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A Proposal for the Genetic Lateral Tuning of
Linguistic Fuzzy Systems and Its Interaction With

Rule Selection
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Abstract—Linguistic fuzzy modeling allows us to deal with the
modeling of systems by building a linguistic model which is clearly
interpretable by human beings. However, since the accuracy and
the interpretability of the obtained model are contradictory proper-
ties, the necessity of improving the accuracy of the linguistic model
arises when complex systems are modeled. To solve this problem,
one of the research lines in recent years has led to the objective of
giving more accuracy to linguistic fuzzy modeling without losing
the interpretability to a high level.

In this paper, a new postprocessing approach is proposed to per-
form an evolutionary lateral tuning of membership functions, with
the main aim of obtaining linguistic models with higher levels of
accuracy while maintaining good interpretability.

To do so, we consider a new rule representation scheme base on
the linguistic 2-tuples representation model which allows the lat-
eral variation of the involved labels. Furthermore, the cooperation
of the lateral tuning together with fuzzy rule reduction mechanisms
is studied in this paper, presenting results on different real appli-
cations. The obtained results show the good performance of the
proposed approach in high-dimensional problems and its ability
to cooperate with methods to remove unnecessary rules.

Index Terms—Fuzzy rule-based systems, genetic algorithms,
interpretability, linguistic 2-tuples representation, rule selection,
tuning.

I. INTRODUCTION

FUZZY modeling (FM)—i.e., system modeling with fuzzy
rule-based systems (FRBSs)—may be considered as an

approach used to model a system by making use of a descriptive
language based on fuzzy logic [1], [2] with fuzzy predicates
[3]. Several types of modeling can be performed depending
on the desired degree of interpretability and accuracy of the
final model. Unfortunately, both requirements are contradictory
properties directly depending on the learning process and
model structure.

In this framework, one of the most important areas is the
linguistic FM, where the interpretability of the obtained model
is the main requirement. This task is usually developed by
means of linguistic FRBSs (also called Mamdani FRBSs [4],
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[5]), which use fuzzy rules composed of linguistic variables
[3] taking values in a term set with a real-world meaning. One
of the problems associated with the linguistic FM is its lack
of accuracy when modeling some complex systems. This is
due to the inflexibility of the concept of the linguistic variable,
which imposes hard restrictions on the fuzzy rule structure [6].
This drawback leads linguistic FM sometimes to move away
from the desired tradeoff between interpretability and accuracy,
thus losing the usefulness of the model. To overcome this
problem, many different possibilities to improve the accuracy
of linguistic FM while preserving its intrinsic interpretability
have been considered in the specialized literature [7].

One of the most widely used approaches to improving the
performance of FRBSs, known as tuning, consists of refining a
previous definition of the data base (DB) once the rule base (RB)
has been obtained. Generally, tuning is a variation in the shape
of the membership functions (MFs) that improves their global
interaction with the main aim of inducing better cooperation
among the rules [8]–[12]. In this way, the real aim of the tuning
is to find the best global configuration of the MFs and not only
to find independently specific MFs.

In the framework of linguistic FM and fuzzy control, there
is a predominant use of triangular shaped MFs because of their
simplicity with more or less similar results with respect to other
approaches [13], [14] (trapezoidal or Gaussian). Classically, the
tuning methods refine the three definition parameters that iden-
tify the triangular MFs associated to the labels comprising the
DB [9], [13]. These three parameters are also dependent among
themselves for each MF. In the case of problems with many
variables, these two facts, the dependency among MFs and the
dependency among the three definition points, lead to tuning
models handling very complex search spaces which affect the
good performance of the optimization methods.

In this paper, we present a new FRBS postprocessing ap-
proach to perform an evolutionary lateral tuning of the linguistic
variables. It uses a new rule representation model based on the
linguistic 2-tuples representation [15] that allows the lateral
displacement of the labels by considering only one parameter
(slight displacements to the left/right of the original MFs). This
way to work involves a simplification of the search space that
eases the derivation of optimal models and therefore improves
the desired tradeoff, especially in complex or high-dimensional
problems.

In addition, rule selection methods directly aggregate mul-
tiple rules and/or select a subset of rules from a given fuzzy
rule set in order to minimize the number of rules [16], [17].
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Fig. 1. Symbolic translation of a linguistic label and lateral displacement of the involved MF.

The combination of lateral tuning with rule selection methods
can present a positive synergy, reducing the tuning search space,
easing system readability and even improving system accuracy.
In this paper, the cooperation between lateral tuning and a mech-
anism for rule selection is also studied, showing their perfor-
mance on different applications.

This paper is arranged as follows. The next section presents
the proposed lateral tuning, the linguistic rule representation
model (based on the linguistic 2-tuples), and the main differ-
ences with respect to the classic approach. Section III details
the evolutionary method proposed to perform the lateral tuning
of FRBSs. In Section IV, the cooperation between the lateral
tuning and a rule selection mechanism is proposed, presenting
the evolutionary method to perform both together. Section V
shows an experimental study of the performance of the method
applied to FRBSs obtained from automatic learning methods
and from expert knowledge, respectively, considering two
real-world electrical distribution problems (small and medium
complexity) and a highly complex real-world problem for the
fuzzy control of a heating, ventilating, and air conditioning
(HVAC) system. Section VI gives some concluding remarks.
The Appendix describes the problem of fuzzy control of HVAC
systems.

II. A PROPOSAL FOR THE LATERAL TUNING OF FUZZY

RULE-BASED SYSTEMS

In this section, we introduce our proposal for the lateral tuning
of fuzzy systems, presenting the rule structure and two different
tuning approaches (global approach and local approach). Then,
the main differences between the lateral and the classic tuning
of triangular MFs are discussed.

A. Lateral Tuning

The main aim of this paper is to reduce the tuning search
space by proposing a new tuning model of FRBSs based on the
linguistic 2-tuples representation scheme introduced in [15] that
allows the lateral displacement of the support of a label main-
taining the interpretability associated with the final linguistic
model at a reasonable level. In [15], the lateral displacement

represented by a linguistic 2-tuple is named symbolic transla-
tion of a label.

The symbolic translation of a label is a number within the
interval [ 0.5, 0.5), expressing with this interval the domain of
a label when it is moving between its two adjacent lateral labels
[see Fig. 1(a)]. Let us consider a set of labels representing a
fuzzy partition. Formally, to represent the symbolic translation
of a label in we have the 2-tuple

In fact, the symbolic translation of a label involves the lateral
displacement of its associated MF. As an example, Fig. 1
shows the symbolic translation of a label represented by the
pair ( 0.3) together with the lateral displacement of the
corresponding MF. Both the linguistic 2-tuples representation
model and the elements needed for linguistic information
comparison and aggregation are presented and applied to the
decision-making framework in [15].

In the context of the FRBSs, the linguistic 2-tuples could be
used to represent the MFs comprising the linguistic rules. This
introduces a new model for rule representation that allows the
tuning of the MFs by learning their respective lateral displace-
ments. Next, we present this approach by considering a simple
control problem.

Let us consider a control problem with two input variables,
one output variable, and a DB defined from experts determining
the MFs for the following labels:

Error Error

Power

Based on this DB definition, Fig. 2 shows the concept of
classic rule and linguistic 2-tuples represented rule. Analyzed
from point of view of rule interpretability, we could interpret
the 2-tuples represented rule (i.e., a tuned rule) as follows.

