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Data Mining

Data Mining and Soft Computing
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Summary

Introduction to Data Mining and Knowledge Discovery

Data Preparation

Introduction to Prediction, Classification, Clustering and Association

Data Mining - From the Top 10 Algorithms to the New Challenges

Introduction to Soft Computing. Focusing our attention in Fuzzy Logic

and Evolutionary Computation

6. Soft Computing Techniques in Data Mining: Fuzzy Data Mining and
Knowledge Extraction based on Evolutionary Learning

7. Genetic Fuzzy Systems: State of the Art and New Trends

8. Some Advanced Topics I: Classification with Imbalanced Data Sets

9. Some Advanced Topics Il: Subgroup Discovery

10.Some advanced Topics Illl: Data Complexity

11.Final talk: How must | Do my Experimental Study? Design of

Experiments in Data Mining/Computational Intelligence. Using Non-

parametric Tests. Some Cases of Study.
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Soft Computing Techniques in Data Mining:
Fuzzy Data Mining and Knowledge Extraction
based on Evolutionary Learning
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Outline

v’ Introduction: Soft Computing Techniques in Data Mining
v'Fuzzy Data Mining

v'Evolutionary Data Mining

v'Concluding Remarks




Soft Computing Techniques in Data Mining:
Fuzzy Data Mining and Knowledge Extraction
based on Evolutionary Learning

Outline

v’ Introduction: Soft Computing Techniques in Data Mining

v'Fuzzy Data Mining

v'Evolutionary Data Mining

v'Concluding Remarks




Soft Computing

_ Functional
Approximate Approximation/
Reasoning Randomized
Search
Pmbahililtic Multivalued & Neural Evolutionary
Models Fuzzy Logics Networks Algorithms

Knowledge

Patterns

Data Mining

Processed
data

I

terpretation
Evaluation

Selection




Role of Fuzzy Sets

— Modeling of imprecise/qualitative
knowledge

—Transmission and handling uncertainties
at various stages

— Supporting, to an extent, human type
reasoning in natural form
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Fuzzy Sets in Data Mining

e Classification/Regression/ Clustering

e Discovering association rules (describing
interesting association relationship among
different attributes)

e Data summarization/condensation
(abstracting the essence from a large
amount of information).




Role of ANN

e Adaptivity, robustness, parallelism,
optimality

 Machinery for learning and curve fitting
(Learns from examples)

» Initially, thought to be unsuitable for — black
box nature — no information available in
symbolic form (suitable for human
interpretation)

» Recently, embedded knowledge is extracted
in the form of symbolic rules =) making it
suitable for Rule generation.




ANNs provide Natural Classifiers/prediction
based models having

 Resistance to Noise,

e Tolerance to Distorted Patterns /Images
(Ability to Generalize)

o Superior Ability to Recognize Overlapping
Pattern Classes or Classes with Highly
Nonlinear Boundaries or Partially Occluded
or Degraded Images

e Potential for Parallel Processing

e Non parametric




Role of Genetic Algorithms

*** Robust, parallel, adaptive search methods —
suitable when the search space is large.

**GAs : Efficient, Adaptive and robust Search
Processes, Producing near optimal solutions and
have a large amount of Implicit Parallelism

**GAs are Appropriate and Natural Choice for
problems which need — Optimizing Computation

Requirements, and Robust, Fast and Close

Approximate Solutions




GAs in Data Mining

Many tasks involved in analyzing/identifying a
pattern need Appropriate Parameter Selection

and Efficient Search in complex spaces to obtain
Optimal Solutions




Why Soft Computing in Data
Mining?

Relevance of FL, ANN, GAs Individually to
Data Mining problems is established.

The hybrid methods provide a more power
tool for data mining incorporating
representation, learning and optimization
features in the data mining model.




Soft Computing Techniques in Data Mining:
Fuzzy Data Mining and Knowledge Extraction
based on Evolutionary Learning
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Outline

v’ Introduction: Soft Computing Techniques in Data Mining
v'Fuzzy Data Mining

v'Evolutionary Data Mining

v'Concluding Remarks
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Relevance of Fuzzy Sets in DM

 Representing linguistically phrased input
features for processing

e Representing multi-class membership of
ambiguous patterns

e Generating rules & inferences in linguistic
form

e Extracting ill-defined image regions, primitives,

plUpElLlEb dHU UEbL[IUIHg [EIdLIUHb dIHUHg
them as fuzzy subsets




Fuzzy Data Mining

A

 Fuzzy set theory found in almost every -‘

area of data mining
* Fuzzy representation very appropriate
— Humans perceive a great deal of uncertainty

e One approach:
— Partition data into categories to create fuzzy grids

FUZZIFYING DATA DOES NOT SEEM
TO MAKE LESS ACCURATE




Data Mining Use of Fuzzy Sets

e Fuzzy Rule Based Systems
— Regression
— Pattern Classification

e Fuzzy Clustering

 Fuzzy Association Rules




Fuzzy rule based systems

Fuzzy inference systems

based on

— Fuzzy set theory

— Fuzzy-if-then rules
— Fuzzy reasoning
Application

— Automatic control
— Data classification
— Decision analysis
— Expert systems

— Time series prediction
— Robotics

— Pattern recognition

Fuzzy inference system is
known as

Fuzzy-rule-based system
Fuzzy expert system

Fuzzy model

Fuzzy associative memory
Fuzzy logic controller
Fuzzy system

Components
— Arule base

Database (dictionary)

— A reasoning mechanism




Fuzzy rule based systems:
Regression
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Figure 4.1. Block diagram for a fuzzy inference system.




Linguistic variables

L. Variable = Age
terms, fuzzy sets : { young, middle aged, old}
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Fuzzy rules

Commonsense knowledge may sometimes be
captured in an natural way using fuzzy rules.

T E G IS T ah-ana X-1sSsao0o0a—

What does it mean for fuzzy rules:
IF xisAthenyis B ?
Fuzzy implications provide us the meaning of the rule




Mamdani Fuzzy Model
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A two-rule Mamdani fuzzy inference system )
Derive the overall output z when

subjected to two crisp inputs x and y
T-norm operator: Min A

T-conorm operator: Max ; 7




Example: Rules base

Heating Temperature
Price freezing cold chilly
cheap full full medium
SO-SO full medium weak
expensive medium weak no

IF Temperatura=chilly and Heating-price=expensive THEN heating=no

IF Temperature=freezing and Heating-price=cheap THEN heating=full




1. Fuzzification

Fuzzification: from measured values to MF:
Determine membership degrees for all fuzzy sets (linguistic variables):

Temperature: T=15 C Heating-price: p=48 Euro/MBtu
lvlchilly(-l-)zo'5 1 Mcheap(p)zo-3
0-5 0.3
0 \ £ 0
48 Euro/MBtu P

15C

IF Temperature = chilly and Heating-price = cheap...




2. Matching degree

Calculate the degree of rule fulfillment for all conditions
combining terms using fuzzy AND, ex. MIN operator.

I lvlchilly(-l-)=0'5 Mcheap(p)=0-3

1.
0.5+ 0.3
0- t: 0 >
15 C 48 Euro/MBtu P
IF Temperature=chilly and Heat-price=cheap...

