
ORIGINAL PAPER

Metaheuristic optimization frameworks: a survey
and benchmarking

José Antonio Parejo • Antonio Ruiz-Cortés •

Sebastián Lozano • Pablo Fernandez

Published online: 28 August 2011

� Springer-Verlag 2011

Abstract This paper performs an unprecedented com-

parative study of Metaheuristic optimization frameworks.

As criteria for comparison a set of 271 features grouped in

30 characteristics and 6 areas has been selected. These

features include the different metaheuristic techniques

covered, mechanisms for solution encoding, constraint

handling, neighborhood specification, hybridization, par-

allel and distributed computation, software engineering

best practices, documentation and user interface, etc. A

metric has been defined for each feature so that the scores

obtained by a framework are averaged within each group of

features, leading to a final average score for each frame-

work. Out of 33 frameworks ten have been selected from

the literature using well-defined filtering criteria, and the

results of the comparison are analyzed with the aim of

identifying improvement areas and gaps in specific

frameworks and the whole set. Generally speaking, a sig-

nificant lack of support has been found for hyper-heuristics,

and parallel and distributed computing capabilities. It is

also desirable to have a wider implementation of some

Software Engineering best practices. Finally, a wider sup-

port for some metaheuristics and hybridization capabilities

is needed.

1 Introduction and motivation

Heuristic methods have proven to be a comprehensive tool

to solve hard optimization problems; they bring a balance

of ‘‘good’’ solutions (relatively close to global optimum)

and affordable time and cost. However, heuristics are

usually based on specific characteristics of the problem at

hand, which makes their design and development a com-

plex task. In order to solve this drawback, metaheuristics

appear as a significant advance (Glover 1977); they are

problem-agnostic algorithms that can be adapted to incor-

porate the problem-specific knowledge. Metaheuristics

have been remarkably developed in recent decades (Voß

2001), becoming popular and being applied to many

problems in diverse areas (Glover and Kochenberger 2002;

Back et al. 1997). However, when new are considered,

metaheuristics should be implemented and tested, implying

costs and risks.

As a solution, object-oriented paradigm has become a

successful mechanism used to ease the burden of applica-

tion development and particularly, on adapting a given

metaheuristic to the specific problem to solve. Based on

this paradigm, there are a number of proposals which

jointly offer support for the most widespread techniques,

platforms and languages. In this article, we coin these kind

of approaches as metaheuristic optimization frameworks

(MOFs).

In addition to the advantages of having pre-implemented

metaheuristics in terms of testing and reuse, using a MOF

can provide a valuable benefit. They support the evaluation

and comparison of different metaheuristics to select the

best performing one for the problem at hand.

However, as the number of alternatives is extensive (we

have identified 33 different MOFs in literature) this

becomes a double-edged sword and the choice of the right

MOF results in a major issue. Due to the wide number of

metaheuristics (and variants), each of the MOFs is focused

on a particular subset; in this context, not choosing the

right MOF leads to a no-win situation; this would imply

further costs due to the change from one MOF to another,

J. A. Parejo (&) � A. Ruiz-Cortés � S. Lozano � P. Fernandez

University of Sevilla, Seville, Spain

e-mail: japarejo@us.es

123

Soft Comput (2012) 16:527–561

DOI 10.1007/s00500-011-0754-8



or the risk of obtaining a sub-optimal solution due to the

use of inappropriate metaheuristics.

A comparative framework is a useful tool to guide a

selection of the MOF that best suits a particular scenario.

However comparisons of frameworks in literature are

either informal evaluations using author criteria or focused

on performance (Wilson et al. 2004). Gagnè and Parizeau

(2006) present a comparison (over 6 features) of MOFs

supporting evolutionary algorithms. Voß (2002) presents a

constructive discussion of various software libraries, but

there is a lack of a comparative analysis. Alternatively,

some articles (such as Cahon et al. 2004; Di Gaspero and

Schaerf 2003) presenting a concrete MOF, include a related

work section with a comparison of specific features with

other MOFs; however, those works present a narrow per-

spective with a comparison of a reduced set of MOFs.

To the best of our knowledge, no general reviews nor

detailed comparative studies of MOFs have been con-

ducted in the literature. Moreover, a conceptual discussion

about the desirable set of features of a MOF has not been

carried out.

The key point of this article is to provide a general

comparative framework to guide the selection of a partic-

ular MOF and to evaluate the current MOFs found in the

literature from a research perspective. In doing so, this

article extends the comparative framework of Gagnè and

Parizeau (2006) including frameworks that incorporate

several types of metaheuristic techniques (cf. Sect. 4) and

presents a comparative analysis of a large set of features.

Specifically, this paper advances the state of the art in

the following:

1. A general comparative framework for MOFs that can

be used to classify, evaluate and compare them.

2. An analysis of the current relevant MOFs in the

literature based in the comparative framework

proposed.

3. An evaluation of the current state of the art of MOFs

from the research context that can be used: (i) to guide

newcomers in the area and (ii) to identify relevant gaps

to MOF developers.

It is important to highlight that the main value of this

study lies neither in comparing the rankings of two con-

crete MOFs in a feature or characteristic, nor in stating

which MOF better fulfills the benchmark criteria. The main

contribution of the paper is the establishment of a general

comparison framework which clearly defines the set of

desirable features of MOFs; depicting a real ‘‘state of the

art’’ MOF with improvement directions and gaps in fea-

tures support. This comparison framework has shown its

value an generality, allowing the evaluation of the new

versions of assessed MOFs released during the realization

of this study without modifications (four MOFs released

new versions). Moreover, the possibility of downloading

the benchmark as a spreadsheet and tailoring it to user

needs by modifying its weights is also crucial for making it

more relevant and applicable.

The remainder of this article is organized as follows:

Section 2 defines what a metaheuristic optimization

framework is and outlines the advantages and disadvan-

tages of using such tools. Next, Sect. 3 describes the

methodology used to create our comparative framework

divided into six areas. In further sections, each area is

developed in detail (Sects. 4 to 9), defining a set of char-

acteristics, its importance, metrics and data sources used

for its evaluation. In each section, charts and interesting

results on the current support by the selected MOFs are

provided. In Sect. 10 we discuss the results obtained from a

global perspective, showing significant gaps and general

tendencies. Finally, in Sect. 11 we summarize and present

the main conclusions and future work.

Details about MOF assessment are provided as tables in

‘‘Appendix’’ and at http://www.isa.us.es/MOFComparison.

2 Metaheuristic optimization frameworks

Problem types that model real-life situations (e.g. traveling

salesman problem, knapsack problem, MAX-SAT prob-

lem, etc.) have concrete instances that have a solution

space that contains specific solutions. When those solutions

are evaluated using an objective function (or a set of

functions for multi-objective problems) we can define an

optimization problem as searching for the solution that

provides the maximum (or minimum) value.

According to Glover and Kochenberger (2002) we

define metaheuristics as: ‘‘An iterative process that guides

the operation of one or more subordinate heuristics (which

may be from a local search process, to a constructive

process of random solutions) to efficiently produce quality

solutions for a problem’’. An interesting concept in this

definition is the establishment of two distinct levels for

metaheuristic problem solving: the heuristic level that is by

definition highly dependent on the problem, and the

metaheuristic level based on the aforementioned level but

expressed as a problem-independent process. For instance,

when we apply simulated annealing (SA) (Kirkpatrick

et al. 1983), we use three subordinate heuristics: the crea-

tion of an initial solution to the problem, the generation of

similar (neighboring) solutions to another solution by some

criterion; and the evaluation of solutions (objective func-

tion). These heuristics are highly dependent on the specific

problem addressed and how we encode solutions, but based

on them, we can establish a general iterative algorithm that

has been successfully applied to a huge variety of

problems.

528 J. A. Parejo et al.

123

http://www.isa.us.es/MOFComparison


Thus, for each metaheuristic technique and type of

problem, we have a set of subordinate heuristics that define

how the metaheuristic is adapted to the problem-type at

hand. Note that a given problem-type may have multiple

valid sets of subordinate heuristics. For instance, when

using a genetic algorithm we can have different solution

encodings (e.g. using bit strings or integer vectors) and

consequently, different ways of generating the initial

population, crossover and mutation operators, etc. For a

specific instance of a problem, the application of a meta-

heuristic will provide a solution depending on the specific

subordinate heuristics used.

A MOF can be defined as ‘‘a set of software tools that

provide a correct and reusable implementation of a set of

metaheuristics, and the basic mechanisms to accelerate the

implementation of its partner subordinate heuristics (pos-

sibly including solution encodings and technique-specific

operators), which are necessary to solve a particular

problem instance using techniques provided’’. Figure 1

depicts a conceptual map showing these elements and their

relationships. In this figure, MOFs and their components

are shaded.

Specifically, MOFs not only provide a set of imple-

mented techniques, but also facilities to simplify the

adaptation of those implementations to the specific prob-

lem to address and additional tools to help the whole

optimization problem solving activities. Moreover, MOFs

usually provide mechanisms to monitor the optimization

processes, supporting tools to determine appropriate values

of parameters of techniques, and to identify the reasons that

prevent techniques from finding optimal solutions.

2.1 Why are MOFs valuable?

The No Free Lunch (NFL) theorem of Wolpert and Mac-

ready (1997) can be summarized as follows: ‘‘There is no

strategy or algorithm that generally behaves better than

another for the entire set of possible problems’’. Ho and

Pepyne (2002) expressed it as follows: ‘‘Universal opti-

mizers are impossible’’.

The NFL theorem has been used as an argument against

the use of MOFs, since there can be no universal optimal

solver nor a software implementation of it (Voß 2002,

Chapter 4, pp 82–83). Frameworks are not intended to be a

universal optimal implemented solution. Frameworks are

tailorable tools that allow us to perform this implementa-

tion in an better way in terms of the implementation cost

and effort.

The NFL theorem implies the need to ‘‘match’’ a

problem and the optimization technique used to solve it in

order to obtain optimal or near optimal solutions. Meta-

heuristics allow to perform such a matching by adapting its

underlying heuristics. The purpose of MOFs is the opti-

mization of such adaption mechanisms in a more reusable

and effortless way.

Furthermore, if no algorithm behaves better than another

(as stated by NFL), when trying to solve a new problem

without specific knowledge (with regards to well-known

similar problems and their best-matching techniques), it is

even more advantageous to use various metaheuristics to

ensure a proper matching to the problem. The benefits of

using MOFs that implement several metaheuristics are

even more obvious.

Fig. 1 MOFs’ conceptual map

Metaheuristic optimization frameworks 529

123



The main advantage of using MOFs is that they provide

correct, fully functional and optimized versions of a set of

metaheuristic techniques and their variants. Moreover, they

provide mechanisms to facilitate the proper implementa-

tion of the underlying heuristics, depending on the prob-

lem, the representation of solutions, etc. As a consequence,

we only have to implement those elements which are

directly related to the problem, freeing us, as far as pos-

sible, of worrying abouts the aspects that do not depend on

it. In addition, the use of MOFs decreases in general the

risk of bugs in the implementation and therefore the time

(and associated cost) invested in debugging. Complemen-

tary, some MOFs provide additional features to aid solving

the optimization problem, such as optimization process

monitoring and results analysis tools, capabilities for par-

allel and distributed optimization tasks execution, sup-

porting mechanisms for techniques parameters value

determination, graphical reports and user-friendly inter-

faces (see Sects. 6 and 7 for a detailed review of this kind

of features).

Some of the advantages shown above as well as

features described in the following sections are more

valuable than others depending on the application con-

text. Specifically, we identify three main MOF usage

contexts:

• Industrial application of optimization problem solving:

In this context, implementation burden reduction and

its optimization are the most valuable features.

• Research on metaheuristics and optimization problem

solving: In this context, optimization process monitor-

ing and results analysis tools are likely to be the most

valuable features.

• Teaching of metaheuristics: In this context, ease of use

of the graphical interface, reports and graphical repre-

sentation of solutions and methodological guidance

through wizards and GUI are likely to be the most

valuable features.

2.2 Drawbacks: all that glitters are not gold

MOFs also have some drawbacks. One is their steep

learning curve. The user needs to know the set of variation

and extension points to use in order to adapt the framework

to the problem and understand how they are related to the

behavior of the software. This means that when we exactly

know which technique to apply and we are confident in our

implementation skills, using a MOF may be discouraged

unless you have expertise in using it. Another drawback to

consider when using MOFs is that the flexibility to adapt

the MOF is limited by its design. Consequently, a proper

framework design is essential to achieve the most favorable

balance between the capabilities provided and its flexibil-

ity. This drawback implies that it could be impossible to

implement certain variants or modify certain behavior

when using a MOF, this drawback is specially serious in

the context of research, where experimentation with dif-

ferent variants and capability of customization is a key

feature (cf. Sect. 2.1 with the definition of usage contexts

identified). An increased testing and debugging complexity

is a disadvantage resulting from the inversion of control

(i.e. loss of explicit control over the execution flow of our

application) that involves the use of a framework. The use

of MOFs implies increasing the size of the software, cre-

ating dependencies on third-party libraries and an increase

on the complexity of the application.

The advantages and drawbacks of using MOFs dis-

cussed in this section are shown in Table 1.

3 Review method

The present comparative is based on the software tech-

nology evaluation methodology proposed by Brown and

Wallnau (1996), which seeks to identify the value added by

technology through the establishment of a descriptive

model in terms of its features of interest and their

Table 1 Advantages and drawbacks of the use of MOFs

Advantages Drawbacks

Reduced implementation effort and ability to apply various techniques

and variants with little additional effort

Steep learning curve

Additional tools to help problem solving (monitoring, reporting,

parallel and distributed computing)

Advanced knowledge needed for adaptation and inflexibility to adapt

to use some metaheuristics variants

Optimized and error-free implementation (except the extensions and

adaption created by users or the undetected errors that could be

present in the MOF)

Induced complexity (when debugging and testing) and additional

dependences

New users with little knowledge can use the framework not only as a

tool for software application development environment but as a

methodological aid

The choice of the right MOF may be an issue, since switching from one

MOF to another has a high cost, they provide diverse features support

and there are no comparative benchmarks in literature

530 J. A. Parejo et al.

123



relationship and importance to its usage contexts. In this

work, only the first phase (descriptive modeling) of the

proposed methodology is performed, providing a solid

basis for the evaluation of technologies and a context for

describing the features of interest. The second phase

includes conducting experiments with each of the MOFs

associated with specific use scenarios and is beyond the

scope of this article.

