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Abstract

In this paper, we propose the use of weighted linguistic fuzzy rules in combination with a rule selection process to develop accurate

fuzzy logic controllers dedicated to the intelligent control of heating, ventilating and air conditioning systems concerning energy

performance and indoor comfort requirements. To do so, a genetic optimization process considering an efficient approach to

perform rule weight derivation and rule selection is developed. This allows the tuning of the system to be developed at the rule level.

The proposed technique was tested considering a physical modelization of a real test site.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In EU countries, primary energy consumption in
buildings represents about 40% of total energy con-
sumption, and depending on the countries, more than a
half of this energy is used for indoor climate conditions.
On a technological point of view, it is estimated that the
consideration of specific technologies like building
energy management systems (BEMSs) can save up to
20% of the energy consumption of the building sector,
i.e., 8% of the overall Community consumption (Dexter
et al., 1996). With this aim, BEMSs are generally applied
only to the control of active systems, i.e., heating,
ventilating, and air conditioning (HVAC) systems.
e front matter r 2004 Elsevier Ltd. All rights reserved.
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HVAC Systems are equipments usually implemented
for maintaining satisfactory comfort conditions in
buildings. The energy consumption as well as indoor
comfort aspects of ventilated and air conditioned
buildings are highly dependent on the design, perfor-
mance and control of their HVAC systems and
equipments. The use of knowledge-based systems can
represent a more efficient approach to the HVAC
System management, providing BEMSs with artificial
intelligence. By means of artificial intelligence, the
system is capable of assessing, diagnosing and suggest-
ing the best operation mode. Within the framework of
machine learning, some artificial intelligence techniques
could be successfully applied to enhance the HVAC
System capabilities (Alcalá et al., 2001; Arima et al.,
1995; Calvino et al., 2004; Huang and Nelson , 1994;
Jian and Wenjian, 2000; Pargfrieder and Jörgl, 2002;
Rahmati et al., 2003; Yang et al., 2003) or to aid the
HVAC System modeling (Angelov, 2002). In this way,
the use of appropriate automatic control strategies, as
fuzzy logic controllers (FLCs) (Driankov et al., 1993;
Mamdani, 1974; Mamdani and Assilian, 1975), for
HVAC systems control could result in important energy
savings when compared to manual control, specially
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when they explicitly try to minimize the energy
consumption (Alcalá et al., 2001; Arima et al., 1995;
Huang and Nelson , 1994; Pargfrieder and Jörgl, 2002).
However, in current systems, various criteria are

considered independently one from another and in most
cases the used control strategy only search for a thermal
regulation, maintaining a temperature setpoint or range,
which only considers implicit energy savings (Arima et
al., 1995; Glorennec, 1991; Huang and Nelson , 1994;
Jian and Wenjian, 2000; Rahmati et al., 2003; Yang et
al., 2003). In (Calvino et al., 2004), the more global
predicted mean vote (PMV) index for thermal comfort
(incorporating relative humidity and mean radiant
temperature) is optimized, but again it does not
explicitly optimize the energy consumption, the HVAC
system stability or the indoor air quality (CO2 concen-
tration). In (Pargfrieder and Jörgl, 2002), a FLC
involving 7 variables (5 inputs and 2 outputs) is
optimized by means of an evolutionary algorithm to
decrement the energy consumption and to maintain a
temperature setpoint, which also set aside some im-
portant criteria. In our case, five criteria will be
optimized and 17 variables are considered by the FLC.
On the other hand, considering fuzzy logic, control

systems in buildings are often designed using rules of
thumb not always compatible with the controlled
equipment requirements, energy performance and users
expectations and demand. Therefore, the different
involved criteria should be optimized for a good
performance of the HVAC System. Due to the nature
of the problem, a rational operation and improved
performance of FLCs is required. In our case, the main
objective is the energy performance but maintaining the
required indoor comfort levels. A way to improve the
FLC performance without losing interpretability to a
high degree is to extend its usual structure making it
more flexible. Many different possibilities to extend the
linguistic model structure have been considered in the
specialized literature (Casillas et al., 2002). All of them
share the common idea of improving the way in which
the FLC performs the interpolative reasoning by
inducing a better cooperation among the rules in the
knowledge base (KB).
A possibility to extend the FLC structure is to

consider weighted rules, where an importance degree is
associated to each rule in the fuzzy reasoning process
(Cho and Park, 2000; Ishibuchi and Takashima, 2001;
Pal and Pal, 1999; Yu and Bien, 1994). The use of rule
weights as a local tuning of linguistic rules, enhances the
robustness, flexibility and system modeling capability
(Pal and Pal, 1999). It is based on the ability of this
technique to indicate the interaction level of each rule
with the remaining ones. In this way, FLCs could be
obtained from human experience to subsequently
derive the corresponding rule weights using automatic
techniques.
In this work, the use of weighted linguistic fuzzy rules
in combination with a rule simplification (Chiu, 1994;
Halgamuge and Glesner, 1994; Rovatti et al., 1993;
Setnes et al., 1998; Setnes and Hellendoorn, 2000; Yen
and Wang, 1999) are proposed to develop accurate
FLCs dedicated to the control of HVAC systems with
regard to the energy performance and indoor comfort
requirements. To do so, an evolutionary optimization
process (Holland, 1975; Michalewicz, 1996) considering
an efficient approach to perform the derivation of rule
weights together with rule selection has been developed
and tested considering the calibrated and validated
models of a real test building. The initial FLC to be
optimized will be obtained from human experience.
This contribution is arranged in the following way. In

the next section, the basics of the HVAC systems control
problem are presented, studying how FLCs can be
applied to it. In Section 3, the proposed real test site and
the control objectives are introduced, establishing the
concrete problem that will be solved in this work. In
Sections 4 and 5, the use of rule weights and rule
selection are presented in depth, considering them as
two complementary ways to improve the FLC perfor-
mance. Section 6 presents the evolutionary optimization
process performing the rule selection together with the
rule weight derivation. Experimental results are shown
in Section 7. In Section 8, some concluding remarks are
pointed out. Finally, the used abbreviations is presented.
2. Heating, ventilating, and air conditioning systems

An HVAC system is comprised by all the components
of the appliance used to condition the interior air of a
building. The HVAC system is needed to provide the
occupants with a comfortable and productive working
environment which satisfies their physiological needs.
Therefore, in a quiet and energy-efficient way at low life-
cycle cost, an HVAC system should achieve two main
tasks:
�
 To dilute and remove emission from people, equip-
ment and activities and to supply clean air (indoor air
quality).
�
 To maintain a good thermal quality both in summer
and winter (thermal climate).

There are no statistical data collected on types and
sizes of HVAC systems delivered to each type of
building in different European countries. Therefore, to
provide an HVAC system compatible with the ambiance
is a task of the BEMS designer depending on its own
experience. In Fig. 1, a typical office building HVAC
system is presented. This system consists of a set of
components to be able to raise and lower the tempera-
ture and relative humidity of the supply air.



