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A Review on the Ant Colony OptimizationMetaheuristi: Basis, Models and New TrendsOsar Cord�on1, Franiso Herrera1, Thomas St�utzle21Dept. of Computer Siene and A.I. E.T.S. de Ingenier��a Inform�atiaUniversity of Granada. 18071 - Granada (Spain)2Intelletis Group. Dept. of Computer SieneDarmstadt University of Tehnology. 64283 - Darmstadt (Germany)e-mail: foordon,herrerag�desai.ugr.es,stuetzle�informatik.tu-darmstadt.deAbstratAnt Colony Optimization (ACO) is a reent metaheuristi method thatis inspired by the behavior of real ant olonies. In this paper, we review theunderlying ideas of this approah that lead from the biologial inspirationto the ACO metaheuristi, whih gives a set of rules of how to apply ACOalgorithms to hallenging ombinatorial problems. We present some of thealgorithms that were developed under this framework, give an overview ofurrent appliations, and analyze the relationship between ACO and some ofthe best known metaheuristis. In addition, we desribe reent theoretialdevelopments in the �eld and we onlude by showing several new trends andnew researh diretions in this �eld.1 IntrodutionComplex ombinatorial optimization problems arise in many di�erent �elds suhas eonomy, ommere, engineering, industry or mediine. However, often thesekinds of problems are very hard to solve in pratie. This inherent diÆulty ofsolving suh problems is aptured in theoretial omputer siene by the fat thatmany of them are known to be NP-hard, whih means that there is no algorithmknown for solving them in polynomial time [40℄.Still, many of these problems have to be solved in a huge number of pratialsettings and therefore a large number of algorithmi approahes were proposedto takle them. The existing tehniques an roughly be lassi�ed into exat andapproximate algorithms. Exat algorithms try to �nd an optimal solution andto prove that the solution obtained is atually an optimal one; these algorithmsinlude tehniques suh as baktraking, branh and bound, dynami programming,et. [75, 10℄. Beause exat algorithms show poor performane for many problems,1



2 Cord�on, Herrera, and St�utzleseveral types of approximate algorithms were developed that provide high qualitysolutions to ombinatorial problems in short omputation time.Approximate algorithms an be lassi�ed into to main types: onstrution algo-rithms and loal searh algorithms. The former are based on generating solutionsfrom srath by adding solution omponents step by step. The best known exampleare greedy onstrution heuristis [10℄. Their advantage is speed: they are typi-ally very quik and, in addition, often return reasonably good solutions. However,these solutions are not guaranteed to be optimal with respet to small loal hanges.Therefore, a typial approah is to further improve the solutions returned by greedyheuristis by a loal searh. Loal searh algorithms repeatedly try to improve theurrent solution by movements to (hopefully better) neighboring solutions. Thesimplest ase are iterative improvement algorithms: if in the neighborhood of theurrent solution s, a better solution s0 is found, it replaes the urrent solutionand the searh is ontinued from s0; if no better solution is found, the algorithmterminates in a loal optimum.Unfortunately, iterative improvement algorithms may beome stuk in poorquality loal optima. To allow for a further improvement in solution quality, inthe last two deades the researh in this �eld has moved attention to the design ofgeneral-purpose tehniques for guiding underlying, problem-spei� onstrution orloal searh heuristis. These tehniques are often alled metaheuristis [74, 41, 93℄and they onsist of onepts that an be used to de�ne heuristi methods. In otherwords, a metaheuristi an be seen as a general algorithmi framework whih anbe applied to di�erent (ombinatorial) optimization problems with relatively fewmodi�ations if given some underlying, problem spei� heuristi method. In fat,metaheuristis are now widely reognized as the most promising approahes forattaking hard ombinatorial optimization problems [2, 67, 79℄.Metaheuristis inorporate onepts from very di�erent �elds suh as genet-is, biology, arti�ial intelligene, mathematis and physis, and neuro-sienes,among others. Examples of metaheuristis inlude simulated annealing [1, 55℄,tabu searh [42℄, iterated loal searh [57℄, variable neighborhood searh algorithms[51℄, greedy randomized adaptive searh proedures (GRASP) [34, 35℄, and evo-lutionary algorithms [4, 43, 52℄. A rather reent metaheuristi is ant olony opti-mization (ACO), whih is inspired by shortest path searhing behavior of variousant speies. However, sine the initial work of Dorigo, Maniezzo, and Colorni onAnt System [28℄, ACO is now quikly beoming a mature researh �eld: a largenumber of authors have developed more sophistiated models that were used tosuessfully solve a large number of omplex ombinatorial optimization problemsand theoretial insights into the algorithm are now beoming available.This paper reviews the basis of ACO algorithms. We �rst present the behaviorof real ant olonies, whih inspired ACO, in Setion 2. Next, the transition fromreal to arti�ial ants is desribed in Setion 3; there we disuss the kinds of problemssolved by ACO, we summarize the similarities and di�erenes between natural andarti�ial ants and the generi operation mode of an ACO algorithm, and �nallyindiate the required steps to solve a ombinatorial optimization problem by ACO.Setion 4 desribes several of the existing ACO algorithms, while their appliationsare reviewed in Setion 5. The relationship between ACO and other metaheuristis



A Review on the ACO Metaheuristi 3is analyzed in Setion 6, and theoretial aspets of ACO are addressed in Setion7. Finally, Setion 8 disusses some new trends in ACO and Setion 9 presents theonluding remarks.2 Natural ant oloniesAnts are soial insets that live in olonies and, beause of their ollaborativeinteration, they are apable of showing omplex behaviors and to perform diÆulttasks from an ant's loal perspetive. A very interesting aspet of the behavior ofseveral ant speies is their ability to �nd shortest paths between the ants' nest andthe food soures. This fat is speially notieable having in mind that in many antspeies ants are almost blind, whih avoids the exploitation of visual lues.While walking between their nest and food soures, some ant speies deposit ahemial alled pheromone (an odorous substane). If no pheromone trails are avail-able, ants move essentially at random, but in the presene of pheromone they havea tendeny to follow the trail. In fat, experiments by biologists have shown [78, 44℄that ants probabilistially prefer paths that are marked by a high pheromone on-entration. In pratie, hoies between di�erent paths our when several pathsinterset. Then, ants hoose the path to follow by a probabilisti deision biasedby the amount of pheromone: the stronger the pheromone trail, the higher itsdesirability. Beause ants in turn deposit pheromone on the path they are follow-ing, this behavior results in a self-reinforing proess leading to the formation ofpaths marked by high pheromone onentrations. This behavior also allows antsto identify shortest paths between their nest and a food soure [44℄.1How this mehanism allows the ants to reah shortest paths is illustrated inFigure 1. Initially, there is no pheromone trail on the environment and, when theants arrive at an intersetion, they randomly hoose one of the branhes. How-ever, as ants are traveling, the most promising paths reeive a greater amount ofpheromone after some time. This is due to the fat that, beause these paths areshorter, the ants following them are able to reah the goal (i.e., the food) quikerand to start their return-trip earlier. Sine on the shorter branh already a slightlystronger pheromone trail exists, the ants' deision is biased towards the shorterbranh, whih, thus, reeives a larger proportion of the pheromone of the returningants than the longer branh. This proess �nally results in an inreasingly strongerbias towards the shorter branh and, in the end, to onvergene to the shortest.The latter proedure is omplemented in the natural environment by the fatthat the pheromone evaporates after some time. This way, less promising pathsprogressively loose pheromone beause of being visited by less and less ants. How-ever, several biologial studies show that the pheromone trails are very persistent(the pheromone an stay from several hours to several months depending on as-pets suh as the ant speies, the oor type, ... [9℄), thus making less signi�antthe inuene of the evaporation in the shortest path searhing behavior.1 Note that ants only ommuniate indiretly, through modi�ations of the physial environ-ment they pereive. This form of ommuniation is alled arti�ial stigmergy in [25℄.