If the Error is “higher than Zero” and
the Error Variation is “a little smaller than Positive”
then the Power is “a bit smaller than High.”
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Fig. 2. Classic rule and rule with 2-tuple representation.

This proposal decreases the complexity of the tuning
problem, since the three parameters considered per label are re-
duced to only one symbolic translation parameter. As to how to
perform the lateral tuning, there are two different possibilities,
one more interpretable and one more accurate.

• Global Tuning of the Semantics: In this case, the tuning is
applied to the level of linguistic partition. In this way, the
pair ( , label) takes the same tuning value in all the rules
where it is considered. For example, “ is (High, 0.3)”
will present the same value for those rules in which the
couple “ is High” is initially considered. That is, only
one displacement parameter is considered for each label
on the DB.
Considering this approach, the global interpretability of
the final FRBS is maintained. It could be compared to the
classic tuning of the DB considering descriptive fuzzy rules
[18], i.e., a global collection of fuzzy sets is considered by
all the fuzzy rules.

• Local Tuning of the Rules: In this case, the tuning is applied
at rule level. The pair ( , label) is tuned in a different
way in each rule, based on the quality measures associated
to the tuning method (usually the system error). That is,
different displacement parameters are considered for each
label on the DB depending on the rule in which this label
is considered (one parameter per rule and variable). For
example, we could have the pair ( , High) in different
rules with different displacement parameters.

Rule : is (High, 0.3) (more than high).
Rule : is (High, -0.2) (a little lower than high).

In this case, the global interpretability is lost to some de-
gree and the obtained model should be interpreted from a
local point of view. This approach could be compared to
the classic tuning of approximate fuzzy rules [18], i.e., each
fuzzy rule has associated its own local fuzzy sets. However,
in our case, the tuned labels are still related to the initial
ones, preserving the global interpretability to some degree.
This way to work gives more freedom to find more accurate
FRBSs but handles a higher search space than the global
approach. Therefore, this approach can obtain more accu-
rate but less interpretable linguistic models than the global
approach. The use of a global or a local approach depends
on the problem being solved and on the expert needs.

Once both approaches have been presented, some aspects re-
lated to the search space reduction and the interpretability of the
obtained models should be clarified. Naturally, these aspects are
closely related to the type of tuning performed (global or local).

We have pointed out that lateral tuning decreases the tuning
problem complexity, since only one symbolic translation param-
eter is considered per label. We must clarify that this is true indi-
vidually considering both approaches, global and local. There-
fore, global lateral tuning reduces the search space with respect
to the classic tuning of the DB (linguistic rules) and local lat-
eral tuning reduces the search space with respect to the classic
tuning of approximate fuzzy rules. From the point of view of in-
terpretability, they should be individually compared again, since
the global approach tries to obtain more interpretable models
and the local approach tries to obtain more accurate ones.

B. Main Differences Between Classic and Lateral Tuning

As has been mentioned, the classic tuning of MFs usually
works with three parameters per MF (triangular shape). The
total number of these parameters grows exponentially in terms
of the number of variables and the number of labels per vari-
able. Usually, five or seven labels per variable are considered,
and never more than nine. However, the number of variables
depends on each specific problem, causing the problem com-
plexity to grow exponentially when the number of system vari-
ables increases.

This fact involves a problem for the tuning methods. The most
well-known approaches are those based on the use of neural net-
works and those based on the use of genetic algorithms (GAs).
In the first case, we could highlight the ANFIS method [11],
which needs to represent all the possible combinations of rules
in the second layer and provokes a memory overflow when there
are more than four or five input variables. Considering GAs, a
chromosome with a large number of related genes is necessary
to represent all the involved parameters, and this fact leads to
convergence problems of the evolutionary methods [19], [20].

The main difference between lateral tuning and the classic ap-
proach is the reduction of the search space, focusing the search
only on the MF support position. Although lateral tuning has
less freedom than the classic approach, the reduction of the
search space could lead to improved performance of the tuning
method, especially in complex or highly multidimensional prob-
lems, since this allows us to obtain easily the best global interac-
tion between the MFs, thereby ensuring a good covering degree
of the input data.

Let us consider a simplification of the tuning problem to cal-
culate the probability of a solution (chromosome) to move in the
direction of the global optimum. Fig. 3 shows the probability of
an MF to move in the direction of the global optimum for both
approaches (probability of moving the definition points in the
successful direction). Therefore, the probability of obtaining
a better global combination of MFs (with being the number
of total labels) in the case of lateral tuning and classic
tuning is

For example, in a problem with five variables, five labels per
variable, and considering the global tuning approach, we have
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Fig. 3. Probability of an MF to move to the optimum.

Fig. 4. Tuned fuzzy partition and its loss of interpretability.

and , which are quite dif-
ferent. This is a simplification of the problem because the tuning
process also depends on factors such as the rules that establish
the relations between the MFs, the crossover and mutation op-
erators, etc. However, this simple example can give us an idea
of the differences between both approaches.

On the other hand, classic tuning could not maintain a high
global degree of interpretability. Therefore, it is important to
point out that the design process could lead to complex fuzzy
partitions in the DB, which could make interpretation of the
system by an expert difficult. Fig. 4 shows an example of MFs
with complex shapes, which lose the global interpretability from
the point of view of the linguistic FM.

To determine if a specific DB is interpretable or not is a
subjective and difficult task. In any case, some researchers
have studied this issue proposing several properties in order
to ensure a good interpretability through the MF optimization
process [21]–[23]. Several constraints can be applied in the
design process in order to obtain a DB considering one or
more of these properties and maintaining the linguistic model
comprehensibility at the highest possible level [18], [24]–[26].

Indeed, the necessary constraints to ensure the semantic in-
tegrity of the DB make the derivation process less flexible, but

they maintain the interpretability of the model as well as reduce
the risk of overfitting the final FRBS. Therefore, it is very impor-
tant to apply these constraints in an intelligent way, maintaining
the tuning process ability/potentiality to improve the system per-
formance ass much as possible [27].

In the case of lateral tuning, the 2-tuples represented labels
can be interpreted with respect to the initial ones (see the 2-tu-
ples represented rule interpretation in the previous subsection).
However, since we can obtain the corresponding triangular MFs
from the parameters applied to each label, an FRBS based on
linguistic 2-tuples could be also represented as a classic Mam-
dani FRBS [4], [5]. In this way, from the point of view of inter-
pretability:

• the original shapes of the MFs are maintained (in our case
triangular and symmetrical), by laterally changing the lo-
cation of their supports;

• the lateral variation of the involved labels is restricted to a
short interval, ensuring overlapping between two adjacent
labels to some degree but preventing their vertex points
from crossing.

III. EVOLUTIONARY POSTPROCESSING METHODS FOR LATERAL

TUNING

The automatic definition of fuzzy systems can be consid-
ered as an optimization or search process and nowadays, evo-
lutionary algorithms, particularly GAs [19], [20], are consid-
ered as the most well-known and used global search technique.
Moreover, the genetic coding that they use allows them to in-
clude prior knowledge and to use it for leading the search. For
this reason, evolutionary algorithms have been successfully ap-
plied to learn fuzzy systems in recent years, giving way to the
appearance of so-called genetic fuzzy systems [9], [28].