ARTICLE IN PRESS

Fig. 1. Generic structure of an office building HVAC system. A - This module mixes the return and the outside air to provide supply air, and also

closes outside air damper and opens return air damper when fan stops. B - It is a filter to reduce the outside air emissions to supply air. C - The

preheater/heat recovery unit preheats the supply air and recovers energy from the exhaust air. D - A humidifier raising the relative humidity in winter.

E - This is a cooler to reduce the supply air temperature and/or humidity. F - An after-heater unit to raise the supply air temperature after humidifier

or to raise the supply air temperature after latent cooling (dehumidifier). G - The supply air fan. H - The dampers to demand controlled supply air

flow to rooms. I - It is a heat recovery unit for energy recovery from exhaust air. J - The exhaust air fan.
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2.1. The HVAC system control problem

Temperature and relative humidity are essential
factors in meeting physiological requirements. When
temperature is above or below the comfort range, the
environment disrupts person’s metabolic processes and
disturbs his activities.
Therefore, an HVAC system is essential to a building

in order to keep occupants comfortable. A well-designed
operated, and maintained HVAC system is essential for
a habitable and functional building environment.
Outdated, inappropriate, or misapplied systems result
in comfort complaints, indoor air quality issues, control
problems, and exorbitant utility costs. Moreover, many
HVAC systems do not maintain an uniform temperature
throughout the structure because those systems employ
unsophisticated control algorithms. In a modern in-
telligent building, a sophisticated control system should
provide excellent environmental control (Arima et al.,
1995).

Within this framework (building automation), the

objective of a global controller is to maintain the indoor

environment within the desired (or stipulated) limits. In

our case, to maintain environmental conditions within the

comfort zone and to control the indoor air quality.

Furthermore, other important objectives are usually

required, e.g., energy savings (our main objective), system

stability, etc. In any case, numerous factors have to be
considered in order to achieve these objectives. It makes
the system being controlled very complex and present a
strong non linearity.
To obtain an optimal controller, control and con-

trolled parameters1 have to be chosen regarding the
1Control or explicit parameters are variables which may be used as

inputs or outputs for a control strategy (controller’s variables), whilst

controlled or implicit parameters are variables which are affected by
control strategy being implemented, the technical
feasibility of the measurements as well as economic
considerations. Fortunately, the BEMS designer is
usually able to determine these parameters.
In the following subsections, the most usually used

control and controlled parameters are presented. The
specific parameters considered in the test site (building)
presented in this work will be selected among them in
Section 3, where this site is introduced.
2.1.1. Control or explicit parameters: controller’s

variables

To identify the FLCs variables, various (control or
explicit) parameters may be considered depending on
the HVAC system, sensors and actuators. Usually, these
parameters are selected among the following ones:
�

(fo

the

eva
Predicted mean vote (PMV) index for thermal comfort:
Instead of only using air temperature as a thermal
comfort index, we could consider the more global
PMV index selected by international standard orga-
nization ISO 7730 http://www.iso.org/iso/en/ISOOn-
line.frontpage), incorporating relative humidity and
mean radiant temperature.
�
 Difference between supply and room temperatures:
Possible disturbances can be related to the difference
between supply and mean air temperature. When
ventilation systems are used for air conditioning, such
a criterion can be important.
�
 CO2 concentration: Indoor air quality was found to be
critical. As CO2 concentration is a reliable index of
the pollution emitted by occupants, it can be selected
as indoor air quality index. It is therefore supposed
otnote continued)

action of a controlled device, and may be considered in order to

luate the performance of such controller (problem’s objectives).

http://www.iso.org/iso/en/ISOOnline.frontpage
http://www.iso.org/iso/en/ISOOnline.frontpage
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that both the building and the HVAC system have
been properly designed and that occupants actually
are the main source of pollution.
�
 Outdoor temperature: Outdoor temperature also needs
to be accounted for, since during mid-season periods
(or even mornings in summer periods) its cooling (or
heating) potential through ventilation can be impor-
tant and can reduce the necessity of applying
mechanical cooling (or heating).
�
 HVAC system actuators: They directly depends on the
concrete HVAC system, e.g., valve positions, operat-
ing modes, fan speeds, etc.
2.1.2. Controlled or implicit parameters: problem’s

objectives

To identify global indices for assessment of the
indoor building environment, various (controlled or
implicit) parameters may be measured depending
on the objectives of the control strategy. In these
kinds of problems, these parameters could be selected
among:
�
 Thermal comfort parameters: Indoor climate
control is one of the most important goals of
intelligent buildings. Among indoor climate charac-
teristics, thermal comfort is of major importance.
This might include both global and local comfort
parameters.
�
 Indoor air quality parameters: Indoor air quality is
also of major concern in modern buildings. It is
controlled either at the design stage by reducing
possible pollutants in the room and during
operation thanks to the ventilation system. As our
work is dedicated to HVAC systems, indoor air
quality is also an important parameter to account
for.
�
 Energy consumption: If appropriate indoor air quality
and thermal comfort levels have to be guaranteed in
offices, this has to be achieved at a minimum energy
cost. Therefore, energy consumption parameters
would need to be incorporated.
�

Knowledge Base
HVAC system status: A stable operation of the
controlled equipments is necessary in order to
increase life cycle and thus reduce the maintenance
cost. Information of the status of the equipments at
the decision time step or on a longer period must thus
be considered.
�

Fuzzification
Interface Interface

Controlled System
Control VariablesState Variables

Inference System Defuzzification

Fig. 2. Generic structure of a FLC.
Outdoor climate parameters: Indoor conditions
are influenced by outdoor conditions (air tempera-
ture, solar radiation, wind). Moreover, in an air
distribution HVAC system, the power required to
raise or lower the supply temperature is a
function of outdoor temperature and humidity.
Some of these parameters would thus need to be
selected.
2.2. Fuzzy control of HVAC systems

Nowadays, there is a lot of real-world applications of
FLCs like intelligent suspension systems, mobile robot
navigation, wind energy converter control, air condi-
tioning controllers, video and photograph camera
autofocus and imaging stabilizer, anti-sway control for
cranes, and many industrial automation applications
(Hirota, 1998).
An FLC (Driankov et al., 1993; Mamdani, 1974;

Mamdani and Assilian, 1975) is a kind of fuzzy rule-
based system which is composed of a KB that comprises
the information used by the expert operator in the form
of linguistic control rules, a Fuzzification Interface, that
transforms the crisp values of the input variables into
fuzzy sets that will be used in the fuzzy inference process,
an Inference System that uses the fuzzy values from the
fuzzification interface and the information from the KB
performing the reasoning process, and a Defuzzification

