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Abstract—The nearest neighbor classifier is one of the most used and well-known techniques for performing recognition tasks. It has

also demonstrated itself to be one of the most useful algorithms in data mining in spite of its simplicity. However, the nearest neighbor

classifier suffers from several drawbacks such as high storage requirements, low efficiency in classification response, and low noise

tolerance. These weaknesses have been the subject of study for many researchers and many solutions have been proposed. Among

them, one of the most promising solutions consists of reducing the data used for establishing a classification rule (training data) by

means of selecting relevant prototypes. Many prototype selection methods exist in the literature and the research in this area is still

advancing. Different properties could be observed in the definition of them, but no formal categorization has been established yet. This

paper provides a survey of the prototype selection methods proposed in the literature from a theoretical and empirical point of view.

Considering a theoretical point of view, we propose a taxonomy based on the main characteristics presented in prototype selection and

we analyze their advantages and drawbacks. Empirically, we conduct an experimental study involving different sizes of data sets for

measuring their performance in terms of accuracy, reduction capabilities, and runtime. The results obtained by all the methods studied

have been verified by nonparametric statistical tests. Several remarks, guidelines, and recommendations are made for the use of

prototype selection for nearest neighbor classification.

Index Terms—Prototype selection, nearest neighbor, taxonomy, condensation, edition, classification.
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1 INTRODUCTION

THE k-Nearest Neighbors rule (kNN) [1] is one of the most
well known and used nonparametric classifiers in

Machine Learning and Data Mining (DM) tasks [2]. In spite
of its simplicity, it has also demonstrated itself to be one of the
most useful and effective algorithms in DM [3] and Pattern
Recognition [4] and it has been considered one of the top 10
methods in DM [5]. kNN is simple to implement yet
powerful, due to its theoretical properties which guarantee
that, for all distributions, its probability of error is bounded
above by twice the Bayes probability of error. The naive
implementation of this rule has no learning phase in that it
uses all the training set objects in order to classify new
incomingdata.Hence, it belongs to the family of lazy learners
[6], [7], in opposition to the eager learners, which build a
parameterized compact model of the target variable [8].

Classification typically involves partitioning samples

into training and testing partitions, obtaining the training

set TR with N samples and the test set TS with M samples.

Each sample is represented by an attribute vector, which

contains a number d of attributes that are quantitative or
qualitative data that describe the sample. Let xi ¼ fxi1;
xi2; . . . ; xidg be a training sample from TR, 1 � i � N , and
xj ¼ fxj1; xj2; . . . ; xjdg be a test sample from TS, 1 � j � M,
and let ! be the true class of a training sample xi and !̂ be
the predicted class for a test sample xj ð!; !̂ 2 1; 2; . . . ;
Þ.
Here, 
 is the total number of classes. During the training
process, we use only the true class ! of each training sample
to train the classifier, while during testing we predict
the class !̂ of each test sample. With the kNN rule, the
predicted class of the test sample xj is set as equal to the
true class ! of the majority of the set of samples TK, formed
by the samples xl of TR, 1 � l � k, when we rearrange the
TR set in ascending order according to the defined distance
metric (in the space of samples) to xj. In the case of a tie,
the true class is given by the closest xl sample from TK to
xj that belongs to a conflicting class.

It is well known that kNN suffers from several draw-
backs [2]. Mainly, three weaknesses cause a great impact
on the successful application of the algorithm. The first one
is the necessity of high storage requirements in order to
retain the set of examples which defines the training set
and allows it to perform the decision rule. The second one
is the low efficiency obtained during the computation of
the decision rule, caused by multiple computations of
similarities between the test and training samples. Finally,
kNN (especially 1NN) presents low tolerance to noise due
to the fact that it uses all data as relevant, even when the
training set contains incorrect data.

Several approaches have been suggested and studied in
order to tackle the drawbacks mentioned above. Increasing
the kNN performance and noise tolerance is obtained by the
estimation of the optimal k parameter [9] or making the
kNN algorithm adaptive to data [10], [11] by means of
determining local decision boundaries in which the shape
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Rafael Gómez 2, Granada 18071, Spain. E-mail: jderrac@decsai.ugr.es.

. J.R. Cano is with EPS Linares, University of Jaén, Calle Alfonso X el Sabio
28, Linares, Jaén 23700, Spain. E-mail: jrcano@ujaen.es.

. F. Herrera is with ETSII, University of Granada, Calle Periodista Daniel
Saucedo Aranda S/N, Granada 18071, Spain.
E-mail: herrera@decsai.ugr.es.

Manuscript received 23 June 2009; revised 13 Apr. 2010; accepted 27 May
2011; published online 13 July 2011.
Recommended for acceptance by T. Darrell.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2009-06-0395.
Digital Object Identifier no. 10.1109/TPAMI.2011.142.

0162-8828/12/$31.00 ß 2012 IEEE Published by the IEEE Computer Society



of the neighborhoods can be modified to be more elongated
if needed. The research on similarity metrics to improve the
effectiveness of kNN (and other related techniques based on
similarities) is very extensive in the literature [12], [13], [14],
[15], together with distance functions suitable to being used
under high-dimensionality conditions [16]. Other techni-
ques related to reducing computational costs involve
partitioning the feature space [17], computing distances
within specific nearby volumes [18], [19], or using advanced
storage structures, such as k-d trees or R-trees [20]. When
the samples are preprocessed into a data structure, the
nearest examples can be reported efficiently. Approximate
Nearest Neighbors (ANN) techniques assume that distances
are measured using any class of approximation error
bound, enabling us to achieve significantly faster running
times. They have demonstrated excellent performance in
large dimension domains [21], [22].

Nevertheless, a successful technique which simulta-
neously faces the computational complexity, storage re-
quirements, and noise tolerance of kNN is based on data
reduction. These techniques aim to obtain a representative
training set with a lower size compared to the original one
and with a similar or even higher classification accuracy for
new incoming data. In the literature, they are known as
reduction techniques [23], Instance Selection [24], or
Prototype Selection (PS) methods [25]. A formal specifica-
tion of the PS problem is the following: Let S � TR be the
subset of selected samples resulting from the execution of a
PS algorithm, then we classify a new pattern xj from TS by
the kNN rule acting over S instead of TR.

PS methods select a subset of examples from the original
training data. Depending on the strategy followed by the
methods, they can remove noisy, redundant, and both
kinds of examples. The main advantage indicated in PS
methods is the capacity to choose relevant examples
without generating new artificial data. Many applications
manage real data and the generation of new data does not
make sense. The PS problem is frequently confused with

other similar problems known as Prototype Generation
(PG) or abstraction methods [26]. Some researchers include
PG into PS, but PG methods generate and replace the
original data with new artificial data [27], allowing it to fill
regions in the domain of the problem which have no
representative examples in original data.

