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Abstract

The paper presents a new genetic local search (GLS) algorithm for multi-objective combinatorial optimization
(MOCO). The goal of the algorithm is to generate in a short time a set of approximately efficient solutions that will
allow the decision maker to choose a good compromise solution. In each iteration, the algorithm draws at random a
utility function and constructs a temporary population composed of a number of best solutions among the prior
generated solutions. Then, a pair of solutions selected at random from the temporary population is recombined. Local
search procedure is applied to each offspring. Results of the presented experiment indicate that the algorithm out-
performs other multi-objective methods based on GLS and a Pareto ranking-based multi-objective genetic algorithm

(GA) on travelling salesperson problem (TSP). © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Multi-objective combinatorial optimization; Metaheuristics; Genetic local search

1. Introduction

Combinatorial optimization finds applications
in many areas, e.g. in production scheduling,
project scheduling, staff scheduling, time-tabling,
production facilities design, vehicle routing, tele-
communication routing, investment planning, lo-
cation and many others (see e.g. Yu, 1998).
Solutions of real-life combinatorial optimization
problems usually have to be evaluated taking into
account different points of view corresponding to
multiple, often conflicting objectives.
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The goal of multi-objective optimization is to
find the single solution giving the best compromise
between multiple objectives. Since usually there is
no single solution that optimizes simultaneously
all the objectives, selection of the best compromise
solution requires taking into account preferences
of the DM. Under very weak and generally ac-
cepted assumptions about the DM’s preferences
the best compromise solution belongs to the set of,
so-called, efficient solutions (Steuer, 1986, Ch. 6.6
6.7). Thus, many multi-objective optimization
methods reduce the search space to the set of ef-
ficient solutions. Note that this approach is not
valid if the DM searches for a sample of best
solutions as the second best and other good solu-
tions do not need to be efficient under the same
assumptions about the DM’s preferences.
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Because of computational complexity of many
MOCO problems the use of metaheuristics, e.g.
genetic algorithms (GAs), simulated annealing
(SA) or tabu search, seems to be the most prom-
ising approach to generation of approximately
efficient solutions (Ulungu and Teghem, 1994).
Metaheuristics have the advantages of being
computationally efficient, general and relatively
simple in implementation.

Below we use the term “multi-objective meta-
heuristic” to characterize methods that generate a
set of approximately efficient solutions in a single
run. Single objective metaheuristics can also be
used in multi-objective context, for example to
optimize a scalarizing function. In the latter case,
however, a single approximately efficient solution
is obtained in each run of the single objective
method.

Several authors have proposed multi-objective
metaheuristic procedures. The methods are usually
based on classical single objective metaheuristics.
For example, the methods of Schaffer (1985),
Fonseca and Fleming (1993), Horn et al. (1994)
and Srinivas and Deb (1994) are based on GAs,
the methods of Serafini (1994), Czyzak and Jasz-
kiewicz (1998) and Ulungu et al. (1999) are based
on SA, and the methods of Gandibleux et al.
(1996) and Hansen (1998) are based on tabu
search.

In recent years we are observing a growing in-
terest in hybrid single objective metaheuristics that
combine elements of various methods. Typical
example is genetic local search (GLS) method
combining genetic algorithms with local search.
Such methods often outperform other metaheu-
ristics on combinatorial optimization problems
(see e.g. Ulder et al., 1991; Murata and Ishibuchi,
1994; Merz and Freisleben, 1997; Gorges-Schleu-
ter, 1997, Galinier and Hao, 1999). Thus, the
construction of multi-objective genetic local search
(MOGLS) methods is a very promising direction
for multi-objective combinatorial optimization
(MOCO).

The paper describes a new MOGLS method.
The goal of the method is to generate effectively a
set of approximately efficient solutions that will
allow the DM to choose a good compromise so-
lution.

A MOGLS method has been proposed by
Ishibuchi and Murata (1998). Their method is
discussed in Section 4.2. Results of the computa-
tional experiments reported in Section 7 demon-
strate that our method performs significantly
better in the case of multi-objective travelling
salesperson problem (TSP).

The paper is organized in the following way. In
the following section, some basic definitions are
given. In Section 3, the single objective GLS
metaheuristic is described. Existing multi-objective
GAs are discussed in Section 4. In Section 5, the
basic single objective GLS algorithm is presented.
The new MOGLS algorithm is described in Sec-
tion 6. In Section 7 computational experiments
with the proposed algorithms are reported. In
Section 8 conclusions and directions for further
research are summarized.

2. Problem statement and basic definitions

The general MOCO problem is formulated as

maximize {f1(x) =z,...
s.t. x €D,

P1 7f/(X) :ZJ}

where solution x = [x|,...,x;] is a vector of dis-
crete decision variables, D is the set of feasible so-
lutions.

The image of a solution x in the objective space
is a point z* = |zj,...,z;|, such that z; = f;(x),
j=1,...J.

A point z' € Z dominates z* € Z, z' = 72, if
Vjz; >z and z; >z for at least one j. Solu-
tion x! dominates x>, x' = x?, if the image of x!
dominates the image of x*>. A solution x € D
is efficient (Pareto-optimal) if there is no x' € D
such that x’ > x. Point being image of an effi-
cient solution is called non-dominated. The set of
all efficient solutions is called efficient set
and denoted by N. The image of the efficient
set in the objective space is called non-dominated
set.

The point z* composed of the best attain-
able objective function values is called the ideal
point:
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z; =max{z;[z€Z}, j=1,...,J.

The point z, composed of the worst attainable
objective function values in the efficient set is
called the nadir point.

Range equalization factors (Steuer, 1986, Chap-
ter 8.4.2) are defined in the following way:

j:17""J7 (1)

where R; is the (approximate) range of objectives z;
in the set N or D. Objective function values mul-
tiplied by range equalization factors are called
normalized objective function values.

A utility function u : # — R, is a model of the
DM’s preferences that maps each point in the
objective space into a value of utility. It is as-
sumed that the goal of the DM is to maximize the
utility.

Weighted Tchebycheff utility functions are de-
fined in the following way:

Uoo(2,2", 4) = —max{2(z} - z))}, (2)

where A = |A1,...,4;] Vj 4; =0, is a weight vec-
tor. Each utility function of this type has at least
one global optimum belonging to the set of effi-
cient solutions. For each efficient solution x there
exists a weighted Tchebycheff utility function such
that x is a global optimum of u (Steuer, 1986,
Chapter 14.8).