4 Cord�on, Herrera, and St�utzle

Figure 1: Emergent behavior of the olony that ends by obtaining the shortestpath between two points (mass reruitment). Based on the �gure in [9℄In [9℄, several experiments are reported showing that the mass reruitment inNature is restritive sine, as a result of the long persistene of the pheromone, itis diÆult that ants forget a path with a high level of pheromone, although theyhave found a shorter one. Notie that, if this behavior is diretly translated intothe omputer to design a searh algorithm, we an get an algorithm quikly gettingstuk in loal optima. We will ome bak to this issue later.3 From natural ants to the Ant Colony Optimiza-tion metaheuristiACO algorithms take inspiration from the behavior of real ant olonies to solveombinatorial optimization problems. They are based on a olony of arti�ial ants,that is, simple omputational agents that work ooperatively and ommuniatethrough arti�ial pheromone trails.ACO algorithms are essentially onstrution algorithms: in eah algorithm iter-ation, every ant onstruts a solution to the problem by traveling on a onstrutiongraph. Eah edge of the graph, representing the possible steps the ant an make,has assoiated two kinds of information that guide the ant movement:� Heuristi information, whih measures the heuristi preferene of moving



A Review on the ACO Metaheuristi 5from node r to node s, i.e., of traveling the edge ars. It is denoted by �rs.This information is not modi�ed by the ants during the algorithm run.� (Arti�ial) pheromone trail information, whih measures the \learned desir-ability" of the movement and mimis the real pheromone that natural antsdeposit. This information is modi�ed during the algorithm run depending onthe solutions found by the ants. It is denoted by �rs.This setion introdues the steps leading from real ants to ACO. It should benoted for the following that ACO algorithms present a double perspetive:� On the one hand, they are an abstration of some behavioral patterns ofnatural ants related to the shortest path searhing behavior.� On the other hand, they inlude several features that do not have a naturalounterpart, but that allow to develop algorithms for obtaining good solutionsto the problem takled (for example, the use of heuristi information to guidethe ant movement).3.1 Kinds of problems solved by ACOThe type of problems being solved by arti�ial ants belongs to the group of (on-strained) shortest path problems that an be haraterized by the following aspets(we follow mainly the presentation in [25℄ and [31℄):� There is a set of onstraints 
 de�ned for the problem under solution.� There is a �nite set of omponents N = fn1; n2; : : : ; nlg.� The problem presents several states de�ned upon ordered omponent se-quenes Æ =< nr; ns; : : : ; nu; : : : > (< r; s; : : : ; u; : : : > to simplify) over theelements of N . If � is the set of all possible sequenes, we denote by ~� the setof feasible (sub)sequenes with respet to the onstraints 
. The elements in~� de�ne the feasible states. jÆj is the length of a sequene Æ, i.e., the numberof omponents in the sequene.� There is a neighborhood struture de�ned as follows: Æ2 is a neighbor of Æ1 if(i) both Æ1 and Æ2 belong to �, (ii) the state Æ2 an be reahed from Æ1 inone logial movement, i.e., if r is the last omponent of the sequene Æ1, theremust exist a omponent s 2 N suh that Æ2 =< Æ1; s >, i.e., there exists avalid transition between r and s. The feasible neighborhood of Æ1 is the setontaining all sequenes Æ2 2 ~�; if Æ2 =2 ~�, we say that Æ2 is in the infeasibleneighborhood of Æ1.� A solution S is an element of ~� verifying all the problem requirements.� There is a ost C(S) assoiated to eah solution S.� In some ases, a ost or an estimate of the ost may be assoiated to states.



6 Cord�on, Herrera, and St�utzleAs said, all the previous harateristis hold in ombinatorial optimization prob-lems that an be represented in the form of a weighted graph G = (N;A), whereA is the set of edges that onnets the set of omponents N . The graph G is alsoalled onstrution graph G.2 Hene, we have that� the omponents nr are the nodes of the graph,� the states Æ (and hene the solutions S) orrespond to paths in the graph,i.e., sequenes of nodes or edges,� the edges of the graph, ars, are onnetions/transitions de�ning the neigh-borhood struture. Æ2 =< Æ1; s > is a neighbor of Æ1 if node r is the lastomponent of Æ1 and edge ars exists in the graph,� there may be expliit transition osts rs assoiated to eah edge, and� the omponents and onnetions may have assoiated pheromone trails � ,whih represent some form of indiret, long term memory of the searh pro-ess, and heuristi values �, whih represent some heuristi information avail-able on the problem under solution.3.2 The arti�ial antThe arti�ial ant is a simple, omputational agent that tries to build feasible solu-tions to the problem takled exploiting the available pheromone trails and heuristiinformation. However, if neessary, it may also build infeasible solutions that maybe penalized depending on the amount of infeasibility. It has the following proper-ties [25, 31℄:� It searhes minimum ost feasible solutions for the problem being solved.� It has a memory L storing information about the path followed until thatmoment, i.e., L stores the generated sequene. This memory an be used to:(i) build feasible solutions, (ii) evaluate the generated solution, and (iii) toretrae the path the ant has followed.� It has an initial state Æinitial, that usually orresponds to a unitary sequene,and one or more termination onditions t assoiated.� It starts in the initial state and moves towards feasible states, building itsassoiated solution inrementally.� When it is in a state Ær =< Ær�1; r > (i.e., it is loated in node r and haspreviously followed the sequene Ær�1), it an move to any node s of its feasibleneighborhood N (r), de�ned as N (r) = fs j (ars 2 A) and (< Ær; s > 2 ~�)g.2 As said in [31℄, the set of edges may fully onnet the omponents. In this ase, the imple-mentation of the onstraints is fully integrated into the onstrution poliy of the ants.



A Review on the ACO Metaheuristi 7� The movement is made by applying a transition rule, whih is a funtion ofthe loally available pheromone trails and heuristi values, the ants privatememory, and the problem onstraints.� When, during the onstrution proedure, an ant moves from node r to s, itan update the pheromone trail �rs assoiated to the edge ars. This proessis alled online step-by-step pheromone trail update.� The onstrution proedure ends when any termination ondition is satis�ed,usually when an objetive state is reahed.� One the solution has been built, the ant an retrae the traveled path andupdate the pheromone trails on the visited edges/omponents by means of aproess alled online delayed pheromone trail update.This way, the only ommuniation mehanism among the ants is the datastruture storing the pheromone levels of eah edge/omponent (shared mem-ory).3.3 Similarities and di�erenes between natural and arti�-ial antsReal and arti�ial ant olonies share a number of harateristis. The most impor-tant ones an be summarized as follows (see [26℄ for a more detailed disussion):� Use of a olony of individuals that interat and ollaborate to solve a giventask.� Both, natural and arti�ial ants modify their \environment" through stig-mergi ommuniation based on pheromones. In the ase of arti�ial ants,the (arti�ial) pheromone trail is a numeri information whih is only loallyavailable.� Both, natural and arti�ial ants share a ommon task: the searh of the short-est path (iterative onstrution of a minimum ost solution) from an origin,the ant nest (initial deision), to some goal state, the food (last deision).� Arti�ial ants build the solutions iteratively by applying a loal stohastitransition poliy to move between adjaent states, as real ants do.However, these harateristis alone do not allow to develop eÆient algorithmsfor hard ombinatorial problems. Therefore, arti�ial ants live in a disrete worldand have additional apabilities:� Arti�ial ants an make use of heuristi information (and not only pheromonetrail information) in the stohasti transition poliy they apply.� They have a memory that stores the path followed by the ant.



