Mnner, Eds. Berlin, Germany: Springer-Verlag
1991, pp. 320-325.

R. E. Smith and S. Forrest, “Population diversity in an immun
system model: Implications for genetic searckgundations of Genetic
Algorithms 2 (FOGA-92)L. D. Whitley, Ed. San Mateo, CA: Morgan

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37

(38]

271

M. A. Rosenman and J. S. Gero, “Reducing the pareto optimal set in
multicriteria optimization,”"Eng. Optim, vol. 8, pp. 189-206, 1985.

J. D. Schaffer, “Multiple objective optimization with vector evaluated
genetic algorithms,” Ph.D. dissertation, Vanderbilt Univ., Nashville, TN,
1984.

E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective
evolutionary algorithms: Empirical results,” Tech. Rep. 70, Comput.
Eng. Networks Lab. (TIK), Swiss Federal Inst. Technol. (ETH) Zurich,
Switzerland, Feb. 1999.

J Teich, T. Blickle, and L. Thiele, “System-level synthesis using
evolutionary algorithms,” inProc. Codes/CASHE’97, 5th Int. Worksh.
Hardware/Software Codesign Los Alamitos, CA: IEEE Comput. Soc.
Press, 1997, pp. 167-171.

T. Blickle, J. Teich, and L. Thiele, “System-level synthesis using
evolutionary algorithms,Des. Automat. Embedded Systol. 3, no.

1, pp. 23-58, 1998.

G. R. Harik, “Finding multimodal solutions using restricted tournament
selection,” inProc. 6h Int. Conf. Genetic Algorithm&. J. Eshelman,
Ed. San Francisco, CA: Morgan Kaufmann, 1995, pp. 24-31.

Eckart Zitzler received the Diploma degree in com-
puter science in 1996 from University of Dortmund,
Dortmund, Germany.

Since 1996, he has been a Research and Teaching
Assistant at the Computer Engineering Group at the
Electrical Engineering Department of ETH Zurich,
Switzerland. His main research interests are in the
areas of evolutionary computation, multiobjective
optimization, and computer engineering.

Lothar Thiele recieved the Dipl.-Ing. and Dr.-Ing.
degrees in electrical engineering from Technical
University of Munich, Munich, Germany, in 1981
and 1985, respectively.

Since 1981, he has been a Research Associate
with Prof. R. Saal at the Institute of Network Theory
and Circuit Design of the Technical University
Munich. After finishing his Habilitation thesis, he
joined the group of Prof. T. Kailath at the Infor-
mation Systems Laboratory, Stanford University,
Stanford, CA, in 1987. In 1988, he became Chair

Kaufmann, 1992. of Microelectronics at the faculty of engineering, University of Saarland,

[39] R. E. Smith, S. Forrest, and A. S. Perelson, “Searching for diversgaarbiicken, Germany. He joined ETHIzich, Switzerland, as a Full Profes-
cooperative populations with genetic algorithmgyol. Comput. vol.  sor in Computer Engineering in the Fall of 1994. His research interests include
1, no. 2, pp. 127-149, 1993. models, methods and software tools for the design of hardware/software

[40] S. Forrest, B. Javornik, R. E. Smith, and A. S. Perelson, “Using genetigstems, and array processors as well as the development of parallel algorithms
algorithms to explore pattern recognition in the immune systéfagl.  for signal and image processing, combinatorial optimization, and cryptogra-
Comput, vol. 1, no. 3, pp. 191-211, 1993. phy. He authored and co-authored more than 100 papers.

[41] J. Paredis, “The symbiotic evolution of solutions and their representa-In 1986, Dr. Thiele received the award of the Technical University of

tions,” in Proc. 6th Int. Conf. Genetic Algorithms. J. Eshelman, Ed. Munich for his Ph.D. dissertation. He received the 1987 Outstanding Young
San Francisco, CA: Morgan Kaufmann, 1995, pp. 359-365. Author Award of the IEEE Circuits and Systems Society. In 1988, he was

J. N. Morse, “Reducing the size of the nondominated set: Pruning liYe recipient of the 1988 Browder J. Thompson Memorial Prize Award of
clustering,” Comput. Oper. Resvol. 7, nos. 1-2, 1980. the |EEE.

[42]