Weighted linear utility functions are defined in
the following way:

ui(z, A) = Z 2iz;. (3)

An efficient solution x is supported if there exists
a vector of non-negative weights A = [4y,..., 4]
such that x is the unique global optimum of the
following problem:

maximize u;(z, A)
s.t. x € D.

Weight vectors that meet the following conditions:

Vii=0, Y

J

}vj = l,

J
=1
are called normalized weight vectors.

3. GLS metaheuristic

In recent years, the development of hybrid GAs
is one of the most significant trends in the field of
metaheuristics. Methods of this kind hybridize
recombination operators with local heuristics, e.g.
with local search. Other frequently used names are
memetic algorithms or GLS. It is quite difficult to
track the single origin of GLS. To our knowledge,
the first description of GLS was published by
Ackley (1987), but similar algorithms were devel-
oped probably completely independently by sev-
eral authors. As it was mentioned in Section 1
GLS algorithms have proved in recent years to be
a very effective class of methods for combinatorial
optimization. The methods tend to achieve syn-
ergy of recombination operators and local heu-
ristics. In some cases very simple local heuristics
are used while other implementations use exten-
sions of local search. For example, Radcliffe and
Surry (1994) consider an algorithm in which a
single iteration of local search is applied to each
offspring while Taillard (1995) applies tabu search
to each offspring.

From the GA perspective, GLS may be inter-
preted as a standard genetic/evolutionary algo-
rithm working on a reduced set of solutions, e.g.
on a set of local optima. From this point of view,
local heuristic is just a part of the recombination
operator. The efficiency of GLS may be explained
by the fact that in the case of many problems local
optima constitute a relatively small part of the
search space and the local optima can be achieved
in an efficient way.

GLS may be also interpreted as a modification
of multiple start local search with random starting
solutions. In GLS, starting solutions are con-
structed in an intelligent way by combination of
the properties of other good solutions. If the re-
combination operator is well designed, starting
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solutions obtained by recombination should con-
stitute better starting points for local improvement
than random solutions. The efficiency of GLS in
comparison with multiple start local search (MLS)
can be explained by the fact that local search when
started from good starting solutions usually yields
better solutions and often requires less time.

4. Existing multi-objective genetic methods
4.1. Pareto ranking-based multi-objective GAs

Clearly, majority of research in the field of
multi-objective metaheuristics concentrates on
GAs (see Fonseca and Fleming, 1993, for review).
It is often claimed that since GAs work with
population (set) of solutions they are especially
well suited for multi-objective optimization where
the goal is to find a set of approximately efficient
solutions (see e.g. Fonseca and Fleming, 1993; Van
Veldhuizen, 1999, Chapter 2.5). In all MOGAs, we
are aware of, a single population of solutions is
expected to approach and disperse over the whole
(or, in some cases, over an interesting region of)
the efficient set.

At present probably most often used are MO-
GAs based on Pareto ranking (compare Van
Veldhuizen, 1999, Chapters 3.3.2.2 and 3.3.2.3). In
classical single objective GAs fitness of a solution
depends on its score on the single objective. In
Pareto ranking-based MOGAs the fitness depends
primarily on a ranking induced by the dominance
relation. For the first time this idea was introduced
by Goldberg (1988). The general idea of Pareto
ranking has been implemented by various authors
in slightly different ways. In the MOGA of Fon-
seca and Fleming (1993) the rank of a given so-
lution is equal to the number of solutions that
dominate it.

A clear advantage of Pareto ranking is its in-
dependence of any monotonic transformation of
objective functions. Note, however, that this kind
of fitness assignment may promote regions with
higher density of solutions.

Pareto ranking alone does not guarantee,
however, that the population will disperse over all
regions of the efficient set. Fonseca and Fleming

(1995) consider fitness landscapes induced by very
large, uniformly distributed populations. In the
case of Pareto ranking-based selection schemes, all
efficient solutions have the highest fitness, i.e. de-
fine a plateau of the fitness landscape. This situa-
tion is similar to optimization of a single function
having global optima at a plateau. It is well known
that in this case finite populations converge to a
single optimum. This phenomenon is called “ge-
netic drift” (Goldberg and Segrest, 1987). In the
multi-objective case, genetic drift means that finite
populations tend to converge to small regions of
the efficient set. Fonseca and Fleming (1993) and
Srinivas and Deb (1994) propose the use of fitness
sharing to prevent the genetic drift. The idea of
this technique is to penalize (decrease fitness) of
solutions being too close, either in objective or in
decision space, to some other solutions in the
current population.

In classical single objective GAs all solutions
from the current population may be mated (re-
combined) to produce offsprings. This may be,
however, very ineffective in multi-objective case.
Single objective GAs construct new solutions by
recombination of properties of two good solu-
tions. The idea is based on (usually implicit) as-
sumption that good solutions have some
similarities in the decision space, i.e. that some
features appear often in good solutions. In the case
of standard binary coding such features are called
schemas and correspond to some patterns of zeros
and ones (see schema theorem, Holland, 1975). In
multi-objective case, in general, there is no reason
to expect such similarities even if they are observed
in corresponding single objective problems (com-
pare the study of Borges and Hansen, 1998). Effi-
cient set of a multi-objective problem includes,
among others, optima of particular objectives. If
the objectives are not positively correlated, their
optima will be, in general, completely different.
This suggests that recombination of approximately
efficient solutions distant in the objective space is
very unlikely to yield good offsprings. Fonseca and
Fleming (1993) propose the use of mating restric-
tions to avoid not promising recombinations, i.e.
they propose to ban mating of distant solutions.

Note that fitness sharing and mating restrictions
do in some sense opposite jobs. Fitness sharing
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penalizes close solutions while mating restrictions
ban mating of distant solutions. Thus, parameters
of these techniques should be carefully set. Note
also that the distance measures used in the two
techniques are, in general, dependent on scaling of
objectives. Thus, in practice, the methods based on
Pareto ranking are not independent of monotonic
transformations of objective functions.

Note also that Pareto ranking is not well suited
for hybridization with local search. Change of the
rank of a given solution may require significant
changes of the objective values; so, many local
moves will not influence the rank. In the case of
solutions having rank 1 no local improvement is
possible. Furthermore, evaluation of local moves
depends on other solutions in the population. In
the case of problems, for which the evaluation of
local moves is very fast, it may significantly in-
crease running time of local optimization.