In order to establish our descriptive model of charac-

teristics to be supported by MOFs, and select the set of

MOFs to assess, we followed a systematic and structured

method inspired by the guidelines of Kitchenham (2004).

First, we stated a set of research questions (see next sub-

section). Second, in order to find the list of candidate

MOFs, we established information sources used for the

search (cf. Sect. 3.2). Then, we applied filtering criteria to

obtain the final set of MOFs to be analyzed (cf. Sect. 3.3).

Finally, we composed and grouped the full set of com-

parison criteria and used them to assess MOFs.

3.1 Research questions

The aim of this study is to answer the following research

questions:

• RQ1: What metaheuristics are currently supported by

MOFs? This question motivates the following sub-

questions:

– Is there a MOF that supports the whole set of

techniques?

– What is the most popular technique? i. e., Which is

the technique implemented by most MOFs?

– Is there a ‘‘core set of techniques’’ supported by

more than a half of the assessed MOFs?

• RQ2: What tailoring mechanisms do current MOFs

provide in order to adapt to solve a problem, and to

what extent are those mechanisms supported? This

question motivates the following sub-questions:

– Is there a ‘‘core set of adaption mechanisms’’ (such

as solution encoding mechanisms, operators, etc.)

supported by more than half of the assessed MOFs?

– What MOF is better suited to adapt to specific

problem solving?

• RQ3: What combination of techniques (hybrid

approaches) are supported when using a MOF? This

question motivates the following sub-question:

– Is hybridization a widely supported feature (sup-

ported by more than half of the assessed

frameworks)?

– What is the most common hybridization mechanism

supported by MOFs?

• RQ4: Can current MOFs help to find out the best

parameter values for their supported metaheuristics

(perform hyper-heuristic search)?

• RQ5: To what extent do current MOFs take advantage

of parallelization capabilities of metaheuristics and

distributed computing?

• RQ6: What additional tools are provided by current

MOFs in order to support the whole of the optimization

problem-solving process?

• RQ7: Which costs and licensing model do current

MOFs go by?

• RQ8: What platforms (operating system, programming

languages, etc.) are supported by current MOFs? This

question motivates the following sub-question:

– Given the current support of techniques by MOFs,

are all techniques available on each platform?

• RQ9: Are current MOFs using software engineering

best practices in order to improve code quality,

maintainability, stability and performance?

After reviewing all this information we also want to

answer some more general questions:

• RQ10: What degree of maturity and popularity do

current MOFs have? This question motivates the

following sub-questions:

– What problems have been solved with each MOF?

– What documentation and help on its use does each

MOF provide to its users?

– Are current MOFs supported by scientific

publications?

– What is the user community of each current MOF?

– Which is currently the most popular MOF?

• RQ11: What are the challenges to be faced in the

evolution and development of MOFs?

3.2 Source material

The information sources used for the search of MOFs have

primarily been electronic databases through their online

search engines. Specifically, we have searched on: IEEE

Xplore, ACM Digital Library, SpringerLink and Scopus.

The following search strings have been used: ‘‘Metaheu-

ristic Optimization Framework’’, ‘‘Heuristic Optimization

Framework’’, ‘‘Metaheuristic Software library’’, ‘‘Meta-

heuristic Optimization Library’’ and ‘‘Metaheuristic Opti-

mization Tool’’.

Based on the results obtained, a list of candidate MOFs

was generated that later was enlarged using direct web

searches (using Google and the search strings described

above) and references present on papers and frameworks’

Metaheuristic optimization frameworks 531

123



web sites. Key references obtained during this phase were

Voß (2002) and Gagnè and Parizeau (2006). However,

framework web sites were a key data source, given that

their links, articles and related work sections allowed us

establish the full reference set to study. After a detailed

analysis of these references, an initial set of main supported

features and MOFs were established, and basic information

gathering of those tools was performed. The list of candi-

date optimization tools contains 33 entries: Comet, EvA2,

evolvica, Evolutionary::Algorithm, GAPlayground, jaga,

JCLEC, JGAP, jMetal, n-genes, Open Beagle, Opt4j, Pa-

radisEO/EO, Pisa, Watchmaker, FOM, Hypercube, Hot-

Frame, Templar, EasyLocal, iOpt, OptQuest, JDEAL,

Optimization Algorithm Toolkit, HeuristicLab, MAFRA,

Localizer, GALIB, DREAM, Discropt, MALLBA,

MAGMA and UOF.

3.3 Inclusion and exclusion criteria

Some MOFs were discarded to keep the size and com-

plexity of the review at a manageable level, establishing

the following filtering criteria:

• The development of MOFs must be alive, and error

fixing supported by their developers. A MOF where

users must debug all errors found by themselves and

that will not provide future improvements or features is

not a valid option. Consequently this is our first filtering

criterion. We consider as abandoned those frameworks

without new versions (even minor bug fixes) or papers

published in the past 5 years. This criterion eliminated

eight frameworks, specifically: jaga, hotframe, templar,

MAFRA, DREAM, Discropt and UOF.

• Optimization tools to be evaluated must be frameworks

implemented in general purpose Object Oriented lan-

guages (such as Java or C??). They must provide a

general design where user-defined classes are integrated

in order to produce an optimization application for

solving the problem at hand. There are useful optimiza-

tion tools that do not meet those requirements and are

consequently out of the scope of this article, but might be

studied in a similar comparative research work. This

criterion eliminated three optimization tools: Evolution-

ary::Algorithm, PISA, Comet and OptQuest.

• MOFs must support at least two different optimization

techniques (we consider multi-objective variants of

techniques as different techniques). Otherwise, they are

considered specific applications, even if they can adapt

to various problems using the mechanisms that char-

acterize OO frameworks. This criterion eliminated nine

MOFs, namely: evolvica, n-genes, GALib, GAPlay-

ground, Hypercube, JGAP, Open Beagle, jmetal,

watchmaker.

• Those frameworks for which an executable version or

source code with its documentation could not be

obtained were also eliminated (after contacting authors

and requesting from them a valid version). This

criterion eliminated four frameworks, namely: iOpt,

JDEAL, OptQuest and MAGMA.

Table 2 shows the final set of frameworks compared

along with their specific versions and web sites.

As a consequence, only a subset of possible optimization

tools has been evaluated. In spite of the considerable effort

during the development of this work, and that the MOFs

have been chosen based on well-defined and consistent

filtering criteria, some metaheuristic optimization libraries

of great practical interest did not qualify and therefore have

not been included in this study (e.g. JGAP, Hypercube,

Watch-maker or Comet).

Table 2 Selected MOFs

Name Ver. Web

EasyLocal (Di Gaspero and Schaerf 2003) 2.0 http://satt.diegm.uniud.it/EasyLocal??/

ECJ (Luke et al. 2009) 20 http://cs.gmu.edu/*eclab/projects/ecj/

EO/ ParadisEO/ MOEO/ PEO (Cahon et al. 2004) 1.2 http://paradiseo.gforge.inria.fr http://eodev.sourceforge.net/

EvA2 (Kronfeld et al. 2010) 2 http://www.ra.cs.uni-tuebingen.de/software/EvA2/

FOM (Parejo et al. 2003) 0.8 http://www.isa.us.es/fom

HeuristicLab (Wagner 2009) 3.3 http://dev.heuristiclab.com

JCLEC (and KEEL) (Ventura et al. 2008) 4.0 http://JCLEC.sourceforge.net http://sci2s.ugr.es/keel/

MALLBA (Alba et al. 2007) 2.0 http://neo.lcc.uma.es/mallba/easy-mallba/index.html

Optimization Algorithm Toolkit (Brownlee 2007) 1.4 http://optalgtoolkit.sourceforge.net

Opt4j (Martin Lukasiewycz and Helwig 2009) 2.1 http://opt4j.sourceforge.net

532 J. A. Parejo et al.

123

http://satt.diegm.uniud.it/EasyLocal%2b%2b/
http://cs.gmu.edu/~eclab/projects/ecj/
http://paradiseo.gforge.inria.fr
http://eodev.sourceforge.net/
http://www.ra.cs.uni-tuebingen.de/software/EvA2/
http://www.isa.us.es/fom
http://dev.heuristiclab.com
http://JCLEC.sourceforge.net
http://sci2s.ugr.es/keel/
http://neo.lcc.uma.es/mallba/easy-mallba/index.html
http://optalgtoolkit.sourceforge.net
http://opt4j.sourceforge.net


3.4 Comparision criteria

Evaluating a software tool usually implies understanding

and balancing competing concerns regarding the new

technology. In this sense, the proposed comparative criteria

cover six areas of interest that in turn are subdivided into

30 specific characteristics (and an additional subdivision

level that comprises 271 features). Table 3 shows the areas

and corresponding set of characteristics in this study, along

with the associated research question that we intend to

answer through the evaluation of each characteristic.

Table 3 covers a wide range of concerns, from MOF-

specific characteristics such as supported metaheuristic

techniques or solution encoding (covered in areas C1, C2

and C3), to general concerns such as usability, documen-

tation and licensing model (covered in areas C4, C5 and

C6). Consequently, the use of this six areas allows us to

easily discern the interesting features on the three usage

Table 3 Areas of interest and

comparison characteristics
Area Characteristic Rel. RQ

C1 Metaheuristic techniques C1.1 Steepest descent/hill climbing RQ1

C1.2 Simulated annealing

C1.3 Tabu search

C1.4 GRASP

C1.5 Variable neighborhood search (VNS)

C1.6 Evolutionary algorithms

C1.7 Particle swarm optimization

C1.8 Artificial immune systems

C1.9 ACO

C1.10 Scatter search

C1.11 Multi-objective metaheuristics

C2 Adaption to the problem and its structure C2.1 Solution enconding RQ2

C2.2 Neighborhood structure definition

C2.3 Auxiliary mechanisms supporting

population based heuristics (genetic operators)

C2.4 Solution selection mechanisms

C2.5 Fitness function specification

C2.6 Constraint handling

C3 Advanced characteristics C3.1 Hybridization RQ3

C3.2 Hyper-heuristics RQ4

C3.3 Parallel and distributed computing RQ5

C4 Global optimization process support C4.1 Termination conditions

C4.2 Batch execution

C4.3 Experiments design

C4.4 Statistical analysis RQ6

C4.5 User interface and graphical reports

C4.6 Interoperability

C5 Design, implementation and licensing C5.1 Implementation language RQ8

C5.2 Licensing model RQ7

C5.3 Platforms availability RQ8

C5.4 Usage of soft. eng. best practices

(test, design patterns, UML)

RQ9

C5.5 Size (classes and packages/modules)

C6 Documentation and support C6.1 Sample problems types RQ10

C6.2 Articles and papers

C6.3 Documentation

C6.4 Users and popularity

Metaheuristic optimization frameworks 533

123



contexts described in Sect. 2.1. This benchmark, by

focusing on key areas and features for each context, pro-

vides a general view of the state of the art MOFs and

provides a global assessment. Specifically, these areas are

directly related to our research questions:

• Area C1 is related to RQ1, establishing a set of

metaheuristic techniques and variants to be supported

by MOFs. The assessment of this area for each

framework allows us to answer both RQ1 and its sub-

questions.

• Area C2 is related to RQ2; the characteristics of this

area describe the possible ways of tailoring to the

problem through metaheuristic. Thus its assessment

provides a basic way of answering RQ2, showing the

support provided by each framework and also which

tasks are the responsibility of the user.

• Area C3 is related to RQ3, RQ4 and RQ5, grouped as

advanced capabilities support.

• Area C4 is related to RQ6, by defining different kinds

of additional tools that are (or could be) supported by

MOFs.

• Area C5 is related to RQ7, RQ8 and RQ9 showing the

platforms and programming languages supported by

each framework, along with the use of software

engineering best practices.

• Area C6 is related to RQ10, by defining characteristics

that assess the issues concerning the sub-questions of

RQ10.

As there are different kinds of characteristics, a proper

quantification of the facilities provided by MOFs is a

complex issue. Sometimes it is meaningless to use quan-

titative values for assessing certain characteristics (e.g. it

makes no sense to associate a quantitative value to the

language in which the MOF is implemented). Therefore,

for some characteristics we avoid defining metrics, treating

them simply as attributes of MOFs which might be relevant

to users. In other cases (such as MOF size), the charac-

teristics have been left out of the comparative analysis

because they do not affect the research questions. How-

ever, the information harvested can be useful for further

analysis.

In our comparative approach, we have attempted to

obtain a knowledge base about real capabilities provided

by MOFs which are as objective as possible. In so doing,

each characteristic has been defined, and a set of features is

identified to evaluate its support (with minor exceptations).

Features are defined taking into account themaximum

possible support that could provide an ideal MOF, not the

current state of the art MOFs in order to identify gaps, and

answer RQ11. Consequently, there are characteristics that

are not fully supported by any MOF and even some for

which current support is nearly non-existent. In case we

need a subjective criteria, we have adopted the perspective

of the research-use context (cf. Sect. 2) and the research

questions stated. We are working on three levels: areas,

characteristics and features; where characteristics are

aggregated into areas and various features are used to

evaluate individual characteristics. For each feature and

MOF a value is measured with two methods: First, features

corresponding characteristics of areas C1–C4 are evaluated

using a binary true/false value avoiding subjectivity on the

value assignment. This information is defined as feature

coverage and is the base of a more general evaluation that

provides a global quantitative value for each characteristic

and area. Second, areas C5 and C6 respresent non-func-

tional characteristics corresponding to transversal aspects

that cannot be measured in an objective way; as a conse-

quence, each feature is defined with a score marked by the

research use context.

A specific value has been given to each characteristic

based on these features. In so doing, a weighting that

defines the contribution of each feature to the general

support of the characteristic has been set (‘‘Weight’’ col-

umn of Table 4). In the same way; each area is measured

based on a weighted sum of the evaluation of its corre-

sponding characteristics. The proposed weights range from

0.0 to 1.0, meaning none and full contribution to charac-

teristics support, respectively.