8 Cord�on, Herrera, and St�utzle� The amount of pheromone deposited by the arti�ial ants is a funtion ofthe quality of the solution found by eah of them.3 A major di�erene alsoonerns the timing of the pheromone deposit. Arti�ial ants usually onlydeposit pheromone after generating a omplete solution.4� As said in Setion 2, pheromone evaporation in ACO algorithms is di�erentthan in nature, sine the inlusion of an evaporation mehanism is a keyquestion to avoid the algorithm getting stuk in loal optima. Pheromoneevaporation allows the arti�ial ant olony to softly forget its past historyand to diret its searh towards new spae regions. This avoids a prematureonvergene of the algorithm to loal optima.� In order to improve the eÆieny and eÆay of the system, ACO algorithmsan be enrihed with additional apabilities. Examples are the ability to lookfurther than the next transition (\lookahead") [68℄, loal optimization [27, 87℄and \baktraking" (whose use is not very extended), or so-alled andidatelist whih ontain a set of the most promising neighbor states [27, 25℄ toimprove the eÆieny of the algorithm.3.4 Operation mode and generi struture of an ACO algo-rithmAs seen in the previous setions, the basi operation mode of an ACO algorithmis as follows: the m (arti�ial) ants of the olony move, onurrently and asyn-hronously, through adjaent states of a problem (that an be represented in theform of a weighted graph). This movement is made aording to a transition rulewhih is based on loal information available at the omponents (nodes). This loalinformation omprises heuristi and memoristi (pheromone trails) information toguide the searh. By moving on the onstrution graph, ants inrementally buildsolutions. Optionally, ants an release pheromone eah time they ross an edge(onnetion) while onstruting solutions (online step-by-step pheromone trail up-date). One every ant has generated a solution, it is evaluated and it an depositan amount of pheromone whih is a funtion of the quality of the ant's solution(online delayed pheromone trail update). This information will guide the searh ofthe other ants of the olony in the future.Moreover, the generi operation mode of the ACO algorithm also inludestwo additional proedures, pheromone trail evaporation and daemon ations . Thepheromone evaporation is triggered by the environment and it is used as a meha-nism to avoid searh stagnation and to allow the ants to explore new spae regions.Daemon ations are optional ations |without a natural ounterpart| to im-plement tasks from a global perspetive that is laking to the loal perspetiveof the ants. The additional apabilities mentioned in Setion 3.3 are inluded in3 However, this di�erene is relative as some natural ant speies deposit a higher quantity ofpheromone when they found a riher food soure [9℄.4 Nevertheless, as we will see in the following, few ACO algorithms also modify the pheromonetrails while onstruting a solution.



A Review on the ACO Metaheuristi 9these ations. Examples are observing the quality of all the solutions generatedand releasing an additional pheromone amount only on the transitions/omponentsassoiated to some of the solutions, or applying a loal searh proedure to the so-lutions generated by the ants before updating the pheromone trails. In both ases,the daemon replaes the online delayed pheromone update and the proess is alledo�ine pheromone trail update.The struture of a generi ACO algorithm for is as follows [25, 26℄.1 Proedure ACO Metaheuristi2 parameter initialization3 while (termination riterion not satisfied)4 shedule ativities5 ants generation and ativity()6 pheromone evaporation()7 daemon ations() foptionalg8 end shedule ativities9 end while10 end Proedure1 Proedure ants generation and ativity()2 repeat in parallel for k=1 to m (number of ants)3 new ant(k)4 end repeat in parallel5 end Proedure1 Proedure new ant(ant id)2 initialize ant(ant id)3 L = update ant memory()4 while (urrent state 6= target state)5 P = ompute transition probabilities(A,L,
)6 next state = apply ant deision poliy(P,
)7 move to next state(next state)if (on line step-by-step pheromone update)8 deposit pheromone on the visited edge()end if9 L = update internal state()10 end whileif (online delayed pheromone update)11 for eah visited edge12 deposit pheromone on the visited edge()13 end forend if14 release ant resoures(ant id)15 end Proedure



10 Cord�on, Herrera, and St�utzleThe �rst step involves the initialization of the parameter values onsidered bythe algorithm. Among others, the initial pheromone trail value assoiated to eahtransition, �0, whih is a small positive value that is typially the same for all on-netions/omponents, the number of ants in the olony,m, and the weights de�ningthe balane between the heuristi and memoristi information in the probabilistitransition rule have to be set.5The main proedure of the ACOmetaheuristi manages, by means of the shed-ule ativities onstrut, the sheduling of the three omponents mentioned in thissetion: (i) the generation and operation of the arti�ial ants, (ii) the pheromoneevaporation, and (iii) the daemon ations. The implementation of this onstrutwill de�ne the existing synronism between the three omponents. While the ap-pliation to \lassial" NP-hard (non distributed) problems typially uses rathera sequential shedule, in distributed problems like network routing parallelism anbe easily and eÆiently exploited.As said, several omponents are either optional, suh as the daemon ations, orstritly dependent on the spei� ACO algorithm, e.g., when and where the phero-mone is deposited. Generally, the online step-by-step pheromone trail update andthe online delayed pheromone trail update are mutually exlusive and they bothare not usually present or missing at the same time (if both are missing, typiallythe daemon updates the pheromone trails).On the other hand, notie that the proedure update ant memory involves spe-ifying the initial state from whih the ant starts its path and storing the orrespond-ing omponent in the ant memory L. The deision on whih will be that node (itan be a random hoie or a �xed one for the whole olony, a random hoie or a�xed one for eah ant, et.) depends on the spei� appliation.Finally, note that the proedures ompute transition probabilities andapply ant deision poliy onsider the urrent state of the ant, the urrentvalues of the pheromones visible in that node and the problem onstraints 
 toestablish the probabilisti transition proess to other feasible states.3.5 Relation between ACO and ant algorithmsIt is important to notie that the term ACO metaheuristi stands for the generioperation mode of ACO. The name ACO algorithm is used to refer to any spe-i� instane of the generi algorithm shown in Setion 3.4, suh as those that areanalyzed in the following Setion 4. It should be noted that the ACO metaheuris-ti omprises a very wide lass of algorithms that an have very di�erent shapes.This is mainly due to the rather omplex types of interations possible through theshedule ativities onstrut among the ativities ants generation and at-ivity(), pheromone evaporation(), and daemon ations(). It should be noted,however, that in many appliations ants typially move in a synhronized way andthe algorithmi outline of atual ACO algorithms follows a muh simpler ow ofativities [84, 85℄. The main reason for the greater generality of the ACO meta-heuristi is that it was de�ned a posteriori as a ommon framework to already5 This aspet will be analyzed in depth in the next setion when introduing spei� ACOalgorithms.



A Review on the ACO Metaheuristi 11existing appliations to NP-hard optimization problems and routing in teleom-muniations networks, an inherently dynami problem (see also Setion 5 for ashort overview). While these two types of appliations are similar from a high-levelperspetive, due to the very di�erent appliation domains, the algorithms and, inpartiular, the interations among the three ativities ants generation and at-ivity(), pheromone evaporation(), and daemon ations(), are very di�erentfrom a low-level perspetive.However, the ACO metaheuristi is not general enough to over the full familyof ant algorithms, whih an loosely be de�ned as approximate methods to solveombinatorial problems based on harateristis of the generi behavior of naturalants.6 Examples of ant algorithms not overed by ACO are Fast Ant System [92℄and Hybrid Ant System [39℄. While the former is a onstrution algorithm basedon the operation of a single ant without using expliit pheromone evaporation, thelatter is a loal searh proedure that makes use of pheromone trail information togenerate the neighbor solutions. In [90℄, an experimental study of these two antalgorithms for the TSP is presented.3.6 Steps to solve a problem by ACOFrom the urrently known ACO appliations, we an identify some guidelines ofhow to attak problems by ACO. These guidelines an be summarized by thefollowing six design tasks:1. Represent the problem in the form of sets of omponents and transitions orby means of a weighted graph (see Setion 3.1), that is traveled by the antsto build solutions.2. Appropriately de�ne the meaning of the pheromone trails �rs, i.e., the typeof deision they bias. This is a ruial step in the implementation of an ACOalgorithm and often, a good de�nition of the pheromone trails is not a trivialtask and it typially requires insight into the problem under the solution.3. Appropriately de�ne the heuristi preferene to eah deision that an ant hasto take while onstruting a solution, i.e., de�ne the heuristi information �rsassoiated to eah omponent or transition. Notie that heuristi informationis ruial for good performane if loal searh algorithms are not available oran not be applied.4. If possible, implement an eÆient loal searh algorithm for the problem un-der solution, beause the results of many ACO appliations to NP-hard om-binatorial optimization problems show that the best performane is ahievedwhen oupling ACO with loal optimizers [25, 31℄.5. Choose a spei� ACO algorithm (some of the available ones are desribedin the next setion) and apply it to the problem being solved, taking theprevious aspets into aount.6 Note that every ACO algorithm is also an ant algorithm but the opposite is not true.



