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Abstract

Fuzzy systems have demonstrated their ability to solve di+erent kinds of problems in various application
domains. Currently, there is an increasing interest to augment fuzzy systems with learning and adapta-
tion capabilities. Two of the most successful approaches to hybridise fuzzy systems with learning and adapta-
tion methods have been made in the realm of soft computing. Neural fuzzy systems and genetic fuzzy
systems hybridise the approximate reasoning method of fuzzy systems with the learning capabilities of neural
networks and evolutionary algorithms.
The objective of this paper is to provide an account of genetic fuzzy systems, with special attention to

genetic fuzzy rule-based systems. After a brief introduction to models and applications of genetic fuzzy
systems, the 5eld is overviewed, new trends are identi5ed, a critical evaluation of genetic fuzzy systems for
fuzzy knowledge extraction is elaborated, and open questions that remain to be addressed in the future are
raised. The paper also includes some of the key references required to quickly access implementation details
of genetic fuzzy systems.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Fuzzy systems have been successfully applied to problems in classi5cation [25], modelling [105]
control [43], and in a considerable number of applications. In most cases, the key for success was the
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Fig. 1. Soft computing and learning in fuzzy systems.

ability of fuzzy systems to incorporate human expert knowledge. In the 1990s, despite the previous
successful history, the lack of learning capabilities characterising most of the works in the 5eld
generated a certain interest for the study of fuzzy systems with added learning capabilities. Two of
the most successful approaches have been the hybridisation attempts made in the framework of soft
computing, were di+erent techniques, such as neural and evolutionary, provide fuzzy systems with
learning capabilities, as shown in Fig. 1. Neuro-fuzzy systems are one of the most successful and
visible directions of that e+ort [44,78,99]. A di+erent approach to hybridisation lead to genetic fuzzy
systems (GFSs) [8,33,64,106,118].
A GFS is basically a fuzzy system augmented by a learning process based on a genetic algorithm

(GA). GAs are search algorithms, based on natural genetics, that provide robust search capabilities
in complex spaces, and thereby o+er a valid approach to problems requiring eDcient and e+ective
search processes [50,52,67].
Genetic learning processes cover di+erent levels of complexity according to the structural changes

produced by the algorithm [41], from the simplest case of parameter optimisation to the highest level
of complexity of learning the rule set of a rule based system. Parameter optimisation has been the
approach utilised to adapt a wide range of di+erent fuzzy systems, as in genetic fuzzy clustering or
genetic neuro-fuzzy systems, that are brieFy considered in Section 6.
Analysis of the literature shows that the most prominent types of GFSs are genetic fuzzy rule-

based systems (GFRBSs) [33], whose genetic process learns or tunes di+erent components of a
fuzzy rule-based system (FRBS). Fig. 2 shows this conception of a system where genetic design
and fuzzy processing are the two fundamental constituents. Inside GFRBSs it is possible to dis-
tinguish between either parameter optimisation or rule generation processes, that is, adaptation and
learning.
The paper starts by brieFy reviewing GAs (Section 2), next o+ering a general approach to GFRBSs

(Section 3). Section 4 describes examples of GFS applications. Later, Section 5 describes new (or less
common) lines of research in the 5eld of GFRBSs. Section 6 presents a general view of GFSs beyond
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Fig. 2. Genetic design and fuzzy processing.

fuzzy rule-based approaches. Section 7 is concerned with a critical evaluation of the contribution of
GAs to fuzzy knowledge extraction. Section 8 summarises examples of open questions and problems
that remain to be solved in the future. Section 9 concludes the paper.

2. Genetic algorithms

GAs are general purpose search algorithms which use principles inspired by natural genetics to
evolve solutions to problems [50,52,67]. The basic idea is to maintain a population of chromo-
somes (representing candidate solutions to the concrete problem being solved) that evolves over
time through a process of competition and controlled variation.
A GA starts with a population of randomly generated chromosomes, and advances towards better

chromosomes by applying genetic operators modelled on the genetic processes occurring in nature.
The population undergoes evolution in a form of natural selection. During successive iterations,
called generations, chromosomes in the population are rated for their adaptation as solutions, and
on the basis of these evaluations, a new population of chromosomes is formed using a selection
mechanism and speci5c genetic operators such as crossover and mutation. An evaluation or �tness
function must be devised for each problem to be solved. Given a particular chromosome, a possible
solution, the 5tness function returns a single numerical value, which is supposed to be proportional
to the utility or adaptation of the solution represented by that chromosome.
Although there are many possible variants of the basic GA, the fundamental underlying mechanism

consists of three operations: evaluation of individual 5tness, formation of a gene pool (intermediate
population) through selection mechanism, and recombination through crossover and mutation oper-
ators. Fig. 3 illustrates this operation mode. The speci5c characteristics of the evaluation method
are quite dependent on the application. Some comments concerning evaluation in GFSs will be
introduced in Section 5.5 when describing the accuracy/interpretability trade-o+.
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t := t + 1
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Fig. 3. Principal structure of a genetic algorithm.

As previously stated, genetic learning processes cover di+erent levels of complexity, from param-
eter optimisation to learning the rule set of a rule based system. Genetic learning processes designed
for parameter optimisation usually 5t to the description given in previous paragraphs, but when
considering the task of learning rules in a rule based system, a wider range of possibilities is open.
When considering a rule based system and focusing on learning rules, there are three main ap-

proaches that have been applied in the literature: Pittsburgh [124] (Fig. 4), Michigan [68] (Fig. 5)
and iterative rule learning [131]. Pittsburgh and Michigan approaches are the most extended meth-
ods for rule learning developed in the 5eld of GAs. The 5rst one is characterised by representing
an entire rule set as a genetic code (chromosome), maintaining a population of candidate rule sets
and using selection and genetic operators to produce new generations of rule sets. The Michigan
approach considers a di+erent model where the members of the population are individual rules and a
rule set is represented by the entire population. In the third approach, the iterative one, chromosomes
code individual rules, and a new rule is adapted and added to the rule set, in an iterative fashion,
in every run of the GA.