Three different types of metrics have been devised:

• Uniform: weighting is associated evenly to each feature

of the characteristic. This metric type is usually

associated with variants or features with no clear

predominance in terms of popularity or performance.

• Proportional: a basis feature is given a significant

weight (usually 0.5) and the remaining weight is evenly

associated with the other features of the characteristic.

This metric type is associated with a characteristic with

a more useful feature with some rare variants or

additional features.

• Ad Hoc: weighting is associated with features based on

specific author criteria.

It is important to note that we have set weights from a

research use context on optimization problem solving;

however in other specific scenarios such as teaching, or

industrial problem solving, weights could vary in order to

reflect the exact importance of features, characteristics and

areas on those contexts. This mechanism allows custom-

ized versions of the comparative study and tailored

conclusions. This information is published as a public

google documents spreadsheet at: http://www.isa.us.es/MOF

Comparison (moreover, this document contains comments

about cover of features and why some features are assessed

as partially supported by MOFs). In this way data can be

verified and reused, and weights can be redefined.

534 J. A. Parejo et al.

123

http://www.isa.us.es/MOFComparison
http://www.isa.us.es/MOFComparison


Table 4 Coverage of features in area C1

Metaheuristic optimization frameworks 535

123



Table 5 Coverage of features in area C2

536 J. A. Parejo et al.

123



Moreover, for areas C1, C2, C3 and C4, tables showing

feature cover per framework (and weights associated as an

additional column) are provided in this article, corre-

sponding to Tables 4, 5, 6 and 7, respectively. In the fol-

lowing sections we describe each area, its characteristics,

corresponding features and weights and global scores

obtained by each MOF. Tables 9, 10 and 11 in the

appendix show these scores in detail.

4 Metaheuristic techniques (C1)

The main feature of any MOF is the set of supported

metaheuristics. A characteristic is defined for each meta-

heuristic, which indicates the support the MOFs provide

for it.

4.1 Characteristics description

A set of 11 characteristics has been defined, with 52 fea-

tures, comprising most major metaheuristics proposed in

the literature, either based on intelligent search (charac-

teristics C1.1, C1.2, C1.3 and C1.5), on solution building

(C1.4, C1.9 and C1.10) or populations (C1.6, C1.7, C1.8,

C1.9 and C1.10). Furthermore, we have evaluated the

incorporation of techniques for multi-objective problem

solving (C1.11). Metaheuristics and variants described in

this section have been chosen following Glover and Ko-

chenberger (2002) and some technique-specific references

such as Aarts and Lenstra (1997), Back et al. (1997) and

Clerc (2006). We next describe in detail each of these

characteristics; the cover of features by frameworks and

their weights are shown in Table 4.

C1.1 Steepest descent/hill climbing This technique

searches successively for the best neighbor solution until

reaching a local optimum. This technique is commonly

used for hybridization (c.f. characteristic C3.1). Metric: We

have defined two different features: (1) basic implemen-

tation until local optimum is found, and (2) multi-start

implementation using a random initial solution when local

optimum is found. A uniform metric is used (with each

feature weighing 0.5).

C1.2 Simulated annealing This technique is inspired by

the natural process of slow cooling used in metallurgy. It

was proposed by Kirkpatrick et al. (1983). We have

defined a feature associated with the basic implementation

of this technique and features for some of its variants.

Table 6 Coverage of features in area C3

Metaheuristic optimization frameworks 537

123



Table 7 Coverage of features in area C4

538 J. A. Parejo et al.

123



Specifically, we have evaluated variants on the cooling

scheme: linear and exponential scheme proposed by

Kirkpatrick et al. (1983), logarithmic scheme defined by

Geman and Geman (1987) and schemes based on ther-

modynamics (defined by Nulton and Salamon (1988) and

Andresen and Gordon (1994). Addtionally, we have eval-

uated the variants on the acceptance criterion of worsening

solutions: metropolis acceptance proposed by Kirkpatrick

et al. (1983) and logistic acceptance (Goldberg 1990).

Metric: A proportional metric is used, where the basic

implementation has a weight of 0.5, each cooling scheme

variant weighs 0.1 and each acceptance criterion variant

weighs 0.1.

C1.3 Tabu search Basic ideas of tabu search were pro-

posed by Glover (1989). This technique uses procedures

designed to cross boundaries of local optima by estab-

lishing an adaptive memory to guide the search process,

avoiding searching in circles through the solution space.

This memory scheme is implemented using data structures

that store either visited solutions (tabu list) or components

of those solutions and even the frequency of appearance of

each solution component. In order to avoid discarding

promising solutions, aspiration criteria is implemented, for

instance it allows the selection of a tabu solution if it

improves the current solution by a percentage. Metric: An

ad hoc. metric is used to assess this characteristic. A feature

representing the basic implementation of this technique

using a tabu list weighs 0.3, components recency memory

feature weighs 0.2, components frequency-based memory

weighs 0.3 and aspiration criteria feature weighs 0.2.

C1.4 GRASP This technique was proposed by Feo and

Resende (1989, 1995), and specifies two stages for each

interaction: (1) solution building adding components in a

stochastic greedy way (one among the best choices for each

component is selected sequentially until the solution is

built) and (2) a local search is performed based on the built

solution. Candidate components of the first stage are sorted

and evaluated using a greedy value function, generating a

restricted candidate list (RCL). Metric: A unique feature

indicating support for this technique is used, evaluated as a

binary value indicating if the framework provides some

kind of support for it.

C1.5 Variable neighborhood search (VNS) This tech-

nique proposes a systematic exchange on neighborhood

structure in a local search context. It was propose by

Mladenović (1995). Many variants of this technique have

been proposed in literature, and based on them we propose

the following features: (1) Original proposal implementa-

tion (VNS); (2) Variable neighborhood descent (VND); (3)

Reduced VNS (RVNS); (4) Variable neighborhood

decomposition search (VNDS) by Hansen et al. (2001) and

(5) Skewed VNS by de Souza and Martins (2008). Metric:

A uniform metric is used (having a weight of 0.2 for each

one of the five features).

C1.6 Evolutionary algorithms (EA) There are many

techniques based on principles of biological evolution that

can be called evolutionary algorithms. These techniques can

be divided into three independently developed approaches:

evolutionary strategies (ES) proposed by Rechenberg

(1965), evolutionary programming according to Fogel et al.

(1966) and genetic algorithms as developed by Holland

(1992). These techniques present different variants based on

the elements used for adapting to the problem (some of them

present in other techniques) and some additional variation

points. In order to create a global and coherent comparative

criteria, we have identified various characteristics for those

variations. Remarkably, the selection of individuals for

crossover and survival is independent of the solution

encoding; thus, frameworks can provide implementations

using different selection criteria and can reuse them, since

mechanisms for selecting solutions are used in various

metaheuristics. We have created a characteristic for evalu-

ating the support for solution selection (C2.4). Crossover and

mutation mechanisms are dependent on the representation

scheme used, and the efficiency of a specific mechanism will

strongly depend on the problem to be solved. Consequently,

we have created an associated characteristic in the area of

adaptation to the problem (C2.3).

Thus, this feature (C1.6) only measures the support

provided by frameworks for general evolutionary algo-

rithms, without taking into account solution encoding

capabilities, the genetic operators nor the selection mech-

anisms available. Of the many variants that have been

proposed in literature for the basic evolutionary algorithm,

we take into account (1) the use of variable population

sizes (e.g. GAVaPS Arabas et al. (1994), (2) niching

methods (commonly used to solve multi-modal optimiza-

tion problems), (3) individuals that encode more than one

solution to the problem (usually diploid). Goldberg and

Smith (1987), (4) coevolution of multiple populations in

competitive and cooperative environments as described in

(Back et al. 1997, Chapter on Coevolutionary Algorithms)

and (5) differential evolution as developed by Price et al.

(2005). Variants (1), (3) and (4) as well as some versions of

(2) can be implemented regardless of the problem, the

solution encoding or the operators used.

Metric: An ad hoc. metric is defined to assess this

characteristic. Three features have been identified to eval-

uate the support of the different evolutionary approaches,

with each feature weighing 0.2. With regard to the variants,

(1) weighs 0.05, (2) weighs 0.1 and (3) weighs 0.05, (4)

weighs 0.1 and (5) weighs 0.1. We evaluate variants as

binary variables, in terms of the support afforded by

frameworks.

Metaheuristic optimization frameworks 539

123



C1.7 Particle swarm optimization (PSO) This technique

is a stochastic algorithm is inspired by the behavior of birds

flocking and fish schooling. The algorithm iteratively

modifies a population of solutions (named the swarm),

whose interactions are expressed as equations. Solutions in

the swarm are represented as particles in an n-dimensional

space with a position and speed. The original proposal by

Kennedy and Eberhart (1995) has been applied success-

fully to a variety of problems (Clerc 2006; Parsopoulos and

Vrahatis 2002a). Moreover, this technique has been adap-

ted to support discrete variables, and different equations to

rule swarm interaction have been proposed (Chatterjee and

Siarry 2006; Wilke et al. 2007; Vesterstrm and Riget 2002;

Rahman et al. 2009). The topology of the neighborhood of

particles, i.e. the particles that influence the position of a

given particle according to the equations, generate a full set

of possible variants. In the original PSO, two different

kinds of topologies were defined: (1) global, specifying that

all particles are neighbors of each other; and (2) local,

specifying that only a specific number of particles can

affect a given particle. In Kennedy and Mendes (2002) a

systematic review of neighborhood topologies is described,

and in Suganthan (1999) the concept of ‘‘dynamic’’

neighborhood topology is proposed. Another interesting

variant is the use of a ‘‘life time’’ for solutions in the

swarm; after this time solutions are randomized. Metrics:

We have created a feature to represent the original proposal

for real variables and classic equations. It weighs 0.3.

Discrete variable support weighs 0.2. Equation custom-

ization weighs 0.2. The explicit modeling and support of

different neighborhood topologies weighs 0.2. Finally,

lifetime support weighs 0.1.

C1.8 Artificial immune systems (AIS) This technique

intends to use the structure and operation of biological

immune systems of mammals and apply it to solving

optimization problems. This technique comprises various

proposals: Clonal Selection algorithms originally proposed

by Nossal and Lederberg (1958) and its variants such as

CLONALG, developed by de Castro and Von Zuben

(2002) and optIA; Immune Network algorithms and Dent-

ritic Cell algorithms Metrics: A uniform metric is used to

assess this characteristic (with each feature weighing 0.25).

C1.9 Ant Colony System (ACS) This technique, also

known as Ant Systems (AS) is a probabilistic optimization

algorithm inspired by the food foraging behavior of ants.

Ant Systems use a data structure called ‘‘pheromone trace’’

to support communication between ants. In this article the

following variants are taken into account: The original

proposal of Ant System (AS) and Ant Colony System

(ACS) as propsed by Dorigo and Gambardella (1997), Ant

System using Rankings (ASrank), Min–Max Ant System

(MMAS) according to Stutzle and Hoos (1997) and API as

developed by Monmarchè et al. 2000). Metrics: An ad hoc

metric is defined for this characteristic; corresponding

weights are shown in Table 4.

C1.10 Scatter search (SS) This technique was proposed

by Glover (1977). It operates on a set of solutions, the

reference set, by combining existing solutions to create

new ones. In contrast to other evolutionary methods like

genetic algorithms, scatter search is based on systematic

designs and methods, where new solutions are created from

the linear combination of two solutions of the reference set,

using strategies for search diversification and intensifica-

tion. Metrics: This technique has a unique feature, evalu-

ated as a binary value, which indicates if the framework

provides it with some kind of support.

C1.11 Multi-objective metaheuristics The technique

most commonly used to solve multi-objective optimization

problems is EA (Dreo et al. 2005). However, some variants

of other techniques have also been taken into account: SA

(MOSA as proposed by Ulungu et al. (1999) and PASA as

developed by Suresh and Mohanasundaram (2004), PSO

(Parsopoulos and Vrahatis (2002b) and ACO (Iredi et al.

(2001). Those variants have been adapted to solve multi-

objective optimization problems. Regarding the EA vari-

ants to evaluate, we have taken into account the original

proposal by Goldberg (1989) (PGA), MOGA as proposed

by Fonseca and Fleming (1993), Non Dominated Sorting

Genetic Algorithm (NSGA and NSGA-II) as developed by

Deb et al. (2002), Niched Pareto Genetic Algorithm

(NPGA) according to Horn et al. (1994), Strength Pareto

Evolutionary Algorithm (SPEA and SPEA-II (Zitzler and

Thiele 1999; Zitzler et al. 2001), Pareto Envelope based

Selection Algorithms (PESA and PESA-II) (Corne et al.

2000), Pareto-archived ES (PAES) (Knowles and Corne

2000), multi-objective messy GA (MOMGA) (Van Vel-

dhuizen and Lamont 2000) and ARMOGA (Sasaki 2005).

Metrics: A uniform metric is used to assess this

characteristic.

4.2 Assessment and feature coverage analysis

In order to assess this area, we have crawled the source

code, user and technical documentation and user interface

of each selected MOF. Table 4 shows the feature coverage

of Area C1, along with the weight corresponding to each

feature in its associated characteristic. The last column of

this table shows the number of MOFs supporting each

feature. The last two rows show the number of features

supported by each MOF and a score computed as the

weighted sum of features supported divided by the number

of characteristics in the area. It is remarkable that only four

features of this area are supported by a minimum of six out

of the ten MOFs under study. Only the core techniques

(namely SD/HC, SA and EA) have features in this range.

This shows a dispersion in techniques supported by MOFs,

540 J. A. Parejo et al.

123



and consequently, implies that users have little choice if

they want to use techniques out of this set. Thus MOF is

determined by the technique the user wants to apply.

An interesting fact shown in Table 4 is that 39% of

features in this area are not supported by any MOF. Con-

sequently, current MOFs have ample scope for improve-

ment in this area. Moreover the distribution of those

unsupported features imply that MOF technique support is

aimed at the basic variants. This does not apply to the

techniques in the core set, TS and some multi-objective

variants, since those techniques only have features that

represent variants with more than 30% of MOFs supporting

them. ParadisEO, Eva2 and FOM have the highest number

of features supported in this area, followed by HeuristicLab

and OAT.