HA(X) = a1 (X1) A pax(X5) A pan(Xy) for rules R,
Han(X) = mMin{peping (t), Hepeap(P); = Min{0.5,0.3} = 0.3




3. Inference

Calculate the degree of truth of rule conclusion: use T-norms such as MIN or
product to combine the degree of fulfillment of conditions and the MF of
conclusion.

1 Hfull(h) “conclusions(h)
Heong=0.3 Inferenc_e MIN
0 Mconcl=mm{“condl ufull}

THEN Heating=full

Hmocno(h) “konkl(h)

... Meong =0.3 Inference
0 Heoncl. = Mcond @ Htull




4. Aggregation

Aggregate all possible rule conclusion using MAX operator to calculate the sum.

THEN Heating=full
THEN Heating =medium
THEN Heating =no




5. Defuzzification

Calculate crisp value/decision using for example the
“Center of Gravity” (COG) method:

1 Mconcl(h) COG

/73
For discrete sets a ,center of singletons”, for continuous:

i; = degree of membership in i
H = Zi pi®AieC A, = area under MF for the set i
- oA G =

. = center of gravity for the set 1.




Defuzzification

* To extract a crisp value from a fuzzy set as a
representative value.

e Five methods for defuzzifying a fuzzy set A of a

universe of discourse Z.

— Centroid of area z,,,

— Bisector of area z3,,

— Mean of maximum z,,,

— Smallest of maximum z.,,,(not used so often)

1vi

— Largest of maximum z,,,(not used so often)




Fuzzy approximation

= Fuzzy systems F: SR" — R° use m rules to map
vector x on the output F(x), vector or scalar.

Singleton model: R;: IF xis A, Thenyis b,




Sugeno Fuzzy Models

e TSK fuzzy models
— Proposed by Takagi, Sugeno and Kang(1985, 1988)
— if x is A and y is B then z=f(x,y),

e A,B are fuzzy sets in the antecedent, while z=f(x,y) is a crisp
function in consequence

e f(x,y) is usually a polynomial.
— A first-order Sugeno fuzzy model

e f(x,y) is a first-order polynomial.

— A zero-order Sugeno fuzzy model
e f(x,y) is a constant.
e A special case of the Mamdani fuzzy inference system




First-order TS FIS

* Rules
IF Xis A,and Y isB,thenZ=p* + qg,*y +r,
IF Xis A,and Y is B,then Z =p,*x + g,*y + 1,

e Fuzzy inference

Z1 =
W1 P.*X+0,*y+r,

Z, =
VVZ pz*x+ qz*y_l_ r2

W, *z,+W,*z,

W,+W,




Feature space partition

Regular grid

Independent functions




MFs on a grid

Advantage: simplest approach

Regular grid: divide each dimension in a fixed number of MFs
and assign an average value from all samples that belong to
the region.

Irregular grid: find largest error, divide the grid there in two
parts adding new MF.

Mixed method: start from regular grid, adapt parameters
later.

(3

sadvanta

aces: for k dimension
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Poor quality of approximation.




Optimized MFs

Advantages: higher accuracy, better approximation, less
functions, context dependent MPs.

Optimized MP may come from:

Neurofuzzy systems — equivalent to RBF network with
Gaussian functions (several proofs).

FSM models with triangular or trapezoidal functions.
Modified MLP networks with bicentral functions, etc.

Genetic fuzzy systems
Fuzzy machine learning inductive systems.

Disadvantages: extraction of rules is hard, optimized
MFs are more difficult to create.




Induction of fuzzy rules

Choices/adaptive parameters in fuzzy rules:

e The number of rules (nodes).

* The number of terms for each attribute.

e Position of the membership function (MF).

e MF shape for each attribute/term.

 Type of rules (conclusions).

e Type of inference and composition operators.

* |Induction algorithms: incremental or refinement.
e Type of learning procedure.




Fuzzy rule based classification
systems

Fuzzy Rules for n-dimensional Problems

Ifx, 1IsA;and ... and x_ IS A,
then Class C with CF

A, Antecedent fuzzy set
Class C: Consequent class

CF: Rule weight (Certainty factor or others)

35




Fuzzy rule based classification systems

Antecedent Fuzzy Sets (Multiple Partitions)

1.0 \ ‘/I 1.0
1 5
0 1.0

DC

>

1.0

3) 3)

A
SZ
/ 1.0
0.0
0.0
A
1.0 0.0
0.0
s* X mst C
ool N/ N/ N

1.0

ool NNV N N

ML™ AL

0.0

0.0 . " . 1.0,
Usually we do not know an appropriate fuzzy partition for each input variable.

Usually, authors use 5 or 7 labels.
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Fuzzy rule based classification systems

Possible Fuzzy Rules

Total number of possible fuzzy rules
Selection/Learning method

>
XX
XXX

PN

Don’t care

Don’t care

Xn

. x(14+1)=(15)
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Fuzzy rule based classification systems

Consequent Class

The consequent class of each fuzzy rule is determined by compatible
training patterns (i.e., the dominant class In the corresponding fuzzy

subspac;(g).
@ Class 1
o Class 2

1T x, 1s small and x, Is large
X then Class 1 with 1.0

38




Fuzzy rule based classification systems

Rule Weight (Certainty Factor)

The rule weight CF of each fuzzy rule is calculated from compatible

training patterns. o Class 1 ® Class 1
o Class 2 © Class 2

\/

é |CF=1.0

A | (Maximum)




Fuzzy rule based classification systems

Rule Weight (Certainty Factor)

Ri: If xy is 4} and ... and xy is 4% then Y is C; with #,

where #* is the certainty degree of the classification in the class C, for a pattern
belonging to the fuzzy subspace delimited by the antecedent. This certainty
degree can be determined by the ratio

S_j.‘
Sk ? .
where, considering the matching degree as the compatibility degree between the
rule antecedent and the pattern feature values,
. S}" 1s the sum of the matching degrees for the class C; patterns belonging to
the fuzzy region delimited by the antecedent, and

* S*the sum of the matching degrees for all the patterns belonging to this Fuz-
zy subspace, regardless its associated class.

O. Corddn, M.J. del Jesus, F. Herrera, A Proposal on Reasoning Methods in Fuzzy Rule-Based
Classification Systems. International Journal of Approximate Reasoning Vol. 20 (1999), 21-45

40




Fuzzy rule based classification systems
Rule Weight

HA {:Xp) = H4y, {:-Tpl} Ceee A, {:Tpn) -

where u Agi () 1s the membership function of 4 .

Z A, (Xp) Confidence of the
3 X, €Class h
c(Ag = Class h) =—— - | fuzzy rule
2 HA, [:Kp)
p=1

The consequent class C, 1is specified by identitying
class with the maximum confidence:

c(Ay; = Class Cy) = max {c(Ay; = Class )} .
h=1.2....M

H.Ishibuchi, T.Yamamoto: Rule Weight Specification in Fuzzy Rule-Based Classification
Systems, IEEE Trans. on Fuzzy Systems, Vol.13, No.4, pp.428-435 (2005, Aug.).

2y §




Fuzzy rule based classification systems

Rule Weight
M
CFy=c(Ay = Class Cy ) - IEI c(A, = Class h).
1=
h=C,

H.Ishibuchi, T.Yamamoto: Rule Weight Specification in Fuzzy Rule-Based
Classification Systems, IEEE Trans. on Fuzzy Systems, Vol.13, No.4, pp.428-435 (2005,
Aug.).