3. Genetic fuzzy rule-based systems

A number of papers have been devoted to the automatic generation of the knowledge base
of an FRBS using GAs. The key point is to employ an evolutionary learning process to



O. Cord0on et al. / Fuzzy Sets and Systems 141 (2004) 5–31 9

Fig. 4. Learning with the Pittsburgh approach.

Fig. 5. Learning with the Michigan approach.

automate the design of the knowledge base, which can be considered as an optimisation or search
problem.
From the viewpoint of optimisation, the task of 5nding an appropriate knowledge base (KB) for a

particular problem, is equivalent to parameterise the fuzzy KB (rules and membership functions), and
to 5nd those parameter values that are optimal with respect to the design criteria. The KB parameters
constitute the optimisation space, which is transformed into a suitable genetic representation on which
the search process operates.
The 5rst step in designing a GFRBS is to decide which parts of the KB are subject to optimisation

by the GA. The KB of an FRBS does not constitute a homogeneous structure but is rather the union
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of qualitatively di+erent components. As an example, the KB of a descriptive Mamdani-type FRBS
(the one considered in Fig. 2) is comprised of two components:

• a data base (DB), containing the de5nitions of the scaling functions of the variables and the
membership functions of the fuzzy sets associated with the linguistic labels, and

• a rule base (RB), constituted by the collection of fuzzy rules.

The decision on which part of the KB to adapt depends on two conFicting objectives: dimen-
sionality and eDciency of the search. A search space of a smaller dimension results in a faster and
simpler learning process, but the obtainable solutions might be suboptimal. A larger, complete search
space that comprises the entire KB and has a 5ner dimensionality is therefore more likely to contain
optimal solutions, but the search process itself might become prohibitively ineDcient and slow.
With these considerations there is an obvious trade-o+ between the completeness and dimension-

ality of the search space and the eDciency of the search. This trade-o+ o+ers di+erent possibilities
for GFS design that are considered in the following subsections.
First of all, it is important to distinguish between tuning (alternatively, adaptation) and learning

problems:

• Tuning is concerned with optimisation of an existing FRBS, whereas learning constitutes an auto-
mated design method for fuzzy rule sets that starts from scratch. Tuning processes assume a
prede5ned RB and have the objective to 5nd a set of optimal parameters for the membership
and=or the scaling functions, DB parameters.

• Learning processes perform a more elaborated search in the space of possible RBs or whole KBs
and do not depend on a prede5ned set of rules.

3.1. Genetic tuning

Tuning of the scaling functions and fuzzy membership functions is an important task in FRBS
design. Parameterised scaling functions and membership functions are adapted by the GA according
to a 5tness function that speci5es the design criteria in a quantitative manner.
As previously said, tuning processes assume a prede5ned RB and have the objective of 5nding

a set of optimal parameters for the membership and=or the scaling functions (Fig. 6). It is also
possible, as will be seen in Section 5.4, to perform the tuning process a priori, i.e., considering that
a subsequent process will derive the RB once the DB has been obtained, that is a priori genetic DB
learning.

3.1.1. Tuning scaling functions
Scaling functions applied to the input and output variables of FRBSs normalise the universes of

discourse in which the fuzzy membership functions are de5ned. Usually, the scaling functions are
parameterised by a single scaling factor [101] or a lower and upper bound [96] in case of linear
scaling, and one or several contraction=dilation parameters in case of non-linear scaling [57,95].
These parameters are adapted such that the scaled universe of discourse better matches the underlying
variable range.
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Fig. 6. Tuning the data base.

The usual approach of these kinds of processes is the adaptation of one to four parameters (de5ning
the scaling function) per variable: one when using a scaling factor, two for linear scaling, and three
or four in non-linear scaling. Most of the cited works consider a real coding scheme to represent
the parameters of the function, but it is also possible to use binary codes, as in [101] where a three
bits binary representation of each scaling factor is used.
Since the number of variables is prede5ned, as well as the number of parameters required to code

each scaling function, this approach leads to a 5xed length code.

3.1.2. Tuning membership functions
When tuning membership functions, an individual represents the entire DB as its chromosome

encodes the parameterised membership functions associated to the linguistic terms in every fuzzy
partition considered by the FRBS. The most common shapes for the membership functions (in
GFRBSs) are triangular (either isosceles [80,103] or asymmetric [29,83]), trapezoidal [63,81] or
Gaussian functions [58,60]. The number of parameters per membership function usually ranges from
one to four, each parameter being either binary [119] or real coded [94].
The structure of the chromosome is di+erent for FRBSs of the descriptive (using linguistic vari-

ables) or the approximate (using fuzzy variables) type. 1 When tuning the membership functions
in a linguistic model [29], the entire fuzzy partitions are encoded into the chromosome and it is
globally adapted to maintain the global semantic in the RB. These approaches usually consider a
prede5ned number of linguistic terms for each variable (no need to be the same for each of them),
leading to a code of 5xed length in what concerns membership functions. But even having a 5xed
length for the code, it is possible to evolve the number of linguistic terms associated to a variable
by simply de5ning a maximum number (that de5nes the length of the code) and letting some of
the membership functions to be located out of the range of the linguistic variable (reducing the
actual number of linguistic terms). This is the conception of [91] when designing a TSK system
with linguistic input variables.
A particular case where the number of parameters to be coded is reduced, is that of descriptive

fuzzy systems working with strong fuzzy partitions. In this case, the number of parameters to code

1 Grid-based versus scatter fuzzy partitions.
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Fig. 7. Learning the rule base.

is reduced to those de5ning the core regions of the fuzzzy sets: the modal point for triangles [49],
the extreme points of the core for trapezoidal shapes [14].
On the other hand, tuning the membership functions of a model working with fuzzy variables

(scatter partitions) [5,63,120] is a particular instantiation of KB learning since the rules are com-
pletely de5ned by their own membership functions instead of referring to linguistic terms in the
DB.