4.3 Comparative analysis

FOM is the framework that provides a broader support of

optimization techniques, closely followed by Paradiseo,

Eva2 and HeuristicLab. It is important to note that more

features supported do not imply more techniques sup-

ported, since some techniques have a number of variants

and specific heuristics implementations modeled as fea-

tures. The weights contribute to express this fact by making

that each technique sums a total score of 1 unit once the

features are weighted. Figure 2 shows a stacked columns

diagram for the C1 area characteristics. Each color or

texture represents a metaheuristic and each column the

support provided by a MOF. The number of techniques

supported by each MOF can be easily identified by the

number of different colors/textures in its column. The

degree of support for each technique is expressed through

each color’s height (computed based on the weight asso-

ciated to their features and the feature support information

shown). The total height of each column provides a mea-

sure of the global support of metaheuristics by its corre-

sponding MOF.

The almost universal support for EA and the lack of

support for AIS are remarkable. SS is only supported by

Eva2, and GRASP is only supported by FOM. Other

metaheuristics with very little support are ACO, TS and

VNS. This could be due to the complexity of modeling in

abstract, the elements involved in their operation and

reusing or customizing them (ACO and TS are based on

features of solutions, and VNS needs to apply different

neighborhood structures). When applying EAs using java;

ECJ, JCLEC and EvA2 appear as highly competitive

options; while Paradiseo and MALLBA are the MOFs

available if the user plans to use C??. In .NET environ-

ments, the only option available for applying EAs is

HeuristicLab.

We can provide an answer to RQ1 and its sub-questions

based on information shown in Table 4 and Fig. 2. char-

acteristics of area 1 summarize the whole set of metaheu-

ristics currently supported by assessed frameworks. Most

variants of those techniques are unsupported. The most

widely supported techniques are EA, SD/HC and SA,

which are supported by more than 60% of asssessed

frameworks. Finally, there is no universal MOF, which

provides support for all the techniques.

5 Adapting to a problem and its structure (C2)

As stated in the previous section, MOFs provide imple-

mentation of metaheuristic techniques for problem solving.

They also provide mechanisms to express problems prop-

erly in order to apply these techniques. MOFs allow for the

adaptation of their supported metaheuristics for better

problem solving.

For instance, frameworks can provide appropriate data

structures that the techniques can handle. This two-way

adaptation (techniques to problem for efficient problem

solving, and problems to techniques for proper solution

handling and underlying heuristics implementation) is

Fig. 2 Stacked bar chart showing MOFs techniques support

Metaheuristic optimization frameworks 541

123



basically done in three ways: selecting an appropriate

solution representation/encoding, specifying the objective

function to optimize and implementing the set of under-

lying heuristics required by the metaheuristic used to solve

the problem.

5.1 Characteristics description

This area evaluates the capabilities provided by MOFs to

support this adaption. Characteristic C2.1 aims at assessing

capabilities to represent solutions to optimization problems

based on the set of data structures provided by frameworks.

Characteristics C2.2, C2.3 and C2.4 aim to assess the

supported set of underlying heuristics. Characteristic C2.5

aims to assess the capabilities of declarative objective

function specification based on the representations assessed

in C2.1. Finally, C2.6 aims to assess capabilities of con-

straint handling. Features and characteristics described in

this section have been structured following Back et al.

(1997) and Rothlauf (2006) for solution encodings (C2.1),

Back et al. (1997) for selection and genetic operators (C2.3

and C2.4), Aarts and Lenstra (1997) for neighborhood

definition capabilities (C2.2) and Michalewicz and Fogel

(2004) for constraint handling techniques (C2.6). Next we

describe in detail each of these characteristics:

• C2.1 Solution encoding: Solution encodings are data

structures that allow the modeling of solutions for

metaheuristic techniques to handle. In this sense, the

increased flexibility and the more data structures

provided, the lower the effort invested by the users to

address problems. Metric: In order to evaluate this

characteristic, we have taken into account three criteria:

provided data structures (vectors, matrices, trees,

graphs and maps), data types and information encoding

and the ability to use combined representations as

described by Rothlauf (2006). A proportional metric is

used, where this last feature weighs 0.4. Data types

taken into account are bits (with usual or Gray

encoding), integers, floating point numbers and strings.

The remaining weight is evenly divided among these

combination of data type and data structure.

• C2.2 Neighborhood structure definition: A proper

neighborhood structure definition is a key factor for

the success of intelligent search-based heuristics.

Neighborhood structure strongly depends on solution

representation, and its suitability depends on the

problem to be solved and the technique used to solve

it (as stated by Aarts and Lenstra (1997). Metric: The

assessment is divided into three features: pre-defined

neighborhood structures provided by MOFs weigh 0.6;

neighborhood structures of composite representations

weigh 0.3, and a weight of 0.1 is given to complex

neighborhood structures that apply different neighbor-

hood structures randomly or based on some rule.

• C2.3 Auxiliary Mechanisms supporting population-

based heuristics (genetic operators): Genetic operators

are the main underlying heuristics on EA. Their

implementation (except for selection operators, evalu-

ated in C2.4) is usually dependent on solution repre-

sentation; therefore, MOFs must provide the

corresponding implementations for their supported

representations. Various alternatives for implementing

each genetic operator have been proposed in literature

as described below. We have relied primarily on (Back

et al. 1997, chapter C3.3) to develop the definition and

features of this characteristic.

The most common genetic operators are crossover and

mutation. Weights have been evenly distributed among all

variants provided for each operator. Next, we enumerate

the crossover operators proposed in literature for solution

encodings of Table 3.

• Binary and integer vectors: The original crossover

operator was proposed by Holland (1992) and named

‘‘one point crossover’’ (1PX), the generalization of this

operator for n crossover points (NPX) was proposed by

Jong (1975), uniform crossover (UX) (Ackley 1987),

punctuated crossover (PNCTX) (Schaffer and Morishi-

ma 1987), shuffled crossover (SX) (Eshelman et al.

1989), half uniform crossover (HCX) (Eshelman 1991)

and random respectful crossover (RRX) as proposed by

Radcliffe (1991).

• Floating Point vectors: Operators 1PX, NPX and UX

are in principle applicable to floating point vectors, but

they support a set of specific crossover operators for

being implemented by MOFs: arithmetic crossover

(AX/BLX) (Michalewicz 1994, p 112), heuristic cross-

over (HX) (Wright 1994), simplex crossover (SPLX)

(Renders and Bersini 1994), geometric crossover

(GEOMX) (Michalewicz 1994), blend crossover

(BLX-alpha) (Eshelman and Schaffer 1993), crossover

operators based on objective function scanning (F-BSX)

and diagonal multi-parental crossover (DMPX) as

proposed by Eiben et al. (1994).

• Permutations: Basic crossover operators, such as 1PX,

NPX, UX, etc., generate infeasible individuals when

using permutation-based representations; it is therefore

necessary to design specific operators for such repre-

sentations, such as order crossover operator (OX)

(Davis 1985), partially mapped crossover (PMX)

(Goldberg and Lingle 1985), order-2 and position

crossover operators (Syswerda 1991), uniform cross-

over for permutations (UPX) (Davis 1985, p 80),

maximal preservative crossover (MPX) (Muhlenbein

1991, p 331), cycle crossover (CX) (Oliver et al. 1987)

542 J. A. Parejo et al.

123



and merge crossover (MX) ad defined by Blanton and

Wainwright (1993).

• State machines: Crossover operators for state machines

(SMFx) were initially proposed by Fogel (1964), Fogel

et al. (1966) (pp 21–23). In this comparative study, we

evaluate those operators and 1PX using a vectorial

representation of the state machine (SM1PX) as defined

by Zhou and Grefenstette (1986), state one to one

state interchange as proposed by Fogel and Fogel

(1986), uniform crossover for state machines (SMUX)

and the merge operator (SMJO) as defined by Birgmeier

(1996).

• Trees: There is real difficulty in defining proper cross-

over operators for trees, and specifically trees represent-

ing programs, since generally constraints have to be

imposed on their structure, semantics and associate data

types. The most common crossover operator for trees

were proposed by Cramer (1985). In this comparative,

we also considered those defined by Koza (1992) and the

adaptations proposed by Montana (1995).

• Crossover operators for composite representations

(CSX): Crossover operators for individuals using com-

posite representations can be used by applying the

corresponding operators to each component of the

representation.

• Composite crossover operators (CMPX): By assigning

a probability (or decision rule) to the application of an

operator from a set of valid crossover operators for the

representation used, composite crossover operators are

possible.

Next we enumerate the mutation operators proposed in

literature for the solution encodings of Table 3.

• Binary and integer vectors: We have taken into account

the original mutation operator proposed by (Holland

1975, pp 109–111).

• Floating point vectors: The mutation operator based on

an uniform distribution U(b, - b) (RUm) proposed by

Davis (1989), the normal mutation operator (RNm)

developed by Schwefel (1981), the mutation operators

based on Cauchy (RCm) and Laplace (RLm) distribu-

tion as proposed by Montana and Davis (1989, Yao and

Liu (1996), and the proposals of adaption of mutation

ratio according to Schwefel (1981) and Fogel et al.

(1991), are the mutation operator for floating vectors

that have been considered.

• Permutations: The mutation operators for permutations

covered by this comparison are 2-opt (P2Optm), 3-opt

(P3Optm) and k-opt (PKOptm), simple interchange

mutation operator (PSWm) o insertion operator (deleting

the item from its original position) of 2 element (PIm)

and ‘‘scramble mutation operator’’ (PSCm) (Syswerda

1991).

• State machines: The basic mutation operator for state

machines is based on the set of its states and transitions,

slightly modifying any state or transition as porposed

by (Back et al. 1997, C3.2.4).

• Trees: The mutation operators for trees covered by this

comparison are those proposed by Angeline et al.

(1996): (1) grow mutation operator (TGm); (2) reduc-

tion mutation operator (TSHRm); (3) swapping muta-

tion operator (TSWm); (4) cycle mutation operator

(TCm); and (5) the gaussian mutation operator for

numeric nodes (TGNm). The adaption proposed by

Montana (1995) is also taken into account.

• Mutation operators for composite representations

(CSm): Mutation operators for individuals using

composite representations can be created by applying

the corresponding operators to each component of the

representation.

• Composite Mutation operators (CPXm): Composite

mutation operators are possible through the assignment

of a probability (or decision rule) to the application of

an operator from a set of valid operators for the

representation used.

• Mutation operators using dynamic probability (DEm):

There exists empirical evidence (Fogarty 1989) that the

use of a dynamic mutation probability that decreases

exponentially along the evolution process, improves the

performance of EAs. In this comparison, we have taken

this feature it into account.

Metric: A uniform metric is defined, where the weight

evenly distributed among mutation (0.5) and crossover

(0.5) operators. For each variant of those operators, weights

are uniformly associated.

• C2.4 Selection mechanisms: This characteristic assesses

the support for the different criteria for solution

selection. The problem of selecting a subset amongst

a larger set of solutions appears as a specific heuristic

on a number of metaheuristic techniques (SA, TS, EA,

ACO, etc.). By applying OO analysis and design

methodologies and specifically the strategy design

pattern1, objects encapsulating the solution selection

logic are called selectors. The use of different selectors

allows for controlling the trade-off between exploration

and exploitation of the search space. As a consequence,

performance of metaheuristic techniques in finding

good solutions to problems is drastically affected by

those selection criteria. Usually, selection criteria are

1 The strategy pattern is a particular software design pattern, whereby

algorithms can be selected at runtime. This pattern is useful for

situations where it is necessary to dynamically swap the algorithms

used in an application. The strategy pattern is intended to provide a

means to define a family of algorithms, encapsulate each one as an

object and make them interchangeable Gamma et al. (1994).

Metaheuristic optimization frameworks 543

123



based on the adequacy of solutions, but there is a wide

set of possibilities, from random to elitism (stochastic

and deterministic).

In this comparison the following criteria are taken into

account: (1) elitist selector (Es), that picks the best solutions,

and its variants; expected value selector (EVs) and elitist

expected value selector (EEVs) as proposed by Jong (1975);

(2) proportional selector (Ps) as proposed by Holland (1975),

where probability of select s, P(s) is proportional to their

fitness, and its variants, random sampling selector (RSSs)

and stochastic tournament selector (STs) Brindle (1981);

stochastic universal sampling selector (SUSs) as proposed

by Baker (1987); (3) ranking based selectors: linear (LRs)

and non-linear (NLRs), developed by Whitley (1989); (4)

selection schemas ðl; kÞ; ðlþ kÞ and (5) threshold based

selectors (Ths); (6) Boltzman selector (Bs), (7) a fully ran-

dom selector (RNDs) (8) and a selector that combines a pair

of different selectors (COMBs) by dividing the set of ele-

ments to select amongst its components. Metric: A uniform

metric is used to assess this characteristic.

• C2.5 Fitness function specification Support: The most

problem dependent element of metaheuristic techniques

is the objective function to be optimized. Therefore,

even when using MOFs, its evaluation is usually

implemented explicitly by users and integrated into

the framework through its extension points. However,

based on the solution encodings supplied by MOFs, it is

possible to provide tools for declarative objective

function specification, freeing the user from the low-

level task of implementing it.

In this case, a Domain-Specific Language (DSL) is a tool

of great interest for objective function specification. The

advantages of using a DSL, compared with classical imple-

mentation, are that the DSL can be a much simpler language

than the implementation language, and integration of the

objective function can be automatic if the MOF supports it. If

the MOF provides suitable DSL tools for the specification of

the objective function (such as syntax highlighting and in-

line debugging and error information), it could lead to a more

declarative paradigm for metaheuristic problem solving,

improving the usability of metaheuristics and contributing to

a wider application of such techniques. There are aslo

drawbacks when using DSLs for objective function specifi-

cation, such as the need to learn a new language, performance

loss and the inability to model some objective functions

using the language constructs.

