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Data Mining

ﬁfﬂlﬁm\\ Data Mlnlng and Soft Computing

Summary

1. Introduction to Data Mining and Knowledge Discovery

2. Data Preparation i

3. Introduction to Prediction, Classification, Clustering and Association

4. Data Mining - From the Top 10 Algorithms to the New Challenges

5. Introduction to Soft Camputing. Focusing our attention in Fuzzy Logic
and Evolutionary Computation

6. Soft Computing Techniques in Data Mining: Fuzzy Data Mining and
Knowledge Extraction based on Evolutionary Learning

7. Genetic Fuzzy Systems: State of the Art and New Trends

8. Some Advanced Topics I: Classification with Imbalanced Data Sets

9. Some Advanced Topics Il: Subgroup Discovery

10.Some advanced Topics lll: Data Complexity

11.Final talk: How must | Do my Experimental Study? Design of
Experiments in Data Mining/Computational Intelligence. Using Non-
parametric Tests. Some Cases of Study.
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Some Advanced Topics I: Classification with
Imbalanced Data Sets

Outline

Introduction to ImFaIanced Data Sets

Some results on the use of evolutionary prototype selection
for imbalanced déta sets

Class imbalance ‘related topics:
Cost-Sensitive Learning and anomaly detection

Concluding Remarks
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Classification with Imbalanced Data
Sets

Presentation

In a concept-learning prc;blem, the data set is )
said to present a class imbalance if it contains - - ]
many more examples of one class than the other. T .
Such a situation poses challenges for typical .-+ .
classifiers such as deqision tree induction systems -

or multi-layer perceptrons that are designed to + )
optimize overall accuracy without taking into _
account the relative distribution of each class.
As aresult, these classifiers tend to ignore small classes while concentrating
on cassifying the large ones accurately.

Such a problem occurs in alarge number of practical domains and is often
dealt with by using re-sampling or cost-based methods.

This talk introduce the “classification with imbalanced data sets” analyzing
In depth the solutions based on re-sampling. 5




Introduction to Imbalanced
Datasets

Learning in non-Balanced domains.

Data balancing through resampling.
i

State-of-the-art éllgorithm: SMOTE.
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Learning in non-balanced domains

Data sets are said to be balanced if there are, approximately, as
many positive examples of the concept as there are negative ones.

The positive examples are more interesting or their misclassification
has a higher associate 'cost.

G. Cohen, M. Hilario, H. Sax, S. Hugonnet, A. Geisbuhler. Learning from Imbalanced Data in
Surveillance of Nosocomial Infection. Artificial Intelligence in Medicine 37 (2006) 7-18




Learning in non-balanced
domains

The classes of small size are usually labeled by rare cases (rarities).

The most important knowledge usually resides in the rare cases.

These cases are common in classification problems:
Ej.: Detection of unEommon diseases.

Imbalanced datf: Few sick persons and lots of healthy persons.

Some real-problems: "
Fraudulent credit card transactions
- ‘ - -
Learning word pronunciation

Prediction of telecommunications equipment failures

Detection oil spills from satellite images
Detection of Melanomas

Intrusion detection

Insurance risk modeling

Hardware fault detection




Learning in non-balanced domains

Problem:

 The problem with class imbalances is that standard learners
are often biased towards the majority class.

- That is because'these classifiers attempt to reduce global

guantities such as the error rate, not taking the data distribution
Into consideration.

Result:
As a result

e examples from the overwhelming class are well-classified

e whereas examples from the minority class tend to be
misclassified.

10




Learning in non-balanced domains

cWhy is difficult to learn In

Imbalanced dorf-nains?

Class imbalance iS.POt the only
responsible of the lack in accuracy of an
algorithm. i

The class overlapping also influences
the behaviour of the algorithms, and it is
very typical in these domains.

N.V. Chawla, N. Japkowicz, A. Kolcz. Editorial: special issue on learning from imbalanced data sets. SIGKDD
Explorations 6:1 (2004) 1-6

11




Learning in non-balanced domains

Why Learning from Imbalanced Data Sets might be difficult?

Four Groups of Negative Examples

0 Noise examples

o Borderline examples e
Borderlin,éexamples -

are unsafe since a N _:_ : - -
small amount of noise e -+ ST
can make them fall on o

the wrong side of the o+ - -
decision border. L .-

o0 Redundant examples
o Safe examples




Learning in non-balanced domains

Why Learning from Imbalanced Data Sets might be difficult?