OTHER MODELS:

-
ﬂlﬂﬁf\f\lﬁl ] VT AIAS ~ 'F e

E.G. Mansoori, M.J. Luighadn S.D. Katebi, /-\Wblgllui’ig functio
classification systems performance. Fuzzy Sets and Systems, 2007.
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Fuzzy rule based classification systems

Inference Process

Pattern: e=(ey, ..., en) and Rule Base {Ry, ..., R.}:

1. Matching degree with R;:
hi=T (ua1 (€1), pai2 (€2), ... pain (€n)) ; 1=1, ..., L

Usually Minimum t-norm

hi = Min (ual1 (1), paiz (€2), ... paln (€n))

or product t-norm
HA (Xp) = Hay (rpl} Ceee t HAg, {-an) -
where u Agi (+) 1s the membership function of 4, .

43




Fuzzy rule based classification systems

Inference Process

2. Association degree between the pattern and the classes Cj, j=1, ..., M:
bi=g(hy,) ; jJ=1,... M ; 1=1,..L

g = Min
g = Producto

3. Classification degree for each class: aggregation of the
associatin degreess for each class. Two classical modelos:
winning rule (Max of association degrees) and Sum based
voting model (adding the association degrees)

44




Fuzzy rule based classification systems

e C(lassification via the rule with maximun association degreee

pattern

45




Fuzzy rule based classification systems

e C(lassification via a voting model

pattern

[24] O. Cordon, M. J. del Jesus, and F. Herrera, A proposal on
reasoning methods in fuzzy rule-based classification systems,”
International Journal of Approximate Reasoning, vol. 20, no. 1.
January 1999, pp. 21-45.

[25] H. Ishibuchi, T. Nakashima, and T. Morisawa, “Voting in
fuzzy rule-based systems for pattern classification problems.”
Fuzzy Sets and Systems, vol. 103, no. 2, April 1999, pp. 223-
238.




Fuzzy rule based systems: Final
Comments

DM: Prediction and classification are fuzzy.

Loan Reject

Amnt

Simple Fuzzy

47




Introduction to Fuzzy Clustering

The aim of cluster analysis is to classify
objects based on similarities among them.

e Motivation:

—Why

—Why ©

O wWe neec

O wWe neec

clustering?

fuzzy clustering?




Why do we need clustering?

Hierarchical Partitional

(c) Eamonn Keogh, eamonn@cs.ucr.edu

49




Fuzzy Clustering

o With fuzzy sets, how could clustering be
performed to take into consideration:

— Overlapping of clusters, and

— To allow a record to belong to different clusters to
different degrees.

Fuzzy C-Means algorithm is the most
popular objective function based fuzzy

clustering method, it is also the
common base for most of the newly

developed objective function based
fuzzy clustering methods.




Why do we need Fuzzy Clustering?

The mean height value for cluster 2 (short) is 5’3" and
cluster 3 (medium) is 5’7”.

You are just over 5'5” and are classified "medium".

Fuzzy clustering: A membership value of each
observation to each cluster is determined.

User specifies a fuzzy MF.

A hnlah'l' of 5'5" may gl\ln vou

'\-,

mbe rchlp valiie nf

VAIVIWS Wi

0.4 to cluster 1, 0.4 to cluster 2 a d O. to cluster 3.
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Objective Function Based Fuzzy Clustering
Methods

* An objective function measures the overall
dissimilarity within clusters

By minimizing the objective function we can
obtain the optimal partition




Classical Clustering
Membership matrix M

data point k

\

- {1if lu, —cf <[u,—c
0 otherwise

cluster
centre i

cluster
centre j

‘2

distance




c-partition

All clusters C Clusters do
together fills the not overlap
whole universe
U
Y
L JC =V
i=1
CnNC,=@ 7foralli= |
A cluster ¢ s @cC U forall
and it isp Y 2<c<K There must be at
smaller than least 2 clusters in a c-
the whole partition and at most
ac manv ac the
n. eseU do iridilty ao \.II\—.
SR number of data points

K




Objective function

Minimise the total
sum of all distances

v

s<$3-5] Zu-ol’

=1 k,UkECi




Fuzzy membership matrix M

Point ks Fuzziness
membership of exponent
cluster i
R ) 1 /
Mh = 2/(q-1)
C d
Z —l Distance from point
j=1 djk k to current cluster
centre i

Distance from
oint k to other

o
%
||
-
5
|
O
O o

A ~ArmbaA -~

uster CeNtres j




Fuzzy membership matrix M

My = : 2D
\ dik
B 1
_(Ci”(jZ/(ql)+(cl“(]2/(q1)+m+(dikj2/(ql)
Oy dzi e Gravitation
g o e

_ ik
e 1 total
d, 2 g, 2 d 2 gravitation

1k




Fuzzy c-partition

All clusters C
together fill the z Y =
whole universe U. | “{';(' r) I v')‘f:‘ —
Remark: The sum E

for all points is K do overlap

of memberships
for a data point is I& Not valid:
1, and the total ¢ Clusters
LJc =U
=1

CnC,=0 foralli = |

A cluster C is @cC cU foralli
never empty

2] 2<c<K There must be at

and it is least 2 clusters in

smaller than a c-partition and

the whole at most as many
universe U

as the number of
data points K




Fuzzy c-Means

Dunn defined a fuzzy objective function:

C

V)= 23w v

=1 j=1

v; is cluster center of i set

Bezdek extended it to:

=l j=
|| IV / ||2 AAAAAAAA Fr A AArvriiakrAAn ~F Aadka varndla T A~
” k V||| |C|J|CDC||LD LIIC UCV|C|L|U|| O1T Gdtad Witn . 1ne

governs the influence of membership grades.

2|

u

1 A

A
(O Lwt

w
|

[’ ' |

I

]
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..Fuzzy C-Means

 The objective function of Fuzzy C-Means clustering
can be defined as following:

Jeem Z Z (/U.J )

=1 j=1

where (1) O<u; <1, j=1..n1=1..,C
(Z)Zu =1, j=L1..,n;

(3) 0<Zuij <n, i=1..,C
j=1

60




...Fuzzy C-Means

e The FCM algorithm can be summarized as following
steps:

1). Choose an initial partition membership matrix U°;
2). Set the stop condition as follows:

C

—t —t—1
Zl“’i“’j |< 2 (1)
J:

3). While not stop at condition (1) do
3-1). Compute reference vectors for each part family using

*Eq'.(Z) o o
V=)D (2)

61




..Fuzzy C-Means Clustering

3-2). Update the part membership matrix
according to (3)

[ vm-w [T )
Hij = c E—
_Z J'=1(1/Hai B VJ'H)_
3-3). Evaluate J.,(U,V) using (4). (4)

Jn (U VFZZ(“U) & -
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K-means vs. Fuzzy c-means

Sample Points




K-means vs. Fuzzy c-means
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Clustering: hard/fuzzy
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Fuzzy c-Means Clustering

Given c= # of groups

Input feature vectors

1 Clustered feature vectors
T T T OI T T T O T T 1_ -*- +
0ot o & & “ o 09t + * o "
© 82 o & * +FF H
06} R°% ° o o e . " i+ o+
: o oo Co ) g o8 08 B oo+ +
00 5552 " % &y con G T B
o o SR + + o+
oo oo tros ++
UEr o : 06+ N
o o o + + +
05t o o . 05 o *
o .
04 | (@] a 04+ .
& wd o & Cog, oLl
0319 2 “ op co® 1 U8 88 o
o 00 ° % q ° 5 £0° o O
G 2 o © 1]
021 of0 can © oo ¢ & o ST
o © P o ¢ % oifp <
o1p & @ @ o | L) S
o o a
o D 1 1 1 1 1 1 1 ]
0 ! ! ! ! ! ! ! ! ! 0 01 02 (03 04 05 06 07 08 09 1
0 01 0.2 0.3 0.4 0.5 0.6 07 0.8 09 1
tembership functions
1 . . . . : . . \W‘WVWW
05F- .
D 1 1 1 1
0 20 40 GO0 80 100 120 140 160 180 200
05¢- .
Membership Values 200
200

200




Example: Classify cracked tiles

Algorithm: hard c-means (HCM)

(also known as k means)




475Hz 557Hz Ok?