Finally, there are problem types for which the automa-

tization of objective function evaluation is impossible,

since it relies on a human operator’s interaction to evaluate

solutions. In order to support this kind of problems, MOFs

can provide a form in which users can directly provide the

evaluation of solutions. Moreover, a partial implementation

would be provided, where MOF users would customize the

data entry form and solution representation (graphical or

textual), designing a user friendly interface integrated

within the framework. Metric: A uniform metric is defined

to assess this characteristic, using features enumerated

above: DSL support, DSL tools and forms for solution

evaluation by human operators.

• C2.6 Constraint Handling: A feature of great impor-

tance for proper problem modeling is constraint defi-

nition support. There are usually two different ways to

handle constraints when solving optimization prob-

lems2: (1) include constraint meeting in objective

function definition as penalties; (2) and create repairing

mechanisms that are applied to infeasible solutions.

There are three alternatives of implementation for those

mechanisms on MOFS: (a) provide global repairing

mechanisms that users can implement for the problem

at hand, (b) explicit modeling of each constraint and

(c) specific repairing mechanisms for each constraint.

In the same way as in characteristic C2.5, (3) the use of

a DSL can make it easier to specify constraints for

users, and some mechanisms, such as penalization [cf.

(1)], can be applied without the need of implementation

by users. Metric: An ad hoc metric is defined to assess

this characteristic, where the weights have been asso-

ciated with each feature as follows: (1) penalization 0.3,

(2.a) global repairing mechanism 0.2, (2.b) individual

constraint modeling 0.2 (2.c) individual constraints

repairing mechanisms 0.2 and (3) DSL support 0.1.

5.2 Assessment and feature coverage analysis

Table 5 shows the feature coverage of area C2, along with

the weight corresponding to each feature in its associated

characteristics. The last row and last column of this table,

respectively, show the sum of features supported by each

MOF and the number of MOFs supporting each feature. It

is remarkable that only 9.57% of features of this area are

supported by a minimum of six out of the ten MOFs under

study. Moreover, those features are associated with only

three characteristics (namely C2.1, C2.3 and C2.4) and are

mainly related to EA. An interesting fact shown in Table 5

is that more than 25% of features in this area are not

supported by any framework.

2 Various techniques to adapt metaheuristics to constrained problems

have been proposed in literature (c.f. Michalewicz and Fogel (2004)

for instance). However, most of these approaches require ad hoc

implementation of the techniques depending on the problem and type

of constraints to handle; consequently, it is difficult to integrate those

proposals into a MOF. Those ad hoc techniques have been omitted in

our comparison.

544 J. A. Parejo et al.

123



5.3 Comparative analysis

Area C2 along with C3 have the smallest average score of

our benchmark, evidencing that framework developers

have put more emphasis on coding algorithms for problem

solving than in the support for an easy and efficient

adaptation of these algorithms to the problem. Remarkably,

there is a lack of support for: (1) the definition of neigh-

borhood structures (except EasyLocal, ParadisEO and

HeuristicLab), (2) the specification of the objective func-

tion and (3) constraint handling (exceptions are FOM,

Eva2, ParadisEO and HeuristicLab).

In Fig. 3 a stacked columns diagram is shown for the

characteristics of this area. Just like in Fig. 2 colors rep-

resent characteristics of this area and columns their support

by the assessed MOFs.

Based on information shown in Table 5 and Fig. 3, we

can provide an answer for RQ2. The means of problem

adaption are summarized by the characteristics of area C2;

however, current support of these mechanisms is limited

and strongly depends on the MOF and metaheuristic to use

for problem solving.

It is important to note that characteristic C2.4 is inti-

mately related to EA support, and consequently those

MOFs that do not support this technique are not able to

support the features of this characteristic. However, those

MOFs, such as EasyLocal, are still able to provide support

for the rest of the area and constitute very useful alterna-

tives when applying other techniques. Thus, users must

have this into account when comparing different MOFs.

6 Advanced characteristics (C3)

In this area we evaluate general and advanced character-

istics, not related to specific metaheuristics techniques.

Specifically, the characteristics assessed in this area are the

use of hybrid techniques, the implementation of hyper-

heuristics and distributed and parallel execution. These

characteristics are of great interest since they can either

drastically improve the results obtained or simplify the

application of techniques. They are especially interesting

because their implementation involves high cost and

complexity, preventing their application in many contexts.

As MOFs can provide these characteristics pre-imple-

mented, their applicability is significantly broadened.

6.1 Characteristics description

The following describes these characteristics:

C3.1 hybridization Hybrid metaheuristic techniques are

those that combine several techniques. There is ample

empirical evidence of the success of hybrid techniques for

optimization problem solving (as stated by Talbi 2002).

Several authors have described taxonomies of hybrid

metaheuristics, to discern the ways techniques can be

combined such as Talbi (2002) and Roli and Blum (2008).

In this work we restrict the concept of hybrid metaheuristic

to a combination of techniques integrated at a high level (as

defined by Raidl 2006), where each technique keeps its

overall structure except at the point of invocation of the

other. Specifically, we have considered four different types

of hybridization: (1) batch execution of the same technique

(BEMIh), in which the technique is executed several times;

(2) batch execution of different techniques (BEMMh),

where various techniques are executed sequentially and

where the results of one can be used as an initial solution of

others; (3) interleaved execution of a technique as a step in

each iteration of another, possibly affecting the internal

variables (IMMh); and (4) combinations of various types of

the above (Ch). Metric: An ad hoc metric is defined to

assess this characteristic, with the weights of the features

being (1) BEMIh 0.1, (2) BEMMh 0.2, (3) IMMh 0.6 and

(4) Ch 0.1.

C3.2 hyper.heuristics A hyper-heuristic is readily defined

as a heuristic that selects heuristics. Hyper-heuristics are

Fig. 3 Adaption to the problem

and its structure support

Metaheuristic optimization frameworks 545

123



intended to provide robust and general techniques of broad

applicability without needing extensive knowledge of both

the technique and the problem to solve. Hyper-heuristics

have received much attention in recent years (Chakhlevitch

and Cowling 2008; Cowling et al. 2002). Hyper-heuristics

search from the heuristic space the heuristic that best solves a

particular problem. The search space for hyper-heuristics

could consist of four different subspaces: (1) optimization

techniques space, with fixed parameters for each technique;

(2) parameter values space for a technique; (3) underlying

heuristics space for a technique (e.g. searching on a space of

applicable selection, mutation or crossover operators when

using an evolutionary algorithm); and (4) search space of

possible solution encodings. Metric: A uniform metric is

defined to assess these characteristics (with each search

space weighing 0.25).

C3.3 paralell and distributed computation Many adap-

tations of metaheuristics have been proposed in the litera-

ture to exploit the paralell processing capabilities available

in current distributed environments. Incorporating these

strategies in a MOF is a significant improvement in their

applicability and relevance to the resolution of a great

number of real problems, given the complexity and cost of

its implementation. Parallel and distributed execution of

metaheuristics techniques without intercommunication

(IPDM) can be implemented independently of the tech-

nique to apply. The only requirement is the installation of

the MOF in each of the computers of the distributed

environment and enabling a mechanism for communication

and control in order to design, plan, launch execution and

control optimization tasks in that distributed environment.

Another similar variant is one in which techniques can

exchange solutions (SSPDM). A parallel EA-based on

islands with migration (as proposed by Whitley et al.

(1999) would qualify as a SSPDM technique. Finally,

techniques that need a change on the implementation of

metaheuristics are sub-classified by Cahon et al. (2004)

into Parallel Local Search Metaheuristics a unique exe-

cuting instance of the metaheuristic controls the distributed

and parallel exploration of its current solution’s neighbor-

hood (LSPDNM).

Parallel population-based metaheuristics There are two

different approaches to create paralell population-based

metaheuristics: (1) parallel and distributed objective func-

tion evaluation for the individuals of the population

(PDPEDM), where in each network node a different subset

of individuals conform the current population to be eval-

uated. The main difference with SSPDM is that a unique

instance of the metaheuristic algorithm is executed in the

distributed environment. (2) Parallel evaluation of the

objective function, where computing objective function of

a solution implies parallel processing in various nodes

(PDESSM). Metric: A uniform metric is defined to assess

this characteristic, where variants taken into account are

IPDM, SSPDM, LSPDNM, PDPEDM and PDESSM.

6.2 Assessment and feature cover analysis

Table 6 shows feature coverage of Area C3, along with the

weight corresponding to each feature in its associated

characteristic. The last row and last column of this table,

respectively, show the sum of features supported by each

MOF and the number of MOFs supporting each feature. It

is remarkable that only 6.25% of features of this area are

supported by a minimum of six out of the ten MOFs under

study. Furthermore, 40% of MOFs provide a nearly nil

support (fewer than 10% of features) in this area.

6.2.1 Comparative analysis

With respect to the features of this criterion, the highest

scores correspond to ParadisEO and FOM. Although both

frameworks support the first characteristic, FOM does not

support Parallel and Distributed Optimization whilst Pa-

radiseEO does not support Hyper-heuristics. Currently,

FOM is the only framework that supports Hyper-heuristics.

In Fig. 4 a stacked columns diagram is shown for the

characteristics of this area.

Fig. 4 Advanced

characteristics support

546 J. A. Parejo et al.

123



Table 6 and Fig. 4, answer RQ3, RQ4 and RQ5. Basic

hybridization, such as (BEMIh) and (BEMMh) is currently

supported by many MOFs, but more advanced hybridiza-

tion techniques, such as (IMMh) and (Ch) are not. Parallel

and distributed computing is currently supported by Pa-

radisEO, ECJ, MALLBA and to a limited extent by other

mainly EA-oriented frameworks such as JCLEC and EvA2.

7 Global optimization process support (C4)

One of the strengths of MOFs is their capacity to support

the optimization process in its broadest sense, from prob-

lem modeling to experimentation, execution and results

analysis. This support allows users without a deep knowl-

edge in the area to apply metaheuristic techniques and

obtain useful real results. This area evaluates these

capacities.

7.1 Characteristics description

Seven characteristics have been established, covering the

various stages of execution of the global optimization

problem-solving process (4.1, 4.2, 4.3, 4.4 and 4.7) and the

ability to interact with the user (4.5) and with other systems

(4.6). The following describes those characteristics:

C4.1 termination conditions Metaheuristics do not pro-

vide explicit temination criteria, since, in general it is not

possible to evaluate whether it has reached the global opti-

mum solution. Therefore, users have to set criteria based on

the specific needs and context of the problem to decide when

to stop the execution of the metaheuristic. MOFs can provide

implementations of the usual criteria for reuse, among which

we find the following: (1) maximum number of iterations, (2)

maximum execution time, (3) maximum number of objec-

tive function evaluations, (4) maximum number of iterations

or execution time without improvement in the optimal

solution found (5) reaching a concrete objective function

value (6) and logical combinations (using operators AND/

OR) of the above (e.g. ExecTime B 36,000 OR ExecTime-

WithOutImprovement C 3,600. (7) Furthermore, termina-

tion conditions can be established independently of the

problem to solve but dependent on the technique used, such

as a termination criterion based on the diversity of the pop-

ulation when using an EA. Finally, (8) we evaluate the

facilities provided to enable the definition of specific crite-

rion by its implementation. In this sense, we have assessed

the use of abstract classes or interfaces to evaluate the ter-

mination condition and its use in the implementation of the

metaheuristic techniques provided. Metric: A proportional

metric is defined, where (8) weighs 0.3, and the remaining

weight is evenly distributed among the other described

criteria.

C4.2 Batch mode execution The ability to automatically

run a set of optimization tasks, where the user only has to

specify the sequence and number of times to execute each

task is important when performing experiments. The sup-

port of this feature promotes cost reduction, by automating

one of the most tedious tasks of research and studies with

empirical validation. We have defined four features related

to this automation: (1) repeated execution of a task (using

the same technique, parameters values and instance of the

problem); (2) repeated execution of a task with different

parameters (defined a range or set of values for the

parameters of the technique); (3) execution of various tasks

on the same instance of the problem; and (4) execution of

various tasks on multiple instances of the problem. Metric:

A weight of 0.2 has been given for the four features

described above. In addition the ability to randomize the

optimization task execution sequence and the generation

and loading of a document or file where tasks are defined

(the task execution plan, where description of tasks to

execute can be user-supplied or generated by MOFs)

weighs 0.2.

C4.3 Experimental design The appropriate design of

experiments is essential to obtain valid conclusions in any

study. This characteristic assesses the support provided by

MOFs to establish hypothesis, identify dependent and

independent variables and select and define experiments

properly using standard designs (factorial, latin squares,

fractional, etc.). This characteristic is assessed indepen-

dently of the previous characteristic (C4.2) and the capacity

for statistical analysis of results (C4.4). There are two dif-

ferent ways to support this characteristic: (1) provide inte-

gration mechanisms with design of experiments systems

(such as GOSSET Sloane and Hardin (1991–2003)); and (2)

implement the utilities for experimental design in the MOF

itself. The alternative (1) implies that capabilities for

experiment design are those of the system to integrate with

and are difficult to assess in the context of this comparative.

We have created a set of features in order to assess the

capabilities of frameworks that use this approach (2):

(a) hypothesis definition support, specifically common

hypothesis, such as equality of performance of two tech-

niques or irrelevance of the value of a parameter in a range;

(b) experiments modeling, supporting the definition of

dependent and independent variables and their nature

(nominal, ordinal or scalar); (c) experiments design based

on the previous model using common schemes; and finally

(d) the capability of executing the experiments automati-

cally, this feature assess the capability of generating a

proper task execution plan for the experiments designed

(C4.2 evaluates capabilities of automation of those plans

execution). Metric: A proportional metric is defined, where

approach (1) weighs 0.2, and the remaining weight is evenly

distributed among features of approach (2).