Evolutionary algorithms in general and GAs in particular
have been widely used in the tuning of FRBSs. In this paper,
we consider two different evolutionary models that will be
used in our experimental study: the genetic model of CHC [29]
and a steady-state GA [30]. Each one of these approaches is
motivated by the kind of problem being solved (some com-
ments on both approaches are presented at the end of the next
subsection). At this point, we must remark that no mutation is
considered in CHC (imposed by the evolutionary model) and
that no mutation is considered in the steady-state approach in
order to improve the algorithm convergence in problems that
must be solved with a small number of evaluations.

Next, we present the main components needed to design the
evolutionary tuning algorithms. Then, a total of four algorithms
will be proposed to perform the global and the local lateral
tuning following both evolutionary models (CHC or steady-
state, depending on the type of problem being solved).

A. Main Components of Evolutionary Algorithms

The main components needed to design the evolutionary
tuning algorithms are:

• coding scheme and initial gene pool;
• chromosome evaluation;
• crossover operator;
• restarting approach;
• evolutionary model.
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1) Coding Scheme and Initial Gene Pool: Taking into ac-
count that two different types of tuning have been proposed
(global tuning of the semantics and local tuning of the rules),
there are two different kinds of coding schemes. In both cases,
a real coding is considered, i.e., the real parameters are the GA
representation units (genes). In the following both schemes are
presented.

• Global Tuning of Semantics: joining of the parameters of
the fuzzy partitions. Let us consider the following number
of labels per variable: , with being the
number of variables. Then, a chromosome has the form
(where each gene is associated to the lateral displacement
of the corresponding label in the DB)

See the part of Fig. 8(a) (in the next section) for an
example of coding scheme considering this approach.

• Local Tuning of the Rules: joining of the rule param-
eters. Let us consider that the FRBS has rules,

, with system variables. Then, the
chromosome structure has the following form (where
each gene is associated to the lateral displacement of the
corresponding label for each rule):

See the part of Fig. 8(b) (in the next section) for an
example of a coding scheme considering this approach.

To make use of the available information, the initial FRBS
obtained from automatic fuzzy rule learning methods or from
expert knowledge is included in the population as an initial so-
lution. To do so, the initial pool is obtained with the first indi-
vidual having all genes with value 0.0 and the remaining indi-
viduals generated at random in [ 0.5, 0.5).

2) Chromosome Evaluation: The chromosome evaluation
will depend on the kind of system being modeled.

• When a set of input–output training data representing
the system operation is available (data-driven learning),
to evaluate a determined chromosome we will use the
well-known mean square error (MSE):

MSE

where is the data set size, the output obtained
from the FRBS decoded from the said chromosome when
the th example is considered, and the known desired
output.

• When the initial FRBS is obtained from expert knowledge
and/or a validated model of the real system is available,
each chromosome is evaluated by means of a system simu-
lation that measures the FRBS performance. This approach
is usually effective in control problems.

3) Crossover Operator: Two different crossover operators
are applied depending on the evolutionary model considered,
CHC or the steady-state GA. They are based on the concept of

Fig. 5. Diagram of the performance of the crossover operators based on envi-
ronments.

environments (the offspring are generated around their parents).
These kinds of operators present good cooperation when they
are introduced within evolutionary models forcing the conver-
gence by pressure on the offspring (as the case of CHC or the
steady-state approach). Particularly, we consider the parent-cen-
tric BLX (PCBLX) operator [31] and the BLX- combined with
an arithmetic-based crossover. Fig. 5 shows the performance of
these kinds of operators, which allow the offspring genes to be
around the genes of one parent (PCBLX) or around a wide zone
determined by both parent genes (BLX).

These crossover operators are described as follows. Let us as-
sume and

, are two real-coded chromosomes that are going
to be crossed.

• CHC approach: In this case, we consider the PCBLX oper-
ator [31], which is based on BLX- . The PCBLX operator
generates the following two offspring:
1) , where is a randomly (uniformly)

chosen number from the interval , with
, and

;
2) , where is a randomly (uniformly)

chosen number from the interval , with
and .

• Steady-state approach: A BLX- crossover [31] and a hy-
brid between a BLX- and an arithmetical crossover [32]
are considered.
1) Using the BLX- crossover [31] (with ),

one descendent is obtained, where
is randomly (uniformly) generated within the in-

terval , with

and .
2) The application of an arithmetical crossover [32] in the

wider interval considered by BLX- results in
the next descendent

with

where is a random parameter generated each
time this crossover operator is applied. In this way, this
operator performs the same gradual adaptation in each
gene, which involves a faster convergence in the algo-
rithm.

4) Restarting Approach: To get away from local optima, this
algorithm uses a restart approach [29]. In this case, the best
chromosome is maintained and the remaining are generated at
random within the corresponding variation intervals [ 0.5, 0.5).
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It follows the principles of CHC [29], performing the restart pro-
cedure when a threshold value is reached or all the individuals
coexisting in the population are very similar.

5) Evolutionary Model: We will consider two different evo-
lutionary models depending on the need to force premature con-
vergence. Sometimes, a long computational time is required to
evaluate a chromosome, e.g., when we only have the real system
or a system simulation taking a long time per evaluation. In these
cases, we only have a small number of evaluations (e.g., no more
than 5000) and a steady-state GA will be considered to provoke
fast convergence. On the other hand, when there are no time
restrictions, we will consider a population-based selection ap-
proach, by using the CHC evolutionary model in order to per-
form a better global search. They are used in the following way.

• The Genetic Model of CHC [29]: This makes use of a
“population-based selection” approach. parents and
their corresponding offspring are combined to select the
best individuals to take part of the next population. The
CHC approach makes use of an incest prevention mech-
anism and a restarting process to provoke diversity in the
population, instead of the well-known mutation operator.
This incest prevention mechanism will be considered in
order to apply the PCBLX operator, i.e., two parents are
crossed if their hamming distance divided by two is over
a predetermined threshold . Since we consider a real
coding scheme, we have to transform each gene consid-
ering a gray code with a fixed number of bits per gene
(BITSGENE) determined by the system expert. In this
way, the threshold value is initialized as

#

Following the original CHC scheme, is decreased by one
when the population does not change in one generation. In
order to avoid very slow convergence, in our case, will
be also decreased by one when no improvement is achieved
with respect to the best chromosome of the previous gen-
eration. The algorithm restarts when is below zero.

• The Steady-State Approach [30]: The steady-state GA con-
sists of selecting two of the best individuals in the popu-
lation and combining them to obtain two offspring. Then,
these two new individuals are included in the population
by replacing the two worst individuals if the former are
better adapted than the latter. An advantage of this tech-
nique is that good solutions are used as soon as they are
available. Therefore, the convergence is accelerated while
the number of evaluations needed is decreased. Further-
more, no mutation will be considered in order to favor the
exploitation with respect to the exploration. For this reason,
we also consider a restarting approach to avoid local op-
tima. The algorithm restarts when the difference between
the worst and the best chromosome fitness values is lesser
than 1% of the initial solution fitness value.

B. Proposed Evolutionary Algorithms

Considering both evolutionary models, we propose four dif-
ferent algorithms to perform lateral tuning.

Fig. 6. Data-driven algorithm (CHC approach).

Fig. 7. System simulation-based algorithm (steady-state approach).

