
168 SINGLE-SOLUTION BASED METAHEURISTICS

• Dynamic: The dynamic strategy often initializes the α value to a random

value at each iteration of the GRASP metaheuristic. For instance, a uniform

distribution may be used in the range [0.5, 0.9], or a decreasing nonuniform

distribution.

• Adaptive: In this strategy, the value of α is self-tuned. The value is updated

automatically during the search function of the memory of the search.

Example 2.42 Self-tuning in reactive GRASP. In reactive GRASP, the value

of the parameter α is periodically updated according to the quality of the obtained

solutions [623]. At each iteration, the parameter value is selected from a discrete

set of possible values � = {α1, . . . , αm}. The probability associated with each αi

is initialized to a same value pi = 1/m, i ∈ [1, . . . , m]. The adaptive initialization

in the reactive GRASP consists in updating these probabilities according to the

quality of solutions obtained for each αi. Let z∗ be the incumbent solution and Ai

the average value of all solutions found using α = αi. Then, the probability pi for

each value of α is updated as follows:

pi =
qi∑m

j=1
qj

, i ∈ [1, . . . , m]

where qj = z∗/Ai. Hence, larger values of pi correspond to more suitable values

for the parameter αi.

In addition to the parameters associated with the randomized greedy heuristic, the

GRASP metaheuristic will inherit the parameters of the embedded S-metaheuristic.

The larger is the variance between the solutions of the construction phase, the larger

is the variance of the obtained local optima. The larger is the variance between the

initial solutions, the better is the best found solution and the more time consuming is

the computation.

2.10 S-METAHEURISTIC IMPLEMENTATION UNDER ParadisEO

ParadisEO–MO (moving objects) is the module of the software framework ParadisEO

dedicated to the design of single-solution based metaheuristics (S-metaheuristics).

An important aspect in ParadisEO–MO is that the common search concepts of both

metaheuristics and S-metaheuristics are factored. All search components are defined

as templates (generic classes). ParadisEO uses the genericity concept of objects to

make those search mechanisms adaptable. The user implements an S-metaheuristic

by deriving the available templates that provide the functionality of the different

search components: problem-specific templates (e.g., objective function, representa-

tion) and problem-independent templates (e.g., neighbor selection, cooling schedule,

and stopping criteria).



S-METAHEURISTIC IMPLEMENTATION UNDER ParadisEO 169

moAlgo

M::EoType:

moHC

M:

moTS

M:

moSA

M:

moILS

M:

FIGURE 2.38 UML diagram of the moAlgo template representing an S-metaheuristic such

as hill climbing, tabu search, simulated annealing, iterated local search.

In ParadisEO–MO, the moAlgo template represents an S-metaheuristic such as

local search (hill climbing), tabu search, simulated annealing, and iterated local search

(Fig. 2.38).

Figure 2.43 shows the common concepts and relationships in single-solution based

metaheuristics. Hence, most of the search components will be reused by different S-

metaheuristics. The aim of this section is to show not only the easy way to design an

S-metaheuristic but also the high flexibility to transform an S-metaheuristic to another

one reusing most of the design and implementation work. The different implementa-

tions are illustrated using the symmetric TSP problem.

2.10.1 Common Templates for Metaheuristics

As seen in Chapter 1, the common search components that have to be designed for

any metaheuristic are

• Objective function: The objective function is associated with the template

eoEvalFunc, which is a problem-specific template. For the TSP problem,

it corresponds to the total distance. It is straightforward to implement.

• Representation of solutions: The encoding used for the TSP is based on per-

mutations. Hence, an object Route is designed to deal with this structure. It

corresponds to a permutation vector and its associated fitness. This is also a

problem-specific template. However, one can reuse some popular representa-

tions. In fact, in ParadisEO, the template associated with the encoding of so-

lutions defines, for instance, the binary, discrete vector, real vectors, and trees.

Those encodings may be reused to solve an optimization problem.

• Stopping criteria: The stopping criteria for hill climbing are implicit, that is,

the algorithm stops when a local optimal solution is found. Then there is nothing

to specify.



170 SINGLE-SOLUTION BASED METAHEURISTICS

2.10.2 Common Templates for S-Metaheuristics

As seen in this chapter, the common search components for S-metaheuristics are

• Initial solution: As shown in Section 2.1.3, the initial solution may be gener-

ated randomly or by any other heuristic (e.g., available algorithm as a template

moAlgo or user-specified greedy algorithm).

• Neighborhood structure and its exploration: A neighborhood for the TSP may

be defined by the 2-opt operator. A class TwoOpt is then derived for the template

moMove, which represents a move. Hence, a TwoOpt object is a moMove that

can be applied to a object of type Route associated with the representation. To

specify the exploration order of the neighborhood, the following templates have

to defined:

– First move: The template moMoveInit defines the initial move to apply.