Metaheuristic optimization frameworks 547

123



C4.4 Statistical analysis One of the most important

elements to ensure the validity of any study is the ability to

perform statistical tests on its results. Therefore, one of the

most common tasks in solving optimization problems (and

in any study with an empirical component) is the statistical

analysis of experimental data and results. There are two

different ways to support this characteristic: (1) to provide

integration mechanisms with statistical analysis systems

(such as R or SPSS); and (2) to implement the utilities for

statistical analysis in the MOF itself. One of the disad-

vantages of approach (1) is that the user must import data

into the statistical analysis system and perform statistical

tests on it, interpret results and return to the framework to

change parameters or implementations if necessary. This

approach frees the MOF from the implementation of the

statistical tests. Moreover, statistical analysis systems are

usually more complete and powerful than implementations

of tests integrated on frameworks. On the other hand, the

use of strategy (2) allows the framework to automate the

tests and associated data exchange, showing the results

integrated in its user interface and even react autonomously

to the results of tests. A set of features have been created in

order to assess capabilities of frameworks that use

approach (2), concerning the support of various tests both

parametric and non-parametric: (a) t student; (2) one-way

ANOVA; (3) two-way ANOVA; (4) n-way ANOVA; (5)

Mann–Withney U test; (6) Wilcoxon test; and (7) Kol-

mogorov–Smirnov test (or any test to assess the distribu-

tion of normal data). The use of approach (2) does not

necessarily imply that approach (1) cannot be applied. In

this sense the integration with the statistical software can

be performed at the test execution level (to free the

implementation burden), while providing programmatic

support or graphical interfaces integrated in the MOF.

Metric: A proportional metric is defined, where approach

(1) weighs 0.3, and the remaining weight is distributed

uniformly among features of approach (2).

C4.5 User interface, graphical reports and charts The

usability of applications strongly depends on the proper

design of its Graphical User Interface (GUI). Specifically,

an appropriate GUI for MOFs requires taking into account

the rest of the characteristics of this comparison criteria:

the ability to select and configure the parameters of the

different techniques, reporting of the results and monitor-

ing of the status of optimization tasks and of the global

execution plan, the control of nodes in distributed and

parallel computing environments, the on-line technical

support and the assistance or communication with the user

forums and developers of the MOF. Moreover, although

GUI design and usability could be assessed, the evaluation

would include a subjective bias. In order to avoid it, we

have defined the following set of features to be evaluated:

(1) Integrated help and basic usability (menus, shortcut

buttons, etc.); (2) technique specification and parameter

configuration support, (3) problem modeling and data

import, (4) Graphical support of advanced features (sub-

divided into batch mode execution configuration, design of

experiments and statistical analysis of results) (5) the use of

optimization project where all the information about

problem instances, techniques and results are stored and (6)

the graphical representation of results through diagrams

and figures. Metric: A uniform metric is defined to assess

this characteristic (each feature weighs 0.2). If the MOF

only shows the evolution of the objective function of the

best solution, but no additional metrics are provided (such

as population diversity when using EA, or current solution

when using TS or SA), then feature (6) has been evaluated

with half of the weight.

C4.6 Interoperability This characteristic assesses the set

of capabilities that frameworks provide to exchange

information and interact with other systems. Specifically

the following features are taken into account: (1) results

and data export capabilities (considering formats such as

CSV or excel/odf files); (2) data import capabilities (using

formats such as CSV, excel/odf files or specific formats of

standard libraries of each problem type, such as SATLIB or

TSPLIB); (3) the capability of deployment and invocation

as a web service (as in Garcı́a-Nieto et al. (2007); and (4)

the use of XML to store information associated with

optimization projects (selected solution encoding, objective

function and problem model, techniques and their param-

eters, experiment design and results and statistical analysis,

etc.), so that other systems can process these data and

parameters in a simple way. Metric: A uniform metric is

defined to assess this characteristic (each feature weighs

0.25).

7.2 Assessment and feature cover analysis

The feature coverage of C4 area is shown on Table 7,

along with the weight corresponding to each feature in its

associated characteristic. As an exception, the features of

the GUI characteristic have been assessed using a real

value between 0.0 and 1.0. The last row and last column of

this table, respectively, show the sum of features supported

by each MOF and the number of MOFs supporting each

feature.

7.2.1 Comparative analysis

The low score obtained by ParadisEO in this area is sur-

prising, highlighting this as a potential area of improve-

ment for that framework. OAT is among the highest scored

frameworks (which has a well-designed GUI as well as

powerful experiments execution and statistical analysis

548 J. A. Parejo et al.

123



support) followed by JCLEC, whose characteristics in this

area have been evaluated together with those of its asso-

ciated project KEEL (focused on Data Mining and classi-

fication applications). Note that this area has, together with

areas C2 and C3, the lowest support levels, thus repre-

senting significant areas of improvement in the present

framework ecosystem. In Fig. 5 a stacked columns diagram

is shown for the characteristics of this area.

Table 7 and Fig. 5 answer the requirements for RQ6.

Area C4 characteristics summarize the capabilities pro-

vided by current MOFs for helping conducting research

studies and the general problem-solving process. Those

characteristics vary from statistical analysis and experi-

ment execution engines, to GUIs with wizards and chart

generation. These tools, however, are not inter-operable,

and the quality and support of each MOF is not homoge-

neous; it is dispersed on the set of frameworks. Conse-

quently, those tools are not available for all techniques or

for programming languages and platforms.

8 Design, implementation and licensing (C5)

Both a suitable licensing model and the availability to run

in multiple platforms are essential to the success of any

software product. In the case of software frameworks,

incorporating proper design and effective implementation

is also very important, since applications created using it

incorporate their design therein (with the errors and prob-

lems that they may contain). Moreover, the efficiency of

those applications is limited by the efficiency of the

framework. As a consequence, a comparison area has been

defined to group this set of characteristics as described

below.

8.1 Characteristics description

C5.1 Language Implementation language can be a key

factor for users of MOFs, since the use of a well-known

programming language reduces development costs and

likelihood of errors. Frameworks under consideration in

this share are implemented in C??, C# and Java.

C5.2 Licensing Cost is not a characteristic of interest

since all the frameworks assessed are free; however,

licensing of MOFs can limit the context and purposes of

their use, or they can be forced to provide the client with

the source code of the generated application. From this

perspective the types of license we take into account are (1)

commercial; (2) free without providing MOF source code

nor commercial use; (3) free with MOF source code

available only for certain organization and usages (usually

universities and non profit activities); (4) MOF source code

available under GPL (GNU General Public License) or

similar, that forces the distribution of the source code of

derived products under GPL license; and (5) MOF source

code available under LGPL (GNU Lesser General Public

License) or similar, that allows the use for commercial

application without restrictions on source code availability.

Metric: This feature is not evaluated using a set of features

but we establish a direct score, based on the freedom that

each license provides: (1) Commercial Licensing = 0; (2)

Free binaries (no commercial use) = 0.25; (3) Restricted

availability of source code = 0.5; (4) GPL = 0.75 and (5)

LGPL =1.

Fig. 5 General optimization process support

Metaheuristic optimization frameworks 549

123



C5.3 Supported platforms The set of platforms taken

into account are: Windows, Unix (Linux, Solaris, HPUX,

etc.) and Mac. Metric: A uniform metric is defined, with

each platform weighing 0:b3; in the case of partial support

(only a limited set of features are available on a certain

platform) we penalize it with 50%.

C5.4 Software engineering best practices A proper

design and following of software engineering best practices

is especially important for MOFs. However, assessing the

design of a framework in a quantitative and objective way

is a difficult task. As a result, features only evaluate basic

use of certain tools and processes recognized as best

practices such as (1) the use of design patterns to promote

flexibility in variation points; (2) the use of automated tests

(unit tests): this characteristic is evaluated based on the

source code of MOFs (for those that do not provide the

source code, evaluation is based on the documentation, if

tests exists); (3) explicit documentation of the MOF vari-

ation and extension points; and (4) the use of reflective

capabilities and dependence injection to promote flexibility

as described by Fowler (2004). The latter feature corre-

sponds to the capabilities of the framework to dynamically

load types of problems, objective functions and other ele-

ments associated with customization or extension without

having to recompile the framework. With regard to feature

(4), MOFs that perform runtime loading of modules have

been associated with half of the weight, while those that

use a dependence injection system for the management of

modules have full weight. Metric: A uniform metric is

defined to assess this characteristic.

C5.5 Size A basic measure of the complexity of a

framework is its size. The size of a framework can be

measured by various metrics, number of lines of code,

number of classes and packages/modules, number of vari-

ation points and possible combinations of components, etc.

It would be inappropriate to use the size of frameworks as a

quantitative evaluative criteria, since the functionalities

supported are not directly related to it, and an increase in its

size does not necessarily imply greater complexity in its

use. Therefore, we consider it as a qualitative criterion. As

a consequence, we consider some of these measures for

each framework, but they will not be included in the

quantitative assessments.

C5.6 Numerical handling Most metaheuristic techniques

are stochastic, requiring the use of a random number

generator. This fact has two consequences: (1) choosing a

good random number generator is a key point for the

proper behavior of the techniques implemented by MOFs;

and (2) in order to support experiments replicability, a

unique seed must be used on all random number generators

used by along the framework and its customizations/

extensions developed by users. Features evaluating this two

important points are defined for this characteristic, where

(1) evaluates if a proper random number generator is pro-

vided (either a Mersene Twister implementation or support

for customization of the random number generation

scheme); and (2) evaluates the replicability of experiments

based on the support of a global seed and provision of a

random number generator using this seed to user imple-

mented modules. Metric: A uniform metric is defined to

assess this characteristic.

8.2 Assessment and feature cover analysis

This area seems to be the most homogeneous and sup-

ported in the sense that most frameworks support almost all

the features and to a high degree. The platforms supported

is practically universal, except for HeuristicLab, EsayLocal

and some modules of ParadisEO. It is remarkable also the

general adoption of the UML notation, as well as the open

source licensing models. In Fig. 6 a stacked columns dia-

gram is shown for some characteristics of this area. With

Fig. 6 Design, implementation

and licensing assessment

550 J. A. Parejo et al.

123



regard to the size of MOFs, Fig. 7 shows the framework

sizes in terms of number of packages (or modules) and

classes (or files, when there is not a direct relation from

files to classes). These attributes may be of interest because

the size of a framework may be an indirect measure of its

complexity and therefore of its possible difficulty of use.

However, the restrictions imposed by the language should

be taken into account, as for example in java each public

class must be in a separate file.

Table 8 and Fig. 6 provide the answers to RQ7, RQ8

and RQ9. There is wide availability of MOFs per platform,

where each technique is available on nearly all platforms.

This fact is due to the use of platform independent pro-

gramming languages such as Java and C?? (using stan-

dard libraries). However, as there is no MOF supporting all

techniques, users must be careful since although there

could be available alternative MOFs providing implemen-

tations for missing techniques, the effort needed for

changing from one MOF to other one is considerable and

implies giving up other features or variants. All the

frameworks evaluated provide GPL or free licenses for

academic/research purposes. Finally, basic software engi-

neering best practices, such as UML diagrams of MOFs

architecture and dynamic module loading are widely sup-

ported, but more advanced ones, such as automated tests,

use of dependence injection libraries and explicit variation

point documentation are not supported. Notably, some

frameworks do not support the use of a proper random

number generator nor its customization.

9 Documentation and support (C6)

When selecting a framework for developing any kind of

application, documentation, technical support and user

community responsiveness are important. These are the

factors that can smooth out the learning curve when users

have no experience and need to solve problems or errors

that arise during use. Consequently we have considered

those factors, including additional features, in order to

measure the maturity of the frameworks such as types of

problems that MOFs bring as samples and the number of

scientific articles published using the framework.

C6.1 Sample problem types As a measure of maturity

and supportiveness of frameworks, we have this charac-

teristic that assesses the implemented problem types that

MOFs provide. This characteristic can also measure to

what extent MOFs have been applied and tested with dif-

ferent kinds of problems. Moreover, solved problem types

can be excellent starting points if users try to solve prob-

lems to some extent similar to those provided. The set of

problem types considered comprises problem families such

as TSP, SAT, QAP, Job Shop Scheduling, Flow Shop

Scheduling and knapsack, iterated prisoners dilemma,

symbolic regression problems and others. The exact prob-

lem types can be consulted in the evaluation data sheet

Fig. 7 Framerowks size

Table 8 MOFs Programming languages, platforms and licenses

MOF Prog. Lang. Platforms License

EasyLocal C?? Unix GPL

ECJ Java All Open Source (Academic free license)

ParadisEO C?? All (Except for windows if using PEO) CECILL (ParadisEO) and LGPL (EO)

EvA2 Java All LGPL

FOM Java All GPL

HeuristicLab C# Windows GPL

JCLEC (and KEEL) Java All LGPL

MALLBA C?? Unix Open source

Optimization Algorithm Toolkit Java All LGPL

Opt4j Martin Lukasiewycz and Helwig (2009) Java All LGPL

Metaheuristic optimization frameworks 551

123



mentioned previously. Metric: A uniform metric is defined

where the weight is distributed evenly amongst the evalu-

ated problem types. The set is comprised of 59 different

problem types.

C6.2 Articles and papers Another way to assess the

maturity and quality of MOFs is through scientific publica-

tions that describe MOFs or report their use. The assessment

of this characteristic relies on publications found during our

literature review and on publications enumerated on MOFs

websites. A total number of 285 publications were found for

the selected MOFs, searching for papers from 2000 to 2010.

Metric: An ad hoc metric is defined: the maximum score

(1.0) was assigned to the framework with the most publica-

tions, namely ECJ with 113, and the score of the other

frameworks were computed based on this formula:

score = (publications of MOF N)/(maximun number of

publications per MOF). The whole set of publications found

per framework is available at http://www.isa.us.es/uploads/

34MOFs/bib/N.bib, where N is the name of each MOF; for

instance, ECJ bibliography is available at http://www.isa.

us.es/uploads/MOFs/bib/ECJ.bib.

C6.3 Documentation Documentation is the main source

of information for users in a framework, a capital element

to enable its use. This characteristic is assessed based on

the presence (or absence) of the following features: (1)

User manual; (2) Technical/development documentation;

(3) ‘‘How to’’ document, where short recipes are provided

to perform usual actions; (4) ‘‘Frequently asked question’’

section on the web site of framework documentation; and

(5) MOF web site. Metric: A uniform metric is defined,

where each feature weighs 0.2.