1) The first two consider the CHC approach (for data driven
problems that allow a reasonable number of evaluations) by
following the algorithm described in Fig. 6 with different
coding schemes:
• GL : taking into account the global coding scheme

presented in Section III-A1 to perform a global lateral
tuning of the semantics;

• LL : taking into account the local coding scheme pre-
sented in Section III-A1 to perform a local lateral tuning
of the rules.

2) Considering the steady-state approach described in Fig. 7
(for problems that allow a small number of evaluations),
we also have two different algorithms:
• GL : using the global coding scheme;
• LL : using the local coding scheme.

IV. INTERACTION BETWEEN THE RULE SELECTION AND THE

LATERAL TUNING

Sometimes, a large number of fuzzy rules must be used to
reach an acceptable degree of accuracy. However, an excessive
number of rules makes it difficult to understand the model oper-
ation. Moreover, we may find different kinds of rules in a large
fuzzy rule set: irrelevant rules, which do not contain signifi-
cant information; redundant rules, whose actions are covered
by other rules; erroneous rules, which are incorrectly defined
and distort the FRBS performance; and conflicting rules, which
perturb the FRBS performance when they coexist with others.
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These kinds of rules are usually obtained in the following situ-
ations.

i) When the final RB is generated by only considering the
expert’s knowledge, redundant, conflicting, and even er-
roneous rules are usually obtained.

ii) When we consider a fuzzy rule set learning process with
a tendency to generate too many rules (sometimes advis-
edly), redundant or conflicting rules could be found in the
obtained RB. For example, methods such as the Wang
and Mendel algorithm [33] or the input space oriented
strategy [34] are biased by covering criteria trying to en-
sure a high covering degree that sometimes is not needed.
The mixed method (MM) [35] consists of adding rules to
the linguistic model obtained by the Wang and Mendel al-
gorithm in the fuzzy input subspaces that have examples
but do not yet have a rule, trying to improve the accuracy
of the linguistic model by adding even more rules. How-
ever, these kinds of methods are still useful to obtain a
set of promising candidate rules in order to subsequently
select those with the best cooperation as a second stage
[36], [37]. In these cases, two main situations favor the
generation of these kinds of rules.
• In complicated multidimensional problems with highly

nonlinear input–output relations, in which the cooper-
ation of the obtained rules is more difficult to obtain
and more rules are usually needed.

• In high-dimensional problems, in which the number of
rules in the RB grows exponentially as more inputs are
added. A large rule set might contain more redundant
or even conflicting rules.

To face this problem, a fuzzy rule set reduction process can be
developed to achieve the goal of minimizing the number of rules
used while maintaining (or even improving) the FRBS perfor-
mance. To do that, erroneous and conflicting rules that degrade
the performance are eliminated, obtaining a more cooperative
fuzzy rule set and therefore involving a potential improvement
in the system accuracy. Moreover, in many cases accuracy is not
the only requirement of the model but also interpretability be-
comes an important aspect. Reducing the model complexity is
a way to improve the system readability, i.e., a compact system
with few rules requires a minor effort to be interpreted.

Fuzzy rule set reduction is generally applied as a postpro-
cessing stage, once an initial fuzzy rule set has been derived.
We may distinguish between two different approaches to obtain
a compact fuzzy rule set.

1) Selecting Fuzzy Rules: This involves obtaining an optimal
subset of fuzzy rules from a previous fuzzy rule set by se-
lecting some of them. We may find several methods for rule
selection, with different search algorithms that look for the
most successful combination of fuzzy rules [17], [36]–[39].
In [40], an interesting heuristic rule selection procedure is
proposed where, by means of statistical measures, a rele-
vance factor is computed for each fuzzy rule in the linguistic
FRBSs to subsequently select the most relevant ones. The
philosophy of ordering the rules with respect to an impor-
tance criterion and selecting a subset of the best seems sim-
ilar totheorthogonaltransformation-methodsconsideredby
Takagi–Sugeno-type FRBSs [41], [42].

2) Merging Fuzzy Rules: This is an alternative approach that
reduces the fuzzy rule set by merging the existing rules. In
[43], the authors propose merging neighboring rules, i.e.,
fuzzy rules where the linguistic terms used by the same
variable in each rule are adjacent. Another proposal is pre-
sented in [44], where a special consideration to the merging
order is made. In Takagi–Sugeno-type FRBSs, processes
that simplify the fuzzy models by merging fuzzy rules have
also been proposed [48], [49].

These kinds of techniques for rule reduction could easily be
combined with other postprocessing techniques to obtain more
compact and accurate FRBSs. In this way, some works have
considered the selection of rules together with the tuning of MFs
by coding all of them (rules and parameters) in the same chro-
mosome [48], [49].

A. Positive Synergy Between Both Approaches

There are several reasons explaining the positive synergy be-
tween the rule selection and the tuning of MFs. Some of them
are as follows.

• The tuning process is affected when erroneous or conflic-
tive rules are included in the initial RB. When the RB of
a model being tuned contains bad rules (greatly increasing
system error), the tuning process tries to reduce the effect
of these kinds of rules, adapting them and the remaining
ones to avoid the bad performance of such rules. This way
of working imposes strict restrictions, reducing the process
ability to obtain precise linguistic models. Furthermore,
in some cases this also affects the interpretability of the
model, since the MFs comprising bad rules do not have
the shape and location that best represents the information
being modeled.
This problem grows as the problem complexity grows (i.e.,
problems with a large number of variables and/or rules) and
when the rule generation method does not ensure the gen-
eration of rules with good quality (e.g., when the initial RB
is obtained from experts). In these cases, the tuning process
is very complicated because the search ability is dedicated
to reducing the bad performance of some rules instead of
improving the performance of the remaining ones. In these
cases, rule selection could help the tuning mechanism by
removing the rules that really degrade the accuracy of the
model.

• Sometimes redundant rules cannot be removed by only
using a rule selection method, since these kinds of rules
could reinforce the action of poor rules improving the
model accuracy. The tuning of MFs can change the per-
formance of these rules, making the reinforcement action
unnecessary, and therefore helping the rule selection tech-
nique to remove redundant rules.

Therefore, combining rule selection and tuning approaches
could result in important improvements in the system accuracy,
maintaining the interpretability at an acceptable level [48]–[50].
However, in some cases, the search space considered when both
techniques are combined is too large, which could provoke the
derivation of suboptimal models [49].

In this section, we propose the selection of a cooperative set of
rules from a candidate fuzzy rule set together with the learning
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Fig. 8. Example of coding scheme considering the lateral tuning and rule selection: (a) global approach and (b) local approach.

of the symbolic translation parameters. This pursues the fol-
lowing aims:

• to improve the linguistic model accuracy selecting the set
of rules best cooperating while lateral tuning is performed
to improve the location of the MFs;

• to obtain simpler, and thus easily understandable, linguistic
models by removing unnecessary rules;

• to favor the combined action of the tuning and selection
strategies (which involves a larger search space) by con-
sidering the simpler search space of the lateral tuning (only
one parameter per label).

B. Evolutionary Algorithms

To select the subset of rules that cooperate best and to obtain
the lateral translation parameters, we consider a GA that codes
all of them (rules and parameters) in one chromosome. This
method is based on the algorithms proposed in Section III-B,
again considering the genetic model of CHC [29] and the
steady-state approach [30] depending on the type of problem.

