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Abstract—Discretization is an essential preprocessing technique used in many knowledge discovery and data mining tasks. Its main

goal is to transform a set of continuous attributes into discrete ones, by associating categorical values to intervals and thus

transforming quantitative data into qualitative data. In this manner, symbolic data mining algorithms can be applied over continuous

data and the representation of information is simplified, making it more concise and specific. The literature provides numerous

proposals of discretization and some attempts to categorize them into a taxonomy can be found. However, in previous papers, there is

a lack of consensus in the definition of the properties and no formal categorization has been established yet, which may be confusing

for practitioners. Furthermore, only a small set of discretizers have been widely considered, while many other methods have gone

unnoticed. With the intention of alleviating these problems, this paper provides a survey of discretization methods proposed in the

literature from a theoretical and empirical perspective. From the theoretical perspective, we develop a taxonomy based on the main

properties pointed out in previous research, unifying the notation and including all the known methods up to date. Empirically, we

conduct an experimental study in supervised classification involving the most representative and newest discretizers, different types of

classifiers, and a large number of data sets. The results of their performances measured in terms of accuracy, number of intervals, and

inconsistency have been verified by means of nonparametric statistical tests. Additionally, a set of discretizers are highlighted as the

best performing ones.

Index Terms—Discretization, continuous attributes, decision trees, taxonomy, data preprocessing, data mining, classification

Ç

1 INTRODUCTION

KNOWLEDGE extraction and data mining (DM) are im-
portant methodologies to be performed over different

databases which contain data relevant to a real application
[1], [2]. Both processes often require some previous tasks
such as problem comprehension, data comprehension or
data preprocessing in order to guarantee the successful
application of a DM algorithm to real data [3], [4]. Data
preprocessing [5] is a crucial research topic in the DM field
and it includes several processes of data transformation,
cleaning and data reduction. Discretization, as one of the
basic data reduction techniques, has received increasing
research attention in recent years [6] and has become one of
the preprocessing techniques most broadly used in DM.

The discretization process transforms quantitative data

into qualitative data, that is, numerical attributes into

discrete or nominal attributes with a finite number of
intervals, obtaining a nonoverlapping partition of a con-
tinuous domain. An association between each interval with
a numerical discrete value is then established. In practice,
discretization can be viewed as a data reduction method
since it maps data from a huge spectrum of numeric values
to a greatly reduced subset of discrete values. Once the
discretization is performed, the data can be treated as
nominal data during any induction or deduction DM
process. Many existing DM algorithms are designed to
only learn in categorical data, using nominal attributes,
while real-world applications usually involve continuous
features. Those numerical features have to be discretized
before using such algorithms.

In supervised learning, and specifically classification, the
topic of this survey, we can define the discretization as
follows: Assuming a data set consisting of N examples and
C target classes, a discretization algorithm would discretize
the continuous attribute A in this data set into m discrete
intervals D ¼ f½d0; d1�; ðd1; d2�; . . . ; ðdm�1; dm�g, where d0 is
the minimal value, dm is the maximal value and di < diþi,
for i ¼ 0; 1; . . . ;m� 1. Such a discrete result D is called a
discretization scheme on attribute A and P ¼ fd1; d2; . . . ;
dm�1g is the set of cut points of attribute A.

The necessity of using discretization on data can be
caused by several factors. Many DM algorithms are
primarily oriented to handle nominal attributes [7], [6],
[8], or may even only deal with discrete attributes. For
instance, three of the 10 methods considered as the top 10 in
DM [9] require an embedded or an external discretization
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of data: C4.5 [10], Apriori [11] and Naive Bayes [12], [13].
Even with algorithms that are able to deal with continuous
data, learning is less efficient and effective [14], [15], [4].
Other advantages derived from discretization are the
reduction and the simplification of data, making the
learning faster and yielding more accurate, compact and
shorter results; and noise possibly present in the data is
reduced. For both researchers and practitioners, discrete
attributes are easier to understand, use, and explain [6].
Nevertheless, any discretization process generally leads to a
loss of information, making the minimization of such
information loss the main goal of a discretizer.

Obtaining the optimal discretization is NP-complete [15].
A vast number of discretization techniques can be found in
the literature. It is obvious that when dealing with a concrete
problem or data set, the choice of a discretizer will condition
the success of the posterior learning task in accuracy,
simplicity of the model, etc. Different heuristic approaches
have been proposed for discretization, for example, ap-
proaches based on information entropy [16], [7], statistical �2

test [17], [18], likelihood [19], [20], rough sets [21], [22], etc.
Other criteria have been used in order to provide a
classification of discretizers, such as univariate/multivariate,
supervised/unsupervised, top-down/bottoum-up, global/
local, static/dynamic, and more. All these criteria are the
basis of the taxonomies already proposed and they will be
deeply elaborated upon in this paper. The identification of
the best discretizer for each situation is a very difficult task to
carry out, but performing exhaustive experiments consider-
ing a representative set of learners and discretizers could
help to decide the best choice.

