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Data Mining and Soft Computing

Summary
1. Introduction to Data Mining and Knowledge Discovery
2. Data Preparation 
3. Introduction to Prediction, Classification, Clustering and Association3. Introduction to Prediction, Classification, Clustering and Association
4. Data Mining - From the Top 10 Algorithms to the New Challenges
5. Introduction to Soft Computing.  Focusing our attention in Fuzzy Logic  

and Evolutionary Computationand Evolutionary Computation
6. Soft Computing Techniques in Data Mining: Fuzzy Data Mining and 

Knowledge Extraction based on Evolutionary Learning
7 G ti F S t St t f th A t d N T d7. Genetic Fuzzy Systems: State of the Art and New Trends
8. Some Advanced Topics I: Classification with Imbalanced Data Sets
9. Some Advanced Topics II: Subgroup Discovery
10.Some advanced Topics III: Data Complexity 
11.Final talk: How must I Do my Experimental Study? Design of 

Experiments in Data Mining/Computational Intelligence. Using Non-p g p g g
parametric Tests. Some Cases of Study. 



Design of  Experiments in 
D t Mi i /C t ti l I t lliData Mining/Computational Intelligence

In this talk

We focus on the use of statistical test for 

analyzing the results obtained in a design 

of experiments within the fields of Data of experiments within the fields of Data 

Mining and Computational Intelligence.
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Design of  Experiments in 
D t Mi i /C t ti l I t lliData Mining/Computational Intelligence

MotivationMotivation

Th i t l l i thThe experimental analysis on the 
performance of a new method is a crucial p
and necessary task to carry out in a research 
on Data Mining Computational Intelligenceon Data Mining, Computational Intelligence 
techniques.

D idi h l i h i b hDeciding when an algorithm is better than 
other one  may not be a trivial task. 
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Design of  Experiments in 
D t Mi i /C t ti l I t lliData Mining/Computational Intelligence

Motivation
 Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6 Alg. 7 

d 25 3 76 0 68 4 69 6 79 0 81 2 57 7 Motivation aud 25.3 76.0 68.4 69.6 79.0 81.2 57.7 
aus 55.5 81.9 85.4 77.5 85.2 83.3 85.7 
bal 45.0 76.2 87.2 90.4 78.5 81.9 79.8 
bpa 58.0 63.5 60.6 54.3 65.8 65.8 68.2 
bps 51.6 83.2 82.8 78.6 80.1 79.0 83.3 Deciding when an  bps 
bre 65.5 96.0 96.7 96.0 95.4 95.3 96.0 
cmc 42.7 44.4 46.8 50.6 52.1 49.8 52.3 
gls 34.6 66.3 66.4 47.6 65.8 69.0 72.6 
h-c 54.5 77.4 83.2 83.6 73.6 77.9 79.9 
h  79 3 79 9 80 8 83 2 78 9 80 0 83 2 

g
algorithm is better 
than other one  may 

hep 79.3 79.9 80.8 83.2 78.9 80.0 83.2 
irs 33.3 95.3 95.3 94.7 95.3 95.3 94.7 
krk 52.2 89.4 94.9 87.0 98.3 98.4 98.6 
lab 65.4 81.1 92.1 95.2 73.3 73.9 75.4 
led 10.5 62.4 75.0 74.9 74.9 75.1 74.8 

not be a trivial task. 

led 10.5 62.4 75.0 74.9 74.9 75.1 74.8 
lym 55.0 83.3 83.6 85.6 77.0 71.5 79.0 
mmg 56.0 63.0 65.3 64.7 64.8 61.9 63.4 
mus 51.8 100.0 100.0 96.4 100.0 100.0 99.8 
mux 49.9 78.6 99.8 61.9 99.9 100.0 100.0 

Example for
classification

pmi 65.1 70.3 73.9 75.4 73.1 72.6 76.0 
prt 24.9 34.5 42.5 50.8 41.6 39.8 43.7 
seg 14.3 97.4 96.1 80.1 97.2 96.8 96.1 
sick 93.8 96.1 96.3 93.3 98.4 97.0 96.7 
soyb 13 5 89 5 90 3 92 8 91 4 90 3 76 2 

Large Variations in 
Accuracies of Different

soyb 13.5 89.5 90.3 92.8 91.4 90.3 76.2 
tao 49.8 96.1 96.0 80.8 95.1 93.6 88.4 
thy 19.5 68.1 65.1 80.6 92.1 92.1 86.3 
veh 25.1 69.4 69.7 46.2 73.6 72.6 72.2 
vote 61.4 92.4 92.6 90.1 96.3 96.5 95.4 

Classifiers

5

vow 9.1 99.1 96.6 65.3 80.7 78.3 87.6 
wne 39.8 95.6 96.8 97.8 94.6 92.9 96.3 
zoo 41.7 94.6 92.5 95.4 91.6 92.5 92.6 
Avg 44.8 80.0 82.4 78.0 82.1 81.8 81.7 
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Motivation
 Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6 Alg. 7 

d 25 3 76 0 68 4 69 6 79 0 81 2 57 7 Motivation aud 25.3 76.0 68.4 69.6 79.0 81.2 57.7 
aus 55.5 81.9 85.4 77.5 85.2 83.3 85.7 
bal 45.0 76.2 87.2 90.4 78.5 81.9 79.8 
bpa 58.0 63.5 60.6 54.3 65.8 65.8 68.2 
bps 51.6 83.2 82.8 78.6 80.1 79.0 83.3 Alg. 4 is the winner in 8 
bps 
bre 65.5 96.0 96.7 96.0 95.4 95.3 96.0 
cmc 42.7 44.4 46.8 50.6 52.1 49.8 52.3 
gls 34.6 66.3 66.4 47.6 65.8 69.0 72.6 
h-c 54.5 77.4 83.2 83.6 73.6 77.9 79.9 
h  79 3 79 9 80 8 83 2 78 9 80 0 83 2 