To do so, we must take into account the existence of binary
genes (rule selection) and real values (lateral displacements)
within the same chromosome. Therefore, the algorithms pro-
posed in Section III-B are changed in order to consider a double
coding scheme and to apply the appropriate genetic operators
for each chromosome part. The following changes are consid-
ered in order to integrate the reduction process with the pro-
posed tuning algorithms:

• Coding Scheme: A double coding scheme for both lateral
tuning and rule selection is considered

In this case, the previous approach (part ) is combined
with the rule selection by allowing an additional binary
vector that determines when a rule is selected or not
(alleles ‘1’ and ‘0,’ respectively).

Considering the rules contained in the preliminary/can-
didate rule set, the chromosome part
represents a subset of rules composing the final rule base,
such that

IF THEN RB ELSE RB

with being the corresponding th rule in the candidate
rule set and RB the final rule base. Fig. 8 graphically shows
an example of correspondence between a chromosome
and its associated KB considering the global approach
[Fig. 8(a)] or considering the local approach [Fig. 8(b)].

• Initial Gene Pool: The initial pool is obtained with an in-
dividual having all genes with value 0.0 in the part and
value 1 in the part, and the remaining individuals gen-
erated at random in [ 0.5, 0.5) and 0, 1 , respectively.

• Crossover: One of the two environment-based crossover
operators presented in Section III-B for the part com-
bined with the standard two-point crossover in the
part. The two-point crossover involves exchanging the
fragments of the parents contained between two points
selected at random, resulting in two different offspring.
In this case, four offspring are generated by combining
the two from the part (environment-based crossovers)
with the two from the part (two-point crossover). The
two best offspring obtained in this way are considered as
the two corresponding descendents.

• Mutation: When the steady-state approach is considered, a
mutation operator is applied on the part of the four off-
spring before selecting the two descendents. This operator
flips a gene value in .

The application of these changes on the algorithms proposed
in Section III-B gives rise to four different algorithms: GL
S LL S GL S and LL S.

V. EXPERIMENTAL STUDY

To evaluate the usefulness of the proposed approaches (local
and global tuning with and without rule selection for data-driven
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Fig. 9. (a) (X ;Y) and (X ;Y) dependency in the training data. (b) (X ;Y)
and (X ;Y) dependency in the test data.

or system simulation problems) and to show their behavior re-
gardless a single problem, several experiments have been car-
ried out solving three real-world problems. These problems cor-
respond to two different approaches to obtain the initial set of
fuzzy rules and they have to work with a different number of
variables and rules (different complexities).

• Data-Driven Problems: In this case, lateral tuning is ap-
plied to FRBSs obtained from automatic learning methods.
Two real-world electrical energy distribution problems
[51] are considered in order to be solved.
1) Estimating the length of low voltage lines in rural

nuclei. This problem considers a small number of
variables, involving a short search space (small com-
plexity). However, the corresponding data set presents
two noise points and strong nonlinearities, which
makes the modeling surface very complicated.

2) Estimating the maintenance costs of medium voltage
lines in a town. This problem presents four input vari-
ables and a considerable number of rules, and therefore
involves a larger search space (medium complexity).

In both cases, the well-known ad hoc data-driven learning
algorithm of Wang and Mendel [33] is applied to obtain
an initial set of candidate linguistic rules. To do so, we
will consider symmetrical fuzzy partitions of triangular-
shaped MFs. Once the initial RB is generated, the proposed
postprocessing algorithms can be applied.

• Problem Based On System Simulations: In this case, we
consider a highly complex real-world problem for the
fuzzy control of an HVAC system [52]. The lateral tuning
(with and without selection) will be applied to an initial
fuzzy RB obtained from an expert’s knowledge within the
framework of a European project. The problem considers
17 variables and 172 initial fuzzy rules that make up
a hierarchical fuzzy logic controller (FLC). A physical
model of the controlled buildings and equipment will be
considered to evaluate a chromosome.
The main achievement during the project was the appli-
cation of a classic tuning method adapted to this problem

TABLE I
METHODS CONSIDERED FOR COMPARISON

[52]. The good results of this initial work motivated the
study of other FRBS postprocessing methods.

In the following sections, these problems are introduced and
solved to analyze the performance of the proposed techniques.

A. Data-Driven Models

Here we present the two electrical energy distribution prob-
lems [51]: the experimental setup and the results obtained by the
studied algorithms.

1) Estimating the Length of Low Voltage Lines: For an elec-
tricity company, it may be of interest to measure the mainte-
nance costs of its electricity lines. These estimations could be
useful to allow them to justify their expenses. However, in some
cases these costs cannot be directly calculated. The problem
comes when trying to compute the maintenance costs of low-
voltage lines, and this is due to the following reasons. Although
maintenance costs depend on the total length of the electrical
line, the length of low-voltage lines would be very difficult and
expensive to measure since they are contained in small villages
and rural nuclei. The installation of these kinds of lines is often
very intricate and, in some cases, one company can serve to
more than 10 000 rural nuclei.

Due to this reason, the length of low-voltage lines cannot be
directly computed. Therefore, it must be estimated by means
of indirect models. The problem involves relating the length of
the low-voltage lines of a certain village with the following two
variables: the radius of the village and the number of users in the
village [51]. We were provided with the measured line length,
the number of inhabitants, and the mean distance from the center
of the town to the three furthest clients in a sample of 495 rural
nuclei. Five partitions1 considering 80% (396) in training and
20% (99) in test are considered for the experiments. The existing
dependency of the two input variables with the output variable
in the training and test data sets in one of the five partitions is
shown in Fig. 9 (notice that they present strong nonlinearities).

2) Estimating the Maintenance Costs of Medium-Voltage
Lines: Estimating the maintenance costs of the medium voltage
electrical network in a town [51] is a complex but interesting
problem. Since a direct measure is very difficult to obtain, it is
useful to consider models. These estimations allow electrical
companies to justify their expenses. Moreover, the model must
be able to explain how a specific value is computed for a certain
town. Our objective will be to relate the maintenance costs of
the medium voltage lines with the following four variables: sum
of the lengths of all streets in the town, total area of the town,

1These data sets are available at http://decsai.ugr.es/~casillas/fmlib/.



ALCALÁ et al.: GENETIC LATERAL TUNING OF LINGUISTIC FUZZY SYSTEMS 625

area that is occupied by buildings, and energy supply to the
town. We will deal with estimations of minimum maintenance
costs based on a model of the optimal electrical network for a
town in a sample of 1059 towns. Five partitions1 considering
80% (847) in training and 20% (212) in test are considered for
the experiments.

3) Experimental Setup: The methods considered for the ex-
periments are briefly described in Table I. The use of two of
them connected by “ ” indicates that they are applied as a com-
bination. For example, GL S indicates global lateral tuning to-
gether with rule selection.

The WM method is considered to obtain the initial RB to be
tuned. The tuning methods are applied once this initial RB has
been obtained. T is a classic MF parameter tuning algorithm.
The PAL method has been compared with tuning methods of the
parameters, domain, linguistic modifiers, and with any combi-
nation of any two of them obtaining the best results [49]. For
this reason, we only consider the PAL method (parameters, do-
main, and linguistic edges) in this paper.