12 Cord�on, Herrera, and St�utzle6. Tune the parameters of the ACO algorithm. A good starting point for pa-rameter tuning is to use parameter settings that were found to be good whenapplying the ACO algorithm to similar problems or to a variety of other prob-lems. An alternative to time-onsuming personal involvement in the tuningtask is to use automati proedures for parameter tuning [6℄.It should be lear that the above steps an only give a very rough guide tothe implementation of ACO algorithms. In addition, often the implementation isan iterative proess, where with some further insight into the problem and thebehavior of the algorithm, some initially taken hoies need to be revised. Finally,we want to insist in the fat that probably the most important of these steps arethe �rst four, beause a poor hoie at this stage typially an not be made upwith pure parameter �ne-tuning.4 Ant Colony Optimization modelsSeveral algorithms have been proposed in the literature following the ACO meta-heuristi. Among the available ACO algorithms for NP-hard ombinatorial op-timization problems are Ant System [28℄, Ant Colony System [27℄, Max-Min AntSystem [88℄, Rank-based Ant System [12℄, and Best-Worst Ant System [20℄. In thefollowing, we give a short desription of these algorithms.7 While Ant Systemis mainly of historial interest beause it was the �rst ACO algorithm, the otherfour typially ahieve muh better omputational results. A major omission inour desription is AntNet, a suessful ACO algorithm for network routing. How-ever, this algorithm is rather appliation spei� and we refer to [24℄ for a detaileddesription.Notie that in the following we onsider the ase, where pheromones and heuris-ti information are only attahed to the onnetions, whih is the ase for manyappliations of ACO to sequening or assignment problems. It is straightforwardto extend the desription to the ase in whih pheromones are assoiated to om-ponents.4.1 Ant SystemAnt System (AS) [28℄, developed by Dorigo, Maniezzo and Colorni in 1991, wasthe �rst ACO algorithm. Initially, three di�erent variants, AS-density, AS-quantityand AS-yle, di�ering in the way in whih the pheromone trails are updated, wereproposed. In the former two ones, ants release pheromone while building theirsolutions (i.e., they apply an online step-by-step pheromone update), with the dif-ferene that the amount deposited in AS-density is onstant while the one releasedin AS-quantity diretly depends on the heuristi desirability of the transition �ij .Finally, in AS-yle, the pheromone deposit is done one the solution is ompleted(online delayed pheromone update). This latter variant was the one performing7For a more detailed desription of these algorithms, inluding some omparisons of theirperformane when applied to the traveling salesman problem, we refer to [25, 26, 30, 85℄.



A Review on the ACO Metaheuristi 13best and atually this is the variant that is now referred to as AS in the literature(and in the remainder of this paper).AS is haraterized by the fat that the pheromone update is triggered one allants have ompleted their solutions and it is done as follows. First, all pheromonetrails are redued by a onstant fator, implementing in this way the pheromoneevaporation. Seond, every ant of the olony deposits an amount of pheromonewhih is a funtion of the quality of its solution. Initially, AS did not use anydaemon ations, but it is very straightforward to, for example, add a loal searhproedure to re�ne the solutions generated by the ants.Solutions in AS are onstruted as follows. At eah onstrution step, an ant kin AS hooses to go to a next node with a probability that is omputed aspkrs = ( [�rs℄��[�rs℄�Pu2Nkr [�ru℄��[�ru℄� ; if s 2 Nk(r)0; otherwise ;where Nk(r) is the feasible neighborhood of ant k when loated at node r, and�; � 2 R are two parameters that weight the relative importane of the pheromonetrail and the heuristi information. Eah ant k stores the sequene it has followedso far and this memory Lk is, as explained before, exploited to determine Nk(r) ineah onstrution step.As regards parameters � and �, their role is as follows: if � = 0, those nodeswith better heuristi preferene have a higher probability of being seleted, thusmaking the algorithm lose to a lassial probabilisti greedy algorithm (with mul-tiple starting points in ase ants are loated in di�erent nodes at the beginning ofeah iteration). However, if � = 0, only the pheromone trails are onsidered toguide the onstrutive proess, whih an ause a quik stagnation, i.e., a situationwhere the pheromone trails assoiated to some transitions are signi�antly higherthan the remainder, thus making the ants always build the same solutions, usuallyloal optima. Hene, there is a need to establish a proper balane between theimportane of heuristi and pheromone trail information.As said, the pheromone deposit is made one all ants have �nished to onstruttheir solutions. First, the pheromone trail assoiated to every ar is evaporated byreduing all pheromones by a onstant fator:�rs  (1� �) � �rs;where � 2 (0; 1℄ is the evaporation rate. Next, eah ant retraes the path it hasfollowed (this path is stored in its loal memory Lk) and deposits an amount ofpheromone ��krs on eah traversed onnetion:�rs  �rs +��krs; 8ars 2 Sk;where ��krs = f(C(Sk)), i.e., the amount of pheromone released depends on thequality C(Sk) of the solution Sk of ant k.To summarize the desription of the AS, we will show the omposition of pro-edure new ant for this partiular ACO algorithm:



14 Cord�on, Herrera, and St�utzle1 Proedure new ant(ant id)2 k = ant id; r = generate initial state; Sk = r3 Lk = r4 while (urrent state 6= target state)5 for eah s 2 Nk(r) do pkrs = [�rs℄��[�rs℄�Pu2Nkr [�ru℄��[�ru℄�6 next state = apply ant deision poliy(P,Nk(r))7 r = next state; Sk =< Sk; r >8 ---9 Lk = Lk [ r10 end whilefthe pheromone evaporation() proedure triggers andevaporates pheromone in every edge ars: �rs = (1� �) � �rsg11 for eah edge ars 2 Sk do12 �rs = �rs + f(C(Sk))13 end for14 release ant resoures(ant id)15 end ProedureNotie that the empty line 8 is inluded to remark that no online step-by-steppheromone update is made and that before the line 12, the pheromone evaporationmust have been applied by the daemon. In fat, this is one example, where theshedule ativities onstrut interferes with the funtioning of the single mainproedures of the ACO metaheuristi, as indiated on page 9.Before onluding this setion, it is important to notie that the reators of theAS also proposed a typially better performing, extended version of this algorithmalled elitist AS [28℄. In elitist AS, one the ants have released pheromone onthe onnetions assoiated to their generated solutions, the daemon performs anadditional pheromone deposit on the edges belonging to the best solution founduntil that moment in the searh proess (this solution is also alled global-bestsolution in the following). The amount of pheromone deposited, whih depends onthe quality of that global best solution, is weighted by the number of elitist antsonsidered, e, as follows:�rs  �rs + e � f(C(Sglobal�best)); 8ars 2 Sglobal�best4.2 Ant Colony SystemAnt Colony System (ACS) [27℄ is one of the �rst suessors of AS. It introduesthree major modi�ations into AS:1. ACS uses a di�erent transition rule, whih is alled pseudo-random propor-tional rule: Let k be an ant loated at a node r, q0 2 [0; 1℄ be a parameter,and q a random value in [0; 1℄. The next node s is randomly hosen aordingto the following probability distribution



