
SOFTWARE FRAMEWORKS FOR METAHEURISTICS 71

Several frameworks for metaheuristics have been proposed in the literature. Most

of them have the following limitations:

• Metaheuristics: most of the exiting frameworks focus only on a given meta-

heuristic or family of metaheuristics such as evolutionary algorithms (e.g., GAlib

[809]), local search (e.g., EasyLocal++ [301], Localizer [550]), and scatter search

(e.g., OPTQUEST). Only few frameworks are dedicated on the design of both

families of metaheuristics. Indeed, a unified view of metaheuristics must be done

to provide a generic framework.

• Optimization problems: most of the software frameworks are too narrow, that

is, they have been designed for a given family of optimization problems: non-

linear continuous optimization (e.g., GenocopIII), combinatorial optimization

(e.g., iOpt), monoobjective optimization (e.g., BEAGLE), multiobjective opti-

mization (e.g., PISA [81]), and so on.

• Parallel and hybrid metaheuristics: Moreover, most of the existing frame-

works either do not provide hybrid and parallel metaheuristics at all (Hotframe

[262]) or supply just some parallel models: island model for evolutionary al-

gorithms (e.g., DREAM [35], ECJ [819], JDEAL, distributed BEAGLE [291]),

independent multistart and parallel evaluation of the neighborhood (e.g., TS

[79]), or hybrid metaheuristics (iOpt [806]).

• Architectures: Finally, seldom a framework is found that can target many types

of architectures: sequential and different types of parallel and distributed ar-

chitectures, such as shared-memory (e.g., multicore, SMP), distributed-memory

(e.g., clusters, network of workstations), and large-scale distributed architectures

(e.g., desktop grids and high-performance grids). Some software frameworks are

dedicated to a given type of parallel architectures (e.g., MALLBA [22], MAFRA

[481], and TEMPLAR [426,427]).

Table 1.8 illustrates the characteristics of the main software frameworks for meta-

heuristics52. For a more detailed review of some software frameworks and libraries

for metaheuristics, the reader may refer to Ref. [804].

1.8.3 ParadisEO Framework

In this book, we will use the ParadisEO53 framework to illustrate the design and

implementation of the different metaheuristics. The ParadisEO platform honors the

criteria mentioned before, and it can be used both by no-specialists and by optimization

method experts. It allows the design and implementation of

• Single-solution based and population-based metaheuristics in a unifying way

(see Chapters 2 and 3).

52We do not claim an exhaustive comparison.
53ParadisEO is distributed under the CeCill license.

72 COMMON CONCEPTS FOR METAHEURISTICS

TABLE 1.8 Main Characteristics of Some Software Frameworks for Metaheuristics

Framework Optimization Parallel Communication

or Library Metaheuristic Problems Models Systems

EasyLocal++ S-meta Mono - -

Localizer++ S-meta Mono - -

PISA EA Multi - -

MAFRA LS, EA Mono - -

iOpt S-meta, GA, CP Mono, COP - -

OptQuest SS Mono - -

GAlib GA Mono Algo-level PVM

Ite-level

GenocopIII EA Mono, Cont - -

DREAM EA Mono Algo-level Peer-to-peer

sockets

MALLBA LS Mono Algo-level MPI

EA Ite-level Netstream

Hotframe S-meta, EA Mono - -

TEMPLAR LS, SA, GA Mono, COP Algo-level MPI, threads

JDEAL GA, ES Mono Ite-level Sockets

ECJ EA Mono Algo-level Threads, sockets

Dist. BEAGLE EA Mono Algo-level Sockets

Ite-level

ParadisEO S-meta Mono, Multi Algo-level MPI, threads

P-meta COP, Cont Ite-level Condor

Sol-level Globus

[S-meta: S-metaheuristics; P-meta: P-metaheuristics; COP: combinatorial optimization; Cont: continuous

optimization; Mono: Monoobjective optimization; Multi: multiobjective optimization, LS: local search;

ES: evolution strategy; SS: scatter search; EA: evolutionary algorithms; GA: genetic algorithms; Algo-

level: algorithmic level of parallel model; Ite-level: iteration level of parallel models; Sol-level: solution

level of parallel models. Unfortunately, only a few of them are maintained and used!.]

• Metaheuristics for monoobjective and multiobjective optimization problems (see

Chapter 4).

• Metaheuristics for continuous and discrete optimization problems.

• Hybrid metaheuristics (see Chapter 5).

• Parallel and distributed metaheuristics (see Chapter 6).