3.2. Genetic learning of rule bases

Genetic learning of RBs assumes a prede5ned set of fuzzy membership functions in the DB to
which the rules refer to by means of linguistic labels (Fig. 7). It only applies to descriptive FRBSs,
as in the approximate approach adapting rules is equivalent to modify the membership functions (see
next section).
The three learning approaches described in previous section can be considered to learn RBs:

Michigan approach [12,75,128], Pittsburgh approach [66,108,127], and iterative rule learning ap-
proach [29,38,54]. The RB can be represented by a relational matrix [127], a decision table [108],
or a list of rules [54,66,128].
Representations through relational matrix and decision table are only useful when the system has

a reduced number of variables, since they lead to an una+ordable length of the code when having
more than two or three input variables. The result is a monolithic code that can be only managed
by the Pittsburgh approach.
The list of rules is the most used representation, adopts quite di+erent codes for the individual

rules, and can be adapted to the three learning approaches. Often the number of rules in the list is
variable (having in some cases an upper limit). A common approach to code individual rules is the
use of the disjunctive normal form (DNF) represented in the form of a 5xed length binary string
[54,96,128]. DNF rules are also considered when working with variable length codes [66] based on
messy GAs [50]. With a structure of list of rules, the chromosome can be generated by concatenating
the code of individual rules (Pittsburgh, where each chromosome codes a RB) or will contain the
code of a single rule.
To code a rule, either as an element of an RB that generates a chromosome or as a single rule

generating a chromosome by itself, there are many di+erent approaches. Rules are composed of
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Fig. 8. Representing a rule with 5xed or variable length codes.
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Fig. 9. Learning the rule base and, a posteriori, the data base.

propositions of the form variable is value, where the variable could be identi5ed by position or by
label, and the value could have quite di+erent forms (Fig. 8). When using a code with positional
structure (Fig. 8, top) there is a 5xed location for each variable in which the information (value)
related to that variable is placed. When using non-positional codes (Fig. 8, bottom), the code of a
rule is composed of pairs (var,value), where var is a label identifying the variable. In both cases,
positional and non-positional codes, the content of the value part can be: the label of a linguistic
term (linguistic variables), the binary code of a DNF structure (linguistic variables), the parameters
de5ning a fuzzy set (fuzzy variables) or the real values (coeDcients) of the linear output (output
variables of TSK rules).
In addition to the RB learning, other approaches try to improve the preliminary DB de5nition

once the RB has been obtained [38]. That process is comprised by a learning process to obtain the
RB considering a prede5ned DB, followed by a learning process similar to those described in the
previous section. In this case, the tuning process that involves the DB learning is called a posteriori
DB learning. Fig. 9 shows this approach.
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3.3. Genetic learning of knowledge bases

Since genetic learning of the KB deals with heterogeneous search spaces (Fig. 10), it encom-
passes di+erent genetic representations such as variable length chromosomes, multi-chromosome
genomes and chromosomes encoding single rules instead of a whole KB. The computational cost
of the genetic search grows with the increasing complexity of the search space. A GFRBS that
encodes individual rules rather than entire KBs is an option to maintain a Fexible, complex rule
space in which the search for a solution remains feasible and eDcient. Again, the three learning
approaches can considered: Michigan [104,130], Pittsburgh [10,20,91,96,103], and iterative rule
learning approach [29,32].
Proposals to learn KBs include systems obtaining approximate Mamdani-type FRBSs with scat-

ter partitions [20,29,32,130], linguistic Mamdani-type FRBSs (scaling functions and rules [96] or
membership functions and rules [103]), and TSK fuzzy systems [30,91,102].
The way to code the KB in systems with linguistic variables involves the coding of rules and

scaling factors=membership functions as independent parts of the chromosome, or in an iterative way
using di+erent chromosomes [61]:

• To code the RB (any of the methods for linguistic variables described in Section 3.2 can be
considered).

• The DB will be coded similarly as described in Section 3.1.

Closely related to the coding scheme, the process of crossover of the genetic codes of two parents
involves chromosomes containing substructures (rule and data bases) that can be managed in di+erent
ways:

• As a single one, by merging the substructures [91].
• As two unrelated substructures, applying a parallel process [103].
• As two related substructures, applying a sequential process where the result of crossing one sub-
structure a+ects the crossover of the other [96].
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3.4. Summary of classical GRBFS approaches

Summing up, the classical genetic learning procedures to evolve FRBSs are:

• genetic tuning of the DB,
• genetic learning of the RB,
• genetic learning of the KB.

Although the review is by no means exhaustive, this section reviewed the most important
approaches found in the literature. In Section 5, we shortly report new (or less common) lines
of development of GFRBSs.