4.2. Ishibuchi and Murata’s MOGLS

Ishibuchi and Murata (1998) were the first au-
thors to propose a MOGLS algorithm. The main
idea of the method is to randomly generate a
weight vector for each iteration. The weight vector
is used in a linear utility function. Each iteration of
the method consists of a single recombination and
a single local search applied to the offspring. The
method uses a standard genetic population with no
mating restrictions. The solutions for recombina-
tion are selected according to the roulette wheel
scheme, with fitness depending on the current
utility function. Generation replacement is used.
Furthermore, a portion of elite potentially efficient
solutions is added to the new generation. Ishibuchi
and Murata applied their method to a multi-ob-
jective flowshop problem.

4.3. MOSA-like MOGLS

Ulungu et al. (1999) proposed a method based
on SA called MOSA. The method uses a number
of predefined weight vectors defining a set of
weighted linear utility functions. Each of the
functions is optimized sequentially or in parallel by

an independent SA process. The outcome of the
algorithm are not only the best solutions obtained
for each of the optimized functions, but are all the
potentially efficient solutions generated during the
optimization. The idea of the method is very gen-
eral and can be easily used with any other meta-
heuristic applied to the optimization of particular
utility functions, e.g. GLS. Such an algorithm will
be called MOSA-like MOGLS.

5. Basic single objective GLS algorithm

Similarly to other multi-objective metaheuris-
tics our MOGLS is based on a single objective
algorithm. The details of this algorithm are given
in Fig. 1. The algorithm assumes complete elitism,
i.e. the current population is always composed of a
sample of best known solutions.

For the TSP instances of the size similar to
those used in our experiment the population rel-
atively quickly converges to a number of close
local optima, such that no other better local op-
tima can be found in the result of recombination
and local search. In the experiments described in
Section 7.5 the optimization was stopped if in K
successive iterations current population was not
changed. This value was selected experimentally.
It was observed that population that was not
changed in K iterations gives little chance for
further improvements. The size of the current
population K is the main parameter controlling
the calculation time. In general, the larger K the
larger CPU time and the better quality of results
(see Section 7.5).

In the above algorithm mutation operator is
not explicitly used. The recombination operator
used for TSP problem introduces, however, some
elements of randomness. In other cases, explicit
mutation operators may be necessary.

6. The algorithm of MOGLS
6.1. Main algorithm

The goal of multi-objective metaheuristics is to
generate a set of approximately efficient solutions
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Parameters: K — size of the current population, stopping criterion

Initialization:
Current population P:=(J

repeat K times

Construct randomly a new feasible solution x

Optimize locally the objective function starting from solution x obtaining x’

Add x’ to P.
Main loop:

repeat

Draw at random with uniform probability two solutions x; and x; from P

Recombine x; and x; obtaining x3

Optimize locally the objective function starting from solution x3 obtaining x;’

if x5’ is better than the worst solution in P and different in the decision space from all

the solutions in P then

Add x5’ to P and delete from P the worst solution

until the stopping criterion is met

Fig. 1. Algorithm of the basic single objective GLS.

being a good approximation of the whole set of
efficient solutions. Of course, the best possible
approximation is set N itself. As mentioned in
Section 2, all weighted linear and all weighted
Tchebycheff utility functions achieve optima at
efficient solutions. Thus, finding all the efficient
solutions is equivalent to finding the optima of all
weighted Tchebycheff and all weighted linear util-
ity functions. Hence, we reformulate the goal of
multi-objective metaheuristics as simultaneous
optimization of all weighted Tchebycheff or all
weighted linear utility functions. The term ‘““opti-
mization” in the previous sentence is understood
as a tendency of the algorithm to improve values
of all the utility functions.

Our MOGLS implements the idea of simulta-
neous optimization of all weighted Tchebycheff or
all weighted linear utility functions by random
choice of the utility function optimized in each
iteration. In other words, in each iteration,
MOGLS tries to improve the value of a randomly
selected utility function. A single iteration of
MOGLS consists of a single recombination of a
pair of solutions. The offspring is then used as a
starting point for local search.

The general idea of the proposed algorithm is
similar to that used by Ishibuchi and Murata (1998).
The main difference is in the way the solutions are
selected for recombination. Consider the algorithm
of single objective GLS presented in Section 5 that is
a basis for the proposed MOGLS. In the single
objective GLS two parents are drawn at random
from the population of K solutions being the best
known solutions on the single objective function.
Analogously, in the proposed MOGLS the parents
are selected from the temporary population com-
posed of K solutions being the best known solutions
on the temporary utility function used in the current
iteration. Of course, in each iteration, the tempo-
rary population is, in general, different.

In order to draw at random the utility function
in our MOGLS algorithm, a normalized weight
vector is drawn at random by the algorithm pre-
sented in Fig. 2. The algorithm uniformly samples
the set of normalized weight vectors.

The details of the MOGLS algorithm are given
in Fig. 3. Fig. 4 graphically illustrates the work of
the method in a single iteration.

Our original idea was to store all the generated
solutions in the current set of solutions CS from
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A =1-"Frand()

A= [1 - ji/l,j(l —frand())

Fig. 2. Algorithm for generation of random normalized weight
vectors. Function rand() returns a random value from the range
(0, 1) with uniform probability.

which the temporary populations are selected.
Storing and handling all the solutions would,
however, be very time and memory consuming.

Thus, set CS is organized as a queue of size K x S,
where S is the number of initial solutions. In each
iteration, the newly generated solution is added to
the beginning of the queue if it is better than the
worst solution in the temporary population and
different in the decision space from all solutions in
the temporary population. If the size of the queue
is bigger than K x S, then the last solution from
the queue is removed. The size K x S was estab-
lished experimentally. We have observed that such
a size of CS results in no significant deterioration
of the results with respect to the version of our
algorithm that stores all generated solutions.

The way the temporary populations are built
may be interpreted as a form of mating restric-
tions. The algorithm recombines only those so-

Parameters: K — size of the temporary population, S - number of initial solutio

stopping criterion

Initialization:

The set of potentially efficient solutions PE:=

The current set of solutions CS:=J
repeat S times

Draw at random a utility function u

Construct randomly a new feasible solution x

Optimize locally the utility function u starting from solution x obtaining x’

Add x’ to the current set of solutions CS

Update set PE with x’
Main loop:
repeat

Draw at random a utility function u

From CS select K different solutions being the best on utility function « form

temporary population 7P

Draw at random with uniform probability two solutions x; and x, from 7P.