Some reviews of discretization techniques can be found
in the literature [7], [6], [23], [8]. However, the character-
istics of the methods are not studied completely, many

discretizers, even classic ones, are not mentioned, and the

notation used for categorization is not unified. For example,

in [7], the static/dynamic distinction is different from that

used in [6] and the global/local property is usually

confused with the univariate/multivariate property [24],

[25], [26]. Subsequent papers include one notation or other,

depending on the initial discretization study referenced by

them: [7], [24] or [6].
In spite of the wealth of literature, and apart from the

absence of a complete categorization of discretizers using a

unified notation, it can be observed that, there are few

attempts to empirically compare them. In this way, the

algorithms proposed are usually compared with a subset of

the complete family of discretizers and, in most of the

studies, no rigorous empirical analysis has been carried out.

Furthermore, many new methods have been proposed in

recent years and they are going unnoticed with respect to the

discretizers reviewed in well-known surveys [7], [6]. Fig. 1

illustrates a comparison network where each node corre-

sponds to a discretization algorithm and a directed vertex

between two nodes indicates that the algorithm of the start

node has been compared with the algorithm of the end node.

The direction of the arrows is always from the newest

method to the oldest, but it does not influence the results.

The size of the node is correlated with the number of input

and output vertices. We can see that most of the discretizers

are represented by small nodes and that the graph is far from

being complete, which has prompted the present paper. The

most compared techniques are EqualWidth, EqualFre-

quency, MDLP [16], ID3 [10], ChiMerge [17], 1R [27], D2

[28], and Chi2 [18].
These reasons motivate the global purpose of this paper,

which can be divided into three main objectives:
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. To propose a complete taxonomy based on the main
properties observed in the discretization methods.
The taxonomy will allow us to characterize their
advantages and drawbacks in order to choose a
discretizer from a theoretical point of view.

. To make an empirical study analyzing the most
representative and newest discretizers in terms of
the number of intervals obtained and inconsistency
level of the data.

. Finally, to relate the best discretizers for a set of
representative DM models using two metrics to
measure the predictive classification success.

The experimental study will include a statistical analysis
based on nonparametric tests. We will conduct experiments
involving a total of 30 discretizers; six classification
methods belonging to lazy, rules, decision trees, and
Bayesian learning families; and 40 data sets. The experi-
mental evaluation does not correspond to an exhaustive
search for the best parameters for each discretizer, given the
data at hand. Then, its main focus is to properly relate a
subset of best performing discretizers to each classic
classifier using a general configuration for them.

This paper is organized as follows: The related and
advanced work on discretization is provided in Section 2.
Section 3 presents the discretizers reviewed, their proper-
ties, and the taxonomy proposed. Section 4 describes the
experimental framework, examines the results obtained in
the empirical study and presents a discussion of them.
Section 5 concludes the paper. Finally, we must point out
that the paper has an associated web site http://sci2s.
ugr.es/discretization which collects additional information
regarding discretizers involved in the experiments such as
implementations and detailed experimental results.

2 RELATED AND ADVANCED WORK

Research in improving and analyzing discretization is
common and in high demand currently. Discretization is a
promising technique to obtain the hoped results, depending
on the DM task, which justifies its relationship to other
methods and problems. This section provides a brief
summary of topics closely related to discretization from a
theoretical and practical point of view and describes other
works and future trends which have been studied in the last
few years.

. Discretization specific analysis: Susmaga proposed an
analysis method for discretizers based on binariza-
tion of continuous attributes and rough sets mea-
sures [29]. He emphasized that his analysis method is
useful for detecting redundancy in discretization and
the set of cut points which can be removed without
decreasing the performance. Also, it can be applied
to improve existing discretization approaches.

. Optimal multisplitting: Elomaa and Rousu character-
ized some fundamental properties for using some
classic evaluation functions in supervised univariate
discretization. They analyzed entropy, information
gain, gain ratio, training set error, gini index, and
normalized distance measure, concluding that they
are suitable for use in the optimal multisplitting of

an attribute [30]. They also developed an optimal
algorithm for performing this multisplitting process
and devised two techniques [31], [32] to speed it up.

. Discretization of continuous labels: Two possible
approaches have been used in the conversion of a
continuous supervised learning (regression pro-
blem) into a nominal supervised learning (classifica-
tion problem). The first one is simply to use
regression tree algorithms, such as CART [33].
The second consists of applying discretization to
the output attribute, either statically [34] or in a
dynamic fashion [35].

. Fuzzy discretization: Extensive research has been
carried out around the definition of linguistic terms
that divide the domain attribute into fuzzy regions
[36]. Fuzzy discretization is characterized by mem-
bership value, group or interval number, and affinity
corresponding to an attribute value, unlike crisp
discretization which only considers the interval
number [37].