Rare or exceptional cases correspond to small numbers of training
examples in particular areas of the feature space. When learning a concept,
the presence of rare cases in the domain is an important consideration.
The reason why rare cases are of interest is that they cause small disjuncts
to occur, which are known to be more error prone than large disjuncts.

In the real world domains, reare cases are unknown since high dimensional
data cannot be visualizad to reveal areas of low coverage.

Dataset Knowledge Model
i +‘5__E“F-|T+ 0

1
L f: e

10

-y +
b < HRET + x ook

2ET AT 1+*_";f"g‘ L Minimize learning error
et — +£++ + . _,_+“‘:|EF

ot ot T T it *

o 2 4 s 8 10 maximize generalization

T. Jo, N. Japkowicz. Class imbalances versus small disjuncts. SIGKDD Explorations 6:1 (2004) 40-49




Learning in non-balanced domains
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Why Learning from Imbalanced Data Sets might be difficult?

Focusing
problem

disjunct:
the

Small




Learning in non-balanced domains

¢How can we evaluate an algorithm In

Imbalanced domains?
| .

| Positive Negative
1) Prediction
Positive Class True Positive alse Negative
! (TP) (FN)

Negati've Class 5P
. (FP)

Confusion matrix for a two-class problem

True Negative
(TN)

‘e
\] |

Error Rate: (FP + FN)/N
Accuracy Rate: (TP + TN) /N

It doesn’t take into
account the False
Negative Rate, which is
very important in
imbalanced problems

15




Learning in non-balanced domains

Imbalanced evaluation based on the geometric mean:

Positive true ratio: ‘a+ = TP/(TP+FN)
Negative true ratio:] a- = TN / (FP+TN)

Evaluation function? True ratio

! g=+V(@*-a)

Precision = TP/(TP+FP)
Recall = TP/(TP+FN)

F-measure: (2 x precision X recall) / (recall + precision)

R. Barandela, J.S. Sanchez, V. Garcia, E. Rangel. Strategies for learning in class imbalance
problems. Pattern Recognition 36:3 (2003) 849-851

16




Learning in non-balanced domains

ROC Curves

. Real
| . PP | NP
The confusion matrix is oq | PC_| 08 | oaa
normalized by NC [0z Fogro
columns ) " Espacio ROC
' 1,000 ®
. 0 0800 H--
Z 0600 i
& 0400 | 1 &
A.P. Bradley, The use of the area under S 000 S
the ROC curve in the evaluation of = ’ ',
machine learning algorithms, Pattern 0000 & ‘ ‘ * ‘
Recognition 30(7) (1997) 1145-1159. 0000 0200 0400 0600 0800 1,000

False Positives




True Positives

Learning in non-balanced domains

1,000
0,800
0,600
0,400
0,200
0,000

“crisp” and “soft” classifiers:

M A “crisp” classifier (discrete) predicts a class among the candidates.
B A “soft” classifier (prababilistic) predicts a class, but this prediction is

accompanied by a reliabllity value.

Crisp

ROC curve

0,000 0,200 0,400 0,600 0,800 1,000

False Positives

True Positive rate

Soft

0.4 0.6 0.8 1.0

False Positive rate

AUC: Area under ROC curve. Scalar quantity widle used for

estimating classifiers performance.

18




Learning in non-balanced domains

ROC analysis oriented to data resampling in

Imbalanced domains .
The resampling algorithm must allow ~ "[  ~ = | 7= = 7 7]
to adjust the rate of under/over # Fa
sampling. | 4 -
Performance of the classifier is ,
measured with over/under Sampling 57 | . S e
at 25%, 50%, 100%200%, 300%, ot )0
etc. %
It can be only used in resmapling 3
techniques which allow the e U |
adjustment of this parameter.

N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer. SMOTE: synthetic minority over-sampling
technique. Journal of Artificial Intelligence Research 16 (2002) 321-357

19




Introduction to Imbalanced
Datasets

Learning in non-Balanced domains.

Data balancing through resampling.
i

State-of-the-art éllgorithm: SMOTE.

20




Data Balancing through
re-sampling

Strategies tp deal with imbalanced data set
| Motivation

ver-Samplin

S

|Retain influyent

Random
examples

cused

Balance the training

er-Samp set
Random = —| Remove noisy
ocused / Instances in the

decision hotindaries

Wi W W il Wil 11l N W Wil 1 W Wl 1 WS

Reduce the training set

Cost Modifying

21




Data Balancing through
re-sampling

ples —
xamples + [T
) under-sampling
# examples — *
!