Recombine x; and x, obtaining x3

Optimize locally the utility function u starting from solution x; obtaining x5’

if x5’ is better than the worst solution in 7P and different in the decision space from

the solutions in 7P then

Add x3’ to the current set of solutions CS

Update set PE with x3’

until the stopping criterion is met

Fig. 3. Algorithm of the multi-objective GLS.
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Fig. 4. Graphical illustration of a single iteration of the MOGLS.

lutions that are good on the same utility func-
tion.

In the case of our method we did not note this
kind of convergence that has been observed in the
single objective GLS (see Section 5). Even after a
large number of iterations recombination and local
search allow to obtain new efficient solutions. This
happens because random selection of utility func-
tions introduces additional diversification mecha-
nism. Thus, the stopping criterion is defined by the
maximum number of iterations.

Updating the set of potentially efficient solu-
tions PE with solution x consists of:
¢ adding x to PE if no solution in PE dominates

X,
e removing from PE all the solutions dominated

by x.

Note that the set of potentially efficient solutions
is updated with local optima only. In general,
other solutions generated during the local search
may also be potentially efficient. This approach
allows, however, for significant reduction of
computational time. Furthermore, a data struc-
ture called quad tree allows for very effective up-
dating of PE (Finkel and Bentley, 1974;
Habenicht, 1982).

6.2. Setting the number of initial solutions

The number of initial solutions S is an addi-
tional parameter of the method. Its influence

on the performance of the algorithm is yet to be
tested. Below we propose an approach that allows
to stop generating the initial solutions when the
average quality of K best solutions in CS over all
utility functions is the same as the average quality
of local optima of these functions. In other words,
the method assures that on average the quality of
K best solutions on a utility function will be the
same as the quality of the staring population
generated by the root single objective algorithm
presented in Section 5 applied to optimization of
this utility function.

Let x € CS be an initial solution obtained by
the local optimization of utility function u,. Note
that x does not need to be the best solution on uy
in the current set of solutions CS. Let B(K, CS, x,
uy) C CS be the set of K best solutions of function
uy different from x. Let u,(B(K, CS, X, uy)) be the
average value of u, in B(K,CS,x, uy), i.e.

ZyeB(K,C&x,ux) ux(y)

ux(B(K,CS,X,uy)) = e

We propose to stop the generation of initial solu-
tions when the following condition is met:

1

@ Z (EX(B(K,CS,X,L{X)) _ MX(X)) > 0.

xes

Of course, the above condition could only be tested
if |CS| =K + 1.

Table 1 presents exemplary sizes of the initial
sets of solutions obtained with the above
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Table 1

Numbers of starting solutions for multi-objective TSP instances®

K S

Bi-objective TSP
instances with 50 cities

Three-objective TSP

instances with 50 cities

Bi-objective TSP
instances with 100 cities

Three-objective TSP
instances with 100 cities

4 33.60 (3.13) 115.52 (8.07)

8 57.28 (3.74) 203.84 (14.20)
16 108.48 (6.70) 381.12 (20.87)
32 202.88 (15.31) 733.44 (35.90)

43.52 (2.87)
75.04 (5.08)
142.40 (6.66)

268.80 (15.83)

198.96 (11.84)
349.76 (18.57)
662.40 (31.17)
1290.88 (41.70)

#Standard deviations are given in brackets.

approach. The results are averages over 50 results
— 5 runs for 10 instances of each size (see Section
7.1). In addition standard deviations are pre-
sented. Note that the variance of the values is
relatively low.

7. Computational experiment on multi-objective
symmetric TSP

7.1. Multi-objective symmetric TSP

Single objective TSP is often used to test single
objective metaheuristics. It is defined by a set of
cities and a cost (distance) of travel between each
pair of cities. In symmetric TSP the cost does not
depend on the direction of travel between two
cities. The goal is to find the lowest cost Hamil-
tonian cycle.

In J-objective TSP, J different cost factors are
defined between each pair of cities. In practical
applications the cost factors may for example
correspond to cost, length, travel time or tourist
attractiveness. In our case, J-objective symmetric
TSP instances are constructed from J different
single objective TSP instances having the same
number of cities. Thus, jth cost factor, j =1,...,J,
between a pair of cities comes from jth single ob-
jective instance. Individual optima of particular
objectives are equal to optima of corresponding
single objective instances. In our case, the single
objective instances are completely independent, so,
also objectives are independent and therefore non-
correlated. The same approach was used by Borges
and Hansen (1998).

Also following Borges and Hansen (1998) we
use multi-objective TSP instances based on the
TSPLIB library (Reinelt, 1991). For
example, problem instance kroAB100 denotes a
bi-objective instance with cost factors corre-
sponding to the first objective taken from
kroA100, and cost factors corresponding to the
second objective taken from kroB100. Kkro-
ABCI100 denotes a three-objective instance with
cost factors taken from kroA100, kroB100 and
kroC100 instances. In this way 10 different bi-
objective instances and 10 three-objective in-
stance were created. We used also instances with
50 leading cities taken from kroA100-kroE100
instances.

7.2. Quality evaluation

Most of the quality measures used to evaluate
results of multi-objective metaheuristics assume
the knowledge of the exact set of non-domi-
nated points (Van Veldhuizen, 1999, Chapter
6.3.4). In the case of our TSP instances, how-
ever, the sets of all non-dominated points are
not known.

In order to measure the quality of solutions
generated by the tested algorithms we follow the
approach proposed by Hansen and Jaszkiewicz
(1998). The quality of a set of approximately effi-
cient solutions 4 is evaluated by the expected value
of weighted Tchebycheff utility function over the
set of normalized weight vectors:

B (4.) = |

Ae¥

u, (4, A)p(4) d4,



A. Jaszkiewicz | European Journal of Operational Research 137 (2002) 50-71 59

where

‘P:{Ae%’

J
> Jy=1land 4 >0,
J=1

j:l,...,J}

is the set of normalized weight vectors, p(A4) is a
probability intensity function,

U (4, 4) = max{un (2,2, 4)}

is the best utility achieved by function u,.(z,z*, A)
on approximation A.

The utility functions are normalized such that
each of them achieves value equal to 1 at (ap-
proximation of) the ideal point and value equal
to 0 at (approximation of) the nadir point. In
order to estimate the expected value we use nu-
merical integration. Details are given in Appen-
dix A.

7.3. Adaptation of GLS to TSP

The recombination operator used in this ex-
periment is the distance-preserving crossover in-
troduced by Freisleben and Merz (1996). An
offspring is constructed in the following steps:

Step 1. Put in the offspring all arcs common to

both parents.