problems with average 78.0

Alg. 2 is the winner for 4 
hep 79.3 79.9 80.8 83.2 78.9 80.0 83.2 
irs 33.3 95.3 95.3 94.7 95.3 95.3 94.7 
krk 52.2 89.4 94.9 87.0 98.3 98.4 98.6 
lab 65.4 81.1 92.1 95.2 73.3 73.9 75.4 
led 10.5 62.4 75.0 74.9 74.9 75.1 74.8 

g
problems with average 80.0

What is the best between led 10.5 62.4 75.0 74.9 74.9 75.1 74.8 
lym 55.0 83.3 83.6 85.6 77.0 71.5 79.0 
mmg 56.0 63.0 65.3 64.7 64.8 61.9 63.4 
mus 51.8 100.0 100.0 96.4 100.0 100.0 99.8 
mux 49.9 78.6 99.8 61.9 99.9 100.0 100.0 

What is the best between
both?

pmi 65.1 70.3 73.9 75.4 73.1 72.6 76.0 
prt 24.9 34.5 42.5 50.8 41.6 39.8 43.7 
seg 14.3 97.4 96.1 80.1 97.2 96.8 96.1 
sick 93.8 96.1 96.3 93.3 98.4 97.0 96.7 
soyb 13 5 89 5 90 3 92 8 91 4 90 3 76 2 soyb 13.5 89.5 90.3 92.8 91.4 90.3 76.2 
tao 49.8 96.1 96.0 80.8 95.1 93.6 88.4 
thy 19.5 68.1 65.1 80.6 92.1 92.1 86.3 
veh 25.1 69.4 69.7 46.2 73.6 72.6 72.2 
vote 61.4 92.4 92.6 90.1 96.3 96.5 95.4 
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vow 9.1 99.1 96.6 65.3 80.7 78.3 87.6 
wne 39.8 95.6 96.8 97.8 94.6 92.9 96.3 
zoo 41.7 94.6 92.5 95.4 91.6 92.5 92.6 
Avg 44.8 80.0 82.4 78.0 82.1 81.8 81.7 
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Motivation
 Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6 Alg. 7 

d 25 3 76 0 68 4 69 6 79 0 81 2 57 7 Motivation aud 25.3 76.0 68.4 69.6 79.0 81.2 57.7 
aus 55.5 81.9 85.4 77.5 85.2 83.3 85.7 
bal 45.0 76.2 87.2 90.4 78.5 81.9 79.8 
bpa 58.0 63.5 60.6 54.3 65.8 65.8 68.2 
bps 51.6 83.2 82.8 78.6 80.1 79.0 83.3 

We must use 
t ti ti l t t f bps 

bre 65.5 96.0 96.7 96.0 95.4 95.3 96.0 
cmc 42.7 44.4 46.8 50.6 52.1 49.8 52.3 
gls 34.6 66.3 66.4 47.6 65.8 69.0 72.6 
h-c 54.5 77.4 83.2 83.6 73.6 77.9 79.9 
h  79 3 79 9 80 8 83 2 78 9 80 0 83 2 

statistical tests for
comparing the

algorithms hep 79.3 79.9 80.8 83.2 78.9 80.0 83.2 
irs 33.3 95.3 95.3 94.7 95.3 95.3 94.7 
krk 52.2 89.4 94.9 87.0 98.3 98.4 98.6 
lab 65.4 81.1 92.1 95.2 73.3 73.9 75.4 
led 10.5 62.4 75.0 74.9 74.9 75.1 74.8 

algorithms.

The problem: led 10.5 62.4 75.0 74.9 74.9 75.1 74.8 
lym 55.0 83.3 83.6 85.6 77.0 71.5 79.0 
mmg 56.0 63.0 65.3 64.7 64.8 61.9 63.4 
mus 51.8 100.0 100.0 96.4 100.0 100.0 99.8 
mux 49.9 78.6 99.8 61.9 99.9 100.0 100.0 

p
How must I do the

t ti ti l pmi 65.1 70.3 73.9 75.4 73.1 72.6 76.0 
prt 24.9 34.5 42.5 50.8 41.6 39.8 43.7 
seg 14.3 97.4 96.1 80.1 97.2 96.8 96.1 
sick 93.8 96.1 96.3 93.3 98.4 97.0 96.7 
soyb 13 5 89 5 90 3 92 8 91 4 90 3 76 2 

statistical
experimental 

soyb 13.5 89.5 90.3 92.8 91.4 90.3 76.2 
tao 49.8 96.1 96.0 80.8 95.1 93.6 88.4 
thy 19.5 68.1 65.1 80.6 92.1 92.1 86.3 
veh 25.1 69.4 69.7 46.2 73.6 72.6 72.2 
vote 61.4 92.4 92.6 90.1 96.3 96.5 95.4 

study?
What tests must I
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vow 9.1 99.1 96.6 65.3 80.7 78.3 87.6 
wne 39.8 95.6 96.8 97.8 94.6 92.9 96.3 
zoo 41.7 94.6 92.5 95.4 91.6 92.5 92.6 
Avg 44.8 80.0 82.4 78.0 82.1 81.8 81.7 

What tests must I 
use?
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Objective

To show some results on the use of statistical tests 

for comparing algorithms in the field of DM/CI.