The corresponding class in our example is

class TwoOptInit : public moMoveInit <TwoOpt>

– Next move: The template moNextMove defines the next move to apply. This

template has also to check the end of the exploration.

• Incremental evaluation function: The incremental objective function is asso-

ciated with the template moIncrEval. The user must derive this template to

implement the function. According to a solution and a move, this template is able

to compute the fitness of the corresponding neighbor with a higher efficiency.

2.10.3 Local Search Template

Figure 2.39 shows the architecture of the hill-climbing template moHC. Once the com-

mon templates for all metaheuristics and S-metaheuristics are defined, only one

search component is left, the neighbor selection strategy. The template associated with

the selection strategy of the next neighbor is moMoveselect. The usual standard

strategies are available in the template (see Section 2.3.1). The user has to choose one

of them:17

• Best improvement which corresponds to moBestImprSelect template.

• First improvement which corresponds to moFirstImprSelect template.

• Random improvement which corresponds to moRandImprSelect template.

From those defined templates, building a hill-climbing algorithm is completely

done. The detailed description of the program associated with a hill-climbing al-

gorithm using the defined search components and their associated templates is as

follows:

17As the framework is a white box, the user can also design other selection strategies.



S-METAHEURISTIC IMPLEMENTATION UNDER ParadisEO 171

eoEvalFunc

EOT:

moHC

M:

moMoveIncrEval

M:

moMoveInit

M:

moMoveSelect

M:

moBestImprSelect

M:

moFirstImprSelect

M:

moNextMove

M:

moRandImprSelect

M:

FIGURE 2.39 UML diagram of the hill-climbing template moHC. The templates moEval-

Func, moNextMove, moMoveIncrEval, and moMoveInit are problem specific and need

to be completed by the user. The template moMoveSelect is problem independent, that is,

“plug and play” that can be completely reused.

...

//An initial solution.

Route route;

//An eoInit object (see ParadisEO-EO).

RouteInit route init;

//Initialization.

route init(route);

//The eoEvalFunc.

RouteEvaluation full eval;

//Solution evaluation.

full eval (route);

//The moMoveInit object.

TwoOptInit two opt init;

//The moNextMove object.

TwoOptNext two opt next;

//The moIncrEval object.

TwoOptIncrEval two opt incr eval;

//The moMoveSelect.

moFirstImprSelect <TwoOpt> two opt select;

//or moBestImprSelect <TwoOpt> two opt select;

//or moRandImprSelect <TwoOpt> two opt select;

//or MyMoveSelect <TwoOpt> two opt select;

//The moHC object.

moHC <TwoOpt> hill climbing (two opt init, two opt next,

two opt incr eval, two opt select,full eval);

//The HC is launched on the initial solution.

hill climbing (route) ;



172 SINGLE-SOLUTION BASED METAHEURISTICS

A great advantage of using ParadisEO is that the user has to modify a given

template (problem specific such as the objective function or problem independent

such as the neighbor selection strategy), only the concerned template is updated;

there is no impact on other templates and on the whole algorithm. For instance, if the

user wants to define his own neighbor selection strategy, he can design a class for the

TwoOpt move and use it as follows:

class MyMoveSelectionStrategy : public moMoveSelect <TwoOpt>

Another advantage of using the software framework is the ability to extend a

metaheuristic to another metaheuristic in an easy and efficient manner. In the next

section, it is shown how the hill-climbing algorithm has been evolved to tabu search,

simulated annealing, and iterated local search. Most of the search components and

their associated templates are reused.

2.10.4 Simulated Annealing Template

Figure 2.40 shows the architecture of the simulated annealing template moSA. If a

comparison between Figs 2.39 and 2.40 is done, one can notice that most of the

templates (search components) are the same.

The following search components and their associated templates are reused from

the hill-climbing S-metaheuristic (moHC):

• Objective function that corresponds to the template eoEvalFunc.

• Incremental evaluation function that corresponds to moMoveIncrEval.

In addition to the search components associated with local search, the following

components have to be defined for simulated annealing algorithm in the template

moSA:

eoEvalFunc

EOT:

moSA

M:

moMoveIncrEval

M:

moMoveRand

M:

moCoolingSchedule

M:

moExponentialCoolingSchedule

M:

moLinearCoolingSchedule

M:

moSolContinue

EOT:

moGenSolContinue

EOT:

FIGURE 2.40 UML diagram of the simulated annealing template moSA. The template

moMoveRand is specific to the problem; that is, the user has to define it, and the templates

moCoolingSchedule and moSolContinue are problem independent and ready to use.