Interface, which takes the fuzzy control action from the
inference process and translates it into crisp values for
the control variables. The KB is comprised of two
components: the data base and the rule base. The data
base contains the definitions of the linguistic labels, that
is, the membership functions for the fuzzy sets. The rule
base is a collection of fuzzy control rules, comprised by
the linguistic labels, representing the expert knowledge
of the controlled system. Fig. 2 shows the generic
structure of an FLC.
In the specific case of HVAC systems, most works

apply FLCs to solve simple problems such as thermal
regulation, maintaining a temperature setpoint which
does not explicitly consider the energy consumption
optimization (Arima et al., 1995; Glorennec, 1991;
Huang and Nelson , 1994; Jian and Wenjian, 2000;
Rahmati et al., 2003; Yang et al., 2003). In (Calvino et
al., 2004), the PMV is optimized, but again it does not
explicitly optimize the energy consumption, the HVAC
system stability or the indoor air quality (CO2 concen-
tration). In (Pargfrieder and Jörgl, 2002), a FLC
involving 7 variables (5 inputs and 2 outputs) is
optimized by an evolutionary algorithm to decrement
the energy consumption and to maintain a temperature
setpoint, which also set aside some important criteria.
However, in this work, various different criteria must be
considered in order to reduce the energy consumption
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maintaining a desired comfort level. Therefore, many
variables have to be considered from the controlled
system, which makes the problem very complex. In our
case, five criteria will be optimized and 17 variables are
considered by the FLC.
In these kinds of problems (HVAC system controller

design), the KB is usually constructed based on the
operator’s experience. However, FLCs sometimes fail to
obtain satisfactory results with the initial rule set drawn
from the expert’s experience (Huang and Nelson , 1994).
Moreover, in our case the system being controlled is too
complex and optimal FLCs are required. Therefore, this
approach needs of a modification of the initial KB to
obtain an optimal controller with an improved perfor-
mance.
A possible way to improve the FLC performance

without losing interpretability to a high degree is to
extend its usual structure making it more flexible. Many
different possibilities to improve linguistic fuzzy model-
ing have been considered in the specialized literature
(Casillas et al., 2002). They can also be applied to the
framework of fuzzy control (e.g., a tuning on the
semantic of an FLC previously obtained from human
experience could be performed by modification of the
data base components (Alcalá et al., 2001, 2003)). All of
these approaches share the common idea of improving
the way in which the linguistic fuzzy model/controller
performs the interpolative reasoning by inducing a
better cooperation between the rules in the KB.
There are two of these approaches presenting

complementary characteristics, the rule weight deriva-
tion and the rule selection. In this work, FLCs will be
obtained from human experience to subsequently derive
rule weights and select the rule subset presenting the best
cooperation by the application of automatic techniques.
On the other hand, to evaluate the FLC performance,

physical modelization of the controlled buildings and
equipments is usually needed. These models have been
developed by BEMS designers using building simulation
tools, and they are able to account for all the parameters
considered in the control process. Thus, we will have the
chance to evaluate the FLCs designed in the simulated
system with the desired environmental conditions. In the
same way, these system models can be used by the
experts to validate the initial KB before the automatic
optimization process. Besides, it is of major importance
to assess the fitness function in this process.
3. The GENESYS test cell

Within the framework of the JOULE-THERMIE
programme under the GENESYS2 project, a real test
2GENESYS Project: Fuzzy controllers and smart tuning techniques

for energy efficiency and overall performance of HVAC systems in
site (building) provided by a French private enterprise—
whose name must remain anonymous—was available
for experimentation. From now on, this site will be
called the GENESYS test site.
Located in France, this test environment consists of

seven single zone test cells. Around the walls of these
cells, an artificial climate can be created at any time
(winter conditions can be simulated in summer and
viceversa). The cells considered are medium weight
constructions. Fig. 3 illustrates this environment and
presents its main characteristics. Two adjacent twin
cells were available for our experiments, the cells
number four and five. Both test cells were equipped
with all sensors required according to the selected
control and controlled parameters. The HVAC system
tested was a fan coil unit supplied by a reverse-cycle heat
pump, and a variable fan speed mechanical extract for
ventilation.
The first task was to develop the thermal model

of this test site. The main achievement was the
development of a full monozone building model. This
model was built from scratch within the Matlab-
Simulink environment, being developed as a general
purpose model which could be used for any other
conditions, projects or applications in the future.
However, in order to improve its performance, it was
later customized to suit the GENESYS test site. The
thermal simulation was based on finite-differences
methods for the conduction model. The maximum
value for the time-step of the simulation was
calculated using the stability condition according to
the discretization scheme. Simulation time step could be
reduced to 60 s. Due to the relatively small thickness and
large thermal conductivity of windows, the heat
conduction model for the windows was considered
constant. Convective heat exchanges were based on
constant heat convection coefficients. Radiant tempera-
ture was calculated as a function of surface temperature,
weighted by their relative area. The HVAC system
model was based on manufacturers data and modules
developed in the frame of IEA (International Energy

Agency) task 22 provided by the Royal Technical
Institute of Stockholm.
Data were available and used for model calibration.

The main problems in the calibration concerned the
modelization of the HVAC equipment as well as solar
radiation effects on internal heat gains. The experimen-

tation of this work has been performed considering the

calibrated and validated GENESYS test cell simulation

model. Concretely, the GENESYS summer-season
model.
(footnote continued)

buildings, European Commission, Directorate-General XII for Energy

(contract JOE-CT98-0090).
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Fig. 3. Representation and main characteristics of the GENESYS test cells.
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3.1. Objectives and fitness function

As said, our main optimization objective was the energy

performance but maintaining the required indoor comfort

levels. Therefore, we should consider the development of
a fitness function aiming at characterizing the perfor-
mance of each tested controller towards thermal
comfort, indoor air quality, energy consumption and
system stability criteria. In this way, the global objective
is to minimize the following five criteria:
O1
 Upper thermal comfort limit: if PMV40:5; O1 ¼

O1 þ ðPMV � 0:5Þ:

O2
 Lower thermal comfort limit: if PMVo�

0:5; O2 ¼ O2 þ ð�PMV � 0:5Þ:

O3
 IAQ requirement: if CO2 conc:4800ppm;O3 ¼

O3 þ ðCO2 � 800Þ:

O4
 Energy consumption: O4 ¼ O4þ Power at time t.