A Review on the ACO Metaheuristi 15If q � q0: pkrs = ( 1; if s = arg maxu2Nk(r)f�ru � ��rug0; otherwise ;else (q > q0): pkrs = ( [�rs℄��[�rs℄�Pu2Nkr [�ru℄��[�ru℄� ; if s 2 Nk(r)0; otherwiseAs an be seen, the rule has a double aim: when q � q0, it exploits theavailable knowledge, hoosing the best option with respet to the heuris-ti information and the pheromone trail. However, if q > q0, it applies aontrolled exploration, as done in AS. In summary, the rule establishes atrade-o� between the exploration of new onnetions and the exploitation ofthe information available at that moment.2. Only the daemon (and not the individual ants) trigger the pheromone update,i.e., an o�ine pheromone trail update is done. To do so, ACS only onsidersone single ant, the one who generated the global best solution, Sglobal�best(although in early papers, an update based on the iteration-best ant wasonsidered as well [27℄, ACS almost always applies a global-best update).The pheromone update is done by �rst evaporating the pheromone trails onall the onnetions used by the global-best ant (it is important to notiethat in ACS, pheromone evaporation is only applied to the onnetions of thesolution that is also used to deposit pheromone) as follows:�rs  (1� �) � �rs; 8ars 2 Sglobal�bestNext, the daemon deposits pheromone by the rule:�rs  �rs + � � f(C(Sglobal�best)); 8ars 2 Sglobal�bestAdditionally, the daemon an apply a loal searh algorithm to improve theants' solutions before updating the pheromone trails.3. Ants apply an online step-by-step pheromone trail update that enourages thegeneration of di�erent solutions to those yet found. Eah time an ant travelsan edge ars, it applies the rule:�rs  (1� ') � �rs + ' � �0;where ' 2 (0; 1℄ is a seond pheromone deay parameter. As an be seen,the online step-by-step update rule inludes both, pheromone evaporationand deposit. Beause the amount of pheromone deposited is very small (infat, �0 is the initial pheromone trail value whih is hosen in suh a way



16 Cord�on, Herrera, and St�utzlethat, in pratie, it orresponds to a lower pheromone trail limit, i.e., bythe hoie of the ACS pheromone update rules, no pheromone trail valuean fall below �0), the appliation of this rule makes the pheromone trailon the onnetions traversed by an ant derease.8. Hene, this results in anadditional exploration tehnique of ACS by making the onnetions traversedby an ant less attrative to following ants and helps to avoid that every antfollows the same path.The proedures new ant and daemon ations (whih in this ase interats withthe pheromone evaporation proedure) for ACS are as follows:1 Proedure new ant(ant id)2 k = ant id; r = generate initial state; Sk = r3 Lk = r4 while (urrent state 6= target state)5 for eah s 2 Nk(r) do ompute brs = �rs � ��rs6 q = generate random value in [0,1℄if (q <= q0)next state = max(brs;Nk(r))elsefor eah s 2 Nk(r) dopkrs = brsPu2Nk(r) brunext state = apply ant deision poliy(P,Nk(r))end if7 r = next state; Sk =< Sk; r >8 �rs = (1� ') � �rs + ' � �09 Lk = Lk [ r10 end while11 ---12 ---13 ---14 release ant resoures(ant id)15 end Proedure1 Proedure daemon ations2 for eah Sk do loal searh(Sk) foptionalg3 Surrent�best = best solution (Sk)4 if (better(Surrent�best; Sglobal�best))5 Sglobal�best = Surrent�best6 end if8 ACS is atually based on Ant-Q, an earlier algorithm proposed by Gambardella and Dorigo[36℄ The only di�erene between ACS and Ant-Q is in the de�nition of the term �0 in the onlinestep-by-step update rule, whih in Ant-Q is the disounted evaluation of the next state, set to �maxs2Nk(r)f�rsg. However, experimental results suggested that ACS results in the same levelof performane and, beause of its greater simpliity, it was preferred.



A Review on the ACO Metaheuristi 177 for eah edge ars 2 Sglobal�best dofthe pheromone evaporation() proedure triggers andevaporates pheromone in edge ars: �rs = (1� �) � �rsg8 �rs = �rs + � � f(C(Sglobal�best))9 end for10 end Proedure4.3 Max-Min Ant SystemMax-Min Ant System (MMAS) [89, 84, 88℄, developed by St�utzle and Hoos in1996, is one of the best performing extensions of AS. It extends the basi AS inthe following aspets:1. An o�ine pheromone trail update is applied, similar to ACS. After all antshave onstruted a solution, �rst every pheromone trail is evaporated:�rs  (1� �) � �rs;and next pheromone is deposited aording to:�rs  �rs + f(C(Sbest)); 8ars 2 SbestThe best ant that is allowed to add pheromone may be the iteration-bestor the global-best solution. Experimental results have shown that the bestperformane is obtained by gradually inreasing the frequeny of hoosingthe global-best solution for the pheromone trail update [84, 88℄.In addition, inMMAS typially the ants' solutions are improved using loaloptimizers before the pheromone update.2. The possible values for the pheromone trails are limited to the range [�min;�max℄. The hane of algorithm stagnation is thus dereased by giving eahonnetion some, although very small, probability of being hosen. In pra-tie, heuristis exist for setting �min and �max. First, it an be shown that,beause of the pheromone evaporation, the maximal possible pheromone traillevel is limited to ��max = 1=(� � C(S�)), where S� is the optimal solution.Based on this result, the global-best solution an be used to estimate �max byreplaing S� with Sglobal�best in the equation for ��max. For �min it is oftenenough to hoose it as some onstant fator lower than �max (see also [88℄ fordetails on possible ways to de�ne �min).As a means for further inreasing the exploration of solutions,MMAS alsouses the oasional re-initialization of the pheromone trails [87, 84, 88℄.3. Instead of initializing the pheromones to a small amount, in MMAS thepheromone trails are initialized to an estimate of the maximum allowedpheromone trail value (the estimate an be obtained by �rst generating somesolution S0 by a greedy onstrution heuristi and then replaing S0 in theequation for ��max). This leads to an additional diversi�ation omponent