4. Applications of genetic fuzzy systems

Soft Computing provides a computational framework to address design, analysis and modeling
problems in the context of uncertain and imprecise information. Its constituents fuzzy logic, neural
networks, probabilistic computing and evolutionary algorithms are considered as complementary and
synergistic partners rather than competing methodologies.
Since the late 1980s fuzzy control has been successfully applied in consumer products and in-

dustrial plants in Japan. In the early 1990s ZADEH proposed the concept of soft computing, which
quite rapidly lead to industrial applications in aerospace systems, communication systems, elec-
tric power systems, manufacturing automation, robotics, power electronics and transportation [42].
Soft computing techniques contributed in particular to improved solutions in application domains
distinguished by imprecise data and incomplete knowledge such as diagnostics, system identi5ca-
tion, estimation and control [13]. Neuro-fuzzy systems [78] are by far the most prominent and
visible representative of hybrid systems in terms of number of applications. Compared to neuro-
fuzzy systems, GFS applications until today remained less visible, in particular in an
industrial setting.
In the following we review some successful applications of GFSs to real-world problems in con-

trol, manufacturing, consumer products, transportation, modeling and decision making. The selected
references give a Favor of potential applications of GFSs but by no means provide a complete
overview. The di+erent applications will be reported in chronological order of publication.
In [14], Bonissone et al. describe a genetic tuning scheme for optimisation of a fuzzy controller

that regulates the velocity of a freight train. The design goal is a controller that accurately tracks
a desired velocity pro5le while at the same time maintains a smooth ride in order to minimise the
stress load on the couplers connecting the rail-cars. Tuning proceeds in several stages, 5rst the GA
adapts the scaling factors of input and output variables as they globally a+ect the control behavior.
In a second phase, the GA tunes the membership functions causing a local adaptation. The fuzzy
controller is evaluated in a train simulation on di+erent track pro5les. In general, the tuned fuzzy
controllers demonstrate a substantial improvement in terms of tracking accuracy and smoothness.
The authors conclude that tuning the scaling factors accounts for most of the performance improve-
ment. Adaptation of membership functions for a controller with properly tuned scaling factors only
results in a marginal improvement. The scalability of the approach reduces the computational cost of
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tuning, such that it becomes feasible to individually customise the fuzzy controller for di+erent tracks
o+-line.
In [71], Hwang addresses a similar transportation problem, namely to optimise trip time and energy

consumption of a high-speed railway. Fuzzy c-means clustering and GAs identify the structure
and parameters of a linguistic model that describes the relationship between the current velocity
commands as input and the resulting trip time and energy consumption. The fuzzy model is then
used by the railway operators to build eDcient and economic control strategies. The parameters of
the model are identi5ed by a hybrid GA, that combines global evolutionary search with a local
hill-climbing technique. The method is applied to derive a control strategy for a planned high-speed
train line in Korea. An economical train run with a trip time margin of less than 7% and an energy
saving of 5% is reported.
In [132], Voget et al. present a multi-objective optimization scheme, in which a fuzzy controller

regulates the selection procedure and 5tness function of the GA. This approach falls into the realm
of so-called fuzzy evolutionary algorithms, in which a fuzzy system manages the resources and
parameters of a GA such as mutation rate, population size and selective pressure to improve the
performance [62]. In the particular approach, the fuzzy rules constitute a heuristic that allows the GA
to identify the set of Pareto-optimal solutions. Based on the deviation between the current population
and the multi-objective goal function, the fuzzy controller decides which selection scheme and 5tness
function the GA applies in order to achieve the optimisation goals and to cover the optimal Pareto
front. The approach has been applied to optimise the timetable of railway networks, with the objective
to reduce passenger waiting time when switching trains while at the same time minimise the cost of
new investments to improve the necessary infrastructure. The result of the genetic optimisation is a
cost–bene5t curve that shows the e+ect of investments on the accumulated passenger waiting time
and the trade-o+ between both criteria. Another application example of fuzzy evolutionary algorithms
to agile manufacturing is given in [125].
In [70], Huang et al. design a fuzzy sliding mode controller by means of a real-coded GA. The

authors report on an application to position control of an industrial XY-table. By using laser as
a sensor, the table can be positioned with sub-micron level accuracy. The fuzzy controllers are
evaluated on the physical hardware and the accumulated positioning error serves as a 5tness. Special
protective circuitry is used to prevent damages to the motors and the table, that otherwise might
result from improper fuzzy controllers that lead to an unstable system. Evolutionary optimisation of
fuzzy controllers is feasible for hardware-in-the-loop systems and can help to reduce the costs for
controller design and tuning.
In [121], the authors report on applications of evolutionary computation in combination with

neural networks and fuzzy systems for intelligent consumer products. The role of the evolutionary
algorithm is to adapt the number of rules and to 5ne tune the membership functions to improve the
performance of fuzzy systems for estimation and control. Genetic tuning is applied to fuzzy rules
that predict the amount of dishes to be cleaned by a dish washer, estimate the amount of rice 5lled
into a rice cooker and control a microwave oven. The paper also mentions evolutionary computation
for fuzzy rule generation applied to process control.
In [97], Mizutani et al. propose a hybrid neuro-genetic–fuzzy system for computerised colour pre-

diction, a challenging problem in paint production. Their architecture for colour paint manufacturing
intelligence cannot be characterised as a conventional GFSs in which the evolutionary algorithm
optimises the fuzzy knowledge base. Instead, colour expert knowledge is expressed by fuzzy rules.
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The 5rst generation of colour chromosomes in the GA is initialised based on the problem speci5c
knowledge. The same rules are also used to evaluate the colour recipe quality. The system mimics
the decision-making process of a professional colourist. A fuzzy knowledge base for predicting the
pigment concentration of ten di+erent colours for a given surface spectral reFectance is obtained by
means of a neuro-fuzzy system. The fuzzy population generator uses this knowledge to seed the
5rst generation of colour chromosomes. For example, if the target colour looks greenish yellow, the
initial population is dominated by randomised copies of green and yellow template chromosomes.
Expert knowledge of a colourist about the correct proportions of colourants, the number of necessary
colourants and conFicts between complementary and similar colourants is summarised in the fuzzy
rules. The GA calculates one component of colour chromosome 5tness according to the compliance
of the chromosome’s colourant with the fuzzy expert rules.
In [39], Damousis et al. present a fuzzy expert system that forecasts the wind speed for power