A widely used categorization of PS methods consists of
three types of techniques: edition methods, condensation
methods, and hybrid methods [24], [28]. The goal of edition
methods is to remove noisy instances in order to increase
classifier accuracy. Condensation methods aim to compute
a training-set-consistent subset, removing superfluous
instances that will not affect the classification accuracy of
the training set. Finally, hybrid methods search for a small
subset of the training set that simultaneously achieves the
elimination of both noisy and superfluous instances.

Some reviews of PS methods can be found in the
literature [23], [24], [29], [30]. However, the characteristics
of the methods are not studied completely and they do not
present a taxonomy which could classify all methods
according to their similarities. For example, in [23], the
main properties of the PS methods are analyzed but no
categorization is set out; or in [29], [30], PS methods are not
differentiated from PG methods.

Apart from the absence of a complete taxonomy of PS
methods in the literature, we have observed that the
algorithms proposed are usually compared with a subset of
the complete family of PS methods and, in most of the
studies, no rigorous analysis has been carried out.
Furthermore, many new methods have been proposed in
recent years and they are going unnoticed with respect to
the PS method reviewed in well-known surveys [23], [29].
Fig. 1 illustrates a comparison network where each node
corresponds to a PS algorithm and a directed vertex
between two nodes indicates that the algorithm of the start
node has been compared with the algorithm of the end
node. The size of the node is correlated to the number of
input and output vertices. We can see that most of the PS
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algorithms are represented by small nodes and that the
graph is far from being complete, which has prompted the
present paper.

Dealing with large data sets is also possible with kNN
when PS is applied to them. In [31], a process called
stratification was proposed for PS in order to cope with
large data sets, offering excellent results. In this paper, we
also address the improvement achieved by the combination
of stratification and PS in comparison to other alternatives
based on ANN.

The mentioned reasons motivate the global purpose of
this paper, which can be divided into four objectives:

. To propose a complete taxonomy based on the main
properties observed using the PS methods. The
taxonomy will allow us to know the advantages
and drawbacks from a theoretical point of view.

. To make an empirical study for analyzing the
methods in terms of accuracy, reduction capabilities,
and time complexity. Our goal is to identify the best
methods in each family and to stress the relevant
properties of each one.

. To compare the PS methods with other related
techniques that speed up the kNN computation
when tackling very large data sets. ANN techniques
will be compared with stratified PS.

. To illustrate through graphical representations of
selected data the effect of the main PS methods.
Graphical representations help us to understand the
results obtained in the experimental study.

The experimental study will include a statistical
analysis based on nonparametric tests and we will
conduct experiments involving a total of 42 PS methods
and 58 small and medium size data sets. The comparison
with ANN methods involves seven more large data sets.
The graphical representations of selected data will be
done by using a 2D data set, called banana, with moderate
complexity features.

This paper is organized as follows: The related and
advanced work on PS is given in Section 2. Section 3
presents the PS methods reviewed, their properties, and the
taxonomy proposed. Section 4 describes the experimental
framework for small and medium data sets, examines the
results obtained in the empirical study, and presents a
discussion of them. The study of large data sets as well as
the comparison with ANN is conducted in Section 5.
Graphical representations of selected data by PS methods
are illustrated in Section 6. Section 7 concludes the paper.
Finally, we must point out that the paper is associated with
the webpage http://sci2s.ugr.es/pstax which collects extra
data regarding algorithms descriptions and implementa-
tions and detailed experimental results.

2 RELATED AND ADVANCED WORK

Research in improving kNN through data preprocessing
is common and in high demand nowadays. PS could
represent a feasible and promising technique to obtain
expected results, which justifies its relationship to other
methods and problems. This section provides a wide review
of other topics closely related to PS and describes other
works and future trends which have been studied in the last
few years:

. Prototype generation/abstraction. These methods are
not limited only to select examples from the training
set. They could also modify the values of the
samples, changing their position in the d-dimen-
sional space considered. Most of them use merging
or divide-and-conquer strategies to set new artificial
samples [32], or are based on clustering approaches
[29], Learning Vector Quantization (LVQ) [33]
hybrids, advanced proposals [26], [27], and evolu-
tionary algorithms-based schemes [34], [35], [36].

. Instance and rule learning hybridizations. This includes
all the methods which simultaneously use instances
and rules in order to compute the classification of a
new object. If the values of the object are within the
range of a rule, its consequent predicts the class;
otherwise, if no rule matches with the object, the
most similar rule or instance stored in the database is
used to estimate the class. Similarity is viewed as the
closest rule or instance based on a distance measure.
In short, these methods can generalize an instance
into a hyperrectangle or rule [37], [38], [39].

. Weighting, boosting. This area refers to the combina-
tion of PS methods with other well-known schemes
used for improving accuracy in classification pro-
blems. For example, the weighting scheme com-
bines the PS with the Feature Selection [40], [41] or
Feature Weighting [42], [43], [44], where a vector of
weights associated with each attribute determines
and influences the distance computations. In boost-
ing, a PS method is run several times and a
classification decision is made according to the
majority class obtained over several subsets and the
kNN rule [45], [46].

. Distance functions. Several distance metrics have
been used with kNN and PS, especially when
working with categorical attributes [47]. There are
some PS approaches which learn not only the subset
of the selected prototype, but also the distance
metric employed [48], [49]. Also, PS is suitable for
use on other types of dissimilarity-based classifiers
[25], [50].

. Scaling up. One of the disadvantages of the PS
methods is that most of them report a prohibitive
runtime or even cannot be applied over large size
data sets. Recent improvements in this field cover
the stratification of data [31], [51], [52] and the
development of distributed approaches for PS [53].

. Training set selection. The literature includes some
attempts at using instance selection to obtain subsets
of examples suitable for use as an input to other DM
and machine learning algorithms, such as decision
trees [54] and neural networks [55]. Different
problems to classification have also been dealt with
using instance selection, such as subgroup discovery
[56], [57] and multiple instance learning [58], [59].

. Imbalanced learning. One of the most promising
techniques in imbalanced learning is based on data
preprocessing, such as resampling of data mainly
focused on less important concepts with respect to
the minority classes [60]. It is noticeable that most
of the undersampling approaches are modifications
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of classic PS methods to increase the data balance
[61], [62].