O5
 System stability: O5 ¼ O5þSystem change from time

t to ðt � 1Þ; where system change states for a change
in the system operation, i.e., it counts the system
operation changes (a change in the fan speed or
valve position).
In our case, these criteria are combined into one overall
objective function by means of a vector of weights. This
technique (objective weighting) has much sensitivity and
dependency toward weights. However, when trust-
worthy weights are available, this approach reduces
the size of the search space providing the adequate
direction into the solution space and its use is highly
recommended. Since trustworthy weights were obtained
from experts, we followed this approach.
Hence, an important outcome was to assign appro-

priate weights to each criterion of the fitness function.
The basic idea in this weight definition was to find
financial equivalents for all of them. Such equivalences
are difficult to define and there is a lack of confident
data on this topic. Whereas energy consumption cost is
easy to set, comfort criteria are more difficult. Recent
studies have shown that a 18% improvement in people’s
satisfaction about indoor climate corresponds to a 3%
productivity improvement for office workers. Based on
typical salaries and due to the fact that PMV and CO2

concentrations are related to people’s satisfaction, such
equivalences can be defined. The same strategy can be
applied to the systems stability criterion, life-cycle of
various systems being related to number of operations.
Based on this, weights can be obtained for each specific
building (test site). Thus, trusted weights for the
GENESYS test cell objective weighting fitness function
were obtained by the experts with the following values:
wO
1 ¼ 0:0083022; wO

2 ¼ 0:0083022; wO
3 ¼ 0:00000456662;

wO
4 ¼ 0:0000017832 and wO

5 ¼ 0:000761667: Finally, the
fitness function to be minimized was computed as

F ¼
Xn

i¼1

wO
i � Oi:
3.2. FLC variables and architecture

A hierarchical FLC architecture considering the
PMV, CO2 concentration, previous HVAC system
status and outdoor temperature was proposed by the
BEMS designer for this site. The GENESYS summer-
season FLC architecture, variables and initial rule base
are presented in Fig. 4.
As data base, we considered symmetrical fuzzy

partitions of triangular-shaped membership functions
for each variable. These membership functions were
labeled from L1 to Lli; with li being the number of
membership functions of the ith variable. Fig. 5 depicts
the data base. Both, the initial rule base and the data
base, were provided by the BEMS designer.
Notice that, Fig. 4 represents the decision tables of

each module of the hierarchical FLC considered in
terms of these labels. When the rule base considers more
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than two input variables (as in the case of modules M-2
in layer 2 and M-3a and M-3b in layer 3 where three
input variables are involved), the three-dimensional
table is decomposed into three two-dimensional decision
tables (one for each possible label of the first variable) in
order to clearly show its composition. Therefore, each
cell of the table represents a fuzzy subspace and contains
its associated output consequent(s), i.e., the correspond-
ing label(s). The output variables are denoted in the top
left square for each module. Notice that, when there are
two consequents, they are placed in the same cell
(divided by a diagonal line).
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4. Weighted linguistic rules

Using rule weights (Cho and Park, 2000; Ishibuchi
and Takashima, 2001; Pal and Pal, 1999; Yu and Bien,
1994) has been usually considered to improve the way in
which the rules interact, improving the accuracy of the
learnt model. In this way, rule weights suppose an
effective extension of the conventional fuzzy reasoning
that allows the tuning of the system to be developed at
the rule level (Cho and Park, 2000; Pal and Pal, 1999). It
is clear that considering rule weights will improve the
capability of the model to perform the interpolative

reasoning and, thus, its performance. This is one of the
most interesting features of fuzzy rule-based systems and
plays a key role in their high performance, being a
consequence of the cooperative action of the linguistic
rules existing in the KB.
Weighted linguistic models/controllers are less inter-

pretable than the classical ones but, in any case, these
kinds of systems can be interpreted to a high degree, and
also make use of human knowledge and a deductive
process. When weights are applied to complete rules, the
corresponding weight is used to modulate the firing
strength of a rule in the process of computing the
defuzzified control action. From human beings, it is very
near to consider this weight as an importance degree
associated to the rule, determining how this rule
interacts with its neighbour ones. We will follow this
approach, since the interpretability of the system is
appropriately maintained. In addition, we will only
consider weight values in [0,1] since it preserves the KB
readability. In this way, the use of rule weights
represents an ideal framework to extend the FLC
structure when we search for a trade-off between
accuracy and interpretability.
As we have said, rule weights will be applied to

complete rules. In order to do so, we will follow the
weighted rule structure and the Inference System
proposed in (Pal and Pal, 1999):

IF X 1 is A1 and ::: and X n is An THEN Y is B with ½w	;

where X i (Y) are the input (output) linguistic variables,
Ai (B) are the linguistic labels used in the input (output)
variables, w is the real-valued rule weight, and with is the
operator modeling the weighting of a rule.
With this structure, the fuzzy reasoning must be

extended. The classical approach is to infer with the
FITA (first infer, then aggregate) scheme (Cordón et al.,
1997) considering the matching degree of the fired rules.
In this contribution, the Mean Of Maxima weighted by

the matching degree will be considered as defuzzification
strategy (Cordón et al., 1997):

y0 ¼

P
ihi � wi � PiP

ihi � wi

;

with y0 being the crisp control action obtained from the
defuzzification process, hi being the matching degree of
the ith rule, wi being the weight associated to it, and Pi

being the characteristic value—Mean Of Maxima—of
the output fuzzy set inferred from that rule, B0

i: On the
other hand, we have selected the singleton fuzzification
and the minimum t-norm playing the role of the
implication and conjunctive operators.
A simple approximation for weighted rule learning

would consist on considering an optimization techni-
que—e.g., genetic algorithms (GAs) (Holland, 1975;
Michalewicz, 1996)—to derive the associated weights of
a previously obtained set of rules.
5. Implicit/explicit rule selection

In complex multidimensional problems with highly
nonlinear input–output relations many redundant,
inconsistent and conflicting rules are usually found in
the obtained rule base (especially in the case when they
are generated by only considering the expert’s knowl-
edge). On the other hand, in high-dimensional problems,
the number of rules in the rule base grows exponentially
as more inputs are added. A large rule set might contain
many redundant, inconsistent and conflicting rules.
These kinds of rules are detrimental to the FLC
performance and interpretability.
It is known that the use of rule weights as a local

tuning of linguistic rules, enables the linguistic fuzzy
models/controllers to cope with inefficient and/or
redundant rules and thereby enhances the robustness,
flexibility and control capability (Pal and Pal, 1999).
Hence the ability of this technique to indicate the
interaction level of each rule with the remaining ones is
considered, improving the global cooperation. In this
way, when we start from a previous set of rules,
inefficient or redundant rules could be removed assign-
ing a zero weight to each of them, i.e., an implicit rule

selection could be performed.
However, weights close to zero are usually obtained

form the derivation process, practically avoiding the
effects of such rules but maintaining them in the KB. It
is due to the large search space tackled by this process,
and cannot be solved by removing these rules since in
some cases they could be important rules with a low
interaction level. Moreover, redundant, inconsistent and
conflicting rules could be weighted as important rules if
their neighbours are incorrectly weighted. Therefore,
rule weighting processes could be improved considering
any complementary technique that directly determines
what rules should be removed.
This way, explicit rule selection methods directly

aggregate multiple rules and/or select a subset of rules
from a given fuzzy rule set in order to minimize the
number of rules while at the same time maintaining (or
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even improving) the system performance. Inconsistent
and conflicting rules that degrade the performance are
eliminated thus obtaining a fuzzy rule set with better
cooperation.
Rule reduction methods have been formulated using

neural networks, clustering techniques and orthogonal
transformation methods, and algorithms based on
similarity measures, among others (Chiu, 1994; Halga-
muge and Glesner, 1994; Rovatti et al., 1993; Setnes et
al., 1998; Setnes and Hellendoorn, 2000; Yam et al.,
1999; Yen and Wang, 1999). In (Combs and Andrews,
1998), a different approach was proposed which
attempts to reduce the growth of the rule base by
transforming elemental fuzzy rules into DNF-form.
On the other hand, using GAs to search for an