ParadisEO is a white box object-oriented framework based on a clear conceptual

separation of the metaheuristics from the problems they are intended to solve. This

separation and the large variety of implemented optimization features allow a maxi-

mum code and design reuse. The separation is expressed at implementation level by

splitting the classes into two categories: provided classes and required classes. The

provided classes constitute a hierarchy of classes implementing the invariant part of

the code. Expert users can extend the framework by inheritance/specialization. The

SOFTWARE FRAMEWORKS FOR METAHEURISTICS 73

required classes coding the problem-specific part are abstract classes that have to be

specialized and implemented by the user.

The classes of the framework are fine-grained and instantiated as evolving objects

embodying one and only one method. This is a particular design choice adopted in

ParadisEO. The heavy use of these small-size classes allows more independence and

thus a higher flexibility compared to other frameworks. Changing existing components

and adding new ones can be easily done without impacting the rest of the application.

Flexibility is enabled through the use of the object-oriented technology. Templates are

used to model the metaheuristic features: coding structures, transformation operators,

stopping criteria, and so on. These templates can be instantiated by the user according

to his/her problem-dependent parameters. The object-oriented mechanisms such as

inheritance, polymorphism, and so on are powerful ways to design new algorithms

or evolve existing ones. Furthermore, ParadisEO integrates several services making

it easier to use, including visualization facilities, online definition of parameters,

application checkpointing, and so on.

ParadisEO is one of the rare frameworks that provides the most common paral-

lel and distributed models. These models concern the three main parallel models:

algorithmic level, iteration level, and solution level. They are portable on different

types of architectures: distributed-memory machines and shared-memory multipro-

cessors as they are implemented using standard libraries such as message passing

interface (MPI), multithreading (Pthreads), or grid middlewares (Condor or Globus).

The models can be exploited in a transparent way, one has just to instantiate their

associated ParadisEO components. The user has the possibility to choose by a sim-

ple instantiation for the communication layer. The models have been validated on

academic and industrial problems. The experimental results demonstrate their ef-

ficiency. The experimentation also demonstrates the high reuse capabilities as the

results show that the user redo little code. Furthermore, the framework provides the

most common hybridization mechanisms. They can be exploited in a natural way to

make cooperating metaheuristics belonging either to the same family or to different

families.

ParadisEO is a C++ LGPL open-source framework (STL-Template)54. It is

portable on Windows, Unix-like systems such as Linux and MacOS. It includes the

following set of modules (Fig. 1.31):

• Evolving objects (EO): The EO library was developed initially for evolutionary

algorithms (genetic algorithms, evolution strategies, evolutionary programming,

genetic programming, and estimation distribution algorithms) [453]. It has been

extended to population-based metaheuristics such as particle swarm optimization

and ant colony55 optimization.

• Moving objects (MO): It includes single-solution based metaheuristics such as

local search, simulated annealing, tabu search, and iterated local search.

54Downloadable at http://paradiseo.gforge.inria.fr.
55The model implemented is inspired by the self-organization of Pachycondyla apicalis ant species.

74 COMMON CONCEPTS FOR METAHEURISTICS

ParadisEO-PEO

ParadisEO-EO

ParadisEO-MO ParadisEO-MOEO

 Multi-objective

 metaheuristics

(NSGA-II, SPEA2,

IBEA, etc.)

 Parallel, distributed,

 and hybrid metaheuristics

Population-based metaheuristics

(evolutionary algorithms,

particle swarm optimization, ant colony,

estimation of distribution algorithms,

differential evolution, etc.)

Single-solution based metaheuristics

(local search, simulated annealing,

tabu search, iterated local search,

variable neighborhood search,

threshold accepting, etc.)

FIGURE 1.31 The different unified modules of the ParadisEO framework.

• Multiobjective evolving objects (MOEO): It includes the search mechanisms

to solve multiobjective optimization problems such as fitness assignment, diver-

sification, and elitism. From this set of mechanisms, classical algorithms such

as NSGA-II, SPEA2, and IBEA have been implemented and are available.

• Parallel evolving objects (PEO): It includes the well-known parallel and dis-

tributed models for metaheuristics and their hybridization.

1.8.3.1 ParadisEO Architecture The architecture of ParadisEO is multi-

layered and modular allowing to achieve the objectives quoted above (Fig. 1.32).

Runners

Required
helpers

Hill
climbing

Simulated
annealing

Tabu
search

Genetic
algorithms

Genetic
programming

Hybrid
solvers

Evaluation
function

Solution
initialization

Variation
operators

Move
exploration

Move
incr. funtion

Provided
helpers

...

Selection replacement
Stopping
criterion

Move
selection

Stopping
criterion

Cooling
schedule

Local searchesEvolutionary algorithms

Common helpers

High level Relay/coevolution

FIGURE 1.32 Architecture of the ParadisEO framework.

SOFTWARE FRAMEWORKS FOR METAHEURISTICS 75

This allows particularly a high genericity, flexibility, and adaptability, an easy hy-

bridization, and code and design reuse. The architecture has three layers identifying

three major classes: Solvers, Runners, and Helpers.