. Data complexity. This area studies the effect on the
complexity of data when PS methods are applied
previous to the classification [63] or how to make a
useful diagnosis of the benefits of applying PS
methods, taking into account the complexity of the
data [64], [65].

Works and proposals enumerated in this section are out
of the scope of this paper. We have to point out that the
main objective of this paper is to give a wide overview of
the PS methods proposed in the literature and to establish a
comparison of them without considering external and
classifier dependant factors, such as distance functions
and weighting, advanced improvements for specific goals,
such as improving efficiency or application to more
complex domains, and advanced representations, such as
rule hybridizations and prototype abstractions.

3 PROTOTYPE SELECTION TAXONOMY

This section presents the taxonomy of PS methods and the
criteria used for building it. First, in Section 3.1, the main
characteristics which will define the categories of the
taxonomy will be outlined. In Section 3.2, we briefly
enumerate all the PS methods proposed in the literature.
The complete and abbreviated name will be given,
together with the reference. Finally, Section 3.3 presents
the taxonomy.

3.1 Common Properties in Prototype Selection
Methods

This sectionprovides a framework for thediscussionof thePS
methods presented in the next section. The issues discussed
include order of the search, type of selection, and evaluation
of the search. These mentioned issues are involved in the
definition of the taxonomy since they are exclusive to the
operation of the PS algorithms. Other classifier-dependent
issues, such asdistance functions or exemplar representation,
will be presented. Finally, some criteria will also be pointed
out in order to compare PS methods.

3.1.1 Direction of Search

When searching for a subset S of prototypes to keep from
training set TR, there are a variety of directions in which the
search can proceed:

. Incremental. An incremental search begins with an
empty subset S, and adds each instance in TR to S if
it fulfills some criteria. In this case, the algorithm
depends on the order of presentation and this factor
could be very important. Under such a scheme, the
order of presentation of instances in TR should be
random because, by definition, an incremental
algorithm should be able to handle new instances
as they become available without all of them being
present at the beginning. Nevertheless, some recent
incremental approaches are order independent
because they add instances to S in a somewhat
incremental fashion, but they examine all available
instances to help select which instance to add next.

This makes the algorithm not truly incremental as
we have defined above, although we will also
consider them as incremental approaches.

One advantage of an incremental scheme is that

if instances are made available later, after training

is complete, they can continue to be added to S

according to the same criteria. This capability

could be very helpful when dealing with data

streams or online learning. Another advantage is

that they can be faster and use less storage during

the learning phase than nonincremental algorithms.

The main disadvantage is that incremental algo-

rithms must make decisions based on little

information and are therefore prone to errors until

more information is available.
. Decremental. The decremental search begins with

S ¼ TR, and then searches for instances to remove
from S. Again, the order of presentation is im-
portant, but unlike the incremental process, all of
the training examples are available for examination
at any time.

One disadvantage with the decremental rule is

that it presents a higher computational cost than

incremental algorithms. Furthermore, the learning

stage must be done in an offline fashion because

decremental approaches need all possible data.

However, if the application of a decremental algo-

rithm can result in greater storage reduction, then

the extra computation during learning (which is

done just once) can be well worth the computational

savings during execution thereafter.
. Batch. Another way to apply a PS process is in batch

mode. This involves deciding if each instance meets
the removal criteria before removing any of them.
Then, all those that do meet the criteria are removed
at once. As with decremental algorithms, batch
processing suffers from increased time complexity
over incremental algorithms.

. Mixed. A mixed search begins with a preselected
subset S (randomly or selected by an incremental or
decremental process) and can iteratively add or
remove any instance which meets the specific
criterion. This type of search allows rectifications
to already complete operations and its main
advantage is to make it easy to obtain good
accuracy-suited subsets of instances. It usually
suffers from the same drawbacks reported in
decremental algorithms, but this fact depends to a
great extent on the specific proposal. Note that these
kinds of algorithms are closely related to the order-
independent incremental approaches, but, in this
case, instance removal from S is allowed.

. Fixed. A fixed search is a subfamily of mixed search
in which the number of additions and removals
remains the same. Thus, the number of final
prototypes is determined at the beginning of the
learning phase and is never changed. This strategy
of search is not very common in PS, although it is
typical in PG methods, such as LVQ.
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3.1.2 Type of Selection

This factor is mainly conditioned by the type of search

carried out by the PS algorithms, whether they seek to

retain border points, central points, or some other set of

points

. Condensation. This set includes the techniques
which aim to retain the points which are closer to
the decision boundaries, also called border points.
The intuition behind retaining border points is that
internal points do not affect the decision boundaries
as much as border points, and thus can be removed
with relatively little effect on classification. The idea
behind these methods is to preserve the accuracy
over the training set, but the generalization accuracy
over the test set can be negatively affected. Never-
theless, the reduction capability of condensation
methods is normally high due to the fact that there
are fewer border points than internal points in most
of the data.

. Edition. These kinds of algorithms instead seek to
remove border points. They remove points that are
noisy or do not agree with their neighbors. This
removes close border points, leaving smoother
decision boundaries behind. However, such algo-
rithms do not remove internal points that do not
necessarily contribute to the decision boundaries.
The effect obtained is related to the improvement of
generalization accuracy in test data, although the
reduction rate obtained is lower.

. Hybrid. Hybrid methods try to find the smallest
subset S which maintains or even increases the
generalization accuracy in test data. To achieve this,
it allows the removal of internal and border points
based on criteria followed by the two previous
strategies. The kNN classifier is highly adaptable to
these methods, obtaining great improvements even
with a very small subset of instances selected.

3.1.3 Evaluation of Search

kNN is a simple technique and it can be used to direct the

search of a PS algorithm. The objective pursued is to make a

prediction on a nondefinitive selection and to compare

between selections. This characteristic influences the quality

criterion and it can be divided into:

. Filter. When the kNN rule is used for partial data to
determine the criteria of adding or removing and no
leave-one-out validation scheme is used to obtain a
good estimation of generalization accuracy. The fact
of using subsets of the training data in each decision
increments the efficiency of these methods, but the
accuracy may not be enhanced.

. Wrapper. When the kNN rule is used for the
complete training set with the leave-one-out valida-
tion scheme. The conjunction in the use of the two
mentioned factors allows us to get a great estimator
of generalization accuracy, which helps to obtain
better accuracy over test data. However, each
decision involves a complete computation of the
kNN rule over the training set and the learning
phase can be computationally expensive.