_——— S F———
0.958 0.003 Yes
1.043 0.001 Yes
1.907 0.003 Yes
0.780 0.002 Yes
0.579 0.001 Yes
0.003 0.105 No
0.001 1.748 No
0.014 1.839 No
0.007 1.021 No
0.004 0.214 No

Table 1: frequency
intensities for ten
tiles.

Tiles are made from clay moulded into the right shape, brushed,
glazed, and baked. Unfortunately, the baking may produce

invisible cracks. Operators can detect the cracks by hitting the

tiles with a hammer, and in an automated system the response is
recorded with a microphone, filtered, Fourier transformed, and
normalised. A small set of data is given in TABLE 1 (adapted from
MIT, 1997).




Tiles data: o = whole tiles, * = cracked tiles, x = centres
2 I I I I

log(intensity) 557 Hz
w

-8 \ \ \ \
-8 -6 -4 -2 0 2

log(intensity) 475 Hz

Plot of tiles by frequencies (logarithms). The whole tiles
(o) seem well separated from the cracked tiles (*). The
objective is to find the two clusters.




1.
2.

Tiles data: o = whole tiles, * = cracked tiles, x = centres
2 [ T T T T

log(intensity) 557 Hz
w

-8 | | | | |
-8 -6 -4 -2 0 2

log(intensity) 475 Hz

Place two cluster centres (x) at random.
Assign each data point (* and o) to the nearest cluster centre

(x)




Tiles data: o = whole tiles, * = cracked tiles, x = centres
2 I I I I

log(intensity) 557 Hz
w

-8 | | | |
-8 -6 4 -2 0

log(intensity) 475 Hz

1. Compute the new centre of each class
2. Move the crosses (x)




Tiles data: o = whole tiles, * = cracked tiles, x = centres

2 I I I I

N
I I T
*

1
N
T

log(intensity) 557 Hz
AW

1
6]
T
X

-8 | | | |

-8 -6 -4 -2 0
log(intensity) 475 Hz

Iteration 2




Tiles data: o = whole tiles, * = cracked tiles, x = centres

2 I I I I

N
I I T
*

1
N
T

log(intensity) 557 Hz
AW

1
(&)
T

-8 | | | |

-8 -6 -4 -2 0
log(intensity) 475 Hz

Iteration 3




Tiles data: o = whole tiles, * = cracked tiles, x = centres
2 I I I I

log(intensity) 557 Hz
w

-8 | | | |
-8 -6 -4 -2 0 2

log(intensity) 475 Hz

Iteration 4 (then stop, because no visible change)
Each data point belongs to the cluster defined by the nearest centre




0.0000 1.0000
0.0000 1.0000
0.0000 1.0000
0.0000 1.0000
0.0000 1.0000
1.0000 0.0000
1.0000 0.0000
1.0000 0.0000
1.0000 0.0000
1.0000 0.0000

The membership matrix M:

1.
2.

The last five data points (rows) belong to the first cluster (column)
The first five data points (rows) belong to the second cluster (column)




Algorithm: fuzzy c-means (FCM)




Tiles data: o = whole tiles, * = cracked tiles, x = centres
2 I I I I

log(intensity) 557 Hz
w

-8 | | | |
-8 -6 -4 -2 0 2

log(intensity) 475 Hz

Each data point belongs to two clusters to different
degrees




Tiles data: o = whole tiles, * = cracked tiles, x = centres
2 I I I I

log(intensity) 557 Hz
w

-8 | | | |
-8 -6 -4 -2 0 2

log(intensity) 475 Hz

Place two cluster centres

Assign a fuzzy membership to each data point
depending on distance




Tiles data: o = whole tiles, * = cracked tiles, x = centres
2 I I I I

log(intensity) 557 Hz
w

-8 | | | |
-8 -6 4 -2 0

log(intensity) 475 Hz

1. Compute the new centre of each class
2. Move the crosses (x)




Tiles data: o = whole tiles, * = cracked tiles, x = centres

2 I I I I

N

1
N

log(intensity) 557 Hz
AW

1
(&)

-8 | | | |

-8 -6 -4 -2 0
log(intensity) 475 Hz

Iteration 2




log(intensity) 557 Hz

Tiles data: o = whole tiles, * = cracked tiles, x = centres

-6 -4 -2 0
log(intensity) 475 Hz

Iteration 5




Tiles data: o = whole tiles, * = cracked tiles, x = centres

N
I I T

1
N
T

log(intensity) 557 Hz
AW

1
(&)
T

-6 -4 -2 0
log(intensity) 475 Hz

Iteration 10




Tiles data: o = whole tiles, * = cracked tiles, x = centres
2 I I I I

log(intensity) 557 Hz
w

-8 | | | |
- - 4 -2 0 2

log(intensity) 475 Hz

Iteration 13 (then stop, because no visible change)
Each data point belongs to the two clusters to a degree




/O -0025 0. 9975\
0.0091 0.9909
0.0129 0.9871
0.0001 0.9999
0.0107 0.9893
0.9393 0.0607
0.9638 0.0362
0.9574 0.0426
0.9906 0.0094

-9807 0.0193

(o

The membership matrix M:

1. The last five data points (rows) belong mostly to the first
cluster (column)

2. The first five data points (rows) belong mostly to the

second cluster (column)




Example: Applicability of Fuzzy Clustering for the Identification of
Upwelling Areas on Sea Surface Temperature Images (Nascimiento et al., 2005)

e What s
Upwelling?

» It is a mass of deep, cold, and
nutrient-rich seawater that rises close
to the coast.

The Basics of Coastal Upwelling
Southwesterly Wind - Day 2

Wind Direction

» Upwelling occurs when winds parallel
to the coast induce a net mass
transport of surface seawater in a 902
direction, away from the coast, due to
the Coriolis force. Deep waters rise in
order to compensate the mass

deficiency that develops along the
coastal area. Fuzzy Membership by
thresholding

1] 10 20 30 40
Distance from Shore
{(kilom eters)

— ’IA" II | " WY | MIAA +A +

B Why IS Upweliing so in Nportantrs

v Brings nutrient-rich deep waters close to the ocean surface,
creating regions of high biological productivity.

v Strong impact on fisheries, and global oceanic climate models




Why SST Image Segmentation by Fuzzy Clustering?