We will not discuss the performance measures that can be used 
neither the choice on the set of benchmarks. 

For classification, for example, the following references is a study 
for performance measures.

Ferri, C., Hernández-Orallo, J., Modroiu, R. 
An experimental comparison of performance measures for classification. 
Pattern Recognition Letters, 2008, in press. 

8

Doi: 10.1016/j.patrec.2008.08.010
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OutlineOutline

Introduction

C diti f th f  f t i t tConditions for the safe use of parametric tests

Using non-parametric tests: Data Mining/ Using non-parametric tests: Data Mining/ 
Computational Intelligence based case studies

Two sample tests/Multiple comparisonsTwo sample tests/Multiple comparisons
Evolutionary Algorithms: CEC’05 Special Session on
parameter optimization
Neural network and genetic learning experiments

L l d
9

Lessons learned



Design of  Experiments in 
D t Mi i /C t ti l I t lliData Mining/Computational Intelligence

OutlineOutline

Introduction (Inferential statistics, basic concepts) 

C diti f th f  f t i t tConditions for the safe use of parametric tests

Using non-parametric tests: Data Mining/ Using non-parametric tests: Data Mining/ 
Computational Intelligence based case studies

Two sample tests/Multiple comparisonsTwo sample tests/Multiple comparisons
Evolutionary Algorithms: CEC’05 Special Session on
parameter optimization
Neural network and genetic learning experiments

L l d
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Lessons learned



Introduction

Inferential Statistics - provide measures of how

well your data (results of experiments) support 
your hypothesis and if your data areyour hypothesis and if your data are 
generalizable beyond what was tested 
(significance tests)(significance tests)

For example: Comparing two or various sets ofFor example: Comparing two or various sets of 
experiments in a computational problem. 

Parametric versus Nonparametric Statistics Parametric versus Nonparametric Statistics –– When When 
to use them and which is more powerful?to use them and which is more powerful?

11

to use them and which is more powerful?to use them and which is more powerful?



Inferential Statistics
(b i t )(basic concepts)

Null-Hypothesis

Ho: The 2 samples come from populations with the 
same distributions.
Or median of pop lation 1 median of pop lation 2

Si ifi  l l 

Or, median of population 1 = median of population 2
(generalization with n samples)

Significance level α
Significance level for all tests tell us whether or not Significance level for all tests tell us whether or not 
to reject the null hypothesis (and with what 
confidence). 

A significance level of 90% or 95% is often sufficient, 
  99%

12

some use 99%



Inferential Statistics
(b i )(basic concepts)

If o  de ide fo   ignifi n e le el of 0 05 (95% 

Significance level α
If you decide for a significance level of 0.05 (95% 
certainty that there indeed is a significant 
difference)  then a p-value (provided by the test) difference), then a p value (provided by the test) 
smaller than 0.05 indicates that you can reject 
the null-hypothesisyp

Remember: the null-hypothesis generally 
predicts that the means are equal  predicts that the means are equal. 

So, in a test, if you have p = 0.07 means that you So, in a test, if you have p  0.07 means that you 
cannot reject the null hypothesis that “there is 
equal means“ there is no significant 

13

difference between the two groups



Inferential Statistics
(b i )(basic concepts)

There is at least one nonparametric test equivalent 
to a parametric test

Compare two variables

Parametric Nonparametric

t-test Sign test

p

p

Wilcoxon’s signed 
rank test

If more than two variables ANOVA Friedman’s test
Iman and 
Davenports’ test

Turkey, Bonferroni-Dunn’s 
Tamhane, ... test

Holm’s method

14



Inferential StatisticsInferential Statistics

Parametric Assumptions 
(t-test, ANOVA, …)

The observations must be independent

Normality: The observations must be drawn y
from normally distributed populations
(Tests: Kolmogorov-Smirnov, Shapiro-Wilk, ( g , p ,
D’Agostino-Pearson)

Homoscedasticity: These populations must have 
the same variances

15
(Levene’s Test)



Inferential StatisticsInferential Statistics
Normality

If your data looks like this, you can do a parametric test!
Normality

16



Inferential StatisticsInferential Statistics

If your data looks like this, don’t do a parametric test!

80
90

60
70

30
40
50

10
20

30

0
10
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Histogram



Inferential StatisticsInferential Statistics

Nonparametric Assumptions

Observations are independent
Data represented in an ordinal way of ranking. 

H  d  t i  t t  k?
Most nonparametric tests use ranks instead 

How do nonparametric tests work?
Most nonparametric tests use ranks instead 

of raw data for their hypothesis testing.
The cases of test are used for getting the The cases of test are used for getting the 

average rank.

18
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OutlineOutline

Introduction

C diti f th f  f t i t tConditions for the safe use of parametric tests

Using non-parameric tests: Data Mining/ Using non-parameric tests: Data Mining/ 
Computational Intelligence based case studies

Two sample tests/Multiple comparisonsTwo sample tests/Multiple comparisons
Evolutionary Algorithms: CEC’05 Special Session on
parameter optimization
Neural network and genetic learning experiments

L l d
19

Lessons learned



Conditions for the safe use 
f t i t tof parametric tests

In order to use the parametric tests, is necessary to check
the following conditions:

Independence: In statistics, two events are independent when
the fact that one occurs does not modify the probability of the
other one occurring.
• When we compare two optimization algorithms they are usually

i d d tindependent.