optimized subset of rules is motivated in the following
situations:
�
 The integration of an expert rule set and a set of fuzzy
rules extracted by means of automated learning
methods (Herrera et al., 1998).
�
 The selection of a cooperative set of rules from a
candidate fuzzy rule set (Cordón and Herrera, 1997,
2000; Cordón et al., 1998; Ishibuchi et al., 1997, 1995;
Krone et al., 2000).
�
 The selection of rules from a given KB together with
the selection of the appropriate labels for the
consequent variables (Chin and Qi, 1998).
�
 The selection of rules together with the tuning of
membership functions by coding all of them (rules
and parameters) in a chromosome (Gómez-Skarmeta
and Jiménez, 1999).
�
 The derivation of compact fuzzy models through
complexity reduction combining fuzzy clustering, rule
reduction by orthogonal techniques, similarity driving
simplification and genetic optimization (Roubos and
Setnes, 2000).

Two of them are of particular interest in our case, the
second and the fourth. In this work, we propose the
selection of a cooperative set of rules from a candidate
fuzzy rule set together with the learning of rule weights
coding all of them (rules and weights) in a chromosome.
This pursues the following aims:
�
 To improve the FLC accuracy selecting the set of
rules best cooperating while a local tuning of rules is
performed to improve the interaction among them.
�
 To obtain simpler, and thus easily understandable,
FLCs by removing unnecessary rules.
6. Introducing weights and rule selection in the FLC

As we have said, considering rule weights and rule
selection could result in important improvements of the
system accuracy, maintaining the interpretability to an
acceptable level. To do so, the two following tasks must
be performed:
�
 Genetic selection of a subset of rules presenting good
cooperation.
�
 Genetic derivation of the weights associated to these
rules.

Focusing on our specific HVAC problem, taking into
account the existence of trusted objective weighting
coefficients—notice than these weighting coefficients are
different to the rule weights considered to extend the
FLC structure—and in order to benefit from them (see
Section 3.1), we propose a simple steady-state GA with a
double coding scheme and with a fitness function based
on objective weighting. In this way, we will follow the
same approach of the weighted multi-criterion steady-
state GA proposed in (Alcalá et al. (2001 and 2003))
which in those cases was considered for membership
function tuning. In the following subsections, steady-
state GAs are briefly introduced to later present the
proposed genetic weight derivation and rule selection
algorithm.

6.1. Genetic algorithms: the steady-state approach

GAs are general-purpose global search algorithms
that use principles inspired by natural population
genetics to evolve solutions to problems. The basic
principles of the GAs were first laid down rigorously by
(Holland, 1975) and are well described in many texts
such as (Michalewicz, 1996).
The basic idea is to maintain a population of

knowledge structures that evolves over time through a
process of competition and controlled variation. Each
structure in the population represents a candidate
solution to the specific problem and has an associated
fitness to determine which structures are used to form
new ones in the process of competition.
Hence, a subset of relatively good solutions are

selected for reproduction to give offspring that replace
the relatively bad solutions which die. Usually, offspring
replace their parents for the next generation (genera-
tional approach). These new individuals are created by
using genetic operators such as crossover and mutation.
The crossover operator combines the information
contained into the parents increasing the average quality
of the population (exploitation), while the mutation
operator randomly changes the new individuals helping
the algorithm to avoid local optima (exploration).
On the other hand, the steady-state approach

(Whitley and Kauth, 1998) consists of selecting two of
the best individuals in the population and combining
them to obtain two offspring. Then, these two new
individuals are included in the population replacing the
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two worst individuals if the former are better adapted
than the latter. An advantage of this technique is that
good solutions are used as soon as they are available.
Therefore, the convergence is accelerated while the
number of evaluations needed is decreased.

6.2. Genetic weight derivation and rule selection

algorithm

As we have said, it consists of a GA based on the well-
known steady-state approach (Whitley and Kauth,
1998). Its fitness function considers an objective weight-
ing. However, in order to make the method robust and
more independent from the weight selection for the
fitness function, the use of fuzzy goals for dynamically
adapting the search direction in the space of solutions
will be considered. The selection scheme is based on the
Baker’s stochastic universal sampling (Baker, 1987)
together with the elitist selection. Fig. 6 presents the
flowchart of the proposed method, while its main
components are introduced as follows.

6.2.1. Coding scheme and initial gene pool

A double coding scheme (C ¼ C1 þ C2) for both rule

selection and weight derivation is used:
�

t

For the C1 part, the coding scheme generates binary-
coded strings of length m (with m being the number of
fuzzy rules in the existing FLC, obtained from expert
 Initial Population Generation

 Evaluation

        0

 Convergence? Restart

Begin

 Selection of the
   two parents

 Crossover

Mutation

t > tmax

yes

no

 End

no

yes

 Evaluation

 t 

t+1

Fig. 6. Flowchart of the GA process.
knowledge). Depending on whether a rule is selected
or not, the alleles ‘1’ or ‘0’ will be respectively
assigned to the corresponding gene. Thus, the
corresponding part C

p
1 for the pth chromosome will

be a binary vector representing the subset of rules
finally obtained.
�
 For the C2 part, the coding scheme generates real-
coded strings of length m. The value of each gene
indicates the weight used in the corresponding rule.
They may take any value in the interval [0,1]. In this
case, the corresponding part C

p
2 for the pth chromo-

some will be a real-valued vector representing the
weights associated to the fuzzy rules considered.

Finally, a chromosome Cp is coded in the following
way:

C
p
1 ¼ ðc

p
11; . . . ; c

p
1mÞ j c

p
1i 2 f0; 1g;

C
p
2 ¼ ðc

p
21; . . . ; c

p
2mÞ j c

p
2i 2 ½0; 1	;

Cp ¼ C
p
1C

p
2:

To make use of the available information, the FLC
previously obtained from expert knowledge is included
in the population as an initial solution. To do so, the
initial pool is obtained with an individual having all
genes with value ‘1’ in both parts, and the remaining
individuals generated at random:

8k 2 f1; :::;mg; c11k ¼ 1 and c12k ¼ 1:0:

6.2.2. Evaluating the chromosome

This fitness function is based on objective weighting.
However, it has been modified in order to consider the
use of fuzzy goals for dynamically adapting the search
direction in the space of solutions, decreasing the
improvement chance of those objectives which satisfy
their goals in the first place. Thus, a function modifier
parameter, diðxÞ (taking values over 1.0), is used with
two main motivations:
�
 To decrement the importance of each individual
fitness value whenever it comes to its respective goal
(taking values close to 0.0).
�
 To penalize each objective whenever its value worsens
with respect to the initial solution.