# examples +

over-sampling

# examples —
# examples + iz




Data Balancing through
re-sampling

Over Sampling 0
Random |' - I
,r" RS}
’ + n
=N
1

# examples of - G
# examples of + 1 T T i

23




Data Balancing through
re-sampling

Over Sampling 0
Focused J
i RS}
f +
1

# examples of - GG
# examples of + 11

24




Data Balancing through
re-sampling

Under Sampling-j"
Random J.I n

# examples of - G
# examples of +

25




Data Balancing through
re-sampling

Under Sampling-.r"
f +
Focused ,

# examples of - I
#examplesof + 7]

26




Data Balancing through
re-sampling

Cost Modifying

# examples of - EEETTETTTETEEETEE
# examples of +

27




Data Balancing through
re-sampling

Under-sampling: Tomek Links

*To remove both nclj'ise and _ -
borderline examplers of the majority S

class : L
*Tomek link :

—Ei, E; belong to different classes, d (E,
E) is the distance between them.

—A (Ei, E)) pair is called a Tomek link if o
there is no example E,, such that d(E,
E|) < d(Ei, Ej) or d(Ej, EI) < d(Ei, Ej) " + +




Data Balancing through
re-sampling

Under-sampling: US-CNN

*To remove both noise and borderline
examples !

*Algorithm: \
| training set

Let E be the origin
Let E’ contains aII;Eositive examples

from S and one randomly selected
negative example

Classify E with the 1-NN rule using
the examples in E’

*Move all misclassified example
fromEto E’

29




Data Balancing through
re-sampling
Under-sampling: (OSS, CNN+TL, NCL)

5 . *NCL
: . |
*One-sided selection i To remove majority class examples
—~Tomek links + CNN i Different from OSS, emphasize more
: ; data cleaning than data reduction
*CNN + Tomek |InkS!' Algorithm:

—Proposed by the author — Find three nearest neighbors for each

T : . example Ei in the training set
~Finding Tomek tinks is — If E belongs to majority class, & the

computationally demanding, it three nearest neighbors classify it to

would be computationally cheaper be minority class, then remove E

if it was performed on a reduced — If Ei belongs to minority ciass, and the
three nearest neighbors classify it to

data set. be majority class, then remove the

three nearest neighbors

30




Introduction to Imbalanced
Datasets

Learning in non-Balanced domains.

Data balancing through resampling.
i

State-of-the-art élgorithm: SMOTE.

31




State-of-the-art algorithm: SMOTE.

Over-sampling method:

*To form new minarity class examples by interpolating between
several minority class examples that lie together.

in "“feature spac@" rather than ""data space”

*Algorithm: For ejach minority class example, introduce
synthetic examples along the line segments joining any/all of
the k minority_class nearest neighbors.

*Note: Depending upon the amount of over-sampling required,
neighbors from the A nearest neighbors are randomly chosen.

*For example: if we are using 5 nearest neighbors, if the
amount of over-sampling needed is 200%, only two neighbors
from the five nearest neighbors are chosen and one sample is
generated in the direction of each.

32




State-of-the-art algorithm: SMOTE.

Smote: Synthetic Minority
Over-sampling Technique |

0 Synthetic sampleslare
generated in the following
way': |

> Take the diffefence
between the feature
vector (sample) under
consideration and its
nearest neighbor.

»  Multiply this difference
by arandom number
between O and 1

» Add it to the feature
vector under
consideration.

Consider a sample (6,4) and let (4,3) be its
nearest neighbor.

(6,4) is the sample for which k-nearest
neighbors are being identified

(4,3) is one of its k-nearest neighbors.

Let:

fl1=61f21=4f21-fL 1=-2

fl 2=4f22=3f22-f1 2=-1

Thao now camnlac wri
I11IT 1ICTVV Oalllplco \'AA |

(f1',f2) = (6,4) + rand(0-1) * (-2,-1)

rand(0-1) generates a random number
between 0 and 1.




State-of-the-art algorithm: SMOTE.

N.V. Chawla, K.W. Bowyer, L.O. Hall, ‘
W.P. Kegelmeyer. SMOTE: synthetic
minority over-sampling technique.
Journal of Artificial Intelllgence |
Research 16 (2002) 321- 357

.. But what if there
IS @ majority sample

Nearby’>

/\

O : Majority sample

‘ . Minority sample
@ : Synthetic sample

34




Overgeneralization!!!

‘ . Minority sample © : Synthetic sample
‘ . Majority sample

35




d

Smote + Tomek links

Problem with Smote: might introduce the
artificial minority class examples too
deeply in th§ majority class space.