18 Cord�on, Herrera, and St�utzlein the algorithm, beause at the beginning the relative di�erenes of thepheromone trails will not be very marked, whih is di�erent when initializingthe pheromone trails to some very small value.The struture of proedure daemon ations inMMAS is shown below:1 Proedure daemon ations2 for eah Sk do loal searh(Sk)3 Surrent�best = best solution (Sk)4 if (best(Surrent�best; Sglobal�best))5 Sglobal�best = Surrent�best6 end if7 Sbest = deision(Sglobal�best; Surrent�best)8 for eah edge ars 2 Sbest do9 �rs = �rs + �f(C(Sbest))10 if (�rs < �min) �rs = �min11 end for12 if (stagnation ondition)13 for eah edge ars do �rs = �max14 end if15 end Proedure4.4 Rank-based Ant SystemThe rank-based Ant System (ASrank) [12℄ is another extension of the AS proposedby Bullnheimer, Hartl and Strauss in 1997. It inorporates the idea of ranking intothe pheromone update, whih is again developed o�ine by the daemon as follows:1. The m ants are ranked aording to dereasing quality of their solutions:(S01; : : : ; S0m), with S01 being the best solution built in the urrent generation.2. The daemon deposits pheromone on the onnetions passed by the � � 1 bestants (elitist ants). The amount of pheromone deposited diretly depends onthe ant's rank and on the quality of its solution.3. The onnetions rossed by the global-best solution reeive an additionalamount of pheromone whih depends on the quality of that solution. Thispheromone deposit is onsidered to be the most important, hene, it reeivesa weight of �.This operation mode is put into e�et by means of the following pheromoneupdate rule, whih is applied to every edge one all the pheromone trails have beenevaporated: �rs  �rs + � ���gbrs +��rankrs ;where ��gbrs = � f(C(Sglobal�best)); if ars 2 Sglobal�best0; otherwise ;
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��rankrs =8<: ��1P�=1(� � �) � f(C(S0�)); if ars 2 S0�0; otherwiseHene, the ASrank daemon proedure presents the following struture:1 Proedure daemon ations2 for eah Sk do loal searh(Sk) foptionalg3 rank (S1; : : : ; Sm) in dereasing order of solutionquality into (S01; : : : ; S0m)4 if (best(S01; Sglobal�best))5 Sglobal�best = S016 end if7 for � = 1 to (� � 1) do8 for eah edge ars 2 S0� do9 �rs = �rs + (� � �) � f(C(S0�))10 end for11 end for12 for eah edge ars 2 Sglobal�best do13 �rs = �rs + � � f(C(Sglobal�best))14 end for15 end Proedure4.5 Best-Worst Ant SystemBest-Worst Ant System (BWAS) [20℄, proposed by Cord�on et al. in 1999, is an ACOalgorithm whih inorporates evolutionary omputation onepts.9 It onstitutesanother extension of AS, whih uses its transition rule and pheromone evaporationmehanism (the evaporation is applied to every transition as in AS, ASrank andMMAS). Besides, as done in MMAS, BWAS always onsiders the systematiexploitation of loal optimizers to improve the ants' solutions. At the ore ofBWAS, the three following daemon ations are found:1. The best-worst pheromone trail update rule, whih reinfores the edges on-tained in the global best solution. In addition, the update rule penalizesevery onnetion of the worst solution generated in the urrent iteration,Surrent�worst, that are not present in the global-best one through an ad-ditional evaporation of the pheromone trails. Hene, BWAS update rulebeomes: �rs  �rs + � � f(C(Sglobal�best)); 8ars 2 Sglobal�best;�rs  (1� �) � �rs; 8ars 2 Surrent�worst and ars 62 Sglobal�best9 The relation between these two metaheuristis will be analyzed in Setion 6.1.



20 Cord�on, Herrera, and St�utzle2. A pheromone trail mutation is performed to introdue diversity in the searhproess. To do so, the pheromone trail assoiated to one of the transitionsstarting from eah node (i.e., eah row of the pheromone trail matrix) is mu-tated with probability Pm by onsidering any real-oded mutation operator.The original BWAS proposal applied an operator altering the pheromone trailof every mutated transition by adding or subtrating the same amount ineah iteration. The mutation range mut(it; �threshold), whih depends on theaverage of the pheromone trails in the transitions of the global best solution,�threshold, is less strong in the early stages of the algorithm|when there isno risk of stagnation|and stronger in the latter ones, when the danger ofstagnation is stronger:� 0rs  � �rs +mut(it; �threshold); if a = 0�rs �mut(it; �threshold); if a = 1with a being a random value in f0; 1g and it being the urrent iteration.3. As other ACO models, BWAS onsiders the re-initialization of the pheromonetrails when it gets stuk, whih is done by setting every pheromone trail to�0.The BWAS daemon ations proedure is as follows:1 Proedure daemon ations2 for eah Sk do loal searh(Sk)3 Surrent�best = best solution (Sk)4 if (best(Surrent�best; Sglobal�best))5 Sglobal�best = Surrent�best6 end if7 for eah edge ars 2 Sglobal�best do8 �rs = �rs + � � f(C(Sglobal�best))9 sum = sum + �rs10 end for11 �threshold = sumjSglobal�bestj12 Surrent�worst = worst solution (Sk)13 for eah edge ars 2 Surrent�worst and ars 62 Sglobal�best do14 �rs = (1� �) � �rs15 end for16 mut = mut(it,�threshold)17 for eah node/omponent r 2 f1; : : : ; lg do18 z = generate random value in [0,1℄19 if (z <= Pm)20 s = generate random value in [1,...,l℄21 a = generate random value in [0,1℄22 if (a = 0) �rs = �rs + mut23 else �rs = �rs - mut24 end if



A Review on the ACO Metaheuristi 2125 end for26 if (stagnation ondition)27 for eah edge ars do �rs = �028 end if29 end ProedureThe interested reader an refer to the paper [19℄ for an analysis of the individualperformane of eah of the three BWAS omponents and the di�erent ombinationsof them on the traveling salesman problem. In that study, it is shown that theversion of BWAS that inludes all three omponents performs better than othervariants that inlude only a single omponent or a ombination of two of the threeomponents in the most of the ases. A similar study was done for BWAS appliedto the quadrati assignment problem in [18℄. Moreover, a new, well-performingACO model alled Best-Worst Ant Colony System, whih is based on introduingthe three BWAS omponents into the ACS, is proposed in [18℄.5 Appliations of Ant Colony OptimizationACO algorithms have been applied to a large number of di�erent ombinatorialoptimization problems. Current ACO appliations follow into two lasses of appli-ations. The �rst lass of problems omprisesNP-hard ombinatorial optimizationproblems, for whih lassial tehniques often show poor behavior. Charateristifor almost all suessful ACO appliations to these problems is that ants are ou-pled with loal searh algorithms that �ne-tune the ants' solutions. The seondlass of appliations omprises dynami shortest path problems, where the probleminstane under solution hanges at algorithm run-time. These hanges may a�etthe topology of the problem suh as the availability of links et. or, if the problemtopology is �xed, harateristis suh as edge osts, vary with time. In this asethe algorithm has to adapt to the problem's dynamis. This latter lass omprisesappliations of ACO to routing in teleommuniation networks.Instead of giving a detailed aount of the various ACO appliations, we shortlydesribe the (early) historial development of the appliations; for more extensiveoverviews on appliations of ACO we refer to [25, 26, 30, 31℄.The �rst ombinatorial problem takled by an ACO algorithm was the travelingsalesman problem (TSP), beause this problem is probably the best known instaneof an NP-hard, onstrained shortest path problem, thus, making it easy to adaptthe real ant's behavior to solve it. Sine the �rst appliation of AS in Dorigo'sPhD dissertation in 1991, it beame a ommon test-bed of several ontributionsproposing better performing ACO models than AS [27, 88, 12, 20℄.Chronologially, the next two appliations were the quadrati assignment prob-lem (QAP) [60, 28℄ (the best performing ACO algorithms for the QAP are de-sribed in [88, 59℄) and the job-shop sheduling problem [17℄ in 1994. Among thenext appliations are the �rst network routing appliations, starting in 1996 withthe work of Shoonderwoerd et al. [81℄ and the work on AntNet by Di Caro andDorigo [24℄. Already in 1997, one year after the publiation of the �rst journal