Step 2. Complete the Hamiltonian cycle with

randomly selected arcs.

Local optimization is performed in two phases. In
the first phase local search does not take into ac-
count arcs that were common to both parents. In
the second phase all arcs are considered.

The local search uses a standard 2-arc exchange
neighborhood (see Fig. 5). While constructing the
initial population greedy local search is used. After
recombination steepest local search is used. This
combination was found to give the best results.
The greedy local search tests the neighborhood
moves in random order and performs first im-
proving move found. The steepest local search
tests all neighborhood moves and performs the
best improving move. Both versions stop when no
improving move is found in the whole neighbor-
hood.

Note that the local search is relatively simple
and leaves space for many improvements. Merz
and Freisleben (1997) describe a state of the art
GLS for single objective TSP that uses a number
of techniques significantly increasing effectiveness
of local search.

7.4. Selection of the type of utility functions

In the case of discrete problems, weighted
Tchebycheff utility functions seem to have an ad-
vantage over weighted linear utility functions.
Each efficient solution is a global optimum of a
weighted Tchebycheff utility function, while
weighted linear utility functions achieve global
optima on a subset of efficient solutions only, i.e.
supported efficient solutions (see Section 2).

Unchanged
arcs

Inserted
arcs

Removed
arcs

Fig. 5. Illustration of the 2-arc exchange move in 2D Euclidean TSP.
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Because of it, we use Tchebycheff functions in our
quality measure (see Section 7.2). Our implemen-
tation of MOGLS for TSP uses, however, weigh-
ted linear function. Several reasons for this are
discussed below.

First of all, weighted Tchebycheff functions are
more difficult to optimize than weighted linear
functions for multi-objective TSP. Hansen (2000)
noted that in the case of multi-objective TSP both
local search and tabu search give better final val-
ues of weighted Tchebycheff functions, when the
search within neighborhood of the current solu-
tion is guided by the weighted linear functions
than when it is guided by the weighted Tche-
bycheff functions. Our observations confirm this
phenomenon. For example, Fig. 6 presents local
optima of 1000 randomly selected weighted
Tchebycheff and local optima of 1000 randomly
selected weighted linear functions obtained for
kroAB100 bi-objective TSP instance with 100 cit-
ies. We present also a reference set, i.e. the best set
of approximately efficient solutions we have ob-
tained. The figure illustrates that local optima of
weighted linear functions are much closer to the
reference set.

Because of special structure of TSP local search
is also faster in the case of weighted linear func-
tions, because evaluation of local moves requires
less arithmetical operations.

As it was mentioned above global optima of
weighted Tchebycheff functions contain all effi-
cient solutions. Since we work with a heuristic
algorithm and since the set of potentially efficient

90000

solutions is updated with every new generated
local optimum, it is more interesting as to what is
the chance of finding efficient solutions among
good local optima of a function. In order to test
it we used a set of 1000 local optima of randomly
selected weighted linear functions (similar results
were obtained when local optima of Tchebycheff
functions were used). Among the 1000 solutions
130 were potentially efficient. Then, 1000 other
randomly selected weighted linear functions and
weighted Tchebycheff functions were used. For
each of the functions samples composed of 1,
2,...,50 best solutions were selected from the set
of 1000 solutions. For each sample the number of
potentially efficient solutions contained in the
sample was counted. The results are presented in
Fig. 7. On average sample of n best solutions of a
weighted linear function contains more poten-
tially efficient solutions. For example, among 50
best solutions of a weighted linear function on
average more than 19 were potentially efficient,
while among 50 best solutions of a weighted
Tchebycheff function on average less than 11 were
potentially efficient. Intuitively, it can be ex-
plained by comparison of Figs. 8 and 9. Good
solutions of weighted linear functions are dis-
persed over the set of efficient solutions while
good solutions of weighted Tchebycheff functions
are more concentrated and placed inside the fea-
sible set.

Summarizing, we have decided to use weighted
linear functions in the implementation of
MOGLS for multi-objective TSP because such
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Fig. 6. Local optima of weighted linear and weighted Tchebycheff functions with random weights.
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Average number of efficient solutions

Fig. 7. Numbers of potentially efficient solutions among n best solutions of linear and weighted Tchebycheff functions.

functions are easier to optimize and give higher
chance for finding new potentially efficient solu-
tions than weighted Tchebycheff functions. Note,
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Fig. 9. Fifty best local optima of a weighted linear function.
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however, that we do not claim that the two kinds
of functions have the same properties in the case
of other problems. The global shape of the



62 A. Jaszkiewicz | European Journal of Operational Research 137 (2002) 50-71

non-dominated set in the case of multi-objective
TSP is relatively smooth (see e.g. Fig. 12).
Weighted Tchebycheff functions may be better for
problems with more irregular non-dominated sets.
Similar experiments on other MOCO problems
should be performed.

7.5. Experiment with single objective metaheuristics

The goal of the experiment described in this
section was to confirm the quality of single ob-
jective GLS heuristic in the case of TSP. The al-
gorithm was compared to GA, MLS and SA.

GA used population of size 50 and roulette
wheel selection with linear scaling. It used the same
recombination operator as GLS. In the case of
GLS no mutation operator is used. In the case of
GA we have observed that the lack of mutation
operator results in a very fast convergence of the
population. Thus, a mutation operator with
probability 0.1 was used. The mutation operator
exchanges two randomly selected arcs (see Section
7.3).

In MLS starting solutions were constructed
randomly and greedy algorithm was used. In the
case of SA, the starting temperature was set equal
to 100 and the final temperature was equal to 1.
An intensive experiment was performed in order to
find good temperature settings for SA. After each
temperature plateau the temperature was multi-
plied by 0.9. The number of moves on a temper-
ature plateau was constant in each run of the
procedure.

The three methods were compared on five in-
stances coming from TSPLIB library (Reinelt,
1991) — kroA100, kroB100,..., kroE100. The
results presented in Table 2 and in Fig. 10 are
averages of 25 runs of the algorithms (5 runs for
each problem). Comparison of heuristic algo-
rithms should take into account at least two main
criteria — computational effort and quality of re-
sults. Since for each of the five instances global
optimum is known, the quality is measured by the
relative excess over the optimum value, i.e.
(f — fopt)/fopt» Where f'is the obtained value of the
objective and f,, is the optimum value. The
computational effort is measured by both number

of function evaluations (number of tested local
moves) and CPU time. The experiments were
performed on 350 MHz Pentium PC. Implemen-
tations of all the algorithms shared majority of the
same code.