3.1.4 Other Properties

We can remark on other properties related to PS. They
influence the operation and results which can be obtained
with PS in combination with kNN. However, these proper-
ties are dependent on the type of kNN employed or define
different data reduction methods and they are not good for
establishing a distinction or taxonomy among them:

. Representation. This issue deals with the type of
examples retained in the subset S. In its formal
definition, PS methods only allow subsets of existing
examples in the training set to be obtained. Other
types of representation (pointed out in Section 2)
could tolerate the modification of examples to
represent collections of instances to form rules.

. Distance function. The distance function (or similarity
function) is used to decide which neighbors are
closest to an input vector and can have a dramatic
effect on an instance-based learning system. Two
distance functions are the most used in kNN: the
euclidean distance and the HVDM distance [47].

. Voting. Another decision that must be made is the
choice of k, which is the number of neighbors used to
decide the output class of an input vector. Further-
more, within the k nearest neighbors of input data,
ties may occur among two or more classes and a
decision must also be made. In such cases, an
arbitrary selection of the class or a distance-weighted
choice is used.

Note that the three properties analyzed here will depend
on the properties of the kNN (or instance-based learning)
approach that we use. It is logical to provide the PS method
with a similar distance function and voting schemes to the
ones used by the subsequent kNN classifier.

3.1.5 Criteria to Compare PS Methods

When comparing PS methods, there are a number of criteria
that can be used to evaluate the relative strengths and
weaknesses of each algorithm. These include storage
reduction, noise tolerance, generalization accuracy, and
time requirements:

. Storage reduction. One of the main goals of the PS
methods is to reduce storage requirements. Further-
more, another goal closely related to this is to speed
up classification. A reduction in the number of
stored instances will typically yield a corresponding
reduction in the time it takes to search through these
examples and classify a new input vector.

. Noise tolerance. Two main problems may occur in the
presence of noise. The first is that very few instances
will be removed because many instances are needed
to maintain the noisy decision boundaries. Second,
the generalization accuracy can suffer, especially if
noisy instances are retained instead of good instances.

. Generalization accuracy. A successful algorithm will
often be able to significantly reduce the size of the
training set without significantly reducing general-
ization accuracy.

. Time requirements. Usually, the learning process is
done just once on a training set, so it seems not to be
a very important evaluation method. However, if
the learning phase takes too long it can become
impractical for real applications.

GARC�IA ET AL.: PROTOTYPE SELECTION FOR NEAREST NEIGHBOR CLASSIFICATION: TAXONOMY AND EMPIRICAL STUDY 421



3.2 Prototype Selection Methods

More than 50 PS methods have been proposed in the

literature. This section is devoted to enumerating and

designating them according to a standard followed in this

paper. For more details on their descriptions and

implementations, the reader can visit the webpage
http://sci2s.ugr.es/pstax associated with this paper. Im-
plementations of the algorithms in Java can be found in
KEEL software [114].

Table 1 presents an enumeration of PS methods reviewed
in this paper. The complete name, abbreviation, and
reference are provided for each one. In the case of there
being more than one method in a row, they were proposed
together and the best performing method (indicated by the
respective authors) is depicted in bold.

3.3 Taxonomy of Prototype Selection Methods

The properties studied above can be used to categorize the
PS methods proposed in the literature. The direction of the
search, type of selection, and evaluation of the search may
differ among PS methods and constitute a set of properties
which are exclusive to the way of operating of the PS
methods. This section presents the taxonomy of PS methods
based on these properties.

In order to situate the PS methods in time, we illustrate a
map of the main methods proposed in each paper
enumerated in Table 1. We refer to those which are the
preferred or have reported the best results in the paper in
which they were proposed as main methods (in other
words, the ones in bold when more than one method is
proposed in a certain paper). Fig. 2 depicts the map of PS
methods. The figure allows us to point out interesting facts:

. Condensation and Edition techniques display oppo-
site behavior and they were joined when IB3 was
proposed. IB3 is the first hybrid method which
combines an edition stage with a condensation one.
Since its proposal, there has been a significant effort
in proposing new hybrid approaches, decreasing the
proposals of condensation methods.

. Few edition methods have been proposed in
comparison to the other two families. The main
reasons are that the first edition method, ENN,
obtains good results in conjunction with kNN and
the edition approaches do not achieve high reduc-
tion rates, which is one of the objects of interest in
PS. Incremental edition approaches have not been
proposed because it is very important to know the
complete set of data for identifying noisy instances.
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. Recent efforts in proposing PS methods are being
noted in condensation and hybrid approaches. Both
of them could bemade in any direction search, but the
mixed direction search is typical in hybrid methods
and it is not presented in condensation methods.

. Wrapper evaluation searches are only presented in
hybrid approaches (usually in a mixed direction
search). This evaluation search is intended to
optimize a selection, without thinking of computa-
tional costs. The resulting selection depends on the
whole training set, whereas in edition and conden-
sation approaches, the decision is made considering
only local information.

Furthermore, Fig. 3 illustrates the categorization follow-

ing a hierarchy based on this order: type of selection,

direction of search, and evaluation of the search. It allows

us to distinguish among families of methods and to

estimate the size of each one.
One of the objectives of this paper is to highlight the best

methods, depending on their properties, taking into account

that we are conscious that the properties could determine

the suitability of use of a specific scheme. To do this, in

Section 4 we will conclude which methods perform best for

each family considering several metrics of performance.

4 EXPERIMENTAL FRAMEWORK, EMPIRICAL STUDY

AND ANALYSIS OF RESULTS: SMALL AND MEDIUM

DATA SETS

This section presents the experimental framework followed

in this paper, together with the results collected and

discussions on them. Section 4.1 will describe the complete

experimental setup. Then, the study will be divided into

two parts: study and analysis of the results obtained over

small data sets (Section 4.2) and over medium data sets

(Section 4.3). Finally, Section 4.4 will provide a global

discussion of the results obtained.

4.1 Experimental Setup

The aim of this section is to show all the factors and issues

related to the experimental study. We specify the data sets,

validation procedure, parameters of the algorithms, perfor-

mance metrics, and PS methods involved in the analysis.

The statistical tests used to contrast the results are also

briefly commented on at the end of this section.

The performance of PS algorithms is analyzed by using

58 data sets taken from the UCI Machine Learning Database

Repository [115] and KEEL data set repository.1 Data sets

are divided into two categories: small size and medium size

data sets. The small size data sets have no more than 2,000

instances, whereas medium data sets have no more than

20,000 instances. Large size data sets will be considered

later (in a separate study, see Section 5).
The main characteristics of these data sets are summar-

ized in Table 2. For each data set, the name, number of

examples, number of attributes (numeric and nominal), and

number of classes are given.
The data sets considered are partitioned using the 10-

fold cross-validation (10-fcv) procedure. The parameters of

the PS algorithms are those recommended by their

respective authors. We assume that the choice of the values

of parameters is optimally chosen by their own authors.