: .
Tomek links: data cleaning

o Instead of removing only the majority class

examples that form Tomek links, examples
from both classes are removed




SMOTE.

(d)
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State-of-the-art algorithm

TomekLinks
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State-of-the-art algorithm: SMOTE.

SMOTE + ENN:

ENN removesjany example whose class
label differs from the class of at least two of
its three nearest neighbors.

ENN removemore examples than the
Tomek links does

ENN remove examples from both classes

38




State-of-the-art algorithm: SMOTE.

Table 6: Performance ranking for original and balanced data sets for pruned decision trees,

Dataset  |I p° B° e E° G R° 0° 10° g

Pima Smt RdOvr  Smt+TmkSmt+ENN [Tmk NCL RdUdr CNN+4+Tmk [CNN* 0s5S5*
(zerman RdOvr  Smt+TmkSmt+ENNSmt HdUdr [CNN  JCNN4 TmkHOS5 Tmk* NCL*
Post-operativeRdOvr  Smt+ENNSmt ‘NN RdUdr [CNN4+Tmk |0SS* Smt4+Tmk*
Haberman — Smt+ENNSmt+Tmk Smt RdOvr  NCL RdUdr [Tmk

Splice-ie RdOvr mk Smt CNN NCL  Smt+Tmk

Splice-ei Smt smt+TmkSmt+ENNCNN4+TmkOSS RdOvr

Vehicle RdOvr  Smt sSmt4+TmkOss CNN smt-+ENN* [Rdlldr
Letter-vowel Smt+ENNSmt+Tmk Smt RdOvr  [Tmk* CNN+TmkHRAUdr? 055t
New-thyroid Smt+ENNSmt+TmkSmt RdOvr  [RdUdr CNN+Tmk [NCL 088
E.Coli Smt+Tmk Smt Smt+ENNRdOvr  [NCL Tmk WS CNN4TmkHCNN*
Satimage Smt+ENNSmt Smt+TmkRdOvr  [NCL CNN+Tmk*RAUdr? CNN*
Flag RdOvr Smt-|—ENNSmt-|—ka|CNN-|—kaSmt Tmk* m
(zlass Smt+ENNRdAOvr C Smt Smt+Tm ' CNN4TmkHOsk

Letter-a Smt+TmkSmt+ENNSmt RdOvr 0SS mk CNN+TmkNCL CNN RdUdr*
Nursery RdOvr W-N{.‘-L CNN* Smi+Tmk* Smt* CNN4+Tmk* Smt+ENN* RdUdr*

G.E.A.P.A. Batista, R.C. Prati, M.C. Monard. A study of the behavior of several methods for

balancing machine learning training data. SIGKDD Explorations 6:1 (2004) 20-29
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State-of-the-art algorithm: SMOTE.

Adaptive Synthetic
Minority Oversamplir}g
Method (ASMO) | ‘
.!-
-:r'
- Clustering
‘ -2-class sample
generation

. Minority sample
. Majority sample @ : Synthetic sample




State-of-the-art algorithm: SMOTE.

Borderline-SMOTE: Genera ejemplos sintéticos entre ejemplos
minoritarios y cercanos a los bordes.

=0 1.0
0.5 0.6 T, Ny Ty
0] 0.5 1

041 : +

0.44

02| RNR C T L% 0.2] gk "

L B e 0.0

Fig. 1. (a) The original distribution of Circle data set. (b) The borderline minority examples
{solid squares). (c) The borderiine synthetic minority examples (fioliow squares).

H. Han, W. Wang, B. Mao. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data
Sets Learning. In: ICIC 2005. LNCS 3644 (2005) 878-887.
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Some Advanced Topics I: Classification with
Imbalanced Data Sets

Outline

Introduction to ImFaIanced Data Sets

Some results on the use of evolutionary prototype selection
for imbalanced dgta sets

Class imbalance ‘related topics:
Cost-Sensitive Learning and anomaly detection

Concluding Remarks
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Some results on the use of
evolutionary prototype selection for
Imbalanced data sets

Evolutionary Under-Sampling

.f.
Experimental Framework and Results

Conclusions and Future Work

Source: Garcia S, Herrera F (2008) Evolutionary Under-Sampling for
Classification with Imbalanced Data Sets: Proposals and Taxonomy.
Evolutionary Computation. In press.
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Some results on the use of

evolutionary prototype selection for

Imbalanced data sets

Evolutionary Under-Sampling

Experimental Framework and Results
:

Conclusions and Future Work
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Evolutionary Under-Sampling

Motivation: Evolutionary algorithms/genetic
algorithms for instance selection (prototype
selection and traihing sets selection)

|
O0/1(1{1|/0{0]12/0]0]|1

Representation:_f.i

Selected pattern for classifying
With 1-NN

Eliminated pattern

Evolutionary algorithms are good global search methods
45




Evolutionary Under-Sampling

Motivation: Evolutionary algorithms/genetic algorithms for instance

selection (prototype selection and training sets selection)

Previous results: |‘

a.