The initial linguistic partitions are comprised by five lin-
guistic terms. The fuzzy reasoning method is the minimum
t-norm playing the role of implication and conjunctive opera-
tors and the center of gravity weighted by the matching strategy
acts as defuzzification operator.

To develop the different experiments in this subsection, we
consider a five-folder cross-validation model, i.e., five random
partitions of data1 each with 20%, and the combination of four of
them (80%) as training and the remaining one as test. For each
one of the five data partitions, the tuning methods have been
run six times, showing for each problem the averaged results of
a total of 30 runs. Moreover, a t-test (with 95% confidence) was
applied in order to ascertain whether differences in the perfor-
mance of the proposed approaches are significant when com-
pared with that of the other algorithms in the respective table.

The CHC approach and MSE as fitness are considered. The
following values have been considered for the parameters of
each method2: 51 individuals, 50 000 evaluations, and
bits per gene for the Gray codification (0.2 and 0.6 as muta-
tion and crossover probability per chromosome and 0.35 for the
factor in the max-min-arithmetical crossover for T and PAL).

4) Results: The results obtained in both problems by the ana-
lyzed methods are shown in Tables II and III, respectively, where
# stands for the number of rules, MSE and MSE , respec-
tively, for the averaged error obtained over the training and test
data, and for the standard deviation. t-test represents the fol-
lowing information:

represents the best averaged result.

means that the best result has better performance
than that of the corresponding row.

denotes that the results are statistically equal
according to the t-test.

2With these values we have tried to ease the comparisons by selecting stan-
dard common parameters that work well in most cases, instead of searching for
very specific values for each method. Moreover, we have set a large number of
evaluations in order to allow the compared algorithms to achieve an appropriate
convergence. No significant changes were achieved by increasing that number
of evaluations.

TABLE II
RESULTS OBTAINED IN THE LINE LENGTH ESTIMATION PROBLEM

TABLE III
RESULTS OBTAINED IN THE MAINTENANCE COSTS ESTIMATION PROBLEM

Analyzing the results presented in Tables II and III, we can high-
light the following conclusions.

• Considering these methods, the RB is obtained by means
of a generation method to learn few rules (12.4 from 25,
65 from the 625 possible rules). It allows us to obtain a
compact and accurate tuned model.

• In the first problem, low-voltage line length estimation,
most of the methods show a similar error in the test par-
titions. This performance is due to the small number of
variables considered in this problem, which means that the
search space is not too complex and therefore, there are
no significant differences in the tuning methods. However,
in the training partitions, the local lateral tuning obtains
better results than the remaining approaches, but some of
these differences are not so important. In other words, in
a problem with small complexity in the search space, the
lateral tuning still does not have the ability to take an ad-
vantage over the remaining approaches.

• In the second problem, which handles more variables and
therefore involves a larger search space, the local lateral
tuning method shows an important reduction of the MSE.
This is due to the use of only one parameter per label,
reducing the search space with respect to a classic tuning
which usually considers three or four parameters (in the
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Fig. 10. Initial and tuned DB of a model obtained with GL in the low-voltage
line length estimation problem.

case of triangular or trapezoidal MFs). In this way, the
local lateral tuning presents a good relationship between
the search space complexity and the results obtained,
which maintain a high tradeoff between accuracy and
local interpretability in the method. Furthermore, since
the lateral displacements are related to the original global
labels, a global interpretation could be made in these
terms.

• The global lateral tuning method shows worse results
than some of the classic approaches. However, in the
following problem (HVAC system control) with increased
complexity and a larger number of variables, this method
achieves very good results, even better than those obtained
by the local approach and with a better global inter-
pretability. This could again be due to the search space
reduction, since this approach handles an even smaller
number of parameters than the local one.

• With regard to the combination of tuning and the selec-
tion methods, in both problems, GL S and S, re-
spectively, show more or less the same accuracy as GL
and LL, considering a reduced number of rules and there-
fore reaching a good tradeoff between both techniques. No-
tice that the combination of several techniques (especially
when they act on different parts of the FRBS) increases the
search space complexity. However, in the case of the global
lateral tuning, the accuracy even improves when it is com-
bined with the selection approach.

Figs. 10 and 11, respectively, present the evolved fuzzy lin-
guistic partitions and the decision table obtained by GL from
one of the 30 runs performed in the first problem. Figs. 12 and
13, respectively, present the evolved fuzzy linguistic partitions
and the RB obtained by GL from one of the 30 runs performed
in the second problem. These figures show that small variations
in the MFs lead to important improvements in the performance
of the obtained FRBSs.

Fig. 14 graphically shows one of the 30 RBs obtained with
LL in the second problem, where we can see how local tuning
evolves each label of the different rules in a different way. The
difficult tradeoff between accuracy and complexity can be ob-

Fig. 11. Decision table of a model obtained with GL in the low-voltage line
length estimation problem.

Fig. 12. Initial and tuned DB of a model obtained with GL in the mainte-
nance costs estimation problem.

Fig. 13. RB and lateral displacements of a model obtained with GL in the
maintenance costs estimation problem.

served taking into account both RBs (Figs. 13 and 14). The ac-
curacy can be improved but always at the expense of some in-
terpretability.



ALCALÁ et al.: GENETIC LATERAL TUNING OF LINGUISTIC FUZZY SYSTEMS 627

Fig. 14. RB and lateral displacements of a model obtained with LL in the
maintenance costs estimation problem.

To ease graphic representation, in all these figures, the MFs
are labeled from ‘l1’ to ‘l . Nevertheless, such MFs are asso-
ciated to a linguistic meaning determined by an expert. In this
way, if the ‘l1’ label of the ‘X1’ variable represents ‘LOW,’
then ‘ ’ could be interpreted as ‘a little smaller than
LOW’ (based on the expert opinion) or, as in the case of the
classic tuning approach, maintaining the original meaning of
such label. This is the case of Figs. 10 and 12, where practi-
cally all the new labels could maintain their initial meanings.

A graphical representation of the proposed algorithms con-
vergence on both problems is shown in Fig. 15 with respect to
the training data. As can be seen, in general this figure shows
similar performances of the global approaches and similar per-
formances of the local ones in both problems. Moreover, we can
highlight the fast improvement in the problem with a smaller
search space and the more gradual improvements in a problem
with a larger search space, in which finding a good solution is
much more difficult. This reflects the ability of the algorithms
to find a good search zone in which to find a more global solu-
tion by refining the parameters more and more, thereby avoiding
getting stuck in a local optimum.

A study on the influence of the parameter (number of bits
per gene for the Gray codification) is shown in Table IV. The
results in the table are again the averaged MSE of 30 runs in
training and test with different values for each algorithm. In
this case, on one hand, the t-test was applied to the different re-
sults obtained by the algorithm, and on the other hand
to the different results obtained by the algorithm in order
to compare the results obtained with different values of the pa-
rameter . As can be seen, considering different values of
does not significantly affect the results of both methods, which
shows the robustness of the algorithms proposed for the lateral

tuning of MFs. We can only highlight that the use of a very low
value provoked a worse result in the case of the problem with

a higher search space. Therefore, we can only recommend a not
too small value for this parameter. A study on the parameter re-
lated to the GA (population size) has been not performed since
there are different studies on these parameters and we consider
general values that have demonstrated a good performance in
different problems (these values are the same in the different al-
gorithms considered for comparisons).