generation in wind farms. The TSK fuzzy model is optimised by a GA that adapts the input fuzzy
membership functions and the gain factors in the rule conclusion. The training procedure minimises
the error between forecast and actual wind speeds in the training set. The accuracy of the model
was evaluated with real wind data obtained from groups of wind stations located in two di+erent
regions. The input to the model are the wind speed of one local and two remote up-wind stations,
from which the expert system predicts the future wind speed at the local down-wind station. The
results show that the fuzzy model improves the short- and long-term forecast of wind speeds and
thereby is able to better predict the amount of power generated by the wind farm over the next few
hours.
Bonissone et al. apply evolutionary techniques to tune a fuzzy decision system [15]. The fuzzy

system automatically classi5es the risk of an insurance application, which in turn determines the
premium to be paid by the applicant. The evolutionary algorithm tunes decision thresholds and
internal parameters of the fuzzy decision system in order to optimises the coverage and relative and
absolute accuracy of the decision process. Maintenance of automated decision systems is critical, as
the decision guidelines as well as the distribution of applicants and their pro5les changes over time.
Finally, in [4], a GA is considered to develop a smart tuning strategy for fuzzy logic controllers

dedicated to the control of heating, ventilating and air conditioning systems concerning energy per-
formance and indoor comfort requirements. The problem was so complex as, on the one hand, the
fuzzy controller provided by the experts was based on a hierarchical structure in order to be able
to deal with 17 di+erent variables. On the other hand, the tuning process needed to develop a
multicriteria optimization by jointly reducing the energy consumption, augmenting the controller
stability and satisfying three di+erent comfort indices. Besides, it had to deal with large time restric-
tions due to the long computation time models required to assess the accuracy of each individual. To
solve the problem, a very speci5c steady-state GA with a quick convergence was proposed based on
an aggregated 5tness function considering trustable weights provided by the experts. Several fuzzy
logic controllers were produced for di+erent seasons and tested in two real test cells, obtaining very
promising results.
The list of applications above indicates that GFSs can contribute to solve industrial and commercial

problems. The major driving force behind this development is the need for low-cost solutions that
utilise intelligent tools for information processing, design and optimization. GFSs can reduce the
cost and time required to design, autonomously operate and maintain systems with a high degree of
machine intelligence for control, prediction, modelling and decision making.
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Fig. 11. A syntactic tree and the rule it represents: IF X 1 is NL and X 2 is NL THEN Y is PL.

5. New trends in genetic fuzzy rule-based systems

In addition to the classical systems addressed in Section 3, here new directions to apply genetic
(evolutionary) techniques to FRBSs are explored. The next subsections o+er a summary of them.

5.1. Designing fuzzy rule-based systems with genetic programming

Genetic programming (GP) is concerned with the automatic generation of computer programs [84].
Di+erent proposals can be found when using GP to evolve fuzzy rule sets, internally represented as
type-constrained syntactic trees [2,26,47,65]. In these kind of systems, fuzzy rules are represented by
binary trees as the one depicted in Fig. 11. Fuzzy GP, suggested in [47], combines a simple GA that
operates on a context-free language with a context-free fuzzy rule language. Nowadays, it is possible
to distinguish among GPs that utilise a grammar to learn linguistic rules [2,47], and approaches that
use domain-speci5c knowledge to de5ne the function and terminal set which constitute the building
blocks for the fuzzy rules to be learned [65]. Approaches where GAs or simulated annealing and
GP are hybridised have also been proposed [116,117].

5.2. Genetic selection of fuzzy rule sets

In high-dimensional problems, the number of rules in the RB grows exponentially as more inputs
are added. Rule reduction methods have been formulated using neural networks, clustering techniques,
orthogonal transformation methods, and algorithms based on similarity measures among others. In
recent years, genetic techniques have been considered to address the problem of high-dimensional
spaces in FRBS design [29,53,73,77,114] with a great success.
A genetic multi-selection process, that at the same time eliminates unnecessary rules from the

set of candidate rules and re5nes KBs for classi5cation problems by means of a linguistic hedge
learning process (with a double coding scheme, the 5rst chromosome part for rule reduction and
the second chromosome part for linguistic hedge learning evolution) is presented in [37]. Ref. [133]
proposes a genetic integration process of multiple knowledge bases that can be also considered as a
particular case of genetic selection.
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Fig. 12. Learning the data base a priori.

5.3. Genetic feature selection

Related to the question of reducing the number of rules in high-dimensional spaces, there is another
option by working directly on the dimension of the search space. With this aim in mind, some papers
have focused on feature selection approaches through GAs, allowing a reduction in the number
of variables involved in the rules, and consequently, reducing the number of rules [21,69,90,123].
In [79], an interesting scheme is suggested for linguistic FRBSs, including the variable selection
within a more complex derivation process (rule generation, DB tuning, and rule selection).
Another approach involves the selection of a subset of input variables for each rule [55]. In this

case, the length of the antecedent is variable, avoiding the need of using all available features in
the rule. However, this does not mean that a speci5c input variable ignored in one rule might not
be used in another one.