. Cost-sensitive discretization: The objective of cost-
based discretization is to take into account the cost
of making errors instead of just minimizing the total
sum of errors [38]. It is related to problems of
imbalanced or cost-sensitive classification [39], [40].

. Semi-supervised discretization: A first attempt to
discretize data in semi-supervised classification
problems has been devised in [41], showing that it
is asymptotically equivalent to the supervised
approach.

The research mentioned in this section is out of the scope
of this survey. We point out that the main objective of this
paper is to give a wide overview of the discretization
methods found in the literature and to conduct an exhaustive
experimental comparison of the most relevant discretizers
without considering external and advanced factors such as
those mentioned above or derived problems from classic
supervised classification.

3 DISCRETIZATION: BACKGROUND AND

TECHNIQUES

This section presents a taxonomy of discretization methods
and the criteria used for building it. First, in Section 3.1, the
main characteristics which will define the categories of
the taxonomy will be outlined. Then, in Section 3.2, we
enumerate the discretization methods proposed in the
literature we will consider by using their complete and
abbreviated name together with the associated reference.
Finally, we present the taxonomy.

3.1 Common Properties of Discretization Methods

This section provides a framework for the discussion of the
discretizers presented in the next section. The issues
discussed include several properties involved in the
structure of the taxonomy, since they are exclusive to the
operation of the discretizer. Other, less critical issues such
as parametric properties or stopping conditions will be
presented although they are not involved in the taxonomy.
Finally, some criteria will also be pointed out in order to
compare discretization methods.
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3.1.1 Main Characteristics of a Discretizer

In [6], [7], [8], various axes have been described in order to
make a categorization of discretization methods. We
review and explain them in this section, emphasizing the
main aspects and relations found among them and
unifying the notation. The taxonomy proposed will be
based on these characteristics:

. Static versus Dynamic: This characteristic refers to the
moment and independence which the discretizer
operates in relation with the learner. A dynamic
discretizer acts when the learner is building the
model, thus they can only access partial information
(local property, see later) embedded in the learner
itself, yielding compact and accurate results in
conjuntion with the associated learner. Otherwise,
a static discretizer proceeds prior to the learning task
and it is independent from the learning algorithm
[6]. Almost all known discretizers are static, due to
the fact that most of the dynamic discretizers are
really subparts or stages of DM algorithms when
dealing with numerical data [42]. Some examples of
well-known dynamic techniques are ID3 discretizer
[10] and ITFP [43].

. Univariate versus Multivariate: Multivariate techni-
ques, also known as 2D discretization [44], simulta-
neously consider all attributes to define the initial set
of cut points or to decide the best cut point
altogether. They can also discretize one attribute at
a time when studying the interactions with other
attributes, exploiting high order relationships. By
contrast, univariate discretizers only work with a
single attribute at a time, once an order among
attributes has been established, and the resulting
discretization scheme in each attribute remains
unchanged in later stages. Interest has recently arisen
in developing multivariate discretizers since they are
very influential in deductive learning [45], [46] and
in complex classification problems where high
interactions among multiple attributes exist, which
univariate discretizers might obviate [47], [48].

. Supervised versus Unsupervised: Unsupervised discre-
tizers do not consider the class label whereas
supervised ones do. The manner in which the latter
consider the class attribute depends on the interac-
tion between input attributes and class labels, and
the heuristic measures used to determine the best cut
points (entropy, interdependence, etc.). Most dis-
cretizers proposed in the literature are supervised
and theoretically, using class information, should
automatically determine the best number of intervals
for each attribute. If a discretizer is unsupervised, it
does not mean that it cannot be applied over
supervised tasks. However, a supervised discretizer
can only be applied over supervised DM problems.
Representative unsupervised discretizers are Equal-
Width and EqualFrequency [49], PKID and FFD [12],
and MVD [45].

. Splitting versus Merging: This refers to the procedure
used to create or define new intervals. Splitting
methods establish a cut point among all the possible

boundary points and divide the domain into two
intervals. By contrast, merging methods start with a
predefined partition and remove a candidate cut
point to mix both adjacent intervals. These proper-
ties are highly related to Top-Down and Bottom-up,
respectively, (explained in the next section). The idea
behind them is very similar, except that top-down or
bottom-up discretizers assume that the process is
incremental (described later), according to a hier-
archical discretization construction. In fact, there can
be discretizers whose operation is based on splitting
or merging more than one interval at a time [50],
[51]. Also, some discretizers can be considered hybrid
due to the fact that they can alternate splits with
merges in running time [52], [53].