• When we compare two machine learning methods, it depends on
the partition:
• The independency is not truly verified in 10-fcv (a portion of

samples is used either for training and testing in differentsamples is used either for training and testing in different
partitions.

• Hold out partitions can be safely take as independent, since

20

training and test partitions do not overlap.



Conditions for the safe use 
f t i t tof parametric tests

Parametric tests assume that the data are taken from
normal distributions

Normality: An observation is normal when its behaviour
f ll l G di t ib ti ith t i l ffollows a normal or Gauss distribution with a certain value of
average μ and variance σ. A normality test applied over a sample

i di t th b f thi diti i b dcan indicate the presence or absence of this condition in observed
data.

• Kolmogorov-Smirnov

• Shapiro-Wilk

D’Agostino Pearson

21

• D’Agostino-Pearson



Conditions for the safe use 
f t i t tof parametric tests

CASE OF STUDY:

N l k d l MLP RBFN (10 f 5Neural networks models: MLP, RBFN (10-cfv, 5 runs per
partition)

22



Conditions for the safe use 
f t i t tof parametric tests

23



Conditions for the safe use 
f t i t t

A S i

of parametric tests

TABLE I. Kolmogorov-Smirnov test

a p-value smaller than 0.05 indicates that you can reject the 
null-hypothesis

24



Conditions for the safe use 
f t i t t

Fi 1 B t bl Hi t d Q Q G hi

of parametric tests

Fig. 1. Breast problem: Histogram and Q-Q Graphic.

* A Q-Q graphic represents a confrontation between the quartiles from data

25

Q Q g p p q
observed and those from the normal distributions. Absolute lack of normality.



Conditions for the safe use 
f t i t tof parametric tests

Heterocedasticity: This property indicates the existence of ay p p y
violation of the hypothesis of equality of variances.

Levene’s test is used for checking if k samples present or not
this homogeneity of variances (homoscedasticity).

26



Conditions for the safe use 
f t i t tof parametric tests

TABLE IV. Test of HETEROSCEDASTICITY OF LEVENE 
(BASED ON MEANS)( )

Table IV shows the results by applying Levene’s tests, where they pp y g ,
symbol “*” indicates that the variances of the distributions of the
different algorithms for a certain function are not homogeneities (we

j t th ll h th i )

27

reject the null hypothesis).
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Outline
Introduction

Outline
Introduction

Conditions for the safe use of parametric testsConditions for the safe use of parametric tests

Using non-parametric tests: Data Mining/ 
C t ti l I t lli b d  t diComputational Intelligence based case studies

Two sample tests
l i l iMultiple comparisons

Evolutionary Algorithms: CEC’05 Special Session on
parameter optimizationparameter optimization
Neural network and genetic learning experiments
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Lessons learned



Design of  Experiments in 
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Using non parameric tests: Data Mining/

Data Mining/Computational Intelligence

Using non-parameric tests: Data Mining/ 
Computational Intelligence based case studies

Two sample testsp

Multiple comparisonsMultiple comparisons

Evolutionary Algorithms: CEC’05 SpecialEvolutionary Algorithms: CEC 05 Special
Session on parameter optimization

Neural network and genetic learning
i t

29

experiments



Two Sample testsTwo-Sample tests

Two-Sample Tests
When comparing means of two samples to make inferences about 
differences between two populations, there are 4 main tests that could 
b dbe used:

U npaired data Paired data

Param etric test Independent-Sam ples
T-Test

Paired-Sam ples
T-Test

N on-param etric test M ann-W hitney U  test
( W il k

W ilcoxon
Si d R k(or W ilcoxon rank-

sum  test)
S igned-R anks
test

30

(Also, Sign test)



Two Sample tests
Wil  Si d R k  T t f  P i d S l

Two-Sample tests

The Wilcoxon Signed-Ranks test is used in exactly the same situations 
th i d t T t (i h d t f t l i d)

Wilcoxon Signed-Ranks Test for Paired Samples

as the paired t-Test (i.e., where data from two samples are paired).

In general the Test asks:g
Ho: The 2 samples come from populations with the same 
distributionsdistributions.
Or, median of population 1 = median of population 2

The test statistic is based on ranks of the differences 
between pairs of databetween pairs of data.
NOTE: If you have ≤ 5 pairs of data points, the Wilcoxon Signed-
Ranks test can never report a 2 tailed p value < 0 05

31

Ranks test can never report a 2-tailed p-value < 0.05



Two Sample testsTwo-Sample tests

Procedure for the Wilcoxon Signed-Ranks Test
1 For each pair of data calculate the difference Keep track of the1. For each pair of data, calculate the difference. Keep track of the 
sign (+ve or –ve).

2. Temporarily ignoring the sign of the difference, rank the absolute 
values of the difference. When the differences have the same value, ,
assign them the mean of the ranks involved in the tie.

3. Consider the sign of the differences again and ADD up the ranks 
of all the positive differences and all the negative differences 
(R+, R-). Ranks of difference equal to 0 are split evenly among the 
sums; if there is an odd number of them, one is ignored. 

32



Two Sample testsTwo-Sample tests

Procedure for the Wilcoxon Signed-Ranks Test

4. Let T be the smaller of the sums of positive and negative 
differences.  T = Min {R+, R-}.
Use an appropriate Statistical Table or computer to determine the 
test statistic, critical region or P-values.