B. Expert Knowledge Based Models

In this section, we apply lateral tuning (with and without rule
selection) to develop accurate FLCs dedicated to the intelligent
control of HVAC systems concerning energy performance and
indoor comfort requirements. First, the HVAC system control
problem is introduced, and then the experimental study is pre-
sented. In the Appendix, the basics of the HVAC systems control
problem are presented together with the real test site, the control
objectives, and the fitness function of our specific application.

1) Tuning of FLCs for HVAC Systems: In European Union
countries, primary energy consumption in buildings represents
about 40% of total energy consumption, and more than half of
this energy is used for indoor climate conditions. From a tech-
nological point of view, it is estimated that the consideration
of specific technologies like building energy management sys-
tems (BEMSs) can save up to 20% of the energy consumption of
the building sector, i.e., 8% of the overall European Community
consumption [53]. With this aim, BEMSs are generally applied
only to the control of active systems, i.e., HVAC systems.

HVAC systems are equipment usually implemented for main-
taining satisfactory conditions of comfort in buildings. Energy
consumption as well as indoor comfort aspects of ventilated and
air conditioned buildings are highly dependent on the design,
performance, and control of their HVAC systems and equip-
ment. Therefore, the use of appropriate automatic control strate-
gies, such as fuzzy logic controllers (FLCs) [4], [5], [13], for
HVAC systems control could result in important energy savings
when compared to manual control [52], [54].

In current systems [54]–[62], various criteria are considered
under separate cover, thermal regulation, maintaining a temper-
ature set point or range, energy consumption, predicted mean
vote (PMV), system stability, or indoor air quality. Moreover,
control systems in buildings are often designed using rules of
thumb not always compatible with the controlled equipment
requirements and energy performance. Therefore, the different
criteria involved should be optimized for a good performance of
the HVAC system. Usually, the main objective is to reduce the
energy consumption while maintaining a desired comfort level.
In our case, five criteria will be optimized, and 17 variables are
considered by the FLC.

The initial FLC to be optimized is obtained from human ex-
perience. This approach is tested considering the calibrated and
validated models of a real test building. Both the FLC and the
simulation model were developed within the framework of the
JOULE-THERMIE programme under the GENESYS project.3

3Fuzzy controllers and smart tuning techniques for energy efficiency and
overall performance of HVAC systems in buildings, European Commission,
Directorate-General XII for Energy (Contract JOE-CT98-0090).
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Fig. 15. Convergence of the proposed methods considering the averaged results each 5000 evaluations.

TABLE IV
STUDY ON THE PARAMETER ' (NUMBER OF BITS PER GENE FOR THE GRAY CODIFICATION)

From now on, this test building will be called the GENESYS
test site.

In the Appendix, the main aspects of the HVAC systems
and their control with FLCs are described. Furthermore, the
GENESYS test site, the control objectives, and the initial DB
and RB are presented. In this section, we apply the lateral
tuning approaches to improve the performance of this initial
FLC by considering the simulation model of the GENESYS
test site.

2) Experimental Setup: To evaluate the usefulness of the pro-
posed technique, several experiments have been carried out con-
sidering the GENESYS test site. The methods considered for the
experiments are briefly described in Table V. The use of two of
them connected by ‘ ’ indicates that they are applied as a com-
bination. For example, GL S indicates global lateral tuning to-
gether with rule selection. Methods S, C, and C S were adapted
from [17], [12], and [48], respectively, in order to be applied to
this problem and to follow the steady-state approach presented
in [52]. As can be seen, there are no local semantics-based ap-
proaches other than those proposed in this paper since, due to the
high-dimensional search space, these kinds of methods never
have been applied in this particular problem.

The FLCs obtained by the studied methods will be compared
with the performance of the initial FLC and with the perfor-
mance of a classic on–off controller. The goals and improve-
ments will be computed with respect to this classic controller as
in the GENESYS project. The experts’ aim was to try to obtain a
10% energy saving together with a global improvement of
the system performance compared to on–off control. Comfort
parameters could be slightly increased if necessary (no more
than 1.0 for criteria and ).

Table VI presents the results obtained with the on–off and the
initial FLC controllers together with the parameters considered
to compute the fitness function in the GA , fuzzy goals, and
penalization rates (for more information on these parameters,
see Appendix B1). Notice that the goals imposed to the algo-
rithm are higher than those initially required by the experts since
we are trying to obtain even better results. No improvement per-
centages have been considered in the table for , since
these objectives always met the experts’ requirements and the
on–off controller presents zero values for these objectives.

Finally, the values of the parameters used in all of these ex-
periments are presented as follows: 2000 evaluations, 31 indi-
viduals, and 0.3 for the factor in the BLX crossover operator
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TABLE V
METHODS CONSIDERED FOR COMPARISON

TABLE VI
INITIAL RESULTS AND FITNESS FUNCTION (F ) PARAMETERS

(0.2 as mutation probability per chromosome for C S, GL S,
and LL S). In order to evaluate the good convergence of the
GA, three different runs have been performed considering three
different seeds for the random number generator.

The proposed optimization strategy was assessed with simu-
lations of ten days with the corresponding climatic conditions
(with a computation time of approximately 2 min per simula-
tion). Therefore, the estimated run time is approximately three
days for each run. This is the reason why in this case the steady-
state approach is considered.

3) Results: The models presented in Table VII, where “%”
stands for the improvement rate with respect to the on–off con-
troller for each criterion and “#R” the number of fuzzy rules,
correspond to the best individuals from the population at evalu-
ation 2000 in the three runs performed. The averaged results for
each criterion are shown in Table VIII.

Analyzing the results obtained, we can highlight the fol-
lowing conclusions.

• The global lateral tuning method improves the perfor-
mance of the obtained linguistic models with respect
to energy consumption, especially when it is combined
with the rule selection, which also improves the system
stability.

• Local lateral tuning together with rule selection obtains a
linguistic model with the highest level of system stability,
maintaining a high level of energy saving.

• The combination of lateral tuning (global and local
approach) with the rule selection allows us to remove
many redundant, erroneous, and conflictive rules, greatly
improving the system performance with respect to the
individual use of the tuning algorithms.

• The classic tuning of MF is a generalization of lateral
tuning. Therefore, why does lateral tuning present much
better results than classic tuning?
The tuning of an FRBS for fuzzy control of HVAC systems
is a very complex problem with 17 variables, and the use
of only one parameter per MF eases the derivation of an
optimal model with respect to the classic tuning with three
parameters per MF. This effect is even more notable when

TABLE VII
RESULTS OBTAINED BY THE METHODS CONSIDERED

TABLE VIII
AVERAGED RESULTS OF THE METHODS CONSIDERED

rule selection is also considered, since it involves a larger
search space.

Fig. 16 represents the initial and the final DBs obtained by
the first run of GL S. Again, small variations in the MF pa-
rameters cause large improvements in the linguistic model per-
formance. Fig. 17 represents the corresponding decision tables
of the model obtained from GL S considering the first seed
(for an explanation of these kinds of figures, see Appendix B2).
In this case, a large number of rules have been removed from
the initial FLC, obtaining much simpler models (more or less
59 rules were eliminated in each run). This fact improves the
system readability and allows us to obtain simple and accurate
FLCs.
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Fig. 16. Initial and tuned DB obtained by GL + S (seed 1).