. Global versus Local: To make a decision, a discretizer
can either require all available data in the attribute or
use only partial information.. A discretizer is said to
be local when it only makes the partition decision
based on local information. Examples of widely used
local techniques are MDLP [16] and ID3 [10]. Few
discretizers are local, except some based on top-down
partition and all the dynamic techniques. In a top-
down process, some algorithms follow the divide-
and-conquer scheme and when a split is found, the
data are recursively divided, restricting access to
partial data. Regarding dynamic discretizers, they
find the cut points in internal operations of a DM
algorithm, so they never gain access to the full data set.

. Direct versus Incremental: Direct discretizers divide
the range into k intervals simultaneously, requiring
an additional criterion to determine the value of k.
They do not only include one-step discretization
methods, but also discretizers which perform sev-
eral stages in their operation, selecting more than a
single cut point at every step. By contrast, incre-
mental methods begin with a simple discretization
and pass through an improvement process, requir-
ing an additional criterion to know when to stop it.
At each step, they find the best candidate boundary
to be used as a cut point and afterwards the rest of
the decisions are made accordingly. Incremental
discretizers are also known as hierarchical discreti-
zers [23]. Both types of discretizers are widespread
in the literature, although there is usually a more
defined relationship between incremental and su-
pervised ones.

. Evaluation measure: This is the metric used by the
discretizer to compare two candidate schemes and
decide which is more suitable to be used. We
consider five main families of evaluation measures:

- Information: This family includes entropy as the
most used evaluation measure in discretization
(MDLP [16], ID3 [10], FUSINTER [54]) and other
derived information theory measures such as
the Gini index [55].

- Statistical: Statistical evaluation involves the
measurement of dependency/correlation
among attributes (Zeta [56], ChiMerge [17],
Chi2 [18]), probability and Bayesian properties
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[19] (MODL [20]), interdependency [57], con-
tingency coefficient [58], etc.

- Rough sets: This group is composed of methods
that evaluate the discretization schemes by
using rough set measures and properties [21],
such as lower and upper approximations, class
separability, etc.

- Wrapper: This collection comprises methods that
rely on the error provided by a classifier that is
run for each evaluation. The classifier can be a
very simple one, such as a majority class voting
classifier (Valley [59]) or general classifiers such
as Naive Bayes (NBIterative [60]).

- Binning: This category refers to the absence of an
evaluation measure. It is the simplest method to
discretize an attribute by creating a specified
number of bins. Each bin is defined a priori and
allocates a specified number of values per
attribute. Widely used binning methods are
EqualWidth and EqualFrequency.

3.1.2 Other Properties

We can remark other properties related to discretization.

They also influence the operation and results obtained by a

discretizer, but to a lower degree than the characteristics

explained above. Furthermore, some of them present a large

variety of categorizations and may harm the interpretability

of the taxonomy.

. Parametric versus Nonparametric: This property refers
to the automatic determination of the number of
intervals for each attribute by the discretizer. A
nonparametric discretizer computes the appropriate
number of intervals for each attribute considering a
tradeoff between the loss of information or consis-
tency and obtaining the lowest number of them. A
parametric discretizer requires a maximum number
of intervals desired to be fixed by the user. Examples
of nonparametric discretizers are MDLP [16] and
CAIM [57]. Examples of parametric ones are
ChiMerge [17] and CADD [52].

. Top-Down versus Bottom Up: This property is only
observed in incremental discretizers. Top-Down
methods begin with an empty discretization. Its
improvement process is simply to add a new
cutpoint to the discretization. On the other hand,
Bottom-Up methods begin with a discretization that
contains all the possible cutpoints. Its improvement
process consists of iteratively merging two intervals,
removing a cut point. A classic Top-Down method is
MDLP [16] and a well-known Bottom-Up method is
ChiMerge [17].

. Stopping condition: This is related to the mechanism
used to stop the discretization process and must be
specified in nonparametric approaches. Well-known
stopping criteria are the Minimum Description
Length measure [16], confidence thresholds [17], or
inconsistency ratios [24].

. Disjoint versus Nondisjoint: Disjoint methods discre-
tize the value range of the attribute into disassociated
intervals, without overlapping, whereas nondisjoint

methods dicsretize the value range into intervals that
can overlap. The methods reviewed in this paper are
disjoint, while fuzzy discretization is usually non-
disjoint [36].

. Ordinal versus Nominal: Ordinal discretization trans-
forms quantitative data intro ordinal qualitative data
whereas nominal discretization transforms it into
nominal qualitative data, discarding the information
about order. Ordinal discretizers are less common,
not usually considered classic discretizers [113].

3.1.3 Criteria to Compare Discretization Methods

When comparing discretization methods, there are a
number of criteria that can be used to evaluate the relative
strengths and weaknesses of each algorithm. These include
the number of intervals, inconsistency, predictive classifica-
tion rate, and time requirements

. Number of intervals: A desirable feature for practical
discretization is that discretized attributes have as few
values as possible, since a large number of intervals
may make the learning slow and ineffective. [28].