Nature of the problem is Fuzzy

700 |

Upwelling frontier

Unsupervised segmentation does not require training data.

Expert’s can take advantage of visualization skills and interpretability of
fuzzy membership values.




Example: Applicability of Fuzzy Clustering for the Identification of
Upwelling Areas on Sea Surface Temperature Images (Nascimiento et al., 2005)

Original Image Defqz_zifaiﬁg
250 Partition

250
17.4
| By 17.2
= 200
7
i M
| . o
|

150

100

50

0 50 100 150 200 250 250

Max Fuzzy Membership Fuzzy Membership by
Partition

3 clusters, colored by membership t h re S h O I d I n g

3 clusters, colored by membership
250 "

1] 50 100 150 200 250




Fuzzy c-Means

Limitation:

* it needs to know the number of clusters.
e How to find an optimal number of clusters?.

 Alot of validity indexes.




Cluster validi’ry measures

Partition coef.: Z Zﬂuk
n k=1i=1
C 1 C C41 1 n
Baker's measure: B=1-——""[1-PC]=—_" Z 2= Z(ﬂik _ﬂjk)z
C-1 C- j=i+liz | Mk=1
o 1 n C
Partition entropy: PE =~ >3 [k InCuik) |
k=1i=1

n
Partition linear index: PLI = Zmin{(l—mgx(yi)),mgx(yi)}
i=1

C C-1n
oL=—= Y 5 > min(uic, )

nCJ I+1i=1 k=1
Partition stability: std. of prototypes found for dif. m, const. €

Amount of overlap:

8 May 2003 ML Journal Club




Fuzzy c-Means: Final Comments

e The aim of cluster analysis is to classify objects based
on similarities among them.

e With fuzzy sets, clustering performs taking into
consideration:

— Overlapping of clusters, and

— To allow a record to belong to different clusters to
different degrees.
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Fuzzy Association Rules

e Many based on Apriori algorithm
e Treat all attributes (or at least linguistic) as uniform

Some approaches:

— T.P. Hong, Ch.S. Kuo, S.S. Tseng, Mining association rules
from guantitative data, Intelligent Data Analysis 3 (1999)
363-376

— T.P. Hong, K.. Lin, S.L. Wang, Fuzzy Data Mining fo

f
Interesting Generalized Association Rules, Fuzzy Sets and

- s I W W -—r Wl § Vw wd W WSl W W

Systems 138 (2003) 255-269




The Apriori Algorithm — Example

Database D _ L.
| [itemset|sup. 1llitemset|sup.
TID |ltems {1} 2 {1} 2
100(1 34 Scan DI {2} 3 |—* {2} 3
200|235 > | {3} 3 {3} 3
300(1235 {4} 1 {51 3
400 |2 5 {5} S
C
L 2 S 52 itemset
2 litemset| su it?mS}et up| can g gi
12 1
w20, a2 {15}
{2 3} 2 {1 5} 1 {2 3}
{2 5} 3 {2 3} 2 > =1
3 5] 2 {2 5} 3 L
13 9 (35} | 2 {3 5}
Cslitemsetf Scan D Lslitemset|sup
{2 35} {235} 2

=




FuzzyApriori

Generate the large Itemsets

Predefined

- . Large o
MFs Candidate ltemsets =~~~ Mining
- ltemsets - Rules
I 1
- |
Transaction}-- Large Transaction}--!
Database ltemsets Database
Fuzzy

Support >=
Min Support

Association Rules

T.P. Hong, Ch.S. Kuo, S.S. Tseng, Mining association rules from
quantitative data, Intelligent Data Analysis 3 (1999) 363-376

Mining Fuzzy Association Rules
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FuzzyAp

Predefined
MFs

Transaction
Database

v

Transfer Quantitative Values into
Linguistic Terms with Fuzzy Values

|

Calculate the Counts of Linguistic

Terms
!

Generate the Candidate Set

Support ==
Min Support

Generate Large ltemseis

Large ltemset

b

Collect the Large Itemsets

b

Construct Fuzzy Association Rules

Confidence ==
Min Confidence

Fuzzy Association Rules

== Null

Yes




FuzzyApriori

Data Base
Transactions
- N —» P1:(0.7+0,55+0)/3 =042 Frequent itemsets size 1
t =(0.2, 1.0) —» M1:(0+0,2+1.0) /3=0,4 Mi _
1 Inumum Support =0,4
s G1:(0+0+0)/3=0 PR P1 M1 M2
t,=(0.4,0.8)
— P2:(0+0+0)/3=0
t,=(1.0,1.2) —» M2:(1,0+0,8+0,8)/3=0,87
. J — G2:(0+0+0)/3=0
Frequent Itemsets size 1 ltemsets size 2
Minimum support = 0,4
{ P1,M2 J P1,M2: (0,7 + 0,55 + 0) /3 = 0,42 <+— P1, M2
l M1,M2: (0+0,2+0,8)/3=0,33 *+— M1, M2
Candidate rules Fuzzy association rules

Minimum confidence = 0,8

If X1 is P1 them X2 is M2 —» Conf: 0,42/0,42=1,0
If X2 is M2 them X1 is P1 —» Conf: 0,42 /0,87 =0,48

If X1is P1them X2is M2
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Tzung-Pei Hong, Kuei-Ying Lin, Shyue-Liang Wang
Fuzzy Data Mining for Interesting Generalized Association Rules
Fuzzy Sets and Systems 138 (2003) 255-269

e Association rules discovers relationships among
items .

 Designing a sophisticated fuzzy data-mining
algorithm able to deal with quantitative data under a
given taxonomy.

 Transform quantitative values in transactions into
linguistic terms,then finds interesting fuzzy rules by

modifvin
\W AW BN |

Srikant and Agra\nla!’c maoathod

YIIIg /i 1EINGAR D Al LA J o 1IN OIINWVM

R. Srikant, R. Agrawal, Mining generalized association rules. International Conference on Very
Large Databases. Zurich (Switzerland, 1995) 407-419.
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Srikant and Agrawal’s
mining method  (1/2)

1. Ancestors of items in each given transaction are added
according to the predefined

taxonomy. /\ /\

2. Candidate itemsets are generated. The number of an
itemset appearing in the transactions is larger than a
predefined threshold value (minimum support), the itemset
Is considered a large itemset.
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Srikant and Agrawal’s
mining method  (2/2)

. Induced from the large itemsets found in the second
phase with calculated confidence values larger than
a predefined threshold (minimum confidence) are kept.

. Association rules are pruned away and output :
Rules have no ancestor rules .

Support value of a rule is R-time larger than the
expected support values .