C6.4 Users and popularity This characteristic intends to

assess the number of users of each framework. The eval-

uation of this characteristic is based on the number of

researchers using each framework outside the MOF cre-

ators research group and development team; we name them

‘‘external users’’. In order to evaluate this characteristic we

have filtered publications found during our literature

review using each MOF and on publications enumerated on

MOF websites, removing those where one of its authors is

member of the development team or research group of

MOF creators. Metric: An ad hoc metric is defined: the

maximum score (1.0) was assigned to the framework with

more external publications, namely ECJ with 84, and the

scores of the other frameworks were computed based on

this formula: score = (external publications of MOF N)/

(maximun number of external publications per MOF). The

whole set of publications found per framework is available

at http://www.isa.us.es/uploads/MOFs/bib/N-external.bib,

where N is the name of each MOF; for instance, ECJ

bibliography of external publications is available at http://

www.isa.us.es/uploads/MOFs/bib/ECJ-external.bib.

9.1 Comparative analysis

In general, the feature that is less supported in this area is the

implemented problem types. With regard to papers that

describe or apply MOFs and popularity between external

authors, ECJ is the most salient framework, that dwarfs the

other MOFs in this comparative. Figure 8 four charts that

illustrate this effect: sub-figure (a) shows the number of

publications per MOF and year. ECJ appears as the senior

framework, obtaining a dominant position early in the pro-

cedures which it still holds (we ignore 2010 since early

publications could not be updated). Sub-figure (b) shows the

total number of publications per MOF. Subfigure (c) shows

the number of external and internal publications per MOF as

an stacked columns chart. Subfigure (d) shows the number of

external authors per MOF. ECJ is followed by ParadisEO and

HeuristicLab in number of publications. ECJ has nearly 75%

of external publications and 65% of external authors. The

less popular frameworks are FOM and OAT with nearly null

external usage and a small number of publications.

Note that there are two frameworks that score low on

Documentation, namely OAT and EasyLocal. All frame-

works have active and supportive communities of users/

developers. Figure 9 uses a stacked columns diagram to

summarize the support of this area’s characteristics.

Figure 9 and the information gathered along this study

provide an answer to RQ10 question. Currently, a high

number of MOFs are available which support a wide set of

features. So when addressing new problems or performing

research studies on well-known ones, the use of MOFs

becomes a valid approach. MOF use outside of developers

research groups could be boosted by an improvement of

framework documentation and support. Currently, the most

popular framework is ECJ, which has a large community of

external users and a wealth of publications year on year.

Moreover, there seems to be a correlation between the score

in area C3 and MOFs’ popularity, since frameworks with

higher scores in that area are those with higher popularity.

This fact is not surprising, since that area contains some of

the features that add more value for user. These features, such

as distributed and parallel optimization, make MOFs tools

capable of solving extremely complex problems and are

difficult to implement from scratch, thus making those

frameworks more attractive for users that need those features

and contributing to make those MOFs popular.

10 Discussion and challenges

In this section, we discuss the results obtained in this study.

Based on these results, we identify a number of challenges

(RQ11) to be addressed in the future. Challenges are part of

552 J. A. Parejo et al.

123

http://www.isa.us.es/uploads/34MOFs/bib/N.bib
http://www.isa.us.es/uploads/34MOFs/bib/N.bib
http://www.isa.us.es/uploads/MOFs/bib/ECJ.bib
http://www.isa.us.es/uploads/MOFs/bib/ECJ.bib
http://www.isa.us.es/uploads/MOFs/bib/N-external.bib
http://www.isa.us.es/uploads/MOFs/bib/ECJ-external.bib
http://www.isa.us.es/uploads/MOFs/bib/ECJ-external.bib


Fig. 8 Figures showing publications and popularity of each framework

Fig. 9 Documentation and

technical support

Metaheuristic optimization frameworks 553

123



Fig. 10 General scores of MOFS as Kiviat diagrams

554 J. A. Parejo et al.

123



the authors’ own personal view of open questions, based on

the analysis presented in this paper. Figure 10 shows global

score results for MOFs as Kiviat diagrams, summarizing

the results of this study; evaluating MOFs from a research

user perspective. In the appendix, Table 7 shows the global

score obtained for each MOF and characteristic as well as

the average for each area.

To achieve the maximum score in areas C1, C2 and C3,

each MOF would have to implement an ample subset of the

current state of the art on metaheuristics, so it is not sur-

prising that the scores do not generally reach the maximum

possible value. On the contrary, the small average values

on areas C4 and C6 are significant and therefore show a

general improvement direction for current MOFs.

10.1 Capabilities discussion

On average, the MOF with the best score is ECJ (maximum

area in Fig. 10), making it a preferred choice if users can use

EA on java. However, this MOF scores below average in areas

C1 and C5, which are clear improvement areas for it, and

could lead users to evaluate different options (C1 measures

techniques available). The next best scored MOF is Paradi-

sEO, salient in areas C1 and C3, which uses C?? as its

implementation language. This MOF, however, scores below

average in C4 area, making this a clear improvement area. The

MOFs that provide the amplest support in terms of the variety

of metaheuristics (criterion C1) are FOM and ParadisEO. The

score obtained by OAT in C4 area is remarkable, much above

average, and it is due to its GUI, execution of experiments and

statistical analysis tooling. In this same area the support of

JCLEC (and its twin project KEEL) is also above average.

However, the best score of the GUI characteristic is obtained

by HeuristicLab that in its last version (3.3) provided a com-

plete, highly configurable and intuitive user interface. C5 area

is where all of MOFs provide better average results. This is not

surprising given that these characteristics are key for frame-

works use and success and are clear signs of technical com-

petence and maturity. In this sense, MOFs without good

design or implementation simply do not survive. Finally, the

average value of area C6 indicates the need to improve doc-

umentation, user guidance and support. Thus we define

Challenge 1: Improve documentation, user guidance and

support and GUI tooling.

10.2 Evolution of the ecosystem of MOFs

The creation of this benchmark has been a time-consuming

and demanding task. However, the length of this task has

allowed the evaluation of an additional feature of the eco-

system of MOFS: its liveliness and evolution speed. During

the creation of this benchmark, various frameworks released

new major versions with important improvements, namely

ECJ, PARADISEO, JCLEC and HeuristicLab; moreover,

other frameworks such as EvA2 and Opt4j released minor

versions with bug fixes and minor features. This evolution

allowed us to test the evaluation framework presented in this

study. No modifications were needed in order to assess those

new versions of the MOFs and their features; thus it validates

the flexibility and completeness of our approach. Moreover,

both the previous and new versions of those frameworks

were evaluated, providing a dynamic view of the ecosystem,

in contrast with the static one shown in the previous sections.

In this sense, we can evaluate the ‘‘hot areas’’, i.e. those areas

where more evolution has been performed and the speed in

the evolution of the assessed MOFs. In this sense the area

with bigger improvements are C4 and C5, primarily due to

the improvements in the GUI and licensing model of Heu-

risticLab and the new GUI of ECJ. Additionally, C1 and C6

have also improved significantly but in a smaller scale, since

new techniques and better documentation are provided by

the assessed MOFs. The MOF with a bigger improvement in

this time was HeuristicLab, changing directly form version

1.1 to version 3.3. In this new version significant improve-

ment is demonstrated in the licensing model (it becomes an

open source project under GPL license) and the GUI and

documentation have been improved significantly. The next

framework in terms of improvement during the creation of

this benchmark was ECJ, where a multi-objective technique

and a GUI were added, i.e. complementary, significant

improvements in documentation have been developed.

Finally, the evolution measured shows that the current MOFs

Ecosystem is a vibrant and living one, where new versions

and important features are added continuously.

Both the final evaluation of current versions and the

previous one are available as Google Docs spreadsheets at

http://www.isa.us.es/MOFComparison and http://www.isa.

us.es/MOFComparison-OLD, respectively. They can be

downloaded and exported to different formats such as MS

Office or open office for customization and tailoring.

10.3 Potential areas of improvement of current

frameworks

In addition to the points stated above about area C6, based on

the finished comparative study carried out, and on results

described above, we enumerate below some gaps and unsup-

ported features that have been identified. The areas where we

see the most room for improvement are C2 (adaption to the

problem and its structure), C3 (advance characteristics) and C4

(general optimization process support). Specifically, some

features that have room for improvement are

• Hyper-heuristics support.

• Support for designing and automated running of

experiments and for analyzing results.

Metaheuristic optimization frameworks 555

123

http://www.isa.us.es/MOFComparison
http://www.isa.us.es/MOFComparison-OLD
http://www.isa.us.es/MOFComparison-OLD


• User guides together with wizards, project templates

and GUI to aid the optimization process.

• Parallel and distributed computing support.

• Domain-Specific Languages for objective function and

constraints formulation.

Thus we define Challenge 2: Provide added-value fea-

tures for optimization, such as hyper-heuristics and parallel

and distributed computing capabilities.

In particular, in the context of area C5 (design, imple-

mentation and licensing), we have identified the following

issues regarding software engineering best practices:

• Absence of unit tests. Note that one of the discarded

EA-oriented optimization library (JGAP) is recognized

reference for this practice Meffert (2006); however,

assessed MOFs do not provide unit tests in general

(except for JCLEC and HeuricLab).

• Heterogeneity of project building and description

mechanisms. It would be interesting that, as in Paradi-

sEO, projects provide files for framework compilation

using standard mechanisms such as makefiles in C??,

or ant or maven builds files in java.

• Absence of explicit documentation of variation points.

Although all the frameworks that have been evaluated

provide extensive technical documentation of the differ-

ent classes and modules, none of them provide a scheme

(such as feature models) to describe the variation points

of the framework, nor are these even described explicitly

in natural language in the documentation. Moreover,

none of the frameworks use the UML profiles for

framework documentation Fontoura et al. (2001).

• Limited dynamic and reflexive capabilities for loading

problems, heuristics and techniques variants. Thus,

only Opt4j uses a dependency injection mechanism

(such as Google Juice or Spring).

Finally, regarding area C1 (Metaheuristic techniques)

there is always the possibility of enlarging the portfolio of

techniques implemented. The current support is uneven,

with some techniques (such as EA) practically universally

supported and others (such as GRASP, SS, ACO or AIS)

being rarely implemented.

Thus we define Challenge 3: Improve techniques and

variants support and Challenge 4: Develop standard bench-

marks for MOFs.

11 Conclusions

In this paper an assessment based on the state of the art of

the main MOFs has been made. The motivation of the

study is based on the implications of the NFL theorem in

terms of the desirability and advantages of using such tools,

on the complexity and difficulty of learning and mastering

the use of any of these frameworks and on the availability

of a good number of MOFs.

From the MOFs assessment carried out, we can draw the

following conclusions:

• Frameworks are useful tools that can speed up the

development of optimization-based problem solving

projects, reducing their development time and costs.

They might also be applied by non-expert users as well as

extend the user base and the applications scope for

metaheuristics techniques.

• There are many MOFs available, which overlap and

provide similar capabilities which means that a certain

duplication of efforts has been made. It would be great

if a certain coordination and standardization of these

MOFs were carried out in order to improve the support

given to the user community.

• There are visible gaps in the support of specific key

characteristics, as shown in Sect. 10.3.

• There is impending work we have to face in the near

feature, namely

• Perform the second phase of the technology evaluation

methodology followed in this study as defined by Brown

and Wallnau (1996), establishing a set of specific use

scenarios and conducting experiments of application

using the evaluated MOFs.

• As the authors of one of the frameworks studied

(FOM), we plan to enhance it according to the potential

improvement areas identified in this paper.

Acknowledgments We would like to thank Stefan Wagner, Andreas

Schaerf, Sebastián Ventura, Sean Luke, Marcel Kronfeld and David L.

Woodruff for their helpful comments in earlier versions of this article.

We are thankful to David Benavides and Sergio Segura for providing us

their inspirational work Benavides et al. (2009), and Ana Galan for her

linguistic support. This work has been partially funded by the European

Commission (FEDER) and Spanish Government under CICYT project

SETI (TIN2009-07366) and the Andalusian Government projects

ISABEL (TIC-2533) and THEOS (TIC-5906).

Appendix: Data tables

In this section, we provide detailed information about the

scores obtained in each characteristic by each framework.

Interested readers can obtain more detailed information about

assessment on characteristics and features (including com-

ments on problems found on the assessment, penalizations on

some features and its underlying reasons and informations

sources used to assess it) in http://www.isa.us.es/MOF

Comparison. Moreover, this spreadsheet can be downloaded

and exported to various formats, and it is provided in such a

way that user can customize weights of each characteristic,

feature and area, allowing the creation of tailored benchmarks

more adapted to its specific needs (see Tables 9, 10, 11).