VI. CONCLUSION

In this paper, a new rule representation scheme using the
linguistic 2-tuples representation model has been considered,
proposing a new postprocessing method of FRBSs by means of
evolutionary lateral tuning of the linguistic variables. Here, we
present our conclusions and further considerations.

• The lateral tuning of fuzzy partitions allows an important
reduction of the search space from the optimization point
of view. This approach works better as the problem search
space complexity grows.

• Lateral tuning together with the linguistic 2-tuples repre-
sentation model offers a good mechanism to obtain an in-
terpretable model, since the shapes of the initial linguistic
partitions are preserved and only small displacements are
considered.

• The use of rule selection methods to reduce the number of
rules while lateral tuning is performed is a good approach
to obtain more compact and precise models. This combi-
nation increases the search space (tuning of the parameters

selection of the rules), which is easily handled by the
simple lateral tuning.

Finally, we should point out that the use of different FRBS
learning schemes considering the 2-tuples rule representation
model is a good approach to obtain more compact and precise
models.

APPENDIX

THE HVAC SYSTEM FUZZY CONTROL PROBLEM

This Appendix presents a brief introduction to HVAC systems
and to their control with FLCs. Then, a real test site and the
specific problem considered in this paper are described.

A. HVAC Systems and FLCs

HVAC systems are equipment usually used to maintain satis-
factory conditions of comfort in buildings. An HVAC system is
made up of all the components of the appliance used to condition
the interior air of a building. The HVAC system is needed to pro-
vide the occupants with a comfortable and productive working
environment that satisfies their physiological needs. There are
no statistical data collected on types and sizes of HVAC systems
delivered to each type of building in different European coun-
tries. Therefore, providing an HVAC system compatible with the
building’s environment is a task of the BEMS designer, who de-
pends on experience. In Fig. 18, a typical office-building HVAC
system is presented. This system consists of a set of components
able to raise and lower the temperature and relative humidity of
the supply air.

The energy consumption as well as indoor comfort aspects
of ventilated and air conditioned buildings are highly depen-
dent on the design, performance, and control of their HVAC sys-
tems and equipments. In a modern intelligent building, a sophis-
ticated control system should provide excellent environmental
control [54], [55]. Within this framework (building automation),
the objective of a global controller is to maintain the indoor en-
vironment within the desired (or stipulated) limits—in our case,
to maintain environmental conditions within the comfort zone
and to control the indoor air quality. Furthermore, other impor-
tant objectives are usually required, e.g., energy savings (our
main objective), system stability, etc. In any case, numerous fac-
tors have to be considered in order to achieve these objectives.
This means that the system being controlled is very complex and
presents a strong nonlinearity.

Within the framework of machine learning, some artificial in-
telligence techniques could be successfully applied to enhance
the HVAC system capabilities [54]–[62] or to aid the HVAC
system modeling [64]. However, most works apply FLCs to
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Fig. 17. Final RB obtained by GL + S (seed 1).

solve individually simple problems such as thermal regulation
(maintaining a temperature setpoint), energy savings, or com-
fort improvements. On the other hand, the KB is usually con-
structed based on the operator’s control experience, using rules
of thumb. However, FLCs sometimes fail to obtain satisfactory
results with the initial rule set drawn from the expert’s experi-
ence [54]. Moreover, since different criteria must be considered,
the system being controlled is too complex and optimal FLCs
are required. Therefore, this approach needs a modification of
the initial KB to obtain an optimal controller with improved per-
formance. In our case, FLCs are obtained from human experi-
ence and are subsequently improved by the application of GAs.

B. The Genesys Test Cell

Within the framework of the GENESYS project, a real
test site was provided by a French private enterprise—whose
name must remain anonymous. This site will be called the
GENESYS test site. Located in France, this test environment
consists of seven single zone test cells. Around their walls, an
artificial climate can be created at any time. Fig. 19 illustrates
this environment. Two adjacent twin cells were available for
our experiments, cells number 4 and 5.

To evaluate the FLC performance, a physical modelization
of the controlled buildings and equipments is usually needed.
Thus, we will have the chance to evaluate the FLCs designed in
the simulated system with the desired environmental conditions.
In this way, the first task was to develop the thermal model of this
test site. The experimentation of this paper has been performed
considering the calibrated and validated GENESYS simulation
model, specifically, the GENESYS summer model.

1) Objectives and Fitness Function: Our main optimization
objective is energy performance but maintaining the required in-
door comfort levels. In this way, the global objective is to min-
imize the following five criteria.

Upper thermal comfort limit: if PMV
PMV , where PMV

is the more global predicted mean vote thermal
comfort index 7730 selected by the International
Standard Organization (ISO), incorporating relative
humidity and mean radiant temperature. (see
http://www.iso.org/iso/en/ISOOnline.frontpage).

Lower thermal comfort limit:
if PMV PMV .
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Fig. 18. Generic structure of an office-building HVAC system.

Fig. 19. Representation and main characteristics of the GENESYS test cells.

Indoor air quality requirement: if
CO ppm CO .
Energy consumption: Power at time .

System stability: system change from
time to ( 1), where system change states for a
change in the system operation, e.g., a change in the
fan speed or valve position.

These criteria are combined into one overall objective
function by means of a vector of weights. When trustworthy
weights are available, this approach reduces the size of the
search space providing the adequate direction into the solu-
tion space; therefore, its use is highly recommended. In our
case, trusted weights were obtained by experts for the ob-
jective weighting fitness function:

,
and . Finally, the fitness function to be
minimized could be

Fig. 20. � (x) when g � i .

Fig. 21. � (x) when g > i .

However, the fitness function has been modified in order to
consider the use of fuzzy goals that decrease the importance of
each individual fitness value whenever it reaches its goal or pe-
nalize each objective whenever its value worsens with respect to
the initial solution. To do so, a function modifier parameter
(taking values over 1.0) is considered. A penalization rate has
been included in , allowing the user to set up priorities in
the objectives (0 less priority and 1 more priority). Therefore,
the global fitness is evaluated as

Two situations can be presented according to the value of the
goal and the value of the initial solution . Depending on
these values, two different functions will be applied.

• When the value of is less than the value of , the objec-
tive is not considered if the goal is met and penalized if the
initial results are worsened (see Fig. 20).

• When the value of is less than the value of , the initial
results can be worsened while the goal is met and is penal-
ized otherwise (see Fig. 21).

2) FLC Variables and Architecture: A hierarchical FLC ar-
chitecture considering the PMV, concentration, previous
HVAC system status, and outdoor temperature was proposed by
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Fig. 22. Initial rule base and generic structure of the GENESYS summer FLC.

the BEMS designer for this site. This architecture, variables, and
initial RB are presented in Fig. 22.

The initial DB, depicted in Fig. 16 (Section V-B, together
with the tuned DB), is composed of symmetrical fuzzy partitions
with triangular shaped MFs labeled from to (where
is the number of labels of the th variable). Fig. 22 represents
the decision tables of each module of the hierarchical FLC in
terms of these labels. Each cell of the table represents a fuzzy
subspace and contains its associated output consequent(s), i.e.,
the corresponding label(s). The output variables are shown in
the top left square for each module. Both the initial RB and the
DB were provided by the BEMS designer.
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