Nevertheless, in the PS methods that require the specifica-

tion of the number of neighbors as parameter, its value

coincides with the k value of the kNN rule afterward. But

all edition methods consider a minimum of three nearest

neighbors to operate (as recommended in [68]), although

they were applied to a 1NN classifier. The euclidean

distance is chosen as the distance metric because it is well

known and the most used for kNN. All probabilistic

methods (including incremental methods which depend

on the order of instance presentation) are run three times

and the final results obtained correspond to the average

performance values of these runs.
Two performance measures are widely used because of

their simplicity and successful application when multiclass

classification problems are treated. We refer to accuracy and

Cohen’s kappa [116] measures, which will be adopted to

measure the efficacy of the PS methods in terms of

classification success:

. Accuracy: The number of successful hits relative to
the total number of classifications. It has been by far
the most commonly used metric for assessing the
performance of classifiers for years [117].

. Cohen’s kappa: An alternative to accuracy, a method,
known for decades, which compensates for random
hits [116]. Its original purpose was to measure the
degree of agreement or disagreement between two
people observing the same phenomenon. Cohen’s
kappa can be adapted to classification tasks and its
use is recommended because it takes random
successes into consideration as a standard, in the
same way as the AUC measure [118].

An easy way of computing Cohen’s kappa is to

make use of the resulting confusion matrix in a

classification task. Specifically, the Cohen’s kappa

measure can be obtained using the following

expression:

kappa ¼
N

P



i¼1
yii ÿ

P



i¼1
yi:y:i

N2 ÿ
P




i¼1
yi:y:i

;
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Fig. 3. Prototype selection taxonomy.

1.http://www.keel.es/datasets.php.



where yii is the cell count in the main diagonal of
the resulting confusion matrix, N is the number of
examples, 
 is the number of class values, and
y:i; yi: are the columns and rows total counts of the
confusion matrix, respectively. Cohen’s kappa
ranges from ÿ1 (total disagreement) through 0
(random classification) to 1 (perfect agreement).
Being a scalar, it is less expressive than ROC
curves when applied to binary classification. How-
ever, for multiclass problems, kappa is a very
useful, yet simple, metric for measuring the
accuracy of the classifier while compensating for
random successes.

The set of PS methods involved in the experimental

study should be reduced for space restrictions and to avoid

obtaining unnecessary results. It is determined by the

following guidelines:

. One method is chosen from each proposal paper.
The preferred one is that which performs best given
the instructions of the corresponding authors. In the
case of having two or more methods of different
capabilities (i.e., efficiency versus efficacy), we prefer
the best performing in terms of efficacy. The PS
methods selected, in the case where there is more
than one proposal per paper, are those highlighted
in bold in Table 1.

. All PS methods must have a reasonable time
complexity over small data sets. Many of the

proposals are unable to be run over a data set with
more than 500 instances. It is the case in the
following algorithms: CerveronTS, ZhangTS, BSE,
and GA-MSE-CC-FSM.

. Old proposals that have not had much attention in
the literature do not participate in the experimental
study. This is the case with: Ullmann, PF, and EDA.

Thus, the empirical study involves 42 PS methods from
those listed in Table 1. We want to outline that the
implementations are only based on the descriptions and
specifications given by the respective authors in their
papers. No advanced data structures and enhancements
for improving the efficiency of PS methods have been
carried out. All methods (including the slowest ones) are
collected in KEEL software [114].

Statistical analysis will be carried out by means of
nonparametric statistical tests. In [119], [120], [121], the
authors recommend a set of simple, safe, and robust
nonparametric tests for statistical comparisons of classifiers.
The Wilcoxon test [122] will be used in order to conduct
pairwise comparisons among all PS methods considered in
the study. The reader can also look up the webpage http://
sci2s.ugr.es/sicidm for more details on nonparametric
statistical analysis.

4.2 Analysis and Empirical Results on Small Size
Data Sets

Table 3 presents the average results obtained by the PS
methods over the 39 small size data sets. Red. denotes
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reduction rate achieved, tst Acc. and tst Kap. denote the

accuracy and kappa obtained in test data, respectively;

Acc:�Red. and Kap:�Red. correspond to the product of

accuracy/kappa and reduction rate, which is an estimator

of how good a PS method is considering a tradeoff of

reduction and success rate of classification. Finally, Time

denotes the average time elapsed in seconds to complete a

run of a PS method.2 In the case of 1NN, the time required is

not displayed due to the fact that no PS stage is run before.

For each type of result, the algorithms are ordered from the

best to the worst. Algorithms highlighted in bold are those

which obtain the best result in their corresponding family,

according to the taxonomy illustrated in Fig. 3. They will

make up the experimental study of medium size data sets,

shown in the next section.

All detailed results for each data set and PS method
(including averages and standard deviations), together
with the study of the 3NN classifier, can be seen at
http://sci2s.ugr.es/pstax. In the interest of compactness,
the study corresponding to 3NN has been not included in
the paper, mainly due to the fact that the results obtained
are very similar to 1NN. They can be found at http://
sci2s.ugr.es/pstax.

The Wilcoxon test [122], [119], [120] is adopted
considering a level of significance of � ¼ 0:1. Table 4
shows a summary of all the possible comparisons
employing the Wilcoxon test among all PS methods over
small data sets. This table collects the statistical compar-
isons of the four main performance measures used in this
paper: tst Acc., tst Kap., Acc:�Red., and Kap:�Red.. The
individual comparisons between all possible PS methods
are exhibited in http://sci2s.ugr.es/pstax associated with
this paper. Table 4 shows, for each method in the row,
the number of PS methods outperformed by using the
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TABLE 3
Average Results Obtained by the PS Methods over Small Data Sets

2. The machine used was an Intel Core i7 CPU 920 at 2.67 GHz with 4 GB
of RAM.



Wilcoxon test under the column represented by “+”
symbol. The column with the “�” symbol indicates the
number of wins and ties obtained by the method in the
row. The maximum value for each column is highlighted
in bold.

Observing Tables 3 and 4, we can point out the best
performing PS methods:

. In condensation incremental approaches, all meth-
ods are very similar in behavior, except PSC, which
obtains the worst results. FCNN could be high-
lighted in accuracy/kappa performance and
MCNN with respect to reduction rate with a low
decrease in efficacy.