1
J.R. Cano, F. Herrera, M. Lozano, Using Evolutionary Algorithms as Instance Selection for Data Reduction in

KDD: An Experimental Study. IEEEII?I'rans. on Evolutionary Computation 7:6 (2003) 561-575, doi:
10.1109/TEVC.2003.819265

J.R. Cano, F. Herrera, M. Lozano, Stratification for Scaling Up Evolutionary Prototype Selection. Pattern
Recognition Letters, 26, (2005), 953-963, doi: 10.1016/|.patrec.2004.09.043
!

J.R. Cano, F. Herrera, M. Lozano, On the Combination of Evolutionary Algorithms and Stratified Strategies for
Training Set Selection in Data Mining. Applied Soft Computing 6 (2006) 323-332, doi:
10.1016/j.a50¢.2005.02.006

J.R. Cano, F. Herrera, M. Lozano, Evolutionary Stratified Training Set Selection for Extracting Classification
Rules with Trade-off Precision-Interpretability. Data and Knowledge Engineering 60 (2007) 90-108,
doi:10.1016/|.datak.2006.01.008

S. Garcia, J.R. Cano, F. Herrera, A Memetic Algorithm for Evolutionary Prototype Selection: A Scaling Up
Approach. Pattern Recognition 41:8 (2008) 2693-2709, doi:10.1016/].patcog.2008.02.006

J.R. Cano, F. Herrera, M. Lozano, S. Garcia, Making CN2-SD Subgroup Discovery Algorithm scalable to Large
Size Data Sets using Instance Selection. Expert Systems with Applications, doi:10.1016/j.eswa.2007.08.083, in
press (2008) 46




What Is a genetic algorithm?

Genetic algorithms

They are optirﬁ]izati'on algorithms,
search f '

and learning 3

inspired in the process of

THE ORIGIN OF SPECIES

NlA
INCL

Genetic Evolution

trivral AnAd
tuil Al alillu
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CROSSOVER is the fundamental mechanism of genetic rear Chromusomes line up and then swan the partions of their ge-
rangement for both real organisms and genetic algorithms.  netic code beyvond the crossover point.
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Representation Crossover
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POPULATION Fitness function
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Evolutionary Under-Sampling

Evolutionary algorithm for re-sampling:

~ |ol1j1j1|o0|0|1|0O
Representation:.

O

i
Base I\/Iethod:.f.iCHC <

Models:

- EBUS: Aim for an optimal balancing of data without
loss of effectiveness in classification accuracy

- EUSCM: Aim for an optimai power of ciassification
without taking into account the balancing of data,
considering the latter as a subobjective that may be an

implicit process.

It introduces different
features to obtain a
trade-off between
exploration and
exploitation; such as
incest prevention,
reinitialization of the
search process when it
becomes blocked and
the competition among
parents and offspring
into the replacement
process

49




Evolutionary Under-Sampling

Type of Selection:

- GS: Global Selection, theselection scheme proceeds over any kind of
instance.

- MS: Majority Selgction, the selection scheme only proceeds over
majority class instances.

. J
Evaluation Measures:

- GM: Geometric Mean
- AUC: Area under ROC Curve

50




Evolutionary Under-Sampling

Taxonomy:

— |

Evolutionary
Under-Sampling

k.

Evolutionary Balancing
Under-Sampling

h

Evolutionary Under-
Sampling guided for
Classification Measures

y \

Global Selection

Majonty Selection

Global Selection

Majority Selection

51




Evolutionary Under-Sampling

Fitness function in EBUS model:

AUC 1 =221 P ifn= >0
AUC — P ifn= =0

g—1 -2 P ifn” >0

Fitnessg,l(S) =
g— P itn™ =10

Fitnesspq(S) = {

P: is a penalizati?'n factor that controls the intensity
and Importance of the balance during the
evolutionary search.