To do so, a penalization rate has been included in diðxÞ;
allowing the user to set up priorities in the objectives.
This penalization rate, pi; is a real number from 0.7 to
practically 1 for each objective Oi; although the user
specifies this penalization from 0 to 1 (less and more
priority, respectively), which is more interpretable.
Therefore, the global fitness is evaluated as:

F 0 ¼
X5

i¼1

wO
i � diðOiÞ � Oi;
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with Oi being the considered criteria (objectives) and wO
i

being the corresponding weighting coefficients (see
Section 3.1).
Two situations can be presented in the corresponding

individual according to the value of the goal, gi; and the
value of the initial solution, ii: Depending on these
values, two different d functions will be applied:
�
 The first case is when the value of gi is lesser than the
value of ii; presenting the following behaviour (see
Fig. 7).
In this case, the objective is not considered if the goal
is met and penalized if the initial results are worsened.
�
 The second case happens when the initial value, ii; is
lesser than the goal value, gi (see Fig. 8).
Now, the initial results can be worsened while the goal
is met, and it is penalized otherwise.

Notice that the penalization function allows the
search to slightly worsen a specific goal, improving
other objectives to subsequently met that goal again, i.e.,
a dynamic adaptation of the search direction in the
space of solutions is continuously performed.
6.2.3. Genetic operators

The crossover operator will depend on the chromo-
some part where it is applied: in the C1 part, the
standard two-point crossover is used, whilst in the C2

part, the BLX-a crossover (Eshelman and Schaffer,
1993) and a hybrid between a BLX-a and an arithme-
tical crossover (Herrera et al., 1997) are considered.
The two-point crossover involves exchanging the

fragments of the parents contained between two points
selected at random (resulting two different descendents).
On the other hand, if two parents, Cv

2 ¼

ðcv
21; :::; c

v
2k; :::; c

v
2mÞ and Cw

2 ¼ ðcw
21; :::; c

w
2k; :::; c

w
2mÞ; are

going to be crossed in C2; two different crossovers are
considered:
1.
Fig. 7. diðxÞ when gipii:

Fig. 8. diðxÞ when gi4ii:
Using the BLX-a crossover (Eshelman and Schaffer,
1993) in the second parts (with a being a constant
parameter chosen by the GA designer), one
descendent Ch

2 ¼ ðch
21; :::; c

h
2k; :::; c

h
2mÞ is obtained, with

ch
2k being randomly generated within the
interval ½ILk

; IRk
	 ¼ ½cmin � I � a; cmax þ I � a	; cmin ¼

minðcv
2k; c

w
2kÞ; cmax¼ maxðcv

2k; c
w
2kÞ and I ¼ cmax � cmin:
2.
 The application of the arithmetical crossover (Her-
rera et al., 1997) in the wider interval considered by
the BLX-a; ½ILk

; IRk
	; results in the next descendent:

Ch
2 with ch

2k ¼ aILk
þ ð1� aÞIRk

;

with a 2 ½0; 1	 being a random parameter generated
each time this crossover operator is applied. In this
way, this operator performs the same gradual
adaptation in each gene, which is an interest
characteristic since rule weights are highly dependent
on their neighbours.

Finally, four offspring are generated by combining
the two ones from the C1 part (two-point crossover)
with the two ones from the C2 part (our hybrid
crossover).
As regards the mutation operator, it flips the gene

value in the C1 part and takes a value at random within
the interval [0,1] for the corresponding gene in the C2

part. In this way, once the mutation operator is applied
over the four offspring obtained from the crossover
operator, the resulting descendents are the two best of
these four individuals.
6.2.4. Restart approach

Finally, to get away from local optima, this algorithm
uses a restart approach (Eshelman, 1990). Thus, when
the population of solutions converges to very similar
results (practically the same fitness value in all the
population), the entire population but the best indivi-
dual is randomly generated within the variation inter-
vals. It allows the algorithm to perform a better
exploration of the search space and to avoid getting
stuck at local optima.
7. Experiments and analysis of results

To evaluate the goodness of the proposed technique,
several experiments have been carried out considering
the GENESYS test site. The main characteristics, the
control objectives and the initial FLC for this site have
been presented in Section 3. In this section, the
experiments performed with the new weighted rules
FLC on the said GENESYS summer model are
presented. In order to see the advantages of
the combined action of the rule weight derivation
and the rule selection, three different studies have
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Table 1

Initial results and fitness function (F 0) parameters

Model #R Fitness PMV CO2; Energy Stability

F % O1 O2 O3 O4 % O5 %

On–off — 6.58 — 0.0 0 0 3 206 400 — 1136 —

FLC 172 6.32 4 0.0 0 0 2 901 686 9.50 1505 �32:48
Goals (gi) — — — 1.0 1 7 2 000 000 — 1000 —

Rates (pi) — — — 1 1 1 0.9 — 0.97 —
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been performed:
1.
 Only considering rule weights. We will call this
approach as weighted (W) rule learning, which will
be performed by only considering the C2 part of the
proposed algorithm.
2.
 Considering both together, rule weights and rule

selection. We will call this approach as weighted
and simplified (WS) rule learning, being performed by
the algorithm proposed in this work.
3.
3Two evaluations only considering the C2 part.
Analysis of both approaches. A comparison will be
performed pointing out the good performance
obtained when both, rule weights and rule selection,
are combined.

To assess the proposed techniques for fitness compu-
tation, accurate models of this controlled building (as
well as the corresponding initial FLC) were provided by
experts. The proposed optimization strategy was
assessed with simulations of 10 days with the corre-
sponding climatic conditions.
The FLCs obtained from the proposed technique will

be compared to the performance of the initial expert
FLC and to the performance of a classic on-off
controller. The goals and improvements will be computed

with respect to this classical controller as done in the

GENESYS (see footnote 1) project. The intention from
experts was to try to have 10% energy saving (O4)
together with a global improvement of the system
behaviour compared to on-off control. Comfort para-
meters could be slightly increased if necessary (no more
than 1.0 for criteria O1 and O2).
Table 1 presents the results obtained with the on-off

and the initial FLC controllers together with the
parameters considered to compute the fitness function
in the GA (F 0), fuzzy goals and penalization rates (the
objective weights can be seen in Section 3.1). Notice
that, the goals imposed to the algorithm are higher than
the ones initially required by the experts since we are
trying to obtain even better results. No improvement
percentages have been considered in the table for
O1:::O3; since these objectives always met the experts
requirements and the on-off controller presents zero
values for these objectives.
Finally, the values of the parameters used in all of
these experiments are presented as follows: 31 indivi-
duals, 0.2 as mutation probability per chromosome, and
0.3 for the factor a in the crossover operator. The
termination condition will be the development of a fixed
number of iterations, which will depend on the approach
(W or WS) followed, in order to perform a fair
comparative study as we will see as follows. In order
to evaluate the GA good convergence, three different
runs have been performed considering three different
seeds for the random number generator.
7.1. Results only considering rule weights