. Inconsistency: A supervision-based measure used to
compute the number of unavoidable errors pro-
duced in the data set. An unavoidable error is one
associated with two examples with the same values
for input attributes and different class labels. In
general, data sets with continuous attributes are
consistent, but when a discretization scheme is
applied over the data, an inconsistent data set may
be obtained. The desired inconsistency level that a
discretizer should obtain is 0.0.

. Predictive classification rate: A successful algorithm
will often be able to discretize the training set
without significantly reducing the prediction cap-
ability of learners in test data which are prepared to
treat numerical data.

. Time requirements: A static discretization process is
carried out just once on a training set, so it does not
seem to be a very important evaluation method.
However, if the discretization phase takes too long it
can become impractical for real applications. In
dynamic discretization, the operation is repeated
many times as the learner requires, so it should be
performed efficiently.

3.2 Discretization Methods and Taxonomy

At the time of writing, more than 80 discretization methods
have been proposed in the literature. This section is devoted
to enumerating and designating them according to a
standard followed in this paper. We have used 30 discretizers
in the experimental study, those that we have identified as
the most relevant ones. For more details on their descriptions,
the reader can visit the URL associated to the KEEL project.1

Additionally, implementations of these algorithms in Java
can be found in KEEL software [114], [115].

Table 1 presents an enumeration of discretizers reviewed
in this paper. The complete name, abbreviation, and
reference are provided for each one. This paper does not
collect the descriptions of the discretizers due to space
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restrictions. Instead, we recommend that readers consult
the original references to understand the complete opera-
tion of the discretizers of interest. Discretizers used in the
experimental study are depicted in bold. The ID3 discretizer
used in the study is a static version of the well-known
discretizer embedded in C4.5.

The properties studied above can be used to categorize the

discretizers proposed in the literature. The seven character-

istics studied allows us to present the taxonomy of discretiza-

tion methods following an established order. All techniques

enumerated in Table 1 are collected in the taxonomy drawn in

Fig. 2. It illustrates the categorization following a hierarchy

based on this order: static/dynamic, univariate/multivari-

ate, supervised/unsupervised, splitting/merging/hybrid,

global/local, direct/incremental, and evaluation measure.

The rationale behind the choice of this order is to achieve a

clear representation of the taxonomy.

The proposed taxonomy assists us in the organization of
many discretization methods so that we can classify them
into categories and analyze their behavior. Also, we can
highlight other aspects in which the taxonomy can be
useful. For example, it provides a snapshot of existing
methods and relations or similarities among them. It also
depicts the size of the families, the work done in each one,
and what currently is missing. Finally, it provides a general
overview on the state-of-the art in discretization for
researchers/practitioners who are starting in this topic or
need to discretize data in real applications.

4 EXPERIMENTAL FRAMEWORK, EMPIRICAL STUDY,

AND ANALYSIS OF RESULTS

This section presents the experimental framework followed
in this paper, together with the results collected and
discussions on them. Section 4.1 will describe the complete
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experimental set up. Then, we offer the study and analysis
of the results obtained over the data sets used in Section 4.2.

4.1 Experimental Set Up

The goal of this section is to show all the properties and
issues related to the experimental study. We specify the
data sets, validation procedure, classifiers used, parameters
of the classifiers and discretizers, and performance metrics.

The statistical tests used to contrast the results are also
briefly commented at the end of this section.

The performance of discretization algorithms is analyzed
by using 40 data sets taken from the UCI Machine Learning
Database Repository [116] and KEEL data set repository
[115].2 The main characteristics of these data sets are
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summarized in Table 2. For each data set, the name, number

of examples, number of attributes (numeric and nominal),

and number of classes are defined.
In this study, six classifiers have been used in order to

find differences in performance among the discretizers. The

classifiers are:

. C4.5 [10]: A well-known decision tree, considered
one of the top 10 DM algorithms [9].

. DataSqueezer [117]: This learner belongs to the family
of inductive rule extraction. In spite of its relative
simplicity, DataSqueezer is a very effective learner.
The rules generated by the algorithm are compact
and comprehensible, but accuracy is to some extent
degraded in order to achieve this goal.

. KNN: One of the simplest and most effective
methods based on similarities among a set of objects.
It is also considered one of the top 10 DM algorithms
[9] and it can handle nominal attributes using proper

distance functions such as HVDM [118]. It belongs to
the lazy learning family [119], [120].

. Naive Bayes: This is another of the top 10 DM
algorithms [9]. Its aim is to construct a rule which
will allow us to assign future objects to a class,
assuming independence of attributes when prob-
abilities are established.

. PUBLIC [121]: It is an advanced decision tree that
integrates the pruning phase with the building stage
of the tree in order to avoid the expansion of
branches that would be pruned afterwards.

. Ripper [122]: This is a widely used rule induction
method based on a separate and conquer strategy. It
incorporates diverse mechanisms to avoid over-
fitting and to handle numeric and nominal attributes
simultaneously. The models obtained are in the form
of decision lists.