P =0.2 works appropriately.
Fithess function in EUSCM model:

Fitness(S) = g, Flitness(S) = AUC,

52




Some results on the use of

evolutionary prototype selection for

Imbalanced data sets

Evolutionary Under-Sampling

Experimental Framework and Results
:

Conclusions and Future Work

53




Experimental Framework and
Results

Algorithms used in the comparison:

Prototype Selection:

Under-Sampling based
on clustering

IB3 DROP3 EPS-CHC EPS-IGA
|

Undersampling:

Random Under-Samplig TomekLinks (TL)

CNN OSS CNN+TL NCL

CPM SBC| <

54




Experimental Framework and
Results

Data sets:

Data sel | #Examples | #Atlribules | Class (min., maj.} [ ?aClassimin.maj. IR
CGlassBWNFEP 214 Q (build-window-non_float-proc, (25.51, a64.49) 1.82
remainder)
EcoliCP-1M 220 7 (im,cpr) (25.00, 65.00) 1.86
| R - Fima ) 8 (1,0) (34.77, 6G6.23) 1.9
- SlassBWFEFDP 214 9 {build-window- float- proc, (32.71, &F.29) 2.06
remainder)
. Cerman 1000 20 (1, 0) (30,00, 70,00 2.33
Imbalance ratio: Haberman 306 3 (Dhe, Survive) (26,47, 73.53) 68
Splice-ie 3176 =] (ie, remainder) (24.09, 75.91) 315
. Splice-ei 3176 &0 (ei,remainder) (23,99, 76.01) 317
Number negative GlassNW 214 9 non-windows glass, remainder) (23.93, 76.17) 319
WVehicle WA TN 546 18 (van, remainder) (23.52, Vo.458) 325
examples / . EcolilMh EET) 7 (im, remainder) (22,92, 77.08) 336
Numbel’ pOSItlve MNew -thy roid 215 5 (hypo.remainder) (16.25, 83.72) 4,92
Segmentl 2310 1 (1, remainder) (14.29, 8571} G, 00
examples EcolilbhLr 336 i {(iWILI, remainder) (10,42, 59.58) 819
Optdigits0 5564 >4 (0, remainder) (9.90, 90.10) 9.10
Satimage4 5435 35 (4, remainder) (973, 90.27) Q.28
WVonwell Qo0 13 (0, remainder) (9.01, 90.99) 10.1
GlassWVWEL 214 ] (Ve—win-float-proc, remainder) (.94, 92.06) 1039
EcalitOM 336 7 {om, remainder) (674, 93.2/) 13.54
CGlassContainers 214 9 (containers, remaincler) (0.07, 93.93) 15.47
Abaloneo-18 731 9 {15, 9) (575, 94.25) 1668
GlassTableware 214 9 (tableware, remainder) (4.2, 95.8) 22.51
YeastCY T-POX 453 5 (POX, CYT) (4.14, 95.86) 23.15
YeastMEZ 1454 5 (MEZ2, remainder) (3.43, 96.57) 28.41
YeastMEL 1454 5 (ME]L, remainder) (2.98, 97.04) 3278
YeastEXC 1454 5 (EXC, remainder) (2.49, 97.51) 3916
Car 1728 [ {good, remainder) (299, 95.01) 71.94
Abalonel19 4177 =] {19, remainder) (077, 99.23) 128.87
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Experimental Framework and
Results

Part |. classical prototype selection as imbalanced
undersampling

|

Holm's Test

Friedman Rankings

——————————

55555555

Classical prototype selection is not recommendable for tackllng
mhalanmA~and AAata cAte 1 NINl wvannthh Aty RramrAan~nAacocinA A th A
||||ua|a||bcu Udlad oClLo. L-ININ VVILIIUUI. pICpIUbCDDIIIg UCIIaVCD Lic

best.
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Experimental Framework and

Results

Part |l: comparison among the eight proposals of
Evolutionary Underil-SampIing

Friedman Rankings

Ocw
dauc

Friedman Rankings
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Experimental Framework and
Results

Part Il: Comparison among the eight proposals of
Evolutionary Under-Sampling

j'

IR <9: .
- EUSCM behaves hgtter than EBUS (P factor has little interest)
- Little differences Hetween GM and AUC.