The models presented in Table 2, where % stands for
the improvement rate with respect to the on-off
controller for each criterion and #R for the number of
fuzzy rules, correspond to the best individuals from the
population at iteration 1000 considering the three runs
performed. Moreover, the averaged results have been
presented for each criterion. The time required for each
model evaluation is 215 seconds approximately. There-
fore, the estimated run time was, four days for 1000
iterations (computed as product of the number of
evaluations per generation,3 the evaluation time and
the number of generations).
In this case, practically all the expert goals have been

easily met by only considering weighted rule learning.
However, excepting the third run (seed 3), the obtained
results for the stability criterion were very poor and
therefore unacceptable. It is obvious that in this case,
the energy and the stability are the most complex
objectives to be satisfied. Both criteria presents contra-
dictory sakes. Therefore, when the algorithm tries to
optimize one of them the other is indirectly affected.
Moreover, the solutions present a non desirable
diversity in the results making evident that the proposed
technique does not correctly handle the large search
space involved in this problem. Due to this reason, the
algorithm does not correctly converge and gets stuck at
local optima.
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Table 2

Results obtained by only considering rule weights (W)

Model #R Fitness PMV CO2; Energy Stability

F % O1 O2 O3 O4 % O5 %

On–off � 6.58 � 0.0 0 0 3 206 400 � 1136 —

FLC 172 6.32 4 0.0 0 0 2 901 686 9.50 1505 �32:48
W-Seed 1 172 6.01 9 0.0 0 0 2 759 152 13.95 1426 �25:53
W-Seed 2 172 5.85 11 0.3 0 4 2 799 129 12.70 1129 0.62

W-Seed 3 172 5.78 12 0.0 0 0 2 790 748 12.96 1050 7.57

W 172 5.88 11 0.1 0 1 2 783 010 13.21 1202 �5:81
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In any case, important improvements were performed
in energy, and even stability, respect to the initial FLC
(see the averaged results), and approximately a 10% in
their overall performance (fitness function) respect to
the on-off controller. Moreover, comfort and air quality
criteria were maintained within the requested levels,
which is a difficult task since they pursue contradictory
interests to the energy and stability.
The decision tables of the modules obtained in the

third run are presented in Fig. 9. An explanation for
these kinds of figures can be found in Section 3.2. In this
case, the absolute importance weight for each fuzzy rule
has been graphically shown by means of the grey colour
scale, from black (weight 1.0) to white (weight 0.0).
Hence, we can easily see the importance of a rule with
respect to their neighbours which could help the system
experts to identify important rules. Notice that, many
rules present weights close to zero. However, in any case
the obtained weight was exactly zero, thus maintaining
all the rules in the KB.
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7.2. Results considering rule weights and rule selection

The models presented in Table 3 correspond to the
best individuals from the population at iteration 500
considering the three proposed seeds (once again %
stands for the improvement rate with respect to the on-
off controller and #R for the number of fuzzy rules).
The averaged results have been also presented for each
criterion. Now, both parts, rule weight derivation (C2)
and rule selection (C1), are considered and four
evaluations are required per iteration. In order to
maintain the number of evaluations equal to the one
considered in the previous subsection only 500 iterations
will be considered. Therefore, the estimated run time
was four days for 500 iterations (computed as product
of the number of evaluations per generation, the
evaluation time and the number of generations).
In view of the obtained results, we can point out that

all the controllers derived by the proposed method
achieve significant improvements over both, the on-off
controller and the initial FLC controller. In this case, all
the goals required by experts were met, amply exceeding
the expected results.
A good trade-off between energy and stability was

achieved for all the obtained models, maintaining the
remaining criteria within the optimal values. WS—
weighted and simplified rule learning—presents im-
provement rates of about a 14% in energy and about
a 16.5% in stability. Since the remaining criteria for
comfort and air quality are within the requested leves, it
improves the fitness function until improvement rates of
about a 14% respect to the on-off controller. Moreover,
the proposed algorithm presents a good convergence
and seems to be independent of random factors.
Fig. 10 represents the decision tables of the model

obtained from WS considering the second seed (see
Section 3.2). Once again, the absolute importance weight

for each fuzzy rule has been graphically shown by means
of the grey colour scale. In this case, a large number of
rules have been removed from the initial FLC, obtaining
much simpler models (more or less 70 rules were
eliminated in each run). This fact improves the system
readability, and allows us to obtain simple and accurate
Table 3

Results obtained considering rule weights and rule selection (WS)

Model #R Fitness PMV

F % O1 O2

On–off — 6.58 — 0.0 0

FLC 172 6.32 4 0.0 0

WS-Seed 1 123 5.68 14 0.9 0

WS-Seed 2 102 5.59 15 0.7 0

WS-Seed 3 103 5.65 14 0.2 0

WS 109 5.64 14 0.6 0
FLCs. Notice that, no rules present weights close to
zero.

7.3. Analyzing both approaches

In order to see how the consideration of the rule
selection affects to the rule weight derivation, Table 4
presents a comparison between both approaches, W and
WS. The averaged results and the typical deviation
obtained from the three different runs performed in the
previous subsections are shown in the table. The
standard deviation gives information of how deviated
are the samples, i.e., the higher the standard deviation,
the more the dispersion of the samples. In our case, in
order to say that the proposed technique is robust,
similar results should be obtained when using the same
parameters.
The proposed technique has yielded much better

results than the classical on-off controller, showing the
good results that the rule weight derivation together
with a rule selection can achieve on these kinds of
complex problems. Moreover, since the initial rules and
membership functions remains fixed, the interpretability
level of the weighted FLC so obtained is very near to the
original one (by only considering the importance level
for each rule).
It is notorious the fact that the simplified FLCs

present much better results that the ones obtained by
only weighting the rules. The simplified FLCs only
maintain a 63% of the initial rules. Theoretically, the
same models could be obtained by only considering rule
weights. On the other hand, considering rule selection
helps to the weight derivation reducing the search space
and favor the ability of such technique to obtain good
solutions. We can see that the proposed algorithm is
robust to random factors not presenting significant
deviations in the results, which does not occur by only
considering rule weights. Hence, only adding weights to
the rule set provided by experts is not sufficient. It is due
to the strong dependency among the obtained rules and
the weights associated to them, which makes very
complex for the process to obtain the appropriate
weights especially when inappropriate rules are present
CO2; Energy Stability

O3 O4 % O5 %

0 3 206 400 — 1136 —

0 2 901 686 9.50 1505 �32:48
0 2 769 621 13.62 970 14.61

0 2 731 798 14.80 942 17.08

0 2 766 135 13.73 936 17.61

0 2 755 851 14.05 949 16.46
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Fig. 10. Weighted rule base and final structure of the GENESYS summer-season FLC (seed 2). Module 1a1: Thermal demands; Module 1a2:

Thermal preference; Module 1b: Air qulaity demands; Module 2: Energy priorities; Module 3a: Required HVAC system status; Module 3b: Required

ventilation system status.