The data sets considered are partitioned using the 10-
fold cross-validation (10-fcv) procedure. The parameters of
the discretizers and classifiers are those recommended by
their respective authors. They are specified in Table 3 for
those methods which require them. We assume that the
choice of the values of parameters is optimally chosen by
their own authors. Nevertheless, in discretizers that require
the input of the number of intervals as a parameter, we use
a rule of thumb which is dependent on the number of
instances in the data set. It consists in dividing the number
of instances by 100 and taking the maximum value between
this result and the number of classes. All discretizers and
classifiers are run one time in each partition because they
are nonstochastic.

Two performance measures are widely used because of
their simplicity and successful application when multiclass
classification problems are dealt. We refer to accuracy and
Cohen’s kappa [123] measures, which will be adopted to
measure the efficacy discretizers in terms of the general-
ization classification rate.

. Accuracy: is the number of successful hits relative to
the total number of classifications. It has been by far
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the most commonly used metric for assessing the
performance of classifiers for years [2], [124].

. Cohen’s kappa: is an alternative to accuracy, a method,
known for decades, which compensates for random
hits [123]. Its original purpose was to measure the
degree of agreement or disagreement between two
people observing the same phenomenon. Cohen’s
kappa can be adapted to classification tasks and its
use is recommended because it takes random
successes into consideration as a standard, in the
same way as the AUC measure [125].

An easy way of computing Cohen’s kappa is to
make use of the resulting confusion matrix in a
classification task. Specifically, the Cohen’s kappa
measure can be obtained using the following
expression:

kappa ¼ N
PC

i¼1 yii �
PC

i¼1 yi:y:i

N2 �
PC

i¼1 yi:y:i
;

where yii is the cell count in the main diagonal of the
resulting confusion matrix, N is the number of
examples, C is the number of class values, and y:i,yi:
are the columns’ and rows’ total counts of the
confusion matrix, respectively. Cohen’s kappa
ranges from �1 (total disagreement) through 0
(random classification) to 1 (perfect agreement).
Being a scalar, it is less expressive than ROC curves
when applied to binary classification. However, for
multiclass problems, kappa is a very useful, yet
simple, meter for measuring the accuracy of the
classifier while compensating for random successes.

The empirical study involves 30 discretization methods
from those listed in Table 1. We want to outline that the
implementations are only based on the descriptions and
specifications given by the respective authors in their
papers.

Statistical analysis will be carried out by means of
nonparametric statistical tests. In [126], [127], [128], authors
recommend a set of simple, safe, and robust nonparametric
tests for statistical comparisons of classifiers. The Wilcoxon
test [129] will be used in order to conduct pairwise
comparisons among all discretizers considered in the study.
More information about these statistical procedures speci-
fically designed for use in the field of Machine Learning can
be found at the SCI2S thematic public website on Statistical
Inference in Computational Intelligence and Data Mining.3

4.2 Analysis and Empirical Results

Table 4 presents the average results corresponding to the
number of intervals and inconsistency rate in training and
test data by all the discretizers over the 40 data sets. Similarly,
Tables 5 and 6 collect the average results associated with
accuracy and kappa measures for each classifier considered.
For each metric, the discretizers are ordered from the best to
the worst. In Tables 5 and 6, we highlight those discretizers
whose performance is within 5 percent of the range between
the best and the worst method in each measure, that is,
valuebest � ð0:05 � ðvaluebest � valueworstÞÞ. They should be

considered as outstanding methods in each category,
regardless of their specific position in the table.

All detailed results for each data set, discretizer and
classifier (including average and standard deviations), can
be found at the URL http://sci2s.ugr.es/discretization. In
the interest of compactness, we will include and analyze
summarized results in the paper.

The Wilcoxon test [129], [126], [127] is adopted in this
study considering a level of significance equal to � ¼ 0:05.
Tables 7, 8, and 9 show a summary of all possible
comparisons involved in the Wilcoxon test among all
discretizers and measures, for number of intervals and
inconsistency rate, accuracy and kappa, respectively.
Again, the individual comparisons between all possible
discretizers are exhibited in the aforementioned URL
mentioned above, where a detailed report of statistical
results can be found for each measure and classifier. The
tables in this paper (Tables 7, 8, and 9) summarize, for each
method in the rows, the number of discretizers out-
performed by using the Wilcoxon test under the column
represented by the “+” symbol. The column with the “�”
symbol indicates the number of wins and ties obtained by
the method in the row. The maximum value for each
column is highlighted by a shaded cell.