GA is clearly the worst algorithm if CPU time
is used as the measure of effectiveness. The differ-
ence is that high that we decided not to include it
in Fig. 10. Partially it is related to the fact that it
performs almost 300 times fewer function evalua-
tions per second than MLS and GLS. Allowing
GA to perform the same number of functions
evaluation as the longest runs of the other algo-
rithm would be extremely time consuming. Note,
however, that the longest runs of GA required
number of function evaluations comparable to the
shortest runs of the other algorithms and the
quality of solutions generated by GA was still
much worse.

GLS by far outperforms the other algorithms.
In less than 2 seconds it gives better results than
those achieved by the other algorithms in more
than 45 seconds. It is also the only algorithm that
gives high probability of finding the global opti-
mum. Note that the good performance of GLS is
an example of a synergy of two mechanisms, i.e.
recombination and local search, that used alone
perform worse than SA.

7.6. Experiments with multi-objective metaheuristics

The proposed MOGLS algorithm was com-
pared with Ishibuchi and Murata’s MOGLS (IM
MOGLS), with MOSA-like MOGLS and with a
Pareto ranking-based GA. We used our own im-
plementations of the algorithms that shared most
of the code with implementation of our MOGLS.
All MOGLS algorithms used the same recombi-
nation and local search operators.

In the case of our algorithm the size of the
temporary population was equal to 16. In MOSA-
like MOGLS the population size was set to the
same value. The number of initial solutions of our
MOGLS was set according to the values reported
in Table 1. The CPU time used by the algorithm
was controlled by changing the number of re-
combinations.



A. Jaszkiewicz | European Journal of Operational Research 137 (2002) 50-71 63

Table 2
Comparison of three single objective algorithms
Multiple start local search

Number of local CPU time (s) Thousands of Average excess Percent of runs with
searches function evaluations global optimum
found
10 0.52 523 0.049287 0
20 1.12 1060 0.040346 0
40 2.09 2096 0.0335 0
80 4.24 4180 0.027339 0
160 8.41 8390 0.021984 0
320 16.93 16849 0.019942 0
640 33.74 33623 0.014479 0
1280 67.40 67169 0.01543 0
Genetic algorithm
Number of CPU time (s) Thousands of Average excess Percent of runs with
generations function evaluations global optimum
found
50 0.71 2.5 0.575154 0
100 1.41 5 0.310289 0
200 2.71 10 0.237564 0
400 5.29 20 0.228006 0
800 10.38 40 0.182186 0
1600 20.66 80 0.178661 0
3200 41.14 160 0.142605 0
12800 165.72 640 0.098903 0
Simulated annealing
Number of moves on CPU time (s) Thousands of Average excess Percent of runs with
temperature plateau function evaluations global optimum
found
10000 0.74 440 0.042622 0
20000 1.50 880 0.032959 0
40000 2.93 1760 0.024034 0
80000 591 3520 0.017107 0
160000 11.78 7040 0.01466 0
320000 23.48 14080 0.0146 0
640000 47.07 28160 0.010489 0
Genetic local search
Population size CPU time (s) Thousands of Average excess Percent of runs with
function evaluations global optimum
found
4 0.60 626 0.019031 0
12 1.74 1874 0.003975 12
20 2.95 3187 0.003883 20
28 3.97 4281 0.001781 48
44 5.84 6257 0.001456 48
60 7.67 8208 0.000803 64
In the case of Ishibuchi and Murata’s algorithm Thus, both algorithms were starting in the same
the size of the population was set in the same way way by generating the same number of random

as the number of initial solutions in our MOGLS. local optima. Furthermore, in both algorithms the
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Fig. 10. The results of single objective algorithms.

random utility functions were generated in the
same way. Moreover, the number of recombina-
tions was the same in the case of the two algo-
rithms. The elite size in IM MOGLS was set equal
to 10% of the population size. This size was chosen
experimentally using the best choice principle. We
have noted, however, that this parameter has rel-
atively small influence on the performance of the
method. Ishibuchi and Murata (1998) in the case
of flowshop scheduling reduce the CPU time used
by local optimization by restricting the number of
neighborhood solutions evaluated in each iteration
of local search. Thus, in general, local search does
not achieve local optima. We did not use this
technique. Note that the state of the art versions of
GLS for single objective TSP (see e.g. Merz and
Freisleben, 1997) do not use this kind of restriction
in local search. Furthermore, the same kind of
local search was used in all MOGLS algorithms.
In the case of MOSA-like MOGLS the weight
vectors defining the set of utility functions were
generated with the algorithm described in Appen-
dix A. The CPU time was controlled by changing
the number of utility functions. Optimization of
each of the utility functions was continued till the
stopping criterion described in Section 5 was met.
We used Pareto ranking-based GA (Pareto
GA) proposed by Fonseca and Fleming (1993)
with fitness sharing and no mating restrictions.
The recombination operator was the same as in the
case of MOGLS algorithms (see Section 7.3).
Fonseca and Fleming (1993) do not give guidelines
for setting the population size. Following Van
Veldhuizen (1999, Chapter 6.3.3.6) we used pop-
ulation of size 100. The mutation operator was the

same as in the case of single objective GA (see
Section 7.5) and used with probability 0.1.

Results of the experiment are presented in
Tables 3-5 and in Fig. 11. For each problem size
10 different instances described in Section 7.1 were
used. On each instance a single run of each method
was performed.

Pareto GA is clearly outperformed by all
MOGLS algorithms. This could be expected tak-
ing into account results of single objective GA
reported in the previous section. Alike in the case
of single objective GA we decided not to include
its results in Fig. 11.

It can be observed that IM MOGLS is by far
least effective of the MOGLS algorithm. Only on
the smallest bi-objective instances with 50 cities it
gives results comparable to other algorithms but
requires more function evaluations. On instances
with 100 cities IM MOGLS does not achieve
quality given by the shortest runs of our MOGLS
even in 14 times longer time. Note also, that on
average IM MOGLS performs more function
evaluations per recombination than the other al-
gorithms, i.e. on average local search in this al-
gorithm is significantly longer. This happens
because, in general, solutions recombined in IM
MOGLS are worse on the current utility function
and less similar than in the other algorithms. As a
result, local search needs more function evalua-
tions to reach local optimum.