IR > O:

- GS mechanism has no sense due to the high imbalance ratio. MS
IS preferable.
- P factor is ver

\/ 11
y u

(./)

eful in this case. EBUS o erforms EUSCM

tho
O S A
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Experimental Framework and
Results

Part lll: comparison with other under-sampling approaches

Holm's procedure

0.1 -
0.09 -
0.08
0.07 -
0.08 -
0.05 - -=—-

p-value

0.04 1 1
0.03 J 1

L L y— e _I-- - -!
0.01 - ==

—— i - w T T

—Fmmm——mmm—- ARATi] i 1 0002 054 D.112 537 §oicks
T

Control Algorithm: EBUS-WM5-GNM

Considering all data sets
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Experimental Framework and
Results

Part |11 Comparison with other under-sampling approaches

)

Holm's Procedure o ”-'I‘h -
a :_'| :_'| ........

0.1 -

0.09 -
0.08 -
0.07
0.08 -
0.05 4 — .

p-value

0.04 -
0.03
0.02 1

0.01 4
1)

Ohh RS EBLS-PS-GE0 'L

Control Algorithm: NCL

Considering data sets with IR <9
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Experimental Framework and
Results

Part |11 Comparison with other under-sampling approaches

j
1

Holm's Procedure a th

0.1
0.0

0.08 1
0.07
0.08 -
0.05 4 - - -

1
0.04 4 1
0.03 I :
0.02 | !_
---------- r Tt T ===
0.01 +
U i R UL B 0.0232 04028
0 S I T ,
L : RS

Control Algorithm: EBUS-IWI5-GM

p-value

Considering data sets with IR > 9
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Experimental Framework and
Results

Part |11 Comparison with other under-sampling approaches

EUS models usually preserit an equal or better performance than

the remaining methqds, independently of the degree of imbalance of
data. \f

The best performin “ under-sampling model over imbalance data
sets iIs EBUS-MSGN

The tendency of the EUS models follows an improving of the
behaviour in classification when the data turns to a high degree of
Imbalance.
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Some results on the use of

evolutionary prototype selection for

Imbalanced data sets

Evolutionary Under-Sampling

Experimental Framework and Results
:

Conclusions and Future Work
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Some results on the use of
evolutionary prototype selection for
Imbalanced data sets

Conclusiqns and Future Work

Prototype Selectioﬁs methods are not useful when handling
Imbalanced problems.

Evolutionary undé[r-sampling Is an effective model in instance-
based learning. !

Majority selection mechanism obtains more accurate subsets of
Instances, but™presents a lower reduction rate.

No difference between GM and AUC (different evaluation
measures) is observed

B e et Wl I e S N e B e e B W e wom B

For dealing with low imbalance rates, EUSCM model is the best
choice

For dealing with high imbalance rates, EBUS model is the best.
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Some results on the use of
evolutionary prototype selection for
Imbalanced data sets

FUTURE WORK

Use of evolutionar'y under-sampling in training set selection,
in order to optimize the performance of other classification
algorithms. !

Study the scatability of these models in very large data sets.

y 1
over-sampling approaches.
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Class imbalance related topics:
Cost-Sensitive Learning and anomaly detection

Concluding Remarks
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Class Imbalance related topics

Class Imbalance vs. Asymmetric Misclassification costs
|' :

Class Imbalance: one class occurs:much more often than the other

Asymmetric misclas.'s[ification costs: the cost of misclassifying an
example from one class is much larger than the cost of
misclassifying an example from the other class.

One way to correct for imbalance: train a cost sensitive
classifier with the misclassification cost of the minority class
greater than that of the majority class.

One way to make an algorithm cost sensitive: intentionally
Imbalance the training set.




Class Imbalance related topics

Cost-sensitive

o Traditionally assumed a cost matrix of the form:

| True = 0 True = 1
Predict = 0 .'f C(0,0) C(0,1)
Predict =1 C(1,0) C(1,1)
o cost that depends on particular example X
Predict = 0 C(0,0,x) C(0,1,%)

Predict = 1 C(1,0,%) C(1,1,%)




Class Imbalance related topics

Making Classifiers Cost-sensitive
[ .
o A solution would be to have a procedure that
converted a broad variety of classifiers into cost-

sensitive ones ’.i.

o Stratification: change the frequency of classes in the
training data in proportion to their cost
o distort the distribution of examples

o If itis done by under-sampling, it reduces the data available for
learning.

o Ifitis done by over-sampling, it increase learning time
o Cost modifying




Class Imbalance related topics

Weigf.hting versus Sampling

Two weighting
i
a Up—weightingﬂ“, analogous to over-sampling,
Increases thie weight of one of the classes
keeping the weight of the other class at one

o Down-weighting, analogous to under-sampling,
decreases the weight of one of the classes
keeping the weight of the other class at one




Class Imbalance related topics

Anomaly detection/outlier detection

The problem of det:ecting anomalies (irregularities that cannot
be explained by sir'mple domain models and knowledge) in
data. '

!