S-METAHEURISTIC IMPLEMENTATION UNDER ParadisEO 173

• Cooling schedule: The cooling schedule of simulated annealing is specified in

the template moCoolingSchedule. Some cooling functions are available,

such as the linear function moLinearCoolingSchedule and the geometric

one moExponentialCoolingSchedule.

• Stopping criteria For any S-metaheuristic (e.g., tabu search), many defined

stopping criteria in the template moSolContinue may be used.

• Random neighbor generation: The template moMoveRand defines how a

random neighbor is generated.

In the following simulated annealing program, the lines different from the hill-

climbing program are represented in bold. It is easy to extract the characteristics

of the implemented SA: a maximum number of iterations as stopping criteria, the

Boltzmann distribution acceptance probability, and so on.
...

// An initial solution.

Route route;

// An eoInit object (see ParadisEO-EO).

RouteInit route init;

// Initialization.

route init(route);

// The eoEvalFunc.

RouteEvaluation full eval;

// Solution evaluation.

full eval (route);

// The moRandMove object.

TwoOptRand two opt rand;

// The moIncrEval object.

TwoOptIncrEval two opt incr eval;

// The chosen cooling schedule object.

moExponentialCoolingSchedule cool sched (Tmin, ratio);

// or moLinearCoolingSchedule cool sched (Tmin, quantity);

// or MyCoolingSchedule cool sched;

// The moSolContinue.

moGenSolContinue <Route> cont (max step);

// The moSA object.

moSA <TwoOpt> simulated annealing (two opt rand, two opt incr eval,

cont, Tinit , cool sched, full eval);

// The simulated annealing is launched on the initial solution.

simulated annealing (route) ;

2.10.5 Tabu Search Template

Figure 2.41 shows the architecture of the tabu search template moTS. If a comparison

between Figs 2.39 and 2.41 is done, one can notice that most of the templates (search

components) are the same.



174 SINGLE-SOLUTION BASED METAHEURISTICS

eoEvalFunc
EOT:

moTS
M:

moMoveIncrEval
M:

moMoveInit
M:

moAspirCrit
M:

moImprBestFitAspirCrit
M:

moNoAspirCrit
M:

moNextMove
M:

moTabuList
M:

moSimpleMoveTabuList
M:

moSimpleSolutionTabuList
M:

moSolContinue
EOT:

moGenSolContinue
EOT:

FIGURE 2.41 UML diagram of the tabu search template (moTS object). The templates

moAspirCrit, moTabuList, and moSolContinue are problem-independent and ready-

to-use templates.

The following search components and their associated templates are reused from

the hill-climbing S-metaheuristic (moHC):

• Objective function that corresponds to the template eoEvalFunc.

• Incremental evaluation function that corresponds to moMoveIncrEval.

• Neighborhood structure and its exploration that corresponds to the templates

moMoveInit, moNextMove.

To design a tabu search algorithm, only the following search components have to

be defined in the template moTS:

• Aspiration criteria that corresponds to the template moAspirCrit. Two as-

piration criteria are provided: the moNoAspirCrit that always rejects a move

and the moImpBestFitAspirCrit that accepts a move if the fitness of the

neighbor is better than the best found solution.

• Tabu list (short-term memory) that corresponds to the template moTabu-

List. Two basic tabu lists already exist: the ready-to-use template moSim-

pleMoveTabuList that contains the moves and the template moSimpleS-

olutionTabuList that contains the solutions.

• Stopping criteria that corresponds to the template moSolContinue. This

template allows to select different stopping criteria for tabu search such as

– moGenSolContinue, where the S-metaheuristic stops after a given maxi-

mum number of iteration.

– moFitSolContinue, where the algorithm continues its execution until a

target fitness (quality) is reached.

– moNoFitImprSolContinue, where the algorithm stops when the best

found solution has not be improved since a given number of iterations.

– moSteadyFitSolContinue, a combination of the first and the third cri-

teria: the algorithm performs a given number of iterations and then it stops if

the best found solution is not improved for a given number of iterations.



S-METAHEURISTIC IMPLEMENTATION UNDER ParadisEO 175

In the following tabu search program, the lines different from the hill-climbing

program are represented in bold. It is easy to extract the characteristics of this tabu

search: a maximum number of iterations as stopping criterion.
...

// An initial solution.

Route route;

// An eoInit object (see ParadisEO-EO).

RouteInit route init;

// Initialization.

route init(route);

// The eoEvalFunc.

RouteEvaluation full eval;

// Solution evaluation.

full eval (route);

// The moMoveInit object.