22 Cord�on, Herrera, and St�utzleartile on ACO in 1996 [28℄, the number of ACO appliations started to inreasestrongly. Early appliations from 1997 (although sometimes published later) in-lude lassial vehile routing problems [11℄, sequential ordering [37℄, ow shopsheduling [82℄, and graph oloring [21℄ problems. Sine then, many di�erent au-thors have used the ACO meta-heuristi to solve a large number of ombinatorialoptimization problems suh as shortest ommon supersequene, generalized assign-ment, set overing, multiple knapsak and onstraint satisfation problems, amongothers. The interested reader an �nd a summary of available appliations as ofend 2000 in [31℄. Apart from the previous appliations, ACO reently was used alsofor mahine learning purposes, onretely to the design of learning algorithms forknowledge representation strutures suh as lassial logi rules [76, 77℄, fuzzy logirules [15, 3, 16℄ and Bayesian networks [23, 22℄, showing very promising results.Nowadays, ACO reahes state-of-the-art results for several of the problems towhih it was applied: QAP, sequential ordering, vehile routing, sheduling, andpaket-swithed network routing, among others. The available omputational re-sults for many other problems are often very good and lose to state-of-the-art,whih is noteworthy, beause many of these problems have already attrated ahuge amount of researh e�ort. Besides, the ACO meta-heuristi is being appliedto novel real-world problems with very promising results (for an example, see theappliation to design ombinatorial logi iruits in this issue [62℄).6 Relation of ACO to other metaheuristisACO algorithms have several similarities with other general optimization, learningand modeling approahes suh as heuristi graph searh, Monte Carlo simulationmethods and neural networks that are analyzed in [26℄. Moreover, the ACO meta-heuristi also shares several ommon aspets with other metaheuristis suh asevolutionary omputation and Estimation of Distribution Algorithms, on the onehand, and GRASP and multi-start loal searh, on the other hand.6.1 Relation between ACO, Evolutionary Computation andEstimation of Distribution AlgorithmsAs already noted in [26℄, there are similarities between the operation mode ofACO algorithms and evolutionary algorithms suh as the use of a population ofindividuals enoding problem solutions that are stohastially generated.One main di�erene is that in evolutionary omputation, the knowledge aboutthe problem is ontained in the urrent population, whilst in ACO it is storedin the memoristi struture olleting the pheromone trails. However, there ex-ists also a spei� lass of evolutionary algorithms, the so-alled Estimation ofDistribution Algorithms (EDAs) [56℄, whih, as ACO, are based on maintaininga memoristi struture that represents a probability distribution de�ned on theproblem variables. This probability distribution is adapted at algorithm run-timeby generating solutions based on the urrent distribution that are in a seond stepused to update the probability distribution. This proess is repeated iteratively.



A Review on the ACO Metaheuristi 23The best known EDA algorithm, the Population-Based Inremental Learning(PBIL) [5℄, is also the most similar to ACO algorithms [20℄, and spei�ally tothe ACS. PBIL deals with a probability array P = (p1; : : : ; pn) of dimension nequal to the number of problem variables, whih enodes a probability distributionrepresenting a prototype for good quality solutions and whih is used to generate apopulation of possible solutions (binary arrays) in eah iteration. This probabilityarray undergoes adaption during the algorithm run. In the basi PBIL model, itis updated depending on the quality of the best solution generated in the urrentiteration using an ACS-like o�ine pheromone update rule. On the other hand, theomponents of P also su�er random mutations to avoid the hane of prematureonvergene.The similarities between ACO algorithms and PBIL were also analyzed by Mon-marh�e et al. [71℄. They presented a ommon framework, whih they alled Prob-abilisti Searh Metaheuristi, whih also inludes one further EDA model, theBit-Simulated Crossover [91℄. Besides, Dorigo et al. have also studied similaritiesbetween ACO and other tehniques and they identi�ed a larger group of algo-rithms with ommon harateristis that they alled Model-based Searh [94℄ (seealso Setion 7).Finally, we should remind that the similarities between ACO and evolutionaryomputation-EDAs have motivated the integration of some aspets of the latter intoACO algorithms to improve their performane. This is the ase, in partiular, forBWAS (see Setion 4.5). In fat, BWAS inorporates several EDA onepts, mainlyfrom PBIL, like the mutation of pheromone trails and the punishment (removal ofpheromone) by the worst solution of an iteration.6.2 Relation between ACO, GRASP, and multi-startMany metaheuristis for NP-hard ombinatorial optimization problems implementsome form of a multi-start loal searh, where iteratively starting solutions fora loal searh are generated. These metaheuristis inlude iterated loal searh(ILS) [57℄, variable neighborhood searh (VNS) [51℄, GRASP [34, 35℄, and memetialgorithms (MA) [72℄. In fat, many ACO algorithms also belong to this lass ofmetaheuristis.10 In this ase, the operation mode of ACO algorithms an berepresented as follows:While (not stopping ondition) do1. Probabilisti onstrution of solutions by a olony of ants.2. Loal optimization of these solutions.3. O�ine pheromone trail update.A main di�erene between ACO and ILS, VNS, or MA is the way solutionsare generated. While ACO onstruts solutions from srath, ILS, VNS, and MA10 Notie that this is true for most of the best performing ACO algorithms when applied to NP-hard problems, but not for ACO algorithms applied, for example, to routing in teleommuniationnetworks.



24 Cord�on, Herrera, and St�utzlemodify existing solutions by the appliation of appropriate operators that, whenapplied to one or several solutions, return a solution that represents a perturbationof the initial solution(s). Additionally, ACO uses an explizit form of memory (inthe form of pheromone trails), whih is typially not the ase for the other threemetaheuristis.However, ACO shares the partiularity of solution onstrution with GRASPthat probabilistially onstruts solutions and then applies loal searh to them. InGRASP, this two-phase proess is repeated many times and the best solution foundis returned. In the GRASP onstrution phase, at eah onstrution step a andi-date set is built by �rst ordering solution omponents aording to some heuristiinformation, and then inluding the most promising omponents (greedy ompo-nent). Next, a random deision is made among the omponents of the andidateset, typially with all members of the andidate set having the same probabilityof being seleted (randomized omponent). A partiularity of GRASP is that theheuristi information at eah step takes into aount the already available partialsolution (adaptive omponent). From this desription, it is lear that GRASPand ACO are di�erent. While ACO uses memoristi information on the algorithmhistory provided by the pheromone trails, GRASP does not use suh a type ofinformation to bias the onstrution proess. On the other side, ACO does notneessarily use heuristi information whih is dependent on the partial solution,whih is always done by GRASP. However, using adaptive (dynami) heuristi in-formation was shown to improve ACO performane for several appliations; werefer to [31℄ for a disussion of this issue.7 Theoretial developmentsCurrent theoretial results on ACO onern mainly two aspets, (i) proofs on theonvergene behavior of ACO algorithms and (ii) the establishment of formally wellfounded links between ACO algorithms and related algorithmi tehniques.St�utzle and Dorigo have proven onvergene properties for a lass of ACO al-gorithms alled ACO�min [86℄. Charateristi of algorithms in ACO�min is that theyuse an elitist pheromone update strategy and lower limits on the values of anypheromone trail. For ACO�min they proved that for any small onstant � > 0 andfor a suÆiently large number of algorithm iterations t, the probability of �nding atleast one an optimal solution is P �(t) � 1� � and that this probability tends to 1for t!1. The major importane of this result is that it applies to at least two ofthe (experimentally) most suessful ACO algorithms: ACS [27℄ andMMAS [88℄.However, the �rst to proof onvergene of a partiular ACO algorithm, the soalled graph-based Ant System (GBAS), was Gutjahr [48℄. He proved that (i) foreah � > 0, for a �xed �, and for a suÆiently large number of ants, the probabilityP that a �xed ant onstruts the optimal solution at iteration t is P � 1 � � forall t � t0, with t0 = t0(�) and (ii) for eah � > 0, for a �xed number of ants, andfor an evaporation rate � suÆiently lose to zero, the probability P that a �xedant onstruts the optimal solution at iteration t is P � 1 � � for all t � t0, witht0 = t0(�).