Confidence value of a rule is R-time larger than the
expected confidence values.
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The fuzzy generalized mining
algorithm — Example

. . T,

The ancestors of appearing items are added. '

Six transactions in this example /\ ;
Transaction ID Items T C /\

1 (Milk, 3) (Bread, 4) (T-shirt, 2) /\ D E

2 (Juice, 3) (Bread, 7) (Jacket, 7)

3 (Juice, 2) (Bread, 10) (T-shirt, 5) A B

4 (Bread, 9) (T-shirt, 10)

5 (Milk, 7) (Jacket, 8) The new representation of the given taxonomy in this example.
6 (Juice, 2) (Bread, 8) (Jacket, 10)

The expanded transactions

Transaction ID Expanded items

(A4, 3)C,4)E2NT1,3NT2,T)T3,2)

(B, 3NC, 7D, 7)T1,3)(I2,10)(T3,7)
(B,2)(C,10)(E, 5)(T1,2)(T2, 12)(T5, 5)
(C,9)(E, 10)(T»,9)(T5, 10)

(A‘! ?)(Dﬁ 8)(T1 d ?)(T_’g, ?)(T}, 8)
(B,2)(C,8)(D,10)(T1,2)(T2, 10)(T3, 10)

[ BV R e

99




The fuzzy generalized mining

algorithm — Example

(cont.)

The quantitative values of the items are represented using fuzzy sets.

Membership

value

Low Naddle

N AN
X

0

High

1 5]

11 MNumber of item

(C,9) ==C (0/low , 0.4/middle , 0.67/high )

fuzzy set (0.0/Low + 0.4/Middle+0.6/High)
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The fuzzy generalized mining
algorithm — Example (cont.)

Fuzzy region in the transactions is calculated as the count value.

The fuzzy sets transformed from the data in Table 2
High as an example

D Level-1 fuzzy set ca rdlnallty— (O.2+O.8+O.6+0.4) =2.0
1 (110 T 1o e t 50T 1w T T e T ) ot T )
2low T TMade \Coow C..f ddle Eim» E.Mrdd.ff i LG'H i ’Iffﬁ*a'ff Ty H ddle ' T H|{.' T Low T JIr!' dille
. . ; 08
- (5 T3 M'*Hf)(f Widde s T 5ag T Tl T Tl..’lrf."dd!f)(T:..’H.fdd!e T T:.HI{;F: N7 r;..m;m.fe T T;.H:'gf.')
: I8 02 FN 02, 08 y 08 4 02 oy 10 y 02, 08
’ {B Lau .Ef H *H!f (r? H ’H High / E.Low T E Middle }( Tj. Low T 1. Middle )( Th. High )( Ty Low T T;.M."ﬂ'ﬂ'ﬂ't’)
4 _|_ 0.8 }( 04 _|_ 06 }( 02 _l_ 0.8 )
(e o EAgh \ T e T T Hi? Tk T T HigF
= 2
) (70 -IHm:)(D i T 5 7 rJ..wd.fe T rl HJ{.' )(r a7 T Ha )(r Wik T T, i)

- 08 08 02 02 08 02 08
b (5w T3 wﬁe C wﬂ p w Dng.' rl o T Il..’lrf."dd.fﬁ)(Tg..’kf."ddie T T I T M T I;.mg.'f.')




The fuzzy generalized mining

algorithm — Example

(cont.)

The fuzzy region with the highest count for each item is found.

The counts of the fuzzy regions

[tem Count [tem Count [tem Count [tem Count
A.Low 0.6 C.Low 0.4 E.Low 1.0 T;.Low 0.0

A. Middle @ C. Middle E.Middle @ T;. Middle 24
A.High 0.2 C.High 2.0 E.High 0.8 T;.High
B.Low QD D.Low 0.0 T).Low @) T;.Low 1.0

B. Middle 0.8 D.Middle  C1.® Ty Middle 2.0 LMidde QD
B.High 0.0 D.High 1.4 T\.High 0.2 T;.High 2.2
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algorithm — Example

The fuzzy generalized mining

(cont.)

The count of any region selected in Step 4 is larger than 1.5

putin Ll

The set of large 1-itemsets in this example

[temset Count
B.Low 2.2

C. Middle 2.6

D. Middle 1.6
Ty.Low 2.8
T>.High 3.6
Tj.flffffffﬂ{? 2.8

Minimum Support = 1.5
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The fuzzy generalized mining
algorithm — Example (cont.)

The candidate set C2 is generated from L1 and
the items of C2 must not have ancestor or descendant relation in the taxo

o (B.Low , C.Middle)

nomy

® (B.Low , D.Middle)
/\ (B.Low , T3.Middle)
Q O /\ —> (C.Middle , D.Middle)

C
/\ @ = (C.Middle , T1.Low)
(C.Middle , T3.Middle)
A (D.Middle , T1.Low)
(D MidAdla T2 Hiah)
The new representation of the given taxonomy in this example. \E Ay e T

(T1.Low , T3. Midc

le)

(T2. High , T3. Middle)
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The fuzzy generalized mining
algorithm — Example (cont.)

The fuzzy membership values of each transaction data for
the candidate 2-itemsets are calculated.

b 04y Il 8
| (.4.LﬂH +4M'Hf][f Lov +C fufiff)(ﬁiﬂt»+f iad ff)(ﬁ Low T Iy i ff)(ﬂ Middle +TaH| Fa)(T Lo +T )
| !

: I AT R Uy _u .
’ i o o w5 i i e i )

The membership values for B.Lown C Middle

TID B.Low C. Middle B.LownC. Middle
Tl 0.0 0.6 0.0
T2 0.6 0.8 0.6
: N N0+0 640 740 0O+
T3 0.8 0.2 0.2 VsV T U UT U LT U U
T4 0.0 0.4 0.0 —_—
TS 0 00 0.0 0.0+0.6 1.4
T6 0.8 0.6 0.6
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The fuzzy generalized mining
algorithm — Example (cont.)

The scalar cardinality (count) of each candidate 2-itemset in C2

The fuzzv counts of the itemsets In 2

Itemset Count
(B Lowve, . ATcdd e ) 1.4
(B Lowve, I A1 G e ) 0.8
(B Fow, T, AdidG =) 1.6
(. A7 d e, T, AL TS =) 1.0
(. AT e, T . Lo ) 1.2
(O AT e, T2, AT e ) 1.6
(I AL TG e, Ty . Lo ) 1.2
(I AP dTe, T2 FHigh) 1.2
(T Lowve, T5. A1 Te) 1.6
( T=. High, Ts. A1) 2.4

Minimum Support = 1.5
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The fuzzy generalized mining

algorithm — Example (cont.)

The confidence value for the association rule is calculated

e (B.Low, T3.Middle)
If B=Low then T3=Middle

If T3=Middle then B=Low -
N .
. (C.Middle , T3.Middle ) = C?nﬂde ce
If C=Middle then T3=Middle Zf—l (BLowD Tj,ﬁﬂn?wfﬂ 1.6
If T3=Middle then C=Middle = |5 -
. (Tl.low, T3.Middle ) ) (BLow) 21

If Tl=Low then T3=Middle

If T3=Middle then Tl=Low
e (T2.High, T3.Middle)

If T2=Low then T3=Middle

If T3=Middle then T2=Low

=073
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The fuzzy generalized mining
algorithm — Example

(cont.)

Given confidence threshold is set at 0.7. The following three rules are kept

f B=Low then T3=Middie  (confidence value = 0.73)
f T3=Middle then B=Low (confidence value = 0.53)
f C=Middle then T3=Middle (confidence value = 0.62)
f T3=Middle then C=Middle (confidence value =0.57)
I T1=low then T3=Miadle (confidence value = 0.8)
f T3=Middle then Tl=Low (confidence value = 0.57)
f T2=Low then T3=Middle (confidence value = 0. 67)
If T3=Middle _then T2=Low_(confidence value = 0.