. Two methods can be stressed from the condensation
decremental family: RNN and MSS. RNN obtains
good reduction rates and accuracy/kappa perfor-
mances, whereas MSS also offers good performance.
RNN has the drawback of being quite slow.

. In general, the best condensation methods in terms
of efficacy are the decremental ones, but they have as
their main drawback that they require more compu-
tation time. POP and MSS methods are the best
performing in terms of accuracy/kappa, although
the reduction rates are low, especially the one
achieved by POP. However, no condensation meth-
od is more accurate than 1NN.

. With respect to edition decremental approaches, few
differences can be observed. ENN, RNGE, and
NCNEdit obtain the best results in accuracy/kappa
and MENN and ENNTh offer a good tradeoff
considering the reduction rate. Multiedit and ENRBF
are not on a par with their competitors and they are
below 1NN in terms of accuracy.

. AllKNN and MoCS, in edition batch approaches,
achieve similar results to the methods belonging to
the decremental family. AllKNN achieves better
reduction rates.

. Within the hybrid decremental family, three meth-
ods deserve mention: DROP3, CPruner, and
NRMCS. The latter one is the best of them, but
curiously, its time complexity rapidly increases in
the presence of larger data sets and it cannot tackle
medium size data sets. DROP3 is more accurate than
CPruner, which achieves higher reduction rates.

. Considering the hybrid mixed+wrapper methods,
SSMA and CHC techniques achieve the best results.

. Remarkable methods belonging to the hybrid family
are DROP3, CPruner, HMNEI, CCIS, SSMA, CHC,
and RMHC. Wrapper-based approaches are slower.

. The global best methods in terms of accuracy or
kappa are MoCS, RNGE, and HMNEI.

. The global best methods considering the tradeoff
reduction accuracy/kappa are RMHC, RNN, CHC,
Explore, and SSMA.

4.3 Analysis and Empirical Results on Medium Size
Data Sets

This section presents the study and analysis of medium
size data sets and the best PS methods per family, which
are those highlighted in bold in Table 3. The goal pursued
is to study the effect of scaling up the data in PS methods.
Table 5 shows the average results obtained in the distinct
performance measures considered (it follows the same
format as Table 3) and Table 6 summarizes the Wilcoxon
test results over medium data sets.

We can analyze several details from the results collected
in Tables 5 and 6:

. Five techniques outperform 1NN in terms of
accuracy/kappa over medium data sets: RMHC,
SSMA, HMNEI, MoCS, and RNGE. Two of them are
edition schemes (MoCS and RNGE) and the rest are
hybrid schemes. Again, no condensation method is
more accurate than 1NN.

. Some methods present clear differences when deal-
ing with larger data sets. This is the case with
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AllKNN, MENN, and CHC. The first two tend to

try new reduction passes in the edition process,

which is against the interests of accuracy and kappa

and, in medium size problems, this fact is more

noticeable. Furthermore, CHC loses the balance

between reduction and accuracy when data size

increases, due to the fact that the reduction objective

becomes easier.

. There are some techniques whose run could be
prohibitive when the data scales up. This is the case
for RNN, RMHC, CHC, and SSMA.

. The best methods in terms of accuracy or kappa are
RNGE and HMNEI.

. The best methods considering the tradeoff reduction
accuracy/kappa are RMHC, RNN, and SSMA.

4.4 Global View of the Obtained Results

Assuming the results obtained, several PS methods could be
emphasized according to the accuracy/kappa obtained
(RMHC, SSMA, HMNEI, RNGE), the reduction rate
achieved (SSMA, RNN, CCIS), and computational cost
required (POP, FCNN). However, we want to remark that
the choice of a certain method depends on various factors
and the results are offered here with the intention of being
useful in making this decision. For example, an edition
scheme will usually outperform the standard kNN classifier
in the presence of noise, but few instances will be removed.
This fact could determine whether the method is suitable or
not to be applied over larger data sets, taking into account
the expected size of the resulting subset. We have seen that
the PS methods which allow high-reduction rates while
preserving accuracy are usually the slowest ones (hybrid
mixed approaches such as SSMA) and they may require an
advanced mechanism to be applied over large size data sets
or they may even be useless under these circumstances. Fast
methods that achieve high reduction rates are the con-
densation approaches, but we have seen that they are not
able to improve kNN in terms of accuracy. In short, each
method has advantages and disadvantages and the results
offered in this section allow the making of an informed
decision within each category.

In short, and focusing on the objectives usually con-
sidered in the use of PS algorithms, we can suggest the
following to choose the proper PS algorithm:
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. For the tradeoff reduction-accuracy rate: The algo-
rithms which obtain the best behavior are RMHC
and SSMA. However, these methods achieve a
significant improvement in the accuracy rate due
to a high computation cost. The methods that harm
the accuracy at the expense of a great reduction of
time complexity are DROP3 and CCIS.

. If the interest is the accuracy rate: In this case, the
best results are to be achieved with the RNGE as
editor and HMNEI as hybrid method.

. When the key factor is the condensation: FCNN is
the highlighted one, being one of the fastest.

5 EXPERIMENTAL FRAMEWORK, EMPIRICAL STUDY

AND ANALYSIS OF RESULTS: LARGE DATA SETS

This second experimental study is focused on the analysis
of the behavior of PS when they tackle large problems.
Since the immediate application of these methods over
large sets should be avoided due to their computational
cost, we will introduce the use of the stratification
procedure (Section 5.1) to mitigate this drawback, and thus
develop a suitable approach to large problems. We compare
this approach with two well-known ANN proposals
(Section 5.2) through an empirical study with several large
data sets (Section 5.3). The results achieved are reported
and discussed in Section 5.4.

5.1 Stratification

The stratification strategy [31] splits the training data into
disjoint strata with equal class distribution. The initial data
set is divided into two sets, TR and TS, as usual (e.g., a 10th
of the data for TS, and the rest for TR in 10-fold cross
validation). Then, TR is divided into t disjoint sets TDj,
strata of equal size, TD1, TD2 � � �TDt, maintaining class
distribution within each subset. In this manner, the subsets
TR and TS can be represented as follows:

TR ¼
[t

j¼1

TDj; TS ¼ TDnTR:

Then, a PS method should be applied to each TDj,
obtaining a selected subset TDSj for each partition. The
final prototype selected set is obtained joining every TDSj

obtained. Finally, the kNN classifier can be applied to TS,
using the final prototype selected set as training data.

The use of the stratification allows us to run any PS
method over reduced versions of the entire training set,
thus easing the problem of dealing with very large training
sets by reducing the number of instances that the PS must
handle simultaneously.