5. Reject the Ho if test statistic ≤ critical value, or if P ≤ α (alpha).

6. Report Test results. 

33



Two Sample testsTwo-Sample tests
Wilcoxon Signed-Ranks Test for Paired Samples
Source: Demsar, J., Statistical comparisons of classifiers over multiple data sets. 
Journal of Machine Learning Research Vol 7 pp 1–30 2006Journal of Machine Learning Research. Vol. 7. pp. 1–30. 2006.

R+ = 3.5 + 9 + 12 + 5 + 6+ 14+ 
11 + 13 + 8 + 10 + 1 5 = 9311 + 13 + 8 + 10 + 1.5 = 93

R- = 7 + 3.5 + 1.5 = 12

34



Two Sample testsTwo-Sample tests

Source: Demsar, J., Statistical comparisons of 
l ifi l i l d J l f

Wilcoxon Signed-Ranks Test for Paired Samples

classifiers over multiple data sets. Journal of 
Machine Learning Research. Vol. 7. pp. 1–30. 2006.

R+ 3 5 9 12 5R+ = 3.5 + 9 + 12 + 5 +
6+ 14+ 11 + 13 + 
8 + 10 + 1 5 = 938 + 10 + 1.5 = 93
R- = 7 + 3.5 + 1.5 = 12 

T = Min {R+ , R- } = 12

α= 0.05, N = 14    dif  = 21

j h ll h h i
35

We reject the null-hypothesis



Two Sample testsTwo-Sample tests

Wilcoxon Signed-Ranks Test for Paired Samples

Critical value for T for 
N up to 25. p

It T <=  dif (table-value) 
h R j h Hthen Reject the Ho

36



Two Sample testsTwo-Sample tests

For n ≤ 30: use T values (and refer to a Table B.12. Critical Values 
of the Wilcoxon T Distribution, Zar, App101)of the Wilcoxon T Distribution, Zar,  App101)
For n > 30: use z-scores (z is distributed approximately normally).    
(and refer to the Table Table B 2 Zar Proportions of the(and refer to the z-Table, Table B.2. Zar – Proportions of the 
Normal Curve (One-tailed), App 17)

wherewhere,

With α = 0.05, the null-hypothesis can be rejected if z is smaller 

37

than –1.96.



Two Sample testsTwo-Sample tests

Wilcoxon Signed-Ranks Test in SPSS

Analyze  Nonparametric Tests  2 Related Samples Tests

• Select pair(s) of variables

• Select Wilcoxon

38



Two Sample tests
i Si i S SS

Two-Sample tests

Ranks

aN ti R kb t d hi
N Mean Rank Sum of RanksOUTPUT

Wilcoxon Signed-Ranks Test in SPSS

0a .00 .00
11b 6.00 66.00
0c

11

Negative Ranks
Positive Ranks
Ties
Total

beta-endorphin
conc. after (pmol/l) -
beta-endorphin
conc. before (pmol/l)

OUTPUT

beta-endorphin conc. after (pmol/l) < beta-endorphin conc. before (pmol/l)a. 

beta-endorphin conc. after (pmol/l) > beta-endorphin conc. before (pmol/l)b. 

beta-endorphin conc. before (pmol/l) = beta-endorphin conc. after (pmol/l)c. 

Test Statistics b

beta-endorphi
n conc. after

(pmol/l) -
beta-endorphi
n conc. before

(pmol/l)
-2.934a

.003
Z
Asymp. Sig. (2-tailed)

(p o / )

Based on negative ranks.a. 

39

Wilcoxon Signed Ranks Testb. 
Conclude: Reject Ho (Wilcoxon Signed-Ranks test, Z = -2.934, p = 0.003, n = 11, 0).
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Using non parameric tests: Data Mining/

Data Mining/Computational Intelligence

Using non-parameric tests: Data Mining/ 
Computational Intelligence based case studies

Two sample testsp

Multiple comparisonsMultiple comparisons

Evolutionary Algorithms: CEC’05 SpecialEvolutionary Algorithms: CEC 05 Special
Session on parameter optimization

Neural network and genetic learning
i t
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experiments



Cases of study: CEC’2005 Special
S i l t ti i tiSession on real parameter optimization

Special Session on Real-Parameter Optimization at CEC-05,
Edinburgh, UK, 2-5 Sept. 2005 

25 functions with real parameters, 10 variables:  
f1-f5 unimodal functions     f6-f25 multimodal functions

Source: S. García, D. Molina, M. Lozano, F. Herrera, A Study on the Use of Non-Parametric
Tests for Analyzing the Evolutionary Algorithms' Behaviour: A Case Study on the CEC'2005 
Special Session on Real Parameter Optimization Journal of Heuristics doi: 10 1007/s10732-

41

Special Session on Real Parameter Optimization. Journal of Heuristics, doi: 10.1007/s10732-
008-9080-4, in press (2008). 