Finally, to illustrate the magnitude of the differences in
average results and the relationship between the number of
intervals yielded by each discretizer and the accuracy
obtained for each classifier, Fig. 3 depicts a confrontation
between the average number of intervals and accuracy
reflected by an X-Y axis graphic, for each classifier. It also
helps us to see the differences in the behavior of discretiza-
tion when it is used over distinct classifiers.
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TABLE 4
Average Results Collected from Intrinsic Properties of the

Discretizers: Number of Intervals Obtained and Inconsistency
Rate in Training and Test Data

3. http://sci2s.ugr.es/sicidm/.



Once the results are presented in the mentioned tables

and graphics, we can stress some interesting properties

observed from them, and we can point out the best

performing discretizers:

. Regarding the number of intervals, the discretizers
which divide the numerical attributes in fewer
intervals are Heter-Disc, MVD, and Distance, whereas
discretizers which require a large number of cut
points are HDD, ID3, and Bayesian. The Wilcoxon
test confirms that Heter-Disc is the discretizer that
obtains the least intervals outperforming the rest.

. The inconsistency rate both in training data and test
data follows a similar trend for all discretizers,
considering that the inconsistency obtained in test
data is always lower than in training data. ID3 is the
discretizer that obtains the lowest average incon-
sistency rate in training and test data, albeit the
Wilcoxon test cannot find significant differences
between it and the other two discretizers: FFD and
PKID. We can observe a close relationship between
the number of intervals produced and the incon-
sistency rate, where discretizers that compute fewer
cut points are usually those which have a high
inconsistency rate. They risk the consistency of the
data in order to simplify the result, although
the consistency is not usually correlated with the
accuracy, as we will see below.

. In decision trees (C4.5 and PUBLIC), a subset of
discretizers can be stressed as the best performing
ones. Considering average accuracy, FUSINTER,
ChiMerge, and CAIM stand out from the rest.
Considering average kappa, Zeta and MDLP are also
added to this subset. The Wilcoxon test confirms this

result and adds another discretizer, Distance, which
outperforms 16 of the 29 methods. All methods
emphasized are supervised, incremental (except
Zeta) and use statistical and information measures
as evaluators. Splitting/Merging and Local/Global
properties have no effect on decision trees.

. Considering rule induction (DataSqueezer and Rip-
per), the best performing discretizers are Distance,
Modified Chi2, Chi2, PKID, and MODL in average
accuracy and CACC, Ameva, CAIM, and FUSINTER
in average kappa. In this case, the results are very
irregular due to the fact that the Wilcoxon test
emphasizes the ChiMerge as the best performing
discretizer for DataSqueezer instead of Distance and
incorporates Zeta in the subset. With Ripper, the
Wilcoxon test confirms the results obtained by
averaging accuracy and kappa. It is difficult to
discern a common set of properties that define the
best performing discretizers due to the fact that rule
induction methods differ in their operation to a
greater extent than decision trees. However, we can
remark that, in the subset of best methods, incre-
mental and supervised discretizers predominate in
the statistical evaluation.

. Lazy and Bayesian learning can be analyzed together,
due to the fact that the HVDM distance used in KNN is
highly related to the computation of Bayesian prob-
abilities considering attribute independence [118].
With respect to lazy and Bayesian learning, KNN and
Naive Bayes, the subset of remarkable discretizers is
formed by PKID, FFD, Modified Chi2, FUSINTER,
ChiMerge, CAIM, EqualWidth, and Zeta, when average
accuracy is used; and Chi2, Khiops, EqualFrequency and
MODL must be added when average kappa is
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TABLE 5
Average Results of Accuracy Considering the Six Classifiers



considered. The statistical report by Wilcoxon informs
us of the existence of two outstanding methods: PKID
for KNN, which outperforms 27/29 and FUSINTER
for Naive Bayes. Here, supervised and unsupervised,
direct and incremental, binning, and statistical/
information evaluation are characteristics present in
the best perfoming methods. However, we can see
that all of them are global, thus identifying a trend
toward binning methods.

. In general, accuracy and kappa performance regis-
tered by discretizers do not differ too much. The
behavior in both evaluation metrics are quite similar,
taking into account that the differences in kappa are
usually lower due to the compensation of random
success offered by it. Surprisingly, in DataSqueezer,
accuracy and kappa offer the greatest differences in
behavior, but they are motivated by the fact that this
method focuses on obtaining simple rule sets,
leaving precision in the background.

. It is obvious that there is a direct dependence
between discretization and the classifier used. We
have pointed out that a similar behavior in decision
trees and lazy/bayesian learning can be detected,
whereas in rule induction learning, the operation of
the algorithm conditions the effectiveness of the
discretizer. Knowing a subset of suitable discretizers
for each type of discretizer is a good starting point to
understand and propose improvements in the area.

. Another interesting remark can be made about the
relationship between accuracy and the number of
intervals yielded by a discretizer. Fig. 3 supports the
hypothesis that there is no direct correlation between
them. A discretizer that computes few cut points

does not have to obtain poor results in accuracy and
vice versa. Figs. 3a, 3c, 3d, and 3e point out that there
is a minimum limit in the number of intervals to
guarantee accurate models, given by the cut points
computed by Distance. Fig. 3b shows how DataS-
queezer is worse as the number of intervals increases,
but this is an inherent behavior of the classifier.