Minimum Confidence = 0.7
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The fuzzy generalized mining
algorithm — Example (cont.)

Its close ancestor rule mined out is “If T1 =Low, then T3 =Middle”.

The support interest measure of the rule “If B=Low, then T3 =Middle” is alculated
If B=Low then T3=Middle
If Tl=Low then T3=Middle
If T3=Middle then T2=Low

confidenceg ... viade

. L’UII'H[E Low—=Ty Midl , ! _

L!PPG'.“.’[B‘LD“'I — ﬂ.;’lf{l'ddfi’h 1 ; m‘ i Iﬂf‘?{,ﬁifﬂ'.’.'f:'{B'Lﬂhl - H”Jlﬂddk] - "E;H”I o

LUII'H[MW LE?II'.'IITH{ME L Tj,ﬁ],h;]‘mq‘ ﬁd? .

X X COMM Ty i K COMMMENCEr, Ly, il
COUNAT Loy CONMIT, M COUMNIT, Middie
16 0.73
—J— 1121 = ,’B 20191

2.2 18 - ¥ 08

— X =x1h 1% ‘

2828 “

interest threshold R =1.5
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Experimental results

min-confidence | ——0.75 -#-07 —e—085 ——05

L1 ?\
400 \

i
z
D
s 200
&
E R
= 200
100 | o
‘\‘\ .'—-..__._::_:___‘___t::t:t
ol e gy

150 200 250 300 350 400 450 500 550 600 6350 700 750 S00 min-suppart
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Experimental results

Imin-suppert

2500

—— 100 —X— 0630 —l— 600 —=— 330 —— 300

2000 F

1500

1000 |

fuan ber of rules

00

[

number of
Teglons

111




Fuzzy Association Rules: Comments

Gets smoother mining results due to its fuzzy
membership characteristics.

Advanced approach to be presented later:

J. Alcala-Fdez, R. Alcala, M.J. Gacto, F. Herrera, Learning the
Membership Function Contexts for Mining Fuzzy Association Rules by
Using Genetic Algorithms. Fuzzy Sets and Systems,
doi:10.1016/].fss.2008.05.012, in press (2008).
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Fuzzy Data Mining: Final Comments

e Fuzzy sets/logic is a useful form of knowledge
representation, allowing for approximate but natural
expression of some types of knowledge.

* An alternative way is to include uncertainty of input
data while using crisp logic rules.

e Results may sometimes be better than with other
systems since it is easier to include a priori
knowledge in fuzzy systems.

e Adaptation of fuzzy rule parameters leads to
neurofuzzy systems, genetic fuzzy systems, ...




Soft Computing Techniques in Data Mining:
Fuzzy Data Mining and Knowledge Extraction
based on Evolutionary Learning

AVENTIFY WS

Outline

v’ Introduction: Soft Computing Techniques in Data Mining
v'Fuzzy Data Mining

v'Evolutionary Data Mining

v'Concluding Remarks
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Evolutionary algorithms and Data Mining

A

EAs were not specifically designed as data mining _'
techniques, as other approaches like neural networks.

However, it i1s well known that a learning task can be
modelled as an optimization problem, and thus solved
through evolution.

Their powerful search in complex, ill-defined problem spaces
have permitted applying EAs successfully to a huge variety of
machine learning and knowledge discovery tasks.

Tl’\f\ flavilhi i+ AnA I t +A 1 nArArnAaratn Avictin

1 CII IIC}\IUIIILy aliu p b Yy LU IIIbUI[JUIaLC C}\IDLIIIH
knowledge are also very interesting characteristics for the

problem solving.




Evolutionary algorithms and Data Mining

Evolutionary clustering

Evolutionary feature/instance selection
Evolutionary rule learning

Genetic programming — tree based coding

Evolutionary neural networks

Cy/nls |'I- v\ 7 At -
_vuUuUiliultl | y P || a

processes,_.

1A (2
LIVUIL I iJ




Clustering

Ccrsn >
"

T
—-

Fixed #
clusters

Variable #
clusters

“Genetic Algorithm Based Clustering Technique'', Patt.

“Clustering using Simulated Annealing with Probabilistic Redistribution' Int. Journal
of Pattern Recognition and Artificial Intelligence, vol 15,

“Non-parametric Genetic Clustering : Comparison of Validity Indices™, IEEE Trans. on
Systems, Man and Cybernetics Part-C, vol. 31, no. 1, pp.

""Genetic Clustering for Automatic Evolution of Clusters and Application to Image

Classification', Pattern Recognition.

Recog., 33, 1455-1465, 2000.

no. 2, pp. 269-285, 2001.

120-125, 2001.




Evolutionary Clustering

Example: Locus-based adjacency representation

 Genetic representation and operators

— Locus-based adjacency representation
* No need to fix the number of clusters
e Well-suited for standard crossover operators

— Uniform crossover

* One-point or two point

— Neighborhood-biased mutation operator
e Quickly discard unfavorable links
e Explore feasible solutions




Position:

Genotype:

1 23 45 67 8




mask

Uniform crossover

2 3 4 2 4 5 8 7
31236567
O1 001100
21 42 6 5 8 7




Feature Selection

GA encodes the features
i J

1 O
/ \

/

Feature i selected Feature j not selected

The two objectives computed and kept separate
Non dominated sorting for ranking the individuals
Genetic operations

Outputs a set of solutions




Evolutionary Instance Selection

e GA encodes the features
i J

1 0]
/ \

Feature i se@ Feature j not selected
 The two objectives computed and kept separate
* Non dominated sorting for ranking the individuals
 Genetic operations
e Qutputs a set of solutions




Evolutionary Prototype Selection

e Application of Evolutionary Algorithms to PS Problem
(EPS).
e Representation of solutions:

— A chromosome consists on n genes with two posible states: 0
and 1 (n is the number of instances in training data).

— Example:

0/1,1;1{]0,0;1]0,0/1




Evolutionary Prototype Selection

* Fitness Function:
— |t combines two values: classification rate (clas_rat) and percentage f

reduction (perc_red)

Fithness(s) = a-clas_rat + (1- a):perc_red

e Cano et al. (2003) studied four models:

Generational Genetic Algorithm (GGA)
Steady-State Genetic Algorithm (SGA)

Heterogeneous Recombination and Cataclysmic Mutation (CHC)
Population Based Incremental Learning (PBIL)

Burgos, September 20-23, 2006
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Evolutionary Rule Learning

A chromosome codes a rule or a set of rules.

Each gen codes a rule or a rule part:

IF condi A ... A condp
THEM Class = C
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Evolutionary Rule Learning

Some kind of rules

Interval rules Fuzzy rules

IF X1 € [a1,b1] A ... A Xn € [an,bn] IFXiesMA...AXnes G

Then Class = C; Then Clase = C; with certain degree r;
Reference

GENETIC FUZZY SYSTEMS.