Cases of study: CEC’2005 Special
S i l t ti i tiSession on real parameter optimization

(11 algorithms)
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Cases of study: CEC’2005 Special
S i l t ti i tiSession on real parameter optimization
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Cases of study: CEC’2005 Special
S i l t ti i tiSession on real parameter optimization
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Cases of study: CEC’2005 Special
S i l t ti i tiSession on real parameter optimization
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Cases of study: CEC’2005 Special
S i l t ti i tiSession on real parameter optimization
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G-CMAES versus the remaining algorithms. 
The critical values are: 68, 76, 89 and 100 (0.01, 0.02, 0.05, 0.1)



Cases of study: CEC’2005 Special
S i l t ti i ti

U i Wil t t f i lti l i f

Session on real parameter optimization

Using Wilcoxon test for comparing multiple pairs of
algorithms:

Given that this test carries out comparisons of pairs of algorithms in anGiven that this test carries out comparisons of pairs of algorithms in an
independent way, the overall significance level is not controlled. The
family-wise error rate (FWER) increase. The true statistical signification
for the pairwise comparison test is given by:
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Cases of study: CEC’2005 Special
S i l t ti i ti

C  f t d I  CEC’2005 S i l

Session on real parameter optimization

Cases of study I: CEC’2005 Special
Session on real parameter optimization

Example on the use of Wilcoxon’s test combined for multiple comparisons
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Design of  Experiments in 
D t Mi i /C t ti l I t lli

Using non parameric tests: Data Mining/

Data Mining/Computational Intelligence

Using non-parameric tests: Data Mining/ 
Computational Intelligence based case studies

Two sample testsp

Multiple comparisonsMultiple comparisons

Evolutionary Algorithms: CEC’05 SpecialEvolutionary Algorithms: CEC 05 Special
Session on parameter optimization

Neural network and genetic learning
i t

49

experiments



Multiple ComparisonsMultiple Comparisons

Parametric NonparametricParametric Nonparametric

ANOVA Friedman’s test
Iman-Davenport’s test

T k  D t  Bonferroni-Dunn’s testTurkey, Dunnet, …
Holm’s method
Hochberg’s methodg
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Multiple ComparisonsMultiple Comparisons

Friedman’s test: It is a non-parametric equivalent of the test of repeated-
measures ANOVA. It computes the ranking of the observed results for algorithm
( f th l ith j ith k l ith ) f h f ti / l ith i i t(rj for the algorithm j with k algorithms) for each function/algorithm, assigning to
the best of them the ranking 1, and to the worst the ranking k.

Under the null hypothesis, formed from supposing that the results of the
algorithms are equivalent and, therefore, their rankings are also similar, the
F i d t ti ti

jr

Friedman statistic

⎥
⎤

⎢
⎡ +∑ kkRN )1(12 2
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jF R
kk 4
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22χ

is distributed according to con k - 1 degrees of freedom, being ,
and N the number of functions/algorithms. (N > 10, k > 5)

2
Fχ ∑=

i
j

ij r
N

R 1
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g ( , )
(Table B.1. Critical Values of the Chi-Square Distribution, App. 12, Zar).



Multiple ComparisonsMultiple Comparisons

Iman and Davenport’s test: It is a metric derived from the Friedman’s
statistic given that this last metric produces a conservative undesirably
effect. The statistic is:

2)1(N χ
2)1(

)1(

F

F
F kN

NF
χ

χ
−−

−
=

)( Fχ

and it is distributed acording to a F distribution with k – 1 and (k - 1)(N - 1)
degrees of freedom.
(Table B.4. Critical values of the F Distribution, App. 21, Zar).
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Cases of study: Machine learning example, C4.5Cases of study: Machine learning example, C4.5

53
Source: Demsar, J., Statistical comparisons of classifiers over multiple data 
sets. Journal of Machine Learning Research. Vol. 7. pp. 1–30. 2006.



Cases of study: Machine learning example  C4 5Cases of study: Machine learning example, C4.5

Friedman’s measure: 9.28
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I D t’ t tIman-Davenport’s test:
FF = 3.69, F(3,3x13) = 2.85,
Therefore the null hypothesis yp
is rejected. 
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Cases of study: CEC’2005 Special
S i l t ti i tiSession on real parameter optimization

Ranking: f1 f25Ranking: f1-f25

56Ranking: f15-f25



Multiple ComparisonsMultiple Comparisons
Holm’s method: We dispose of a test that sequentially checks the hypothesis
ordered according to their significance. We will denote the p values ordered: p1 ≤ p2
≤ ≤ p≤… ≤ pk-1 .

Holm’s method compares each pi with α/(k-i) starting from the most significant p
value. If p1 Is below than α/(k-1), the corresponding hypothesis is rejected and it
leaves us to compare p2 with α/(k-2). If the second hypothesis is rejected, we
continue with the process As soon as a certain hypothesis can not be rejected allcontinue with the process. As soon as a certain hypothesis can not be rejected, all
the remaining hypothesis are maintained as accepted. The statistic for comparing the
i algorithm with the j algorithm is:

The value of z is used for finding the corresponding probability from the table of the
nomal distribution, which is compared with the corresponding value of α .

57

(Table B.2. Zar – Proportions of the Normal Curve (One-tailed), App 17)



Cases of study: Machine learning example, C4.5y g p ,

Holm’s method: SE = √(4.5/6.14) = 0.488.

p values arep-values are
0.607 (C4.5+cf)
0.019 (C4.5+m)
0.016 (C4.5+m+cf).

The first one is rejected (0 016 < 0 017)The first one is rejected  (0.016 < 0.017)

The second one is rejected  (0.019 < 0.025), 
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The third one can not be rejected (0.607 > 0.05)



Cases of study: CEC’2005 Special
S i l t ti i tiSession on real parameter optimization
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Multiple ComparisonsMultiple Comparisons

Hochberg’s method: It is a step-up procedure that works in the opposite direction
to Holm’s method, comparing the largest p value with α, the next largest with α/2

d f th til it t h th i i it j t All h th ithand so forth until it encounters a hypotheisis it can reject. All hypotheses with
smaller p values are then rejected as well.