Table 4

Comparison between W and WS (considering and not rule selection)

Model #R Fitness PMV CO2; Energy Stability

F % O1 O2 O3 O4 % O5 %

On-off — 6.58 — 0.0 0 0 3 206 400 — 1136 —

FLC 172 6.32 4 0.0 0 0 2 901 686 9.50 1505 �32:48
Considering rule weights (W )

W 172 5.88 11 0.1 0 1 2 783 010 13.21 1202 �5:81

sw 0 0.09 — 0.1 0 2 17159 — 159 —

Considering rule weights and rule selection(WS)

WS 109 5.64 14 0.6 0 0 2 755 851 14.05 949 16.46

sws 13 0.04 — 0.3 0 0 17121 — 29 —
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in the KB. Therefore, we need to combine the learning
of rule weights with a rule selection process to achieve
an optimal behaviour.
Fig. 11 depicts the six different models analyzed in

this work. These graphics can be studied as a mask on
the decision table presented in Fig. 4. In this way, we
could know the label associated to each input subspace
since this information is not modified with respect to the
original rule base.
Due to the kind of fuzzy partition considered (see Fig.

5), there are many input subspaces which, in spite of
having no rule associated, are indirectly covered by their
neighbour rules, e.g., the input subspace labeled as L1 �

L1 in module 1b.
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Fig. 11. Comparing the models obtained. W1, W2, W3 - Weighted rule learning considering seeds 1, 2 and 3, respectively. WS1, WS2, WS3 -

Weighted and simplified rule learning considering seeds 1, 2 and 3, respectively.
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Studying Fig. 11, we can observe that much simpler
models have been obtained considering rule selection.
Several rules were always removed from the rule base. In
the case of only considering rule weights, some of them
were always weighted with values close to zero as L1 �

L1 in module 1b. However, some others of the rules
always removed also presented great rule weights with
any of the considered seeds. It is the case of L5 � L1 in
module 1a2:
8. Concluding remarks

In this work, we propose the use of weighted linguistic
fuzzy rules together with a rule selection to develop
accurate FLCs dedicated to the control of HVAC
systems concerning energy performance and indoor
comfort requirements. To do so, a GA considering an
efficient approach to perform rule weight derivation and
rule selection has been developed.
The proposed technique has yielded much better

results than the classical on-off controller showing its
good behaviour on these kinds of complex problems. It
is due to the following reasons:
�
 The ability of rule weights to indicate the interaction
level of each rule with the remainder, improving the
global performance of the weighted FLC.
�
 The complementary characteristics that the use of
weights and the rule selection approach present. The
ability of rule selection to reduce the search space by
only selecting the rules presenting a good cooperation
is combined with an improvement of the rule
cooperation capability by determining the interaction
levels among the selected rules by the use of weights.
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Gómez-Skarmeta, A.F., Jiménez, F., 1999. Fuzzy modeling with

hybrid systems. Fuzzy Sets and Systems 104, 199–208.

Halgamuge, S., Glesner, M., 1994. Neural networks in designing fuzzy

systems for real world applications. Fuzzy Sets and Systems 65 (1),

1–12.
Herrera, F., Lozano, M., Verdegay, J.L., 1997. Fuzzy connectives

based crossover operators to model genetic algorithms population

diversity. Fuzzy Sets and Systems 92 (1), 21–30.

Herrera, F., Lozano, M., Verdegay, J.L., 1998. A learning process for

fuzzy control rules using genetic algorithms. Fuzzy Sets and

Systems 100, 143–158.

Hirota, K., (Ed.), 1993. Industrial Applications of Fuzzy Technology.

Springer, Berlin.

Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. The

University of Michigan Press, Ann Arbor (The MIT Press,

London, 1992).

Huang, S., Nelson, R.M., 1994. Rule development and adjustment

strategies of a fuzzy logic controller for an HVAC system—Parts I

and II, analysis and experiment. ASHRAE Transactions 100 (1),

841–850, 851–856.

Ishibuchi, H., Takashima, T., 2001. Effect of rule weights in fuzzy rule-

based classification systems. IEEE Transactions on Fuzzy Systems

3 (3), 260–270.

Ishibuchi, H., Murata, T., Türksen, I.B., 1997. Single-objective and two-

objective genetic algorithms for selecting linguistic rules for pattern

classification problems. Fuzzy Sets and Systems 89, 135–150.

Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H., 1995. Selecting

fuzzy if-then rules for classification problems using genetic

algorithms. IEEE Transactions on Fuzzy Systems 9 (3), 260–270.

Jian, W., Wenjian, C., 2000. Development of an adaptive neuro-fuzzy

method for supply air pressure control in HVAC system.

Proceedings of the IEEE International Conference on Systems,

Man and Cybernetics, vol. 5. Nashville, Tennessee, USA, pp.

3806–3809.

Krone, A., Krause, H., Slawinski, T., 2000. A new rule reduction

method for finding interpretable and small rule bases in high

dimensional search spaces. Proceedings of the Nineth IEEE

International Conference on Fuzzy Systems. San Antonio, TX,

USA, pp. 693–699.

Mamdani, E.H., 1974. Applications of fuzzy algorithms for control a

simple dynamic plant. Proceedings of the IEEE 121 (12),

1585–1588.

Mamdani, E.H., Assilian, S., 1975. An experiment in linguistic

synthesis with a fuzzy logic controller. International Journal of

Man-Machine Studies 7, 1–13.

Michalewicz, Z., 1996. Genetic Algorithms + Data Structures ¼

Evolution Programs. Springer, Berlin.

Pal, N.R., Pal, K., 1999. Handling of inconsistent rules with an

extended model of fuzzy reasoning. Journal of Intelligent and

Fuzzy Systems 7, 55–73.

Pargfrieder, J., Jörgl, H., 2002. An integrated control system for

optimizing the energy consumption and user comfort in buildings.

Proceedings of the 12th IEEE International Symposium on Computer

Aided Control System Design. Glasgow, Scotland, pp. 127–132.

Rahmati, A., Rashidi, F., Rashidi, M., 2003. A hybrid fuzzy

logic and PID controller for control of nonlinear HVAC systems.

Proceedings of the IEEE International Conference on

Systems, Man and Cybernetics, vol. 3. Washington, DC, USA,

pp. 2249–2254.

Roubos, H., Setnes, M., 2000. Compact fuzzy models through

complexity reduction and evolutionary optimization. Proceedings

of the Nineth IEEE International Conference on Fuzzy Systems,

vol. 2. San Antonio, Texas, USA, pp. 762–767.

Rovatti, R., Guerrieri, R., Baccarani, G., 1993. Fuzzy rules optimiza-

tion and logic synthesis. Proceedings of the Second IEEE

International Conference on Fuzzy Systems, vol. 2. San Francisco,

USA, pp. 1247–1252.

Setnes, M., Babuska, R., Kaymak, U., van Nauta-Lemke, H.R., 1998.

Similarity measures in fuzzy rule base simplification. IEEE

Transactions on Systems, Man, and Cybernetics—Part B: Cyber-

netics 28, 376–386.



ARTICLE IN PRESS
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