. Finally, we can stress a subset of global best
discretizers considering a tradeoff between the
number of intervals and accuracy obtained. In this
subset, we can include FUSINTER, Distance, Chi2,
MDLP, and UCPD.

On the other hand, an analysis centered on the 30

discretizers studied is given as follows:

. Many classic discretizers are usually the best
performing ones. This is the case of ChiMerge,
MDLP, Zeta, Distance, and Chi2.

. Other classic discretizers are not as good as they
should be, considering that they have been improved
over the years: EqualWidth, EqualFrequency, 1R, ID3
(the static version is much worse than the dynamic
inserted in C4.5 operation), CADD, Bayesian, and
ClusterAnalysis.

. Slight modifications of classic methods have greatly
enhanced their results, such as, for example,
FUSINTER, Modified Chi2, PKID, and FFD; but in
other cases, the extensions have diminished their
performance: USD, Extended Chi2.

. Promising techniques that have been evaluated under
unfavorable circumstances are MVD and UCP, which
are unsupervised methods useful for application to
other DM problems apart from classification.
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TABLE 6
Average Results of Kappa Considering the Six Classifiers



. Recent proposed methods that have been demon-
strated to be competitive compared with classic
methods and even outperforming them in some
scenarios are Khiops, CAIM, MODL, Ameva, and
CACC. However, recent proposals that have re-
ported bad results in general are Heter-Disc,
HellingerBD, DIBD, IDD, and HDD.

. Finally, this study involves a higher number of data
sets than the quantity considered in previous works
and the conclusions achieved are impartial toward an
specific discretizer. However, we have to stress some
coincidences with the conclusions of these previous
works. For example in [102], the authors propose an
improved version of Chi2 in terms of accuracy,
removing the user parameter choice. We check and
measure the actual improvement. In [12], the authors
develop an intense theoretical and analytical study
concerning Naive Bayes and propose PKID and FFD
according to their conclusions. In this paper, we
corroborate that PKID is the best suitable method for
Naive Bayes and even for KNN. Finally, we may note

that CAIM is one of the simplest discretizers and its
effectiveness has also been shown in this study.

5 CONCLUDING REMARKS AND GLOBAL

GUIDELINES

The present paper offers an exhaustive survey of the
discretization methods proposed in the literature. Basic
and advanced properties, existing work, and related fields
have been studied. Based on the main characteristics
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TABLE 7
Wilcoxon Test Results in Number of Intervals

and Inconsistencies

TABLE 8
Wilcoxon Test Results in Accuracy

TABLE 9
Wilcoxon Test Results in Kappa



studied, we have designed a taxonomy of discretization

methods. Furthermore, the most important discretizers

(classic and recent) have been empirically analyzed over a

vast number of classification data sets. In order to strength-

en the study, statistical analysis based on nonparametric

tests has been added supporting the conclusions drawn.

Several remarks and guidelines can be suggested:

. A researcher/practitioner interested in applying a
discretization method should be aware of the
properties that define them in order to choose the
most appropriate in each case. The taxonomy
developed and the empirical study can help to make
this decision.

. In the proposal of a new discretizer, the best
approaches and those which fit with the basic
properties of the new proposal should be used in
the comparison study. In order to do this, the
taxonomy and the analysis of results can guide a
future proposal in the correct way.

. This paper assists nonexperts in discretization to
differentiate among methods, making an appropriate
decision about their application and understanding
their behavior.

. It is important to know the main advantages of
each discretizer. In this paper, many discretizers
have been empirically analyzed but we cannot give
a single conclusion about which is the best
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Fig. 3. Accuracy versus number of intervals.



performing one. This depends upon the problem
tackled and the data mining method used, but the
results offered here could help to limit the set of
candidates.

. The empirical study allows us to stress several
methods among the whole set:

- FUSINTER, ChiMerge, CAIM, and Modified Chi2
offer excellent performances considering all
types of classifiers.

- PKID, FFD are suitable methods for lazy and
Bayesian learning and CACC, Distance, and
MODL are good choices in rule induction
learning.

- FUSINTER, Distance, Chi2, MDLP, and UCPD
obtain a satisfactory tradeoff between the
number of intervals produced and accuracy.

It would be desirable that a researcher/practitioner who
wants to decide which discretization scheme to apply to
his/her data needs to know how the experiments of this
paper or data will benefit and guide him/her. As future
work, we propose the analysis of each property studied in
the taxonomy with respect to some data characteristics,
such as number of labels, dimensions or dynamic range of
original attributes. Following this trend, we expect to find
the most suitable discretizer taking into consideration some
basic characteristic of the data sets.
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