5.4. Learning knowledge bases via genetic derivation of data bases

An innovative approach to learn both KB components is the a priori genetic DB learning that
evolves some DB components.
Genetic tuning of the DB usually assumes that a prede5ned RB is used to evaluate the quality

of the overall FRBS. A priori genetic DB learning refers to a KB learning process in which a
GA adapts the DB components such as scaling functions, membership functions and granularity
parameters, whilst an additional fuzzy rule generation method derives the RB from the DB de5nition
encoded in the chromosome [34,35,48,72] (see Fig. 12). The RB generated by the second learning
process is used to get the 5tness function associated to the DB coded in the chromosome.

5.5. Maintaining interpretability via multi-objective genetic processes

Research on GFSs has for a long time considered the objective of the learning process in terms of
accuracy. Consequently, the 5tness (or evaluation) function of the GA was stated in terms of errors
or distances from a target output. Recently, concepts of linguistic fuzzy modelling, interpretability,
and other similar ideas that were considered as almost opposite to accuracy, have been reconsidered
and today they are viewed as an interesting part of the design process of GFSs.
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Recent works have suggested both, accuracy and interpretability, as objectives of learning systems
[73,76,79]. This sets a new situation for the learning process where several, usually colliding, ob-
jectives have to be simultaneously considered. Some of the measures used to determine the level of
interpretability of a fuzzy system are:

• Compactness [73], considered through the number of rules in the RB.
• Rule simplicity [22], evaluated through the number of input variables involved in each rule.

5.6. Genetic-based learning approaches considering di>erent model structures

Improvements in linguistic fuzzy modeling can be accomplished to make learning and/or model
structure more Fexible. Three possibilities to relax the model structure using a GFS are as follows:

• Use of double-consequent fuzzy rules, that allows the model to present rules such that each
combination of antecedents may have two consequents associated when it improves the model
accuracy. A proposal that use GAs for getting a compact set of rules of this kind can be found
in [31]. The GA acts as a genetic selection method to get a cooperative and compact set of fuzzy
rules.

• Consideration of weighted fuzzy rules in which an importance factor (weight) is considered for
each rule. By means of an evolutionary technique, the way in which these rules interact with their
neighbor ones could be indicated [74].

• Genetic selection with hierarchical knowledge bases. In [36], the structure of the KB of FRBSs
is extended in a hierarchical way. Linguistic rules de5ned over linguistic partitions of di+erent
granularity levels provide additional Fexibility, and thus improve the model accuracy in those
regions in which the usual non-hierarchical models demonstrate poor performance. This type of
improvement is the starting point for the development of di+erent hierarchical system of linguistic
rules learning methodologies, which are considered as a re5nement of the basic linguistic fuzzy
models. These methodologies have been thought as a re5nement of simple linguistic models which,
preserving their descriptive power, introduces small changes to increase their accuracy. A GA is
used to get a compact set of hierarchical rules.

5.7. Genetic-based learning approaches with sophisticated genetic algorithms

We should also mention some approaches that use some kind of sophisticated GAs, such as parallel
GAs, cooperative coevolutionary algorithms, and Lamarckian co-adaption.
For instance, [24] proposes a new genetic learning approach based on a parallel GA with three

populations to optimise FRBSs with RBs generated from fuzzy partitions of three di+erent granular-
ities: 3× 3, 5× 5 and 7× 7. The process also employs a novel method to create migrants between
the three populations of the parallel GA to increase the chances of optimisation.
Additionally, [113] suggests a parallel GA to learn FRBSs, separately evolving multiple populations

and occasionally exchanging individuals. It simultaneously optimises the structure of the system
(number of inputs, membership functions and rules) and tunes the parameters that de5ne the fuzzy
system. In the multideme GA system, various fuzzy systems with di+erent number of input variables
and with di+erent structures are jointly optimised. Communication between the di+erent demes is
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established by the migration of individuals presenting a di+erence in the dimensionality of the input
space of a particular variable.
On the other hand, coevolutionary algorithms are advanced evolutionary techniques to solve de-

composable complex problems. They involve two or more species (populations) that permanently
interact through coupled 5tness. Therefore, each species has its own coding scheme and reproduction
operators. When an individual must be evaluated, its 5tness is found considering some individuals of
others species. The coevolution makes easier to 5nd good solutions to complex problems. Coopera-
tive coevolutionary algorithms [109] are those where all the species cooperate to build the problem
solution. In this case, the 5tness of an individual depends on its ability to cooperate with individuals
from other species.
In [107], the author suggests a coevolutionary approach to learn RBs and tune membership func-

tions. An approach to coevolve two species, the subset of best cooperating rules (rule selection) and
the weights associated to them, is introduced in [6].
The approach introduced in [112] follows the ideas expressed in [109], “explicit notions of mod-

ularity must be introduced to provide reasonable opportunities for solutions to evolve in the form
of interacting coadapted subcomponents”. It presents a hierarchical evolutionary method to design
FRBSs, where a GA works on di+erent populations encoding information items at di+erent levels,
to 5nally evolve a population of complete FRBSs.
In [82], the authors introduce a new design method of neuro-fuzzy logic controllers using a

Lamarckian co-adaption scheme that incorporates backpropagation learning into the GA evolution.
The design parameters are determined by evolution and learning in a way that evolution performs
the global search and makes inter-fuzzy logic controllers parameters adjustments to obtain both the
optimal RB with a high covering value, a small number of fuzzy rules, and optimal membership
functions.

5.8. Genetic-based machine learning approaches

GFSs with speci5c combination of evolution and bioinspired models have been developed. For
instance, genetic schemes inspired on the virus theory of evolution have been derived to learn TSK
fuzzy rule sets [122], including genetic recombination in bacterial genetics [46,100], and DNA coding
schemes [45].