A Review on the ACO Metaheuristi 25Yet, GBAS is an ACO algorithm whih was never applied to any ombinatorialoptimization problem so far. Nevertheless, from the desription of the algorithmand some alulations on parameter settings for low values of �, whih are impliedby the theorem, the algorithm would result in an extremely slow progress towardsgood solutions and therefore, most likely, it will not be relevant to ACO pratie.In a very reent paper, Gutjahr [49℄ extended the onvergene results for GBAS[48℄ to two variants of GBAS obtaining the same type of onvergene results as forSimulated Annealing [50℄: onvergene of the urrent solution to an optimal solu-tion with probability one. This result is established for two GBAS variants with (i)time-dependent pheromone evaporation and (ii) time-dependent lower pheromonebounds.There are a number of di�erenes between the proofs for ACO�min and GBAS.The most important onerns the type of onvergene proved. While for ACO�minonvergene in value is proven (that is, the algorithm will eventually �nd the op-timal solution), for GBAS Gutjahr proves onvergene in solution (that is, thealgorithm will onverge to a situation in whih it generates the optimal solutionover and over again). It is lear that for pratial purposes it is enough to proofonvergene in value, beause basially all metaheuristis return the best solutionfound during the searh proess and therefore it is enough to generate the optimalsolution at least one.Formal relationships between ACO algorithms and stohasti gradient desent(SGD), a tehnique whih has been extensively used in mahine learning [80, 70℄,are established by Meuleau and Dorigo [66℄. They show that a variant of ASan be interpreted as a SGD algorithm, whih performs a gradient desent in thespae of the pheromone trails. As mentioned in Setion 6.1, Dorigo et al. [32℄give an interpretation of ACO as a model-based searh method. These kinds oftehniques are haraterized by the fat that andidate solutions are generated by aparameterized probabilisti model that is updated after eah iteration by previouslyseen solutions. This feedbak is used to bias the probability distribution for thefollowing iterations. In this framework, links between ACO and EDAs, SGD, theross-entropy method, and model-based geneti algorithms [73℄ are established.8 New trends in Ant Colony OptimizationTwo still very ative researh diretions in ACO are the the appliation of ACO al-gorithms to hallenging ombinatorial optimization problems and the developmentof new, better performing algorithmi variants of ACO algorithms. In partiular,the appliation of ACO to a steadily inreasing variety of (in most ases NP-hard)appliation problems aounts for the largest part of new ontributions. Mostnoteworthy regarding the various appliations are papers onerned with multi-objetive problems and those to dynami optimization problems. In multi-objetiveoptimization problems, several ompeting objetives have to be optimized. Firstapproahes to multi-objetive optimization inlude the two-olony approah byGambardella, Taillard and Agazzi to vehile routing problems with time win-dows, where two hierarhially ordered objetives are onsidered [38℄. Mariano and



26 Cord�on, Herrera, and St�utzleMorales onsidered the appliation of ACO to a multi-objetive optimization prob-lem arising in the design of water irrigation networks. In their approah one olonyis assigned to eah objetive and the objetives are ranked by importane [61℄.Iredi, Merkle and Middendorf explored the appliation of ACO for �nding Pareto-optimal solutions to a bi-riterion single-mahine sheduling problem [53℄.Some of the greatest suesses of ACO algorithms so far were obtained in appli-ations to highly dynami problems like those to teleommuniations routing withAntNet by Di Caro and Dorigo being the best performing variant [24℄. For suh ap-pliations, ACO algorithms are well suited, beause they math very well the prob-lem harateristis like stohasti state transitions and that only loal informationis available. Another researh diretion in dynami problems is the appliation ofACO to time-varying variants of lassial NP-hard optimization problems like theTSP or the QAP. Examples are the papers by Guntsh and Middendorf [46, 45, 47℄and Eykelhof and Snoek [33℄.With respet to algorithmi tehniques in general, a hot reent trend is the de-velopment of hybrid tehniques ombining ideas from exat algorithms and meta-heuristis. In ACO, one partiular algorithms has atually be designed with assuh a hybrid: the Approximate Nondeterministi Tree-Searh (ANTS) proedureby Maniezzo [58℄ ombines ACO algorithms with lower bounding tehniques frommathematial programming. In partiular, lower bounds on the ost of ompletinga partial solution are omputed that are used as the heuristi information on theattrativeness of adding solution omponents. This o�ers advantages like the pos-sible elimination of extensions of partial solutions, if these would lead to a largerost than the best solution already found.Some researh e�orts in ACO were also direted towards speeding up the algo-rithm by using parallel proessing. ACO appears to be naturally suited for parallelproessing beause of the use of a population of solutions. However, the om-muniation overhead through the exhange of the pheromone evaporation makesdiÆult the realization of �ne-grained parallelization shemes. Therefore, most par-allelization shemes fous on ourse-grained parallelization [13, 68, 69, 83℄, whihis implemented typially in a way similar to the island-model in evolutionary al-gorithms [14℄. One reent exeption to these (rather standard) parallelization ap-proahes is the adaptation of an ACO algorithm to run on reon�gurable proessorarrays [64℄.Finally, as ACO beomes more and more widely used, several researhers alsohave shifted the attention for examining the reasons of ACO's suess, towards adeeper understanding of the searh behavior. St�utzle and Hoos have linked thereasons of ACO suess to results of the searh spae analysis of ombinatorialoptimization problems. In partiular, ACO appears to perform partiularly wellon problems whih show a high orrelation between the �tness of solutions andthe distane to global optima (measured by the so alled �tness-distane orrela-tion [54℄) [88℄. Studies of ACO behavior on simple problems like shortest pathproblems or (polynomially solvable) permutation problems shed some light on theimportane of some design features of ACO suh as the quality-based pheromoneupdate or di�erent strategies for solution onstrution [29, 63℄. The dynamis ofACO algorithms is studied by Merkle and Middendorf [65℄. Finally, Blum, Sam-



A Review on the ACO Metaheuristi 27ples and Zlohin have shown that partiular de�nitions of the pheromone trailsmay lead to the unexpeted situation that the performane of Ant System mayeven degrade at run time [8℄. Also when using more performing ACO algorithmsthan AS, Blum and Sampels show that the way pheromone trails are de�ned has(as it may be expeted) an enormous inuene on ACO algorithms' behavior [7℄.9 Conluding remarksNowadays, ACO is a well de�ned and good performing metaheuristi that is moreand more often applied to solve a variety of omplex ombinatorial problems. In thispaper, we have reviewed the underlying ideas of this approah that lead from thebiologial inspiration to the ACO metaheuristi. Most of the existing approaheshave been desribed and some results regarding topis suh as the relationship toother metaheuristis and theoretial aspets have been summarized. Moreover, wehave identi�ed some reent trends in the �eld, trying to put some light on thepossible future development of ACO.Referenes[1℄ E. H. L. Aarts, J. H. M. Korst, and P. J. M. van Laarhoven. Simulatedannealing. In E. H. L. Aarts and J. K. Lenstra, editors, Loal Searh inCombinatorial Optimization, pages 91{120. John Wiley & Sons, Chihester,1997.[2℄ E. H. L. Aarts and J. K. Lenstra, editors. Loal Searh in CombinatorialOptimization. John Wiley & Sons, Chihester, 1997.[3℄ R. Alal�a, J. Casillas, O. Cord�on, and F. Herrera. Improvement to the ooper-ative rules methodology by using the Ant Colony System algorithm. Mathware& Soft Computing, 8(3):321{335, 2001.[4℄ T. B�ak. Evolutionary Algorithms in Theory and Pratie. Oxford UniversityPress, New York, NY, 1996.[5℄ S. Baluja and R. Caruana. Removing the genetis from the standard genetialgorithm. In A. Prieditis and S. Russell, editors, Proeedings of the TwelfthInternational Conferene on Mahine Learning (ML-95), pages 38{46. MorganKaufmann Publishers, Palo Alto, CA, 1995.[6℄ M. Birattari, T. St�utzle, L. Paquete, and K. Varrentrapp. A raing algorithmfor on�guring metaheuristis. In W. B. Langdon et al., editor, GECCO 2002:Proeedings of the Geneti and Evolutionary Computation Conferene, pages11{18. Morgan Kaufmann Publishers, San Franiso, CA, 2002.[7℄ C. Blum and M. Sampels. When model bias is stronger than seletion pressure.In Proeedings of PPSN-VII, Seventh International Conferene on Parallel
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