The difference between MOSA-like MOGLS
and our algorithm is lower. Fig. 11 illustrates,
however, that our algorithm outperforms MOSA-
like MOGLS, i.e. gives better quality in shorter
time. Because the difference between the qualities
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Table 3
Comparison of the algorithms on bi-objective instances with 50 cities
Pareto GA IM MOGLS
Number Number CPU time Thousands  Average Number CPU time Thousands  Average
of of recom- (s) of quality of recom- (s) of quality
generations  binations functions binations functions
evaluations evaluations
1000 100000 13.7 100 0.77301 1080 12.3 13938 0.873895
2000 200000 27.7 200 0.77550 2160 23.5 26667 0.874639
3000 300000 41.2 300 0.77575 3240 34.8 39503 0.874909
4000 400000 54.9 400 0.77696 4320 45.8 52103 0.875076
5000 500000 68.7 500 0.77715 5400 57 64871 0.875194
MOSA-like MOGLS MOGLS
Number of Number of CPU time Thousands  Average Number of CPU time Thousands  Average
utility recombina-  (s) of quality recombina-  (s) of func- quality
functions tions functions tions tions eval-
evaluations uations
10 1071 3.6 4014 0.873336 1080 3.9 3815 0.874539
20 2194 7.4 7992 0.874595 2160 6.4 6010 0.874903
30 3154 11 11795 0.874894 3240 8.9 8144 0.875108
40 4402 14.9 16154 0.875098 4320 11.5 10266 0.875217
50 5349 18.4 19842 0.875134 5400 14 12367 0.875297
Table 4
Comparison of the algorithms on bi-objective instances with 100 cities
Pareto GA IM MOGLS
Number of  Number CPU time Thousands  Average Number CPU time Thousands  Average
generations  of recom- (s) of quality of recom- (s) of quality
binations functions binations functions
evaluations evaluations
1000 100000 329 100 0.75524 1420 133.1 159739 0.901577
2000 200000 65.8 200 0.75639 2840 256 309435 0.902141
3000 300000 99.2 300 0.75837 4260 3774 457891 0.902456
4000 400000 132.8 400 0.75861 5680 499.9 607413 0.902632
5000 500000 167.1 500 0.75900 7100 621.7 756456 0.902802
MOSA-like MOGLS MOGLS
Number of  Number CPU time Thousands  Average Number CPU time Thousands  Average
utility of recom- (s) of quality of recom- (s) of quality
functions binations functions binations functions
evaluations evaluations
10 1630 29.4 30350 0.901347 1420 30.1 31478 0.903309
20 3341 60.4 61497 0.903267 2840 44.9 46414 0.903768
30 5051 90.6 94029 0.903619 4260 59.6 60406 0.903972
40 7167 1243 129379 0.903828 5680 74.2 73863 0.904082
50 8766 154.4 160442 0.903889 7100 88.3 86862 0.904167
of results of the two algorithms is low we study the are averages of results obtained for different in-
statistical significance of the differences. Since the stances their variations cannot be used directly.

average values of quality reported in Tables 3-5 Thus, we analyze variations of differences between
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Table 5
Comparison of the algorithms on three-objective instances with 100 cities
Pareto GA IM MOGLS
Number of  Number CPU time Thousands  Average Number CPU time Thousands  Average
generations  of recom- (s) of quality of recom- (s) of quality
binations functions binations functions
evaluations evaluations

5000 500000 220.6 500 0.70643 6620 996.6 1029637 0.859863
10000 1000000 487.7 1000 0.71364 13240 1938.8 2015579 0.860726
15000 1500000 767.2 1500 0.71638 19860 2883 2999410 0.86117
20000 2000000 1035.3 2000 0.71684 26480 3830.1 3981994 0.861476
25000 2500000 1300.7 2500 0.71792 33100 4777.3 4966231 0.861703
MOSA-like MOGLS MOGLS
Number of  Number CPU time Thousands  Average Number CPU time Thousands  Average
utility of recom- (s) of quality of recom- (s) of quality
functions binations functions binations functions

evaluations evaluations

55 10435 211.4 194225 0.860187 6620 223.2 179230 0.862988

91 17279 369.7 323748 0.862565 13240 411 268712 0.863973
136 26102 589.5 488423 0.863735 19860 619.8 347328 0.864439
190 36520 868.5 682463 0.864336 26480 830.8 421326 0.86472
253 48698 1224.1 911775 0.864751 33100 1044.4 492552 0.864923

results of the two algorithms for the same in-
stances. More precisely we test the statistical hy-
pothesis that the differences of quality of results of
our MOGLS and MOSA-like MOGLS corre-
sponding to the parameter settings described in the
same rows in Tables 3-5 are greater than 0. For
example we compare results of MOSA-like
MOGLS with 10 utility functions with results of
our MOGLS with 1080 recombinations on bi-ob-
jective instances with 50 cities. The results of the
analysis are reported in Table 6. The differences
are significant at level 0.01 except of the longest
runs on bi-objective instances. We expect that on
the smaller instances results of both the algorithms
converge very close to the set of efficient solutions
and thus no significant differences between the al-
gorithms are possible.

The quality measure used in the experiment
allows comparison of different algorithms but does
not give information about absolute quality of the
sets of approximately efficient solutions. Unfortu-
nately, the exact non-dominated sets for the
problems tested are not known. However, Borges
and Hansen (1998) generated a large set of sup-
ported efficient solutions for kroABC100 instance.
From this set one can extract supported solutions

of kroAB100, kroAC100 and kroBC100 instances.
Unfortunately, there is no warranty that the sets
will contain all supported solutions. We use,
however, the supported solutions to graphically
illustrate the quality of obtained approximations.
Figs. 12 and 13 present supported solutions of
kroAB100 instance and the approximation gener-
ated by our MOGLS with population of size 16
after 7100 recombinations. The approximation
contains solutions very close or identical to the
supported ones.

The TSP instances used in the experiment as
well as the results of particular methods are
available in the Internet at http://www-idss.
cs.put.poznan.pl/~jaszkiewicz/motsp/. This page
contains also the software used for evaluation of
the quality of results.

8. Conclusions and directions for further research

A new MOGLS algorithm has been described.
Results of the presented experiment indicate that
the new algorithm can effectively generate sets of
high quality approximately efficient solutions for
relatively large instances of multi-objective com-
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Fig. 11. The results on: (a) bi-objective instances with 50 cities; (b) bi-objective instances with 100 cities; (c) three-objective instances

with 100 cities.

binatorial problems. The algorithm significantly
outperformed other tested algorithms on TSP in-
stances. The new MOGLS has, however, higher
memory requirements than the other algorithms.
Thus, the good performance of the algorithm is
obtained at the price of memory usage. Taking
into account capacities of present computers this
fact does not limit significantly applications of our
MOGLS.