5.2 Approximated Nearest Neighbors

Two well-known ANN approaches will be used as compar-
isons in this study: Balanced Box Decomposition Tree (BBD-
Tree) [21] and Locality Sensitive Hashing (LSH) [22]

. BBD-Trees are an improved version of the well-
known k-d trees [20] which consists of two types of
nodes: split nodes and shrink nodes. Split nodes
represent partitions made by using an axis-orthogo-
nal line to split the node, whereas shrink nodes denote

partitions made by using a box rather than a line. By
alternating split nodes and shrink nodes, both the
geometric size and the number of points associated
with each node are greatly reduced, thus improving
the efficiency of the tree regarding both storage
requirements and query time.

. LSH is a family of methods which share the
objective of hashing the instances of the training
set by using several hashing functions, which
ensures that the probability of collision is much
higher for instances that are close to each other
than for those that are apart. With the use of these
hash tables, the LSH methods are able to obtain
excellent query times, even in high-dimensional
problems. Several types of hashing functions have
been defined within the LSH framework in order to
adjust the method to the distance space defined
(Hamming distance, euclidean distance, etc.).

5.3 Experimental Framework

The performance of PS and ANN algorithms is analyzed
by using seven large data sets taken from the UCI
Machine Learning Database Repository [115] and KEEL
data set repository (see Table 7). The performance
measures analyzed are the same that were employed in
the former study, excepting for the running time, which is
split into three categories:

. Model time: Time elapsed when applying the PS
method over all strata or when using the ANN
method to build the necessary data structures to
efficiently answer the queries (trees, hash tables, etc.).

. Training time: Time elapsed classifying the full
training set.

. Training time: Time elapsed classifying the full test
set.

Regarding PS methods, CCIS, DROP3, FCNN, HMNEI,
RMHC, RNG, and SSMA were selected since they showed
several interesting capabilities in the studywithmedium size
data sets (highest accuracy, faster running times, high
reduction rates, etc.). We used the same setup for them as
that used in the former study, and set up the strata size as
near as possible to 10,000 instances (Table 7 indicates the
exact number of strata used for each data set under the
column denoted by #t). BBD-Trees implementation was
adapted from the one offered at http://www.cs.umd.edu/
~mount/ANN/andLSH implementationwas adapted from
the LSH kit available at http://lshkit.sourceforge.net/.
Finally, 1NN behavior has also been analyzed as a baseline
method for this study. As before, further details of the
concrete setup used can be seen at http://sci2s.ugr.es/pstax.
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5.4 Results and Analysis

Table 8 presents the average results obtained by the PS and
ANNmethods over the seven large size data sets. As before,
Red. denotes reduction rate achieved, tst Acc. and tst Kap.
denote the accuracy and kappa obtained in test data,
respectively, Acc:�Red. and Kap:�Red. correspond to the
product of accuracy/kappa and reduction rate, which is an
estimator of how good a PS method is considering a
tradeoff of reduction and success rate of classification. In
addition, Table 9 shows the statistical significances for
SSMA expressed by p-values computed by the Wilcoxon
test; the methods outperformed considering � ¼ 0:1 are
depicted in bold. In the case of ANNmethods, the measures
that require the computation of reduction capabilities (Red.,
Acc:�Red., andKap:�Red.) are not specified because they do
not remove any instance from the data. Instead, we can
compare the time elapsed on each type of operation.
Table 10 presents the average time elapsed in seconds,
where modelTime denotes the time spent by the method in
its building model phase (i.e., performing of PS processes
over all strata for stratified PS methods, or building trees or
hash tables for ANN methods), tra Time denotes the time
elapsed in the classification of the training set, and tst T ime

denotes the time elapsed in the classification of the test set.3

As before, all detailed results for each data set and PS or
ANN methods (including averages, standard deviations
and statistical significances with Wilcoxon’s test) can be
seen at http://sci2s.ugr.es/pstax.

Observing Tables 8, 9, and 10, we can point out the
following about the performance of stratified PS methods:

. DROP3, RMHC, CCIS, and SSMA shows the best
reduction power of the PS methods considered.
Furthermore, the use of the stratification strategy has
not harmed the reduction power of PS methods in
general, which suggests an advantage in using it
when aiming to obtain very reduced subsets when
tackling large problems.

. RNG, SSMA, and RMHC are able to outperform
1NN in accuracy. The rest of the PS methods achieve
similar behavior to 1NN.

. With respect to kappa measure, SSMA and HMNEI
show the best average results. Again, most of the PS

methods achieve competitive results when com-
pared with 1NN.

. Regarding composite performance measures,
Acc:�Red. and Kap:�Red., SSMA shows the best
behavior in the study. Furthermore, CCIS, DROP3,
and RMHC can be highlighted as very competitive
methods when analyzing both composite measures,
whereas HMNEI and RNG achieve poor results,
mainly due their low reduction power.

. HMNEI and FCNN show a very good performance
regarding time elapsed in the PS phase. By constrast,
DROP3, RMHC, and SSMA are the slowest methods
in this phase, which again highlights the importance
of employing the stratification procedure in order to
properly apply these methods to large problems.

. With respect to the time elapsed in training and test
phases, those methods with the highest reduction
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3. The machine used was the same as the previous study.



power (DROP3, RMHC, CCIS, and, especially,
SSMA) show the best results. Furthermore, all PS
methods are able to improve at least three times
(nearly 100 times in the case of SSMA) the time
consumption of the 1NN classifier.

In general, the behavior of the PS methods when
combined with the stratification procedure has been shown
to be satisfactory. When facing a given large problem, a
practitioner can choose either an accurate method with a
high reduction power (such as SSMA or RMHC) or a fast
method which would be able to quickly condense the
training data into a smaller subset, without losing too much
accuracy with respect to the original 1NN (such as HMNEI
or FCNN).

If we compare these results with the ones achieved by
the ANN techniques, we can state the following:

. ANN techniques remain, in general, as accurate as
the 1NN classifier. Therefore, they are competitive
when compared with the PS methods which are not
mainly focused on removing noise from the data set,
but they are outperformed by those which perform
any effective competence enhancing process.

. Regarding running time, both ANN techniques
show very competitive behavior when dealing with
large problems. Although they did not perform any
reduction at all, they are able to perform queries in a
very fast way, which matches the time elapsed by PS
methods in the classification phase.