Much of the existing work focuses on detecting outliers solely
for the purpose of removing them from the analysis to
prevent them from unduly affecting the data mining process
Instead of treating them as interesting phenomena in their

nwhn rinht
OWil 1iyrit.

Outlier detection and anomaly detection can be managed as
classification of imbalanced data sets.




Learning in non-balanced domains

Anomaly detection/outlier detection/rare cases/small disjunts

: 3
| - )
Facet-wise analysis

of the problems

J

! o Conditions to obtain classifiers that represent
‘ starved niches

o Take-over time of starved niches

T. Jo, N. Japkowicz. Class imbalances versus small disjuncts. SIGKDD Explorations
6:1 (2004) 40-49
CONCLUSIONS: Methods that deal with class imbalancesand small

disjuncts simultaneously, cluster-based oversampling, is shown to
outperform all the class imbalance geared methods used in the study.
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Classification with
Imbalanced data sets

Final Comments

Other studies with imbalanced data
. | .
sets in the research group SCI-S.
a Analysis of the use of fugzy rule based classification systems (FRBCSs) for
iImbalanced data sets. !

Fernandez, S. Garcia, M.J. del Jesus, F. Herrera, A Study of the Behaviour of Linguistic Fuzzy
Rule Based Classification Systems in the Framework of Imbalanced Data Sets. Fuzzy Sets and
Systems (2008). doi: 10.1016/j.fss.2007.12.023

0 To develop new learning algorithms for FRBCSs for imbalanced data sets.

o To analyze the data in terms of data complexity in order to guide EUS [

Data Complexity

to a better selection of instances and obtain generalized subsets. inPatte

Recognition




Classification with
Imbalanced data sets

Final Comments

Resampling is a good approach for managing imbalanced data sets and it is
under evolution:

The following is an interesting paper analysing the balance for resampling.

Chawla NV, Cieslak D4, Hall LO, Joshi A (2008) Automatically countering
iImbalance and its empirical relationship to cost. Data Mining and Knowledge
Discovery, in press. ;

Cost-proportionate weighted sampling allow us to solve cost-sensitive
learning, and hence learning from imbalanced dataset. It is necessary to
manage algorithms for learning with weights. See the recent contibution

Y. Sun, M.S. Kamel, A.K.C. Wong, Y. Wang. Cost-sensitive boosting for
classification of imbalanced data. Pattern Recognition 40:12 (2007) 3358-3378

Imbalanced data sets and related areas (cost-sensitive learning, anomaly
detection, outlier detection) are important topics from the practical point
of view in Data Mining, and they are important problems in Data Mining
for the next years.
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Classification with
Imbalanced data sets

Final Comments

A list of bibliography in the topic can be found in the link:
I -

http://sci2s.ugr.es/keel/specific.php?area=43

The following recent publications are two examples of the application in
the field of medlcme.gan important area where we find imbalanced
data sets. v

o B. Lerner, J. Yeshaya,l.. Koushnir. On the classification of a small imbalanced cytogenetic
image database. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4:2
(2007) 204-215

o Maciej A. Mazurowski, Piotr A. Habas, Jacek M. Zurada, Joseph Y. Lo, Jay A. Baker,
Georgia D. Tourassi. Training neural network ciassifiers for medical decision making: The
effects of imbalanced datasets on classification performance. Neural Networks Volume
21, Issue 2-3 (March, 2008) Pages 427-436
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Data Mining

VIENTIFY DI Data Mlnlng and Soft Computing

Summary

1. Introduction to Data Mining and Knowledge Discovery

2. Data Preparation GE

3. Introduction to Prediction, Classification, Clustering and Association

4. Data Mining - From the Top 10 Algorithms to the New Challenges

5. Introduction to Soft Cgmputing. Focusing our attention in Fuzzy Logic
and Evolutionary Computation

6. Soft Computing Techniques in Data Mining: Fuzzy Data Mining and
Knowledge Extraction based on Evolutionary Learning

7. Genetic Fuzzy Systems: State of the Art and New Trends

8. Some Advanced Topics I: Classification with Imbalanced Data Sets

9. Some Advanced Topics Il: Subgroup Discovery

10.Some advanced Topics lll: Data Complexity

11.Final talk: How must | Do my Experimental Study? Design of
Experiments in Data Mining/Computational Intelligence. Using Non-
parametric Tests. Some Cases of Study.