6. Other kinds of genetic fuzzy systems

The predominant type of GFS is the GFRBS. However other kinds of GFSs have been developed,
with successful results. They include genetic fuzzy neural networks and genetic fuzzy clustering
algorithms.

6.1. Genetic fuzzy neural networks

Genetic fuzzy neural networks are the result of adding genetic or evolutionary learning capabilities
to systems integrating fuzzy and neural concepts. The result is a genetic-neuro-fuzzy system (or a
genetic fuzzy neural network).
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The usual approach of most genetic fuzzy neural networks found in the literature, is that of
adding evolutionary learning capabilities to a fuzzy neural network that usually is a feed-forward
multilayered network to which, previously, some fuzzy concepts were incorporated. The result is a
feed-forward multilayered network having fuzzy and genetic characteristics [7,27,87,93,115].
Genetic fuzzy neural networks incorporate fuzzy numbers as weights, perform fuzzy operations

in the nodes of the network, and=or consider fuzzy nodes to represent membership functions. In
addition, the learning process uses GAs to obtain the weights of the neural network, to adapt the
transfer functions of the nodes, and=or to adapt the topology of the net.
A di+erent approach can be found in [110], where an adaptive mechanism is proposed based on

the concept of perpetual evolution. Here, an adaptive control architecture uses evolutionary learning
for initial learning and real-time tuning of a fuzzy logic controller. The initial learning phase involves
identi5cation of an arti5cial neural network model of the process and subsequent development of a
fuzzy controller with parameters obtained via a genetic search.

6.2. Genetic fuzzy clustering algorithms

Several references found in the literature propose the use of GAs in fuzzy clustering, most of
them devoted to improve the performance of fuzzy C-means (FCM)-type algorithms [9] using the
GA to optimise some parameters of these algorithms.
The use of GAs to optimise the parameters of an FCM-type algorithm generates two di+erent

kinds of GFSs. Prototype-based algorithms encode the fuzzy cluster prototypes and evolve them by
means of a GA guided by any centroid-type objective function [59,98], while fuzzy partition-based
algorithms encode, and evolve, the fuzzy membership matrix [129].
A second possibility is to use the GA to de5ne the distance norm of an FCM-type algorithm. The

system considers an adaptive distance function and employs a GA to learn its parameters to obtain
an optimal behaviour of the FCM-type algorithm [134].
Finally, a third group of genetic approaches are based on directly solving the fuzzy clustering

problem without interaction with any FCM-type algorithm [16].

7. A critical evaluation of the contribution of GAs and evolutionary computation for fuzzy
knowledge extraction

Until recently, there was no systematic procedure to design and develop fuzzy systems. A com-
mon approach was, and in some application domains still is, de5ning fuzzy systems based on expert
knowledge and testing them to verify if the design is satisfactory. However, when expert knowledge
is lacking or when considerable amount of data must be processed and analysed, purely knowledge-
based design approaches become limited. Machine learning approaches have shown to be useful in
these cases. For instance, neural networks can learn from data, but the linguistic representation of
fuzzy rules and their transparency may be lost [126]. Fuzzy neural networks contribute to overcome
lacking of linguistic representation and transparency, but the designer must decide on major design
parameters such as universes granulation, rule antecedent aggregation operators, rule semantics,
rule base aggregation operators and defuzzi5cation methods [11,18,23,78,92]. Automatic methods
based-on fuzzy clustering and rule induction from large collections of learning data are attractive
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alternatives [78], but they have, from the design point of view, the same limitations that the fuzzy
neural network approaches.
As emphasised in Section 3, GA-based approaches have been developed to learn:

(i) membership functions with 5xed fuzzy rules [80],
(ii) fuzzy rules with 5xed membership functions [127],
(iii) fuzzy rules and membership functions using (i) and (ii) in alternate steps [83],
(iv) membership functions and RB simultaneously [20],
(v) rules and RB structure and parameters (granularity, rule antecedent aggregation operator, rule se-

mantics, rule base aggregation operator, defuzzi5cation, membership function shape and
parameters) simultaneously [111,112].

Contrary to neural network, clustering, rule induction and many other machine learning approaches,
GAs provide a means to encode and evolve rule antecedent aggregation operators, rule semantics,
RB aggregation operators and defuzzi5cation methods. Therefore, except for search techniques, GAs
remain today as one of the fewest knowledge acquisition schemes available to design and, in some
sense, optimise FRBSs with respect to the design decisions above. Potential exceptions are heuristic
search techniques, but currently no systematic experiments have been performed to critically compare
GAs with heuristic search. A 5rst study can be found in [56].
Hybrid approaches for supervised learning and increasing design eDciency is another alterna-

tive. In particular, genetic-neuro learning algorithms combined with least squares and singular value
decomposition have been proposed [115].
GFSs also e+ectively integrate multiple sources of fuzzy knowledge into a single KB. Fuzzy

knowledge integration [133] is a key issue that still challenges machine learning
methods.
Clearly, increasing chromosome complexity to encode operators, rule semantics and defuzzi5cation

methods enlarges the search space considerably and challenges the computational eDciency of GA-
based methods. In this case, design e+ort can be attenuated only via judicious exploration of design
requirements. In other words, a decision must be made to 5nd which of the items (i)–(v) above is
the case.
Another critical point is how to evaluate GFS models in particular, and fuzzy system learn-

ing models in general. Contrary to other machine learning approaches, currently there is no sys-
tematic evaluation methodology for GFSs. Statistical analysis tools may again be of help as they
do in classical machine learning. To develop an acceptable evaluation method it is
necessary:

• to manage adequate and uni5ed sets of benchmark problems for learning from data, e.g. classi5-
cation, data mining, regression and control problems.