Evolutionary Tuning and Learning of Fuzzy Knowledge Bases.
O. Cordodn, F. Herrera, F. Hoffmann, L. Magdalena

World Scientific, Julio 2001. ISBN 981-02-4016-3
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Evolutionary Rule Learning

There exists four models according to the way to code
the rules for learning rule bases (they are known as
Genetics-based machine learning)

Chromosome = Rule Base
Model Pittsburgh: GASSIST, CORCORAN, GIL

Chromosome = Rule
Model Michigan (XCS, UCS)
LCS - Learning Classifier Systems
IRL Model — Iterative Rule Learning (SIA, HIDER)

GCCL Model — Genetic Cooperative-Competitive Learning (REGAL,
LOGEMPRO)
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Evolutionary Rule Learning

Pittsburgh Learning Approach:

Each chromosome encodes a whole rule set and the derived RB
is the best individual of the last population.

The fitness function evaluates the performance at the complete
RB level. However, the search space is huge, thus making
difficult the problem solving and requiring sophisticated designs.

Mainly used in

off-line learning.

Population of Rule Bases
RB Discovery
S}'ﬂum T T T M Rule || Rule [ Rule
) Fiase Base Base
T &
E . I
Rule-based !t..-.!'-.u.nd” I
RI..]J,": . EvValanon |
e N bl I
Syhhﬂﬂ Base |
- |
Inference |
Engine
: | RE
¢ | evaluation
Input . - o Chutput |
Interface ¥ Facts | Interface
I
|
) I
Environment |« |
Perceptions Actions

Feedback

Evaluation
System




Evolutionary Rule Learning

Michigan Learning Approach (Learning Classifier Systems):
Each chromosome encodes a single rule.

Reinforcement mechanisms (reward (credit apportion) and
weight penalization) are considered to adapt rules through a GA

Low weight (bad performing) rules are substituted by new rules
generated by the GA.

Classifier System

Rule Generation
Mechanism

The key question is to induce i S
collaboration in the derived RB —— 1R - Apportionment
as the evaluation procedure is at System B¢ ToL Orrem
single rule level (cooperation vs. ference
competition problem (CCP)). ] o N S

Mainly used in on-line learning.

_ Environment j¢e—
Perceprions Actions

Payoff




Evolutionary Rule Learning

Iterative Rule Learning Approach:

Intermediate approach between the Michigan and Pittsburgh
ones, based on partitioning the learning problem into several
stages and leading to the design of multi-stage learning.

As in the Michigan approach, each chromosome encodes a
single rule, but a new rule is learnt by an iterative rule
generation stage and added to the derived RB, in an iterative
fashion, in independent and successive runs of the GA.

The evolution is guided by data covering criteria (rule
competition). Some of them are considered to penalize the
generation of rules covering examples already covered by the
previously generated fuzzy rules (soft cooperation).
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Evolutionary Rule Learning

Iterative Rule Learning Approach:

A second post-processing stage is considered to refine the
derived RB by selecting the most cooperative rule set and/or
tuning the membership functions (cooperation induction)

Hence, the CCP is solved taking the advantages of both the
Michigan and Pittsburgh approaches (small search space and
good chances to induce cooperation)

Mainly used in off-line learning (modeling and classification
applications).
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Evolutionary Rule Learning

Iterative Rule Learning Approach:

A second post-processing stage is considered to refine the
derived RB by selecting the most cooperative rule set and/or
tuning the membership functions (cooperation induction)

Hence, the CCP is solved taking the advantages of both the
Michigan and Pittsburgh approaches (small search space and
good chances to induce cooperation)

Mainly used in off-line learning (modeling and classification
applications).
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Evolutionary Rule Learning

Cooperative-competitive learning Approach:

The GCCL approach, in which the complete population or a
subset of it encodes the RB.

In this model the chromosomes compete and cooperate
simultaneously.

COGIN (Greene and Smith 1993), REGAL (Giordana and Neri
1995) and LOGENPRO (Wong and Leung 2000) are examples
with this kind of representation.
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Evolutionary Rule Learning

Cooperative-competitive learning Approach:

E; | Es [ Eypo
Diversity tool
Tokens E E E
Competition L 6 8
Es | Eo
E; [En| B
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Evolutionary Rule Learning

Cooperative-competitive learning Approach:




Genetic programming — tree based coding

Genetic Programming

g =6%Xz/ (2 + 3%Xy) /

RN
/\X 2/\
2 /\

e Symbols: {X|, constants}

e Functions: { +, -, *, /,\ ...}

We can use Genetic
Programming for
learning regression
functions,
discriminant
functions, ...
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Genetic programming — tree based coding

: e start - [If], antec, [then], conseq, [.]
Genetic - antec > descriptorl, [and], descriptor2.
Programming e descriptorl = [any].

e descriptorl - [X, is] label.

* descriptor2 - [any].

e descriptor2 = [X, is] label.

Free grammar for
designing rules

o label 2> {member(?a, [L, M, H, Lor M, L or H, M or H,
L or M or H])}, [?a].

» conseq > [Class is] descriptorClass

e descriptorClass - {member(?a, [C,, C,, C;])}, [?a].

N\ o j If X, is L then Class is C,
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Genetic programming — tree based coding

Classification based on discriminant functions

Model 1: ")
To get M functions

f1, ...., fm such that fi(x) >
fi(x), i # k when x belongs
to class k.

x1




Genetic programming — tree based coding

Classification based on discriminant functions

Model 2:
IF fi(a) > 0 Them class 1

else
IF f2(a) > 0 Them clase 2
else

IF fm(a) > 0 Them class M
else
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Evolutionary Data Mining: Final Comments

The use of Evolutionary
Algorithms as toof for knowledge
extraction is an active and
emergent research area.

Knowledge

terpretation
Evaluation

Patterns

Processed
data

I

|\

Data Mining

Drnprnr‘ncmn

l
AR e S ) | 3

& cleaning

Selection
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Soft Computing Techniques in Data Mining:
Fuzzy Data Mining and Knowledge Extraction
based on Evolutionary Learning

AVENTIFY WS

Outline

v’ Introduction: Soft Computing Techniques in Data Mining
v'Fuzzy Data Mining

v'Evolutionary Data Mining

v'Concluding Remarks
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Soft Computing Techniques in Data Mining: Fuzzy Data
Mining and Knowledge Extraction based on Evolutionary

Learning Concluding Remarks

Soft Computing based techniques provide useful tools for data
mining, making use of their main features:

d  Commonsense knowledge may sometimes be captured in
an natural way using fuzzy rules.

d  ANN: Machinery for learning and curve fitting (Learns
from examples)

U

GAs are Appropriate and Natural Choice for problems

which need — Optimizing Computation Requirements,
and Robust, Fast and Close Approximate Solutions




Data Mining

ﬁfﬂlﬁm\\ Data Mining and Soft Computing

Summary

Introduction to Data Mining and Knowledge Discovery

Data Preparation

Introduction to Prediction, Classification, Clustering and Association

Data Mining - From the Top 10 Algorithms to the New Challenges

Introduction to Soft Computing. Focusing our attention in Fuzzy Logic

and Evolutionary Computation

6. Soft Computing Techniques in Data Mining: Fuzzy Data Mining and
Knowledge Extraction based on Evolutionary Learning

7. Genetic Fuzzy Systems: State of the Art and New Trends

8. Some Advanced Topics I: Classification with Imbalanced Data Sets

9. Some Advanced Topics Il: Subgroup Discovery

10.Some advanced Topics Illl: Data Complexity

11.Final talk: How must | Do my Experimental Study? Design of

Experiments in Data Mining/Computational Intelligence. Using Non-

parametric Tests. Some Cases of Study.
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