Hochberg’s method is more powerful than Holm’s although it may under some
circumstances exceed the family-wise error.
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Cases of study: CEC’2005 Special
S i l t ti i tiSession on real parameter optimization
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S i l t ti i tiSession on real parameter optimization
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Cases of study: CEC’2005 Special
S i l t ti i tiSession on real parameter optimization

In practice, Hochberg's method is more powerful than Holm's 
one (but this difference is rather small)  in this  the results are one (but this difference is rather small), in this  the results are 
in favour of Hochberg’s method. 

Source: S. García, D. Molina, M. Lozano, F. Herrera, A Study on the Use of Non-
Parametric Tests for Analyzing the Evolutionary Algorithms' Behaviour: A Case Study on the
CEC'2005 Special Session on Real Parameter Optimization. Journal of Heuristics, doi: 
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p p f ,
10.1007/s10732-008-9080-4, in press (2008). 



Design of  Experiments in 
D t Mi i /C t ti l I t lli

Using non parameric tests: Data Mining/

Data Mining/Computational Intelligence

Using non-parameric tests: Data Mining/ 
Computational Intelligence based case studies

Two sample testsp

Multiple comparisonsMultiple comparisons

Evolutionary Algorithms: CEC’05 Special Session onEvolutionary Algorithms: CEC 05 Special Session on
parameter optimization

Neural network and genetic learning experiments
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Neural Network and Genetics-Based
M hi  L i E i t

NN and GBML does not verify parametric conditions

Machine Learning Experiments

NN and GBML does not verify parametric conditions.

Similar studies can be presented with them.Similar studies can be presented with them.

J. Luengo, S. García, F. Herrera, A Study on the Use of Statistical
T f E i i i h N l N k A l i fTests for Experimentation with Neural Networks: Analysis of
Parametric Test Conditions and Non-Parametric Tests. Expert
Systems with Applications in press (2008)Systems with Applications, in press (2008).

S. García, A. Fernandez, A.D. Benítez, F. Herrera, Statistical
C i b M f N P i T A C S dComparisons by Means of Non-Parametric Tests: A Case Study on
Genetic Based Machine Learning. Proceedings of the II Congreso
Español de Informática (CEDI 2007) V Taller Nacional de Minería deEspañol de Informática (CEDI 2007). V Taller Nacional de Minería de
Datos y Aprendizaje (TAMIDA 2007), Zaragoza (Spain), 95-104, 11-14
September 2007



Cases of study: Genetics-based machine learning

We have chosen four Genetic Interval Rule 
Based Algorithms:

Pittsburgh Genetic Interval Rule Learning Algorithm.
XCS Algorithm.
GASSIST Al ithGASSIST Algorithm.
HIDER Algorithm.

GBML will be analyzed by two performance 
measures: Accuracy and Cohen’s kappa.y pp

How we state which is the best?
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Cases of study: Genetics-based machine learning

E i t l St dExperimental Study
We have selected 14 data sets from UCI 
repository.

Data set   #Ex.   #Atts.   #C.  
bupa (bup)   345 6 2

cleveland (cle)   297 13 5
ecoli (eco)   336 7 8
glass (gla)   214 9 7

haberman (hab)   306 3 2
iris (iri)   150 4 3

monk‐2 (mon)   432 6 2
new‐Thyroid (new)   215 5 3

pima (pim)   768 8 2
vehicle (veh)   846 18 4
vowel (vow)   988 13 11
wine (win)   178 13 3
i i ( i ) 683 9 2

6767
wisconsin (wis)   683 9 2
yeast (yea)   1484 8 10



Cases of study: Genetics-based machine learning

TABLE I. Normality condition in accuracy

a value smaller than 0.05 indicates that you can reject the 
null-hypothesis (i e  the normality condition is not null-hypothesis (i.e. the normality condition is not 
satisfied) and it is noted with “*”
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Cases of study: Genetics-based machine learning

GBML Case of Study: some factsGBML Case of Study: some facts

C diti  d d f  th  li ti  f Conditions needed for the application of 
parametric tests are not fulfilled in some cases.

h f h l h ld b h ( 0)The size of the sample should be enough (50)

O  i  f  h   f h  blOne main factor: the nature of the problem
Graphically, we can use Q-Q graphics and 
histograms to see the normality
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Cases of study: Genetics-based machine learning

Analyzing parametric tests

* A Q Q hi t f t ti b t th til f d t

7070

* A Q-Q graphic represents a confrontation between the quartiles from data
observed and those from the normal distributions.