• to design experimental analysis models under an equal and signi5cant number of runs, iterations,
parameters, and execution time.

For example, the use of the factorial analysis of variance (ANOVA) and multiple comparison tests
(see [135]) may introduce an important advantage to evaluate the performance of new proposals,
and to compare them with previous approaches.
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8. Questions and problems

The hybridisation of fuzzy logic and evolutionary computation in GFSs became an important
research area during the last decade. To date, several hundred papers, special issues of di+erent
journals and books have been devoted [33]. Nowadays, as the 5eld of GFSs matures and grows in
visibility, there is an increasing concern on the integration of these two topics from a novel and
more sophisticated perspective.
In what follows, we enumerate some open questions and scienti5c problems that suggest future

research:

• Hybrid intelligent systems. Balance between interpretability and accuracy. Sophisticated evolu-
tionary algorithms. As David Goldberg stated [51], the integration of single methods into hybrid
intelligent systems goes beyond simple combinations. For him, the future of computational intelli-
gence “lies in the careful integration of the best constituent technologies” and subtle integration
of the abstraction power of fuzzy systems and the innovating power of genetic systems requires
a design sophistication that goes further than putting everything together.
Along this line of sophistication, in this contribution we have mentioned several recent ap-

proaches integrating di+erent components, RBs, DBs, granularity, feature selection; : : :, or the inte-
gration of multiple sources of fuzzy knowledge. Usually, these approaches have had the objective
of getting FRBSs with transparency and accuracy properties, that is, trying to get a trade-o+
between interpretability and accuracy in FRBSs.
However, to pursue the balance between

◦ necessary accuracy for modelling complex systems, and
◦ interpretability degrees to provide expert knowledge,

remains an open issue in the development of future GFSs.
On the other hand, this line of sophistication in the integration and evolution of fuzzy system

components and the introduction of new objectives, may lead us to the use of new and more
sophisticated GAs, such as:

◦ more sophisticated components (genetic operators, adaptation, : : :), and
◦ new and advanced evolutionary models, multiobjetive genetic algorithms [28,40], coevolutionary
algorithms [109], parallel genetic algorithms [3,19], estimation distribution algorithms [89], etc.

The integration of all of these previously mentioned requirements may be an important point to
build hybrid intelligent systems beyond simple combinations.

• New coding approaches. As stated in [1], “the most inFuential factors in the quality of the solutions
found by an evolutionary algorithm are a correct coding of the search space and an appropriate
evaluation function of the potential solutions”.
Despite the chance GAs bring to design more complex fuzzy systems, eDcient chromosome

representation of rules, DB and RB structures still needs to be found. The most appropriate coding
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scheme is not known yet. There is a need to de5ne new approaches to encode FRBS components
to get a good balance between exploration and exploitation in the search space. Coding of di+erent
integration proposals of fuzzy system component needs to be revisited to 5nd the most appropriate
“natural coding”.

• Other evolution learning models. As seen, the three classical genetic learning approaches are
Michigan, Pittsburgh and Iterative Rule Learning. Improving mechanisms for these approaches
or the development of other new ones may be necessary. Especial attention must be paid to
Michigan learning approach. It is a classical genetic learning scheme introduced by Holland [68]
as a technique for evolutionary computation and temporal di+erence learning. However, only a few
number of Michigan approaches for learning fuzzy systems have been proposed in the literature.
They are called fuzzy classi5er systems.

Recently, many results have been presented and successful applications reported which demon-
strate that learning classi5er systems may represent an interesting alternative to more traditional
machine learning techniques in many application domains ranging from autonomous robotics to
data mining [17,85,86,88].
These recent developments have brought a resurgence and a rapid growth of this area, and this

may be a starting point for the development of new fuzzy classi5er learning systems.

• New application areas. Chap. 11 in [33] describes applications in classi5cation, system mod-
elling, control systems and robotics. Internet search and distributed computing brings considerable
challenges. To match Internet knowledgeable resources contents to the meaning intended by a
user search query is a task that remains to be done. To 5nd cooperation protocols to coordinate
multiagent systems to achieve a desired behavior still is a promise. The recent developments of
GFSs to improve fuzzy linguistic modelling accuracy, to get better trade-o+ between interpret-
ability and accuracy, to integrate di+erent fuzzy system components, allow us to manage a large
set of GFS tools and can lead to a growth of applications in di+erent areas such as robotics,
control, scheduling, data mining, internet, medicine, drug discovery, DNA sequencing, molecular
biology, etc.

9. Concluding remarks

This paper provided an account of the current status of GFSs after 10 years of considerable re-
search and development e+ort. In addition to a brief overview of the 5eld to address the classical
models and applications, new trends have been identi5ed. A critical evaluation of the contribution
that GFSs bring to knowledge acquisition and fuzzy rule base design was conducted, and chal-
lenges for further developments in the 5eld were outlined. In this context we emphasize the need
to build hybrid intelligent systems that go beyond simple combinations. Development of GFSs that
o+er acceptable trade-o+ between interpretability and accuracy is also a major requirement for eD-
cient and transparent knowledge extraction. Discovery of more sophisticated and new evolutionary
learning models of GFSs and its application to new areas and problems still remain as key ques-
tions for the next 10 years of GFSs. To further motivate such an endeavour, we have also o+ered
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valuable information for both, beginners and researchers working with GFSs and fuzzy knowl-
edge extraction. The references have been elaborated to serve as a directory to guide the reader to
the valuable results that GFSs contribute to the research and application oriented soft computing
community.
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