TwoOptInit two opt init;

// The moNextMove object.

TwoOptNext two opt next;

// The moIncrEval object.

TwoOptIncrEval two opt incr eval;

// The moTabuList.

moSimpleSolutionTabuList<TwoOpt> tabu list(10);

// or moSimpleMoveTabuList<TwoOpt> tabu list(10);

// or MyTabuList<TwoOpt> tabu list;

// The moAspirCrit.

moNoAspirCrit <TwoOpt> aspir crit;

// or moImprBestFitAspirCrit<TwoOpt> aspir crit;

// or MyAspirCrit<TwoOpt> aspir crit;

//The moSolContinue.

moGenSolContinue <Route> cont (10000);

// or MySolContinue<TwoOpt> cont;

// The moTS object.

moTS <TwoOpt> tabu search (two opt init, two opt next, two opt incr eval,

tabu list, aspir crit, cont, full eval);

// The TS is launched on the initial solution.

tabu search (route) ;

2.10.6 Iterated Local Search Template

Figure 2.42 shows the architecture of the iterated local search template moILS. Once

a given S-metaheuristic designed, it is very easy to construct an iterated local search

algorithm.

The following search components have to be defined for the ILS algorithm in the

template moILS:

• Local search algorithm: The local search algorithm to be used must be spec-

ified in the moAlgo template. Any developed S-metaheuristic may be used,



176 SINGLE-SOLUTION BASED METAHEURISTICS

moILS

M:

moComparator

EOT:

moFitComparator

EOT:

moAlgo

M:

eoMonOp

EOT:

moHC

M:

moTS

M:

moILS

M:

moSA

M:

moSolContinue

EOT:

moGenSolContinue

EOT:

FIGURE 2.42 UML diagram of the iterated local search template moILS.

such as hill climbing (moHC template), tabu search (moTS template), simulated

annealing (moSA template), any other user-defined S-metaheuristic, or why not

another ILS moILS.

• Perturbation method: The perturbation method is defined in the template

eoMonOp.

• Acceptance criteria: The search component dealing with the acceptance of

the generated solution is defined in the template moComparator. Some usual

acceptance functions are available such as moFitComparator that selects

the new solution if it is better than the best found. Nevertheless, any specific

acceptance method can be implemented; that is, a new class must be defined:

class MyComparisonStrategy : public moComparator <Route>

• Stopping criteria: For any S-metaheuristic (e.g., simulated annealing, tabu

search), many defined stopping criteria in the template moSolContinue may

be used.

Starting from any S-metaheuristic program, the user can easily design an ILS

for the symmetric TSP problem. In the following program, the additional lines to a

S-metaheuristic program are represented in bold:
...

// An initial solution.

Route route;

// An object to initialise this solution.

RouteInit route init;



CONCLUSIONS 177

// Initialization.

route init(route);

// A full evaluation method <=> eoEvalFunc.

RouteEvaluation full eval;

// Solution evaluation.

full eval (route);

// The moMoveInit object.

TwoOptInit two opt init;

// The moNextMove object.

TwoOptNext two opt next;

// The moIncrEval object.

TwoOptIncrEval two opt incr eval;

// moMoveSelect.

moFirstImprSelect <TwoOpt> two opt select;

// or moBestImprSelect <TwoOpt> two opt select;

// or moRandImprSelect <TwoOpt> two opt select;

// or MyMoveSelect <TwoOpt> two opt select;

// The moHC object.

moHC <TwoOpt> hill climbing (two opt init, two opt next,

two opt incr eval, two opt select, full eval);

// The moSolContinue object.

moGenSolContinue <Route> cont (1000);

// The moComparator object.

moFitComparator <Route> comparator;

// The eoMonOp, in this example the well known CitySwap.

CitySwap perturbation;

// The moILS object.

moILS<TwoOpt> iterated local search(hill climbing, comparator,

perturbation, full eval);

//The iterated local search is launched on the initial solution.

iterated local search (route) ;

2.11 CONCLUSIONS

In addition to the representation, the objective function and constraint handling that

are common search concepts to all metaheuristics, the common concepts for single-

solution based metaheuristics are as follows (Fig. 2.43):

• Initial solution: An initial solution may be specified randomly or by a given

heuristic.

• Neighborhood: The main concept of S-metaheuristics is the definition of

the neighborhood. The neighborhood has an important impact on the perfor-

mances of this class of metaheuristics. The interdependency between repre-

sentation and neighborhood must not be neglected. The main design question

in S-metaheuristics is the trade-off between the efficiency of the representa-

tion/neighborhood and its effectiveness (e.g., small versus large neighborhoods).