• Helpers: Helpers are low-level classes that perform specific actions related to

the search process. They are split into two categories: population helpers (PH)

and single-solution helpers (SH). Population helpers include mainly the trans-

formation, selection, and replacement operations, the evaluation function, and

the stopping criterion. Solution helpers can be generic such as the neighborhood

explorer class, or specific to the local search metaheuristic such as the tabu list

manager class in the tabu search solution method. On the other hand, there are

some special helpers dedicated to the management of parallel and distributed

models, such as the communicators that embody the communication services.

Helpers cooperate between them and interact with the components of the upper

layer, that is, the runners. The runners invoke the helpers through function pa-

rameters. Indeed, helpers do not have not their own data, but they work on the

internal data of the runners.

• Runners: The Runners layer contains a set of classes that implement the meta-

heuristics themselves. They perform the run of the metaheuristics from the initial

state or population to the final one. One can distinguish the population runners

(PR) such as genetic algorithms, evolution strategies, particle swarm, and so

on and single-solution runners (SR) such as tabu search, simulated annealing,

and hill climbing. Runners invoke the helpers to perform specific actions on

their data. For instance, a PR may ask the fitness function evaluation helper to

evaluate its population. An SR asks the movement helper to perform a given

movement on the current state. Furthermore, runners can be serial or parallel

distributed.

• Solvers: Solvers are devoted to control the search. They generate the initial state

(solution or population) and define the strategy for combining and sequencing

different metaheuristics. Two types of solvers can be distinguished: single meta-

heuristic solvers (SMS) and multiple-metaheuristic solvers (MMS). SMS are

dedicated to the execution of a single metaheuristic. MMS are more complex

as they control and sequence several metaheuristics that can be heterogeneous.

They use different hybridization mechanisms. Solvers interact with the user by

getting the input data and by delivering the output (best solution, statistics, etc.).

According to the generality of their embedded features, the classes of the architec-

ture are split into two major categories: provided classes and required classes. Provided

classes embody the factored out part of the metaheuristics. They are generic, imple-

mented in the framework, and ensure the control at run time. Required classes are

those that must be supplied by the user. They encapsulate the problem-specific aspects

of the application. These classes are fixed but not implemented in ParadisEO. The

programmer has the burden to develop them using the object-oriented specialization

mechanism.

76 COMMON CONCEPTS FOR METAHEURISTICS

At each layer of the ParadisEO architecture, a set of classes is provided (Fig. 1.32).

Some of them are devoted to the development of metaheuristics for monoobjective and

multiobjective optimization, and others are devoted to manage transparently parallel

and distributed models for metaheuristics and their hybridization.

There are two programming mechanisms to extend built-in classes: function sub-

stitution and subclassing. By providing some methods, any class accepts that the

user specifies his own function as a parameter that will be used instead of the

original function. This will avoid the use of subclassing, which is a more com-

plex task. The user must at least provide the objective function associated with his

problem.

1.9 CONCLUSIONS

When identifying a decision-making problem, the first issue deals with modeling the

problem. Indeed, a mathematical model is built from the formulated problem. One

can be inspired by similar models in the literature. This will reduce the problem to

well-studied optimization models. One has also to be aware of the accuracy of the

model. Usually, models we are solving are simplifications of the reality. They involve

approximations and sometimes they skip processes that are complex to represent in

a mathematical model.

Once the problem is modeled, the following roadmap may constitute a guideline

in solving the problem (Fig.1.33).

First, whether it is legitimate to use metaheuristics for solving the problem must be

addressed. The complexity and difficulty of the problem (e.g., NP-completeness, size,

and structure of the input instances) and the requirements of the target optimization

problem (e.g., search time, quality of the solutions, and robustness) must be taken

into account. This step concerns the study of the intractability of the problem at

hand. Moreover, a study of the state-of-the-art optimization algorithms (e.g., exact

and heuristic algorithms) to solve the problem must be performed. For instance, the

use of exact methods is preferable if the best known exact algorithm can solve in

the required time the input instances of the target problem. Metaheuristic algorithms

seek good solutions to optimization problems in circumstances where the complexity

of the tackled problem or the search time available does not allow the use of exact

optimization algorithms.

At the time the need to design a metaheuristic is identified, there are three common

design questions related to all iterative metaheuristics:

• Representation: A traditional (e.g., linear/nonlinear, direct/indirect) or a spe-

cific encoding may be used to represent the solutions of the problem. Encoding

plays a major role in the efficiency and effectiveness of any metaheuristic and

constitutes an essential step in designing a metaheuristic. The representation

must have some desired properties such as the completeness, connexity, and ef-

ficiency. The encoding must be suitable and relevant to the tackled optimization

problem. Moreover, the efficiency of a representation is also related to the search