Cases of study: Genetics-based machine learning

TABLE IV. Test of HETEROSCEDASTICITY OF LEVENE 
(BASED ON MEANS)( )

Table IV shows the results by applying Levene’s tests, where the
symbol “*” indicates that the variances of the distributions of thesymbol indicates that the variances of the distributions of the
different algorithms for a certain function are not homogeneities (we
reject the null hypothesis).
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Cases of study: Genetics-based machine learning

Wilcoxon Signed-Ranks Test for Paired Samples

Wilcoxon's test applied over the all possible Wilcoxon s test applied over the all possible 
comparisons between the algorithms in accuracy

We stress in 
bold the bold the 
winner algorithm 
in each row eac o
when
the p-value p
associated is 
below 0.05
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Cases of study: Genetics-based machine learning

Results of applying Friedman’s and Iman-Davenport’s test 
with level of significance α ≤ 0.05 to the GBMLs

Th  t ti ti  f F i d  d I D t  l l  The statistics of Friedman and Iman-Davenport are clearly 
greater than their associated critical values

There are significant differences among the observed There are significant differences among the observed 
results

Next step: apply post-hoc test and find what algorithms

73

p pp y p g
partners' average results are dissimilar
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Cases of study: Genetics-based machine learning

Adjusted p-
values for the 
comparison of 
the control 
algorithm in algorithm in 
each measure 
with the 
remaining 
algorithms

If the adjusted p for each method is lower than the desired level of confidence α
(0.05 in our case), the algorithms are worse from bottom to top (stress in bold 
for 0.05)
In practice, Hochberg's method is more powerful than Holm's one (but this 
difference is rather small)  in this  our study the results are the same

74

difference is rather small), in this  our study the results are the same.
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Design of  Experiments in 
D t Mi i /C t ti l I t lliData Mining/Computational Intelligence

OutlineOutline

Introduction

C diti f th f  f t i t tConditions for the safe use of parametric tests

Using non-parametric tests: Data Mining/ Using non-parametric tests: Data Mining/ 
Computational Intelligence based case studies

Two sample tests/Multiple comparisonsTwo sample tests/Multiple comparisons
Evolutionary Algorithms: CEC’05 Special Session on
parameter optimization
Neural network and genetic learning experiments

L l d
75

Lessons learned



Lessons learned

On the use of non parametric tests:On the use of non-parametric tests:

Th d f i t i t t i th t thThe need of using non-parametric tests given that the
necessary conditions for using parametric tests are not
verified.



Lessons learned

Wilcoxon’s test

Wilcoxon’s test computes a ranking based on differences

Wilcoxon s test

Wilcoxon s test computes a ranking based on differences
between functions independently, whereas Friedman and derivative
procedures compute the ranking between algorithmsprocedures compute the ranking between algorithms.

Wilcoxon’s test is highly influenced by the number of case ofWilcoxon s test is highly influenced by the number of case of
study (functions, data sets …). The N value determines the critical
values to search in the statistical table.

It is highly influenced by outliers when N is below or equal to 11.g y y q
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Lessons learned

Multiple comparison

A l i l i b i d fi b i

Multiple comparison

A multiple comparison must be carried out first by using a
statistical method for testing the differences among the related

l Th t t h t ti ti l dsamples means. Then to use a post-hoc statistical procedures.

Holm’s proced re is a er good testHolm’s procedure is a very good test.
Hochberg’s method can rejects more hypothesis than Holm’s one.
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Lessons learned

What happens if I use a nonparametric test 
when the data is normal?

It will work, but a parametric test would be more 
powerful, i.e., give a lower p value.

If the data is not normal, then the nonparametric 
test is usually more powerful

Always look at the data first, then decide 
what test to use.  
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Lessons learned

Advantages of Nonparametric Tests

Can treat data which are inherently in ranks as 
well as data whose seemingly numerical scores well as data whose seemingly numerical scores 
have the strength in ranks
Easier to learn and apply than parametric testsEasier to learn and apply than parametric tests
(only one run for all cases of test)

If sample sizes as small as N=6 are used, there  is 
no alternative to using a nonparametric test

80



Lessons learned

Advantages of Nonparametric Tests
( l    f  ll  f t t)(only one run for all cases of test)

If we have a set of data sets/benchmark functions, we
must apply a parametric test for each data set/benchmarkmust apply a parametric test for each data set/benchmark
function.

We only need to use a non-parametric test for comparing
the algorithms on the whole set of benchmarks.
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Concluding RemarksConcluding Remarks

Nonparametric tests are a very useful tool for comparing
algorithms in a design of experiments in Computational
Intelligence and HAIS.

This talk presents the use of nonparametric tests for comparingThis talk presents the use of nonparametric tests for comparing
a control algorithm against a set of algorithms.

There are also nonparametric tests for comparing a sets of
algorithms based on ranking, procedures for performing allg g, p p g
pairwise comparisons, among them: Nemenyi, Shaffer,
Bergmann-Hommel procedures.

There are other kind of nonparametric algorithms as:
perm tation based proced res etc

82

permutation based procedures, etc.



Concluding RemarksConcluding Remarks

More on Nonparametric Tests
All i iAll parwise comparisons

S. García, F. Herrera, An Extension on "Statistical
Comparisons of Classifiers over Multiple Data Sets" for
all Pairwise Comparisons. Journal of Machine Learning
Research, in press (2008).

Proposals of statistical procedures for comparing nxn
classifers  An easy way of obtaining adjusted and classifers. An easy way of obtaining adjusted and 
comparable p-values in multiple comparison 
procedures
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Concluding RemarksConcluding Remarks

More on Nonparametric Tests
All i i

Nemenyi 1963

All parwise comparisons

Nemenyi, 1963
Shaffer, 1986
B d H l 1988Bergmann and Hommel, 1988

http://sci2s.ugr.es/publications/ficheros/garcia08a-JMLR.pdf
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Concluding RemarksConcluding Remarks

Design of  Experiments in 
Data Mining/Computational IntelligenceData Mining/Computational Intelligence

They are not the objective of our talk, but they are two
additional important questions:additional important questions:

Benchmark functions/data sets are very importantBenchmark functions/data sets … are very important.

To compare with the state of the art is a necessity.To compare with the state of the art is a necessity.
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