The answer to deciding whether to employ a PS or an
ANN method when facing a large problem lies in the
interest of the practitioner and his/her concrete objectives.
For example, if the main interest is to tackle the problem
quickly with a reasonable precision in classification, then an
ANN method would be appropriate. On the other hand, if
the user is interested in a quick method which would also
be able to summarize and reduce the data to a more
compact representation, without the necessity of spending
additional resources on storing additional structures, a fast
PS method like FCNN or HMNEI would be the best option.
Finally, if the interest lies in obtaining highly precise
classifiers, represented with very compact data sets, no
matter how much time the PS phase takes, then a strong PS
method such as SSMA or RMHC would be the best option.

6 VISUALIZATION OF DATA SUBSETS: A CASE

STUDY BASED ON THE BANANA DATA SET

This section is devoted to illustrating the subsets selected
resulting from some PS algorithms considered in our study.
To do this, we focus on the banana data set, which contains
5,300 examples in the complete set. It is an artificial data set
of two classes composed of three well-defined clusters of
instances of the class ÿ1 and two clusters of the class 1.
Although the borders are clear among the clusters, there is a
high overlap between both classes. The complete data set is
illustrated in Fig. 4a.

The pictures of the subset selected by some PS methods
could help to visualize and understand their way of
working and the results obtained in the experimental study.
The reduction rate, the accuracy, and kappa values in test

data registered in the experimental study are specified in
this order for each one. In original data sets, the two values
indicated correspond to accuracy and kappa with 1NN

. Fig. 4b shows the resulting subset of the classical
condensation algorithm. It can be appreciated that
all border points are kept but interior points are
removed. The accuracy and kappa decrease with
respect to the original, as is usually the case with
purely condensation algorithms.

. Fig. 4c illustrates the resulting subset of one of the
newest condensation algorithms proposed: FCNN.
The subset has a similar appearance to that obtained
by CNN and the performance is also similar in both.
The advantage of this method is difficult to see in
graphical representations, but its improvement with
respect to CNN can be seen in the experimental
study section.

. Figs. 4d and 4e represent the subset selected by the
IB3 and DROP3 methods, respectively. These meth-
ods are thought to be modifications of classical
condensation algorithms, but they integrate a noise
filter pass, turning them into hybrid approaches.
Both methods obtain a lower accuracy and kappa
regarding 1NN with the original data set, but the
reduction rates obtained are very high. The main
factor which influences the reduction rate is noise
removal. Note that the difference in accuracy and
kappa is higher in IB3, which suggests that IB3
penalizes the most complicated concept or class.

. Fig. 4f shows the resulting subset of the ICF method.
It is a curious algorithm which separates the data
into smaller clusters, some isolated and others
overlapped. Nevertheless, the performance achieved
by this method is quite poor.

. Figs. 4g and 4h depict the subset of data selected by
the RNGE and AllKNN methods. Both belong to the
edition approaches and the unique difference ob-
served is that AllKNN performs a slightly more
aggressive removal of instances in the decision
boundaries. The performance and reduction rates
are very similar between them and both improve the
performance of 1NN over the original data set.

. Figs. 4i and 4j represent the subset of data selected
by CPruner and HMNEI methods. CPruner per-
forms well over this data set, obtaining good
performance and reduction rates. Its way of working
is based on producing isolated scatters clusters with
no overlapping. On the other hand, HMNEI is one of
the best methods studied in this paper. It allows one
to obtain excellent behavior in terms of efficacy,
closer to edition approaches, but while increasing
the reduction rate.

. Figs. 4k and 4l illustrate the subset of data selected
by RMHC and SSMA methods. They are wrapper
methods and iterate many times to obtain an optimal
subset. RMHC requires as a parameter the final size
of the subset selected and this parameter is very
difficult to set a priori. In the banana case, keeping
10 percent of prototypes may be excessive. However,
SSMA can also adjust and optimize the subset to
have the lowest possible number of instances. The
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performance in accuracy and kappa obtained im-
proves 1NN and most of the PS methods studied
with a reduction of around 98 percent. It seems that
the prototypes selected are just those needed to
define the 1NN regions in an accurate way.

We have seen the resulting subsets of condensation,
edition, and hybrid methods. The latter do not follow a
specific behavior pattern since some of them can keep the
frontiers and remove noisy instances (DROP3), others can
produce clusters of data (ICF), and others can identify the
decision boundaries with the minimum number of proto-
types (SSMA). Nevertheless, visual characteristics of selected

subsets are also the subject of interest and can also help to

decide the choice of a PS method.

7 CONCLUDING REMARKS

The present paper offers an exhaustive survey of Prototype

Selection methods proposed in the literature. Basic and

advanced properties, existing work, and related fields have

been reviewed. Based on the main characteristics studied,

we have proposed a taxonomy of Prototype Selection

methods. Furthermore, the most important methods have

been empirically analyzed over small, medium, and large
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sizes of classification data sets. To illustrate and strengthen
the study, some graphical representations of data subsets
selected have been drawn and statistical analysis based on
nonparametric tests has been employed. Several remarks
and guidelines can be suggested:

. A researcher/practitioner interested in applying a PS
method should know the characteristics neededwhen
choosing one of them. The taxonomy proposed and
the empirical study can help to make this decision.

. In the proposal of a new PS method, the best
approaches and those which fit with the basic
properties of the new proposal should be compared.
To do this, the taxonomy and the analysis of results
can guide a future proposal in the correct way.

. This paper helps nonexperts in PS methods to
differentiate them, to make an appropriate decision
about their application, and to understand their
behavior.

. It is important to know the main advantages of each
PS method. In this paper, many PS methods have
been empirically analyzed, but a specific conclusion
cannot be determined on the best performing
method. This choice depends on the problem tackled
but the results offered in this paper could help to
reduce the set of candidates.

. The empirical study allows us to stress several
methods among the whole set:

- RMHC and SSMA, as representatives of the
hybrid family, obtain an excellent tradeoff
between reduction and classifier success.

- RNGE achieves the highest accuracy rate within
the edition family. HMNEI, belonging to hybrid
methods, is also a good alternative to increase
kNN efficacy.

- As condensation methods, RNN and FCNN are
the best performing techniques. FCNN is one of
the fastest PS approaches.

. The PS methods in conjunction with the stratification
process [31] obtain satisfactory results over large
data sets. They are very competitive in comparison
to approximate nearest neighbor methods (BBD and
LSH). SSMA can outperform them in terms of
accuracy and classification time at the expense of a
high computational cost in the selection process.

We finally note that there is a website (http://sci2s.ugr.
es/pstax) associated with this paper that collects all the
descriptions and implementations of the methods reviewed,
as well as all detailed results obtained and statistical
analysis conducted in the experimental study.
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