The outcome of the paper is also a method for
setting the size of the initial sample of solutions. It
can be used in other multi-objective methods that
start by generating a set of random local optima.
In fact, it was applied in our experiment in IM
MOGLS.

Another result presented in this paper is the
proposition of a MOGLS algorithm based on the
idea of the MOSA method (Ulungu et al., 1999).
The method performs worse than our algorithm
but outperforms Ishibuchi and Murata’s MOGLS.

In this paper, we used a hybridization of re-
combination operators with local search. The idea
of our MOGLS is, however, more general and
allows the use of other local heuristics taking into
account the value of the current utility function. In
fact, we have already used this possibility in the
case of multi-objective knapsack problem (Jasz-
kiewicz, 2000). In this case, we have used two
simple greedy repair and insertion heuristics after
each recombination.

The presented MOGLS algorithm generates
approximately efficient solutions from all regions
of the efficient set. In many cases, however, some
partial information about decision maker’s pref-
erences may be known, and the search should be
focused on some subregions of the efficient set. In
our algorithm it can be achieved by constraining
the set of possible weight vectors.

In the presented experiment all objectives are of
the same type, i.e. they have the same mathematical
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Table 6
Statistical significance of differences between MOSA-like MOGLS and MOGLS
Number of utility Number of Average difference Standard deviation Statistically
functions in recombinations of results over 10 of the difference of significant
MOSA-like MOGLS in MOGLS instances results at level 0.01
Bi-objective instances with 50 cities
10 1188 0.001515 0.000341 Yes
20 2268 0.000414 0.000188 Yes
30 3348 0.000179 0.000144 Yes
40 4428 8.35 x 1073 9.32 x 1073 No
50 5508 4.73 x 1073 8.12 x 1073 No
Bi-objective instances with 100 cities
10 1420 0.00234 0.000349 Yes
20 2840 0.000425 0.000227 Yes
30 4260 0.000209 0.000155 Yes
40 5680 0.000202 0.000143 Yes
50 7100 0.000118 0.000152 No
Three-objective instances with 100 cities
55 6620 0.004387 0.000293 Yes
91 13240 0.001993 0.000197 Yes
136 19860 0.000943 0.000144 Yes
190 26480 0.000486 0.000116 Yes
253 33100 0.000275 0.000116 Yes
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Fig. 12. Supported solutions of kroAB100 instance and one of the approximations obtained with population of size 16 after 7100

recombinations.

definition and differ only by parameter values. In
practice, one should rather expect problems with
objectives of different mathematical forms e.g.
sum, min—-max, max-min, quadratic, etc. Some of
them may be more difficult to optimize than the
others. In result, some regions of the efficient set
may require more computational time, i.e. more
recombinations, to achieve good results. The

question arises whether MOGLS could automati-
cally discover differences of difficulty in different
regions.

Our MOGLS algorithm uses random genera-
tion of weights. A deterministic scheme that
would assure uniform sampling of the weight
space could have positive influence on the qual-
ity of results.
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In the current version of our algorithm we
use uniformly distributed normalized weight
vectors. There is, however, no reason to assume
that this distribution is appropriate for all
problems. In fact one reason for changing the
distribution was already discussed above, i.e.
different difficulties of a problem in some regions
of the efficient set. Furthermore, the overall
shape of the non-dominated set may also influ-
ence the best distribution of weights for a given
problem.

In general, the normalized weight vectors
should be applied to normalized objective values
(see Section 2), especially if the objectives have
significantly  different ranges. This requires
knowledge about the range equalization factors.
We suggest to generate J first local optima by
optimization of particular objectives in order to
obtain the first estimation of the range equaliza-
tion factors. Then, the values may be updated
during the run of MOGLS on the basis of the
objective ranges in the current set of potentially
efficient solutions.

According to the presented experiment
weighted linear functions give better results in
the case of TSP than weighted Tchebycheff
functions. In general, however, weighted Tche-
bycheff functions should be more robust if the
shape of the non-dominated set is more com-
plicated.

Multi-objective metaheuristics are applied to
both large-scale combinatorial optimization
problems and non-convex continuous optimiza-
tion problems. The aim of the proposed method is
to work effectively on MOCO problems. Further-
more, the development of the method is motivated
by similarity of good solutions exhibited by many
combinatorial optimization problems. Other types
of problems may require different approaches.
Taking into account limitations imposed by the
“No free lunch” theorem (Wolpert and Macready,
1997) we believe that it is better to clearly define
the class of problems an algorithm is designed for,
than to make unjustified statements about its
generality.
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Appendix A

Following the proposition of Hansen and
Jaszkiewicz (1998) we use the following approach
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in order to systematically generate uniformly dis-
tributed normalized weight vectors. We use all
weight vectors in which each individual weight
takes on one of the following values: {l/k,] =
0,...,k}, where k is a sampling parameter defining
the number of weight levels. The set of such weight
vectors is denoted by ¥, and defined mathemati-
cally as:

W, = {A=[h,.... ) € V|
2 €{0,1/k,2/k, ...k — 1]k, 1}}.

With a combinatorial argument, we note that this
produces

k+J—1
(54
weight vectors. For example, for k =3 and J = 3,
we obtain the following set of 10 vectors: {[0,0, 1],
[0,1/3,2/3], [0,2/3,1/3], [0,1,0], [1/3,0,2/3],
[1/3,1/3,1/3], [1/3,2/3,0], [2/3,0,1/3], [2/3,
1/3,0], [1,0,0]}. This approach is used to obtain
set of weight vectors defining the set of utility
functions optimized in MOSA-like MOGLS, as
well as, to calculate estimate values of the quality
measure described in Section 7.2. While evaluation
of bi-objective instances the parameter k was equal
to 100, and in the case of three-objective instances
to 40.

In order to estimate the quality measure (see
Section 7.2), the uniformly distributed normalized
weight vectors were applied to objective values
multiplied by range equalization factors (1). We
used the ranges over set N. This required the
knowledge of ideal and nadir points. In the case of
100-city instances the ideal point is known, be-
cause each individual objective corresponds to a
single objective problem coming from TSPLib li-
brary. 50-city instances are relatively easy to solve
optimally. As the objectives are independent the
elements of the nadir points were estimated on the
basis of expected objectives’ values for random
solutions. In the case of instances with 50 cities
they were all set equal to 80000, while in the case

of instances with 100 cities they were all set equal
to 180000.
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