556 J. A. Parejo et al.

123

http://www.isa.us.es/MOFComparison
http://www.isa.us.es/MOFComparison


Table 9 Scores for C1–C4 and C6

Characteristic ECJ ParadisEO EvA2 FOM JCLEC OAT Opt4j EasyLocal HeuristicLab MALLBA Avg

C1-Metaheuristic techniques

Steepest descent/fill

climbing (SD)

1 1 1 1 0 1 0 1 1 1 0.800

Simulated annealing (SA) 0 0.8 0.6 0.9 0 0 0.6 0.7 0.8 0.7 0.510

Tabu search (TS) 0 0.7 0 0.9 0 0 0 1 0.7 0 0.330

GRASP 0 0 0 1 0 0 0 0 0 0 0.100

Variabl neighborhood

search (VNS)

0 0.2 0 0.2 0 0 0 0.2 0 0 0.060

Evolutionary

algorithms (EA)

0.85 0.6 0.8 0.25 0.7 0.7 0.7 0 0.7 0.4 0.570

Particle swarn

optimization) (PSO)

0.3 0.7 0.5 0 0 0 0.5 0 0.3 0.3 0.260

Artificial immune

systems (AIS)

0 0 0 0 0 0.25 0 0 0 0 0.025

ACO 0 0 0 0.7 0 0.9 0 0 0 0.3 0.190

Scatter search 0 0 0.438 0 0 0 0 0 0 0 0.044

Multiobjective

metaheuristics

0.125 0.188 0.438 0 0.188 0 0.125 0 0.0625 0 0.113

C2-Adaption to the problem and its structure

Solution enconding 0.7 0.7 0.775 0.075 0.588 0.113 0.738 0 0.588 0.15 0.443

Neighborhood definition 0 0.9 0 0 0 0 0 0.9 0.9 0 0.270

E/A auxiliary methods 0.226 0.409 0.393 0 0.426 0.02 0.321 0 0.616 0.197 0.261

Solution selection 0.6 0.467 0.667 0.467 0.533 0.333 0.2 0 0.467 0.267 0.400

Objective function

specification

0 0 0 0 0 0 0 0 0.333 0 0.033

Contraint handling 0 0.3 0.6 0.7 0 0 0 0 0 0 0.160

C3-Advanced characteristics

Hybridization support 0.4 0.7 0 0.5 0.4 0.1 0.1 0.3 0.9 0.3 0.370

Hyper-heuristics support 0 0 0 0.5 0 0 0 0 0 0 0.050

Parall. and dist. opt 0.8 0.8 0.6 0 0 0 0 0 0 0.8 0.300

C4-General optimization process support

Finalization conditions

support

0.7 0.9 0.95 0.8 0.6 0.75 0.6 0.15 0.5 0.7 0.665

Batch processing 0.4 0 0.2 0.2 0.4 0.3 0.2 0.6 0.4 0 0.270

Experiments design

support

0 0 0 0.6 0.72 0.74 0 0.04 0.1 0 0.220

Statistical Analysis

features

0 0 0.15 0.5 0.6 0.7 0 0.2 0 0 0.215

User interface and

graphical reports

0.483 0 0.533 0.367 0.25 0.75 0.45 0 1 0.083 0.392

Interoperability 0.625 0.25 0.125 0 0.25 0.25 0 0 0.75 0 0.225

C6-Documentation and support

Problems and tutorials 0.36 0.136 0.068 0.034 0.153 0.288 0.136 0.033898305 0.407 0.136 0.175

Papers 1 0.407 0.283 0.027 0.195 0.027 0.097 0.142 0.345 0.221 0.274

Documentation 0.8 0.79 0.6 0.41 0.59 0.14 0.62 0.2 0.61 0.35 0.511

Popularity/ users 1 0.0595238 0 0 0 0.027 0 0 0 0 0.118

Boldface values denote the best (higher) values of each row

Metaheuristic optimization frameworks 557

123



References

Aarts E, Lenstra J (1997) Local search in combinatorial optimization.

Wiley

Ackley DH (1987) A connectionist machine for genetic hillclimbing.

Kluwer Academic Publishers, Norwell, MA, USA

Alba E, Luque G, Garcı́a-Nieto J, Ordonez G, Leguizamon G (2007)

Mallba: a software library to design efficient optimisation

algorithms. Int J Innov Comput Appl 1:74–85. doi:10.1504/

IJICA.2007.013403, http://portal.acm.org/citation.cfm?id=13593

42.1359349

Andresen B, Gordon JM (1994) Constant thermodynamic speed for

minimizing entropy production in thermodynamic processes and

simulated annealing. Phys Rev E 50(6):4346–4351. doi:

10.1103/PhysRevE.50.4346

Angeline PJ, Fogel DB, Fogel LJ (1996) A comparison of self-

adaptation methods for finite state machines in a dynamic

environment. In: Proc. 5th Ann. Conf. on Evolutionary Pro-

gramming, pp 441–450

Arabas J, Michalewicz Z, Mulawka J (1994) Gavaps-a genetic

algorithm with varying population size. Evolutionary Computa-

tion. In: Proceedings of the First IEEE Conference on Compu-

tational Intelligence, vol 1, pp 73–78. doi:10.1109/ICEC.1994.

350039

Back T, Fogel DB, Michalewicz Z (eds) (1997) Handbook of

evolutionary computation. IOP Publishing Ltd., Bristol.

http://portal.acm.org/citation.cfm?id=548530

Baker J (1987) Reducing bias and inefficiency in the selection

algorithm. In: Proceedings of the Second International Confer-

ence on Genetic Algorithms, pp 14–21

Benavides D, Segura S, Ruiz-Cortès A (2009) Automated analysis of

feature models after 20 years: a literature review. (Information

Systems Accepted for publication)

Birgmeier M (1996) Evolutionary programming for the optimization

of trellis-coded modulation schemes. In: Proc. 5th Ann. Conf. on

Evolutionary Programming

Blanton JL Jr., Wainwright RL (1993) Multiple vehicle routing with time

and capacity constraints using genetic algorithms. In: Proceedings

Table 10 Scores for C5 design. Implementation and licensing

Characteristic ECJ ParadisEO EvA2 FOM JCLEC OAT Opt4j EasyLocal HeuristicLab MALLBA

Licensing Open source

(academic free

license)

CECILL

(ParadisEO)y

LGPL (EO)

LGPL LGPL LGPL LGPL LGPL GPL GPL Open

Source

Supported

platforms

All All (except for

windows if

using PEO)

All All All All All Windows

and

Unix

Windows Unix

Sof. eng. best

practices

0.62 0.4 0.2 0.64 0.9 0.1 0.7 0.4 0.7 0.2

Packages/

modules

28 10 54 215 63 109 35 80 119 80

Classes/files (for

non OO

languages)

226 542 594 510 304 373 417 244 785 514

Numerical

handling

1 1 0.75 0 1 0.5 1 1 1 0

Boldface value denotes the best (higher) value of the row

Table 11 Global scores

Area ECJ ParadisEO EvA2 FOM JCLEC OAT Opt4j EasyLocal HeuristicLab MALLBA Avg

1 Supported metaheuristics 0.207 0.381 0.394 0.450 0.081 0.259 0.175 0.264 0.324 0.245 0.282

2 Problem adaption/encoding 0.254 0.413 0.306 0.090 0.258 0.078 0.210 0.150 0.484 0.102 0.249

3 Advanced metaheuristic

characteristics

0.400 0.500 0.200 0.333 0.133 0.033 0.033 0.100 0.300 0.367 0.226

4 Optimization process support 0.368 0.192 0.347 0.411 0.470 0.582 0.208 0.165 0.458 0.131 0.356

5 Design, implementation and

licensing

0.905 0.797 0.738 0.660 0.975 0.650 0.925 0.717 0.708 0.417 0.786

6 Documentation, samples and

popularity

0.789 0.348 0.238 0.118 0.234 0.364 0.213 0.094 0.340 0.177 0.304

Average per framework 0.487 0.439 0.371 0.344 0.359 0.328 0.294 0.248 0.436 0.240 0.367

Boldface values denote the best (higher) values of each row

558 J. A. Parejo et al.

123

http://dx.doi.org/10.1504/IJICA.2007.013403
http://dx.doi.org/10.1504/IJICA.2007.013403
http://portal.acm.org/citation.cfm?id=1359342.1359349
http://portal.acm.org/citation.cfm?id=1359342.1359349
http://dx.doi.org/10.1103/PhysRevE.50.4346
http://dx.doi.org/10.1109/ICEC.1994.350039
http://dx.doi.org/10.1109/ICEC.1994.350039
http://portal.acm.org/citation.cfm?id=548530


of the 5th International Conference on Genetic Algorithms, Morgan

Kaufmann Publishers Inc., San Francisco, pp 452–459

Brindle A (1981) Genetic algorithms for function optimization. Ph.D.

thesis, University of Alberta, Edmonton

Brown AW, Wallnau KC (1996) A framework for evaluating software

technology. IEEE Softw 13(5):39–49. doi:10.1109/52.536457

Brownlee J (2007) Oat: the optimization algorithm toolkit. Tech. rep.,

Complex Intelligent Systems Laboratory, Swinburne University

of Technology

Cahon S, Melab N, Talbi EG (2004) Paradiseo: a framework for the

reusable design of parallel and distributed metaheuristics.

J Heuristics 10(3):357–380. doi:10.1023/B:HEUR.0000026900.

92269.ec

Chakhlevitch K, Cowling P (2008) Hyperheuristics: recent develop-

ments. In: Adaptive and multilevel metaheuristics, pp 3–29

Chatterjee A, Siarry P (2006) Nonlinear inertia weight variation for

dynamic adaptation in particle swarm optimization. Comput

Oper Res 33(3):859–871. doi:10.1016/j.cor.2004.08.012, http://

www.sciencedirect.com/science/article/B6VC5-4DBJG28-2/2/5

7210fee165fec156db017ff5e59aa5f

Clerc M (2006) Particle swarm optimization. ISTE Publishing

Company

Corne D, Knowles JD, Oates MJ (2000) The pareto envelope-based

selection algorithm for multi-objective optimisation. In: Pro-

ceedings of the 6th International Conference on Parallel Problem

Solving from Nature (PPSN VI), Springer, London, pp 839–848

Cowling PI, Kendall G, Soubeiga E (2002) Hyperheuristics: a tool for

rapid prototyping in scheduling and optimisation. In: Proceed-

ings of the Applications of Evolutionary Computing on

EvoWorkshops 2002, Springer, London, pp 1–10

Cramer NL (1985) A representation for the adaptive generation of

simple sequential programs. In: Proceedings of the 1st Interna-

tional Conference on Genetic Algorithms, L. Erlbaum Associates

Inc., Hillsdale, pp 183–187

Davis L (1985) Applying adaptive algorithms to epistatic domains. In:

Proceedings of the 9th international joint conference on Artificial

intelligence (IJCAI’85). Morgan Kaufmann Publishers Inc., San

Francisco, pp 162–164

Davis L (1989) Adapting operator probabilities in genetic algorithms.

In: Proceedings of the third international conference on Genetic

algorithms. Morgan Kaufmann Publishers Inc., San Francisco

pp 61–69

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist

multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol

Comput 6:182–197

de Castro L, Von Zuben F (2002) Learning and optimization using the

clonal selection principle. IEEE Trans Evol Comput 6(3):239–

251

Di Gaspero L, Schaerf A (2003) Easylocal??: An object-oriented

framework for flexible design of local search algorithms. Softw

Pract Exp 33(8):733–765. doi:10.1002/spe.524

Dorigo M, Gambardella L (1997) Ant colony system: a cooperative

learning approach to the traveling salesman problem. IEEE

Trans Evol Comput 1(1):53–66. doi:10.1109/4235.585892

Dreo, Pétrowski A, Siarry P, Taillard E (2005) Metaheuristics for

hard optimization: methods and case studies. Springer

Eiben AE, Raué PE, Ruttkay Z (1994) Genetic algorithms with multi-

parent recombination. In: Proceedings of the International

Conference on Evolutionary Computation. The Third Confer-

ence on Parallel Problem Solving from Nature (PPSN III),

Springer, London, pp 78–87

Eshelman LJ (1991) The chc adaptive search algorithm: how to have

safe search when engaging in nontraditional genetic recombina-

tion. Foundations of Genetic Algorithms pp 265–283. http://

ci.nii.ac.jp/naid/10000024547/en/

Eshelman LJ, Schaffer JD (1993) Real-coded genetic algorithms and

interval-schemata. In: Whitley DL (ed) Foundation of Genetic

Algorithms 2, Morgan Kaufmann., San Mateo, pp 187–202

Eshelman LJ, Caruana RA, Schaffer JD (1989) Biases in the

crossover landscape. In: Proceedings of the third international

conference on Genetic algorithms, Morgan Kaufmann Publishers

Inc., San Francisco, pp 10–19

Feo T, Resende M (1989) A probabilistic heuristic for a computa-

tionally difficult set covering problem. Oper Res Lett 8:67–

71

Feo TA, Resende MG (1995) Greedy randomized adaptive search

procedures. J Glob Optim 6:109–133

Fogarty TC (1989) Varying the probability of mutation in the genetic

algorithm. In: Proceedings of the 3rd International Conference

on Genetic Algorithms, Morgan Kaufmann Publishers Inc., San

Francisco, pp 104–109

Fogel D, Fogel L, Atmar J (1991) Meta-evolutionary programming,

vol 1. In: Conference Record of the Twenty-Fifth Asilomar

Conference on Signals, Systems and Computers, 1991.

pp 540–545. doi:10.1109/ACSSC.1991.186507

Fogel LJ (1964) On the organization of intellect. Ph.D. thesis, UCLA

Fogel LJ, Fogel DB (1986) Artificial intelligence through evolution-

ary programming. Tech. rep., Final Report for US Army

Research Institute, contract no PO-9-X56-1102C-1

Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through

simulated evolution. Wiley

Fonseca CM, Fleming PJ (1993) Genetic algorithms for multiobjec-

tive optimization: Formulationdiscussion and generalization. In:

Proceedings of the 5th International Conference on Genetic

Algorithms, Morgan Kaufmann Publishers Inc., San Francisco,

pp 416–423

Fontoura M, Lucena C, Andreatta A, Carvalho S, Ribeiro C (2001)

Using uml-f to enhance framework development: a case study in

the local search heuristics domain. J Syst Softw 57(3):201–206

Fowler M (2004) Inversion of control containers and the dependency

injection pattern. http://www.martinfowler.com/articles/injection.

html

Gagnè C, Parizeau M (2006) Genericity in evolutionary computation

software tools: principles and case-study. Int J Artif Intell Tools

15(2):173–194

Gamma E, Helm R, Johnson R, Vlissides J (1994) Design patterns:

elements of reusable object-oriented software, illustrated edition.

Addison-Wesley Professional

Garcı́a-Nieto J, Alba E, Chicano F (2007) Using metaheuristic

algorithms remotely via ros. In: Proceedings of the 9th annual

conference on Genetic and evolutionary computation (GECCO

’07), ACM, New York, pp 1510–1510. doi: 10.1145/1276

958.1277239

Geman S, Geman D (1987) Stochastic relaxation, gibbs distributions,

and the bayesian restoration of images. Readings in computer

vision: issues, problems, principles, and paradigms, pp 564–584

Glover F (1977) Heuristics for integer programming using surrogate

constraints. Decis Sci 8(1):156–166. doi:10.1111/j.1540-5915.

1977.tb01074.x

Glover F (1989) Tabu search—part i. ORSA J Comput 1:190–206

Glover F, Kochenberger GA (2002) Handbook of metaheuristic.

Kluwer Academic Publishers

Goldberg D, Lingle R (1985) Alleles loci and the traveling salesman

problem. In: Proc. 1st Int. Conf. on Genetic Algorithms and their

Applications, pp 154–159

Goldberg DE (1989) Genetic algorithms in search, optimization, and

machine learning. Addison-Wesley.

Goldberg DE (1990) A note on boltzmann tournament selection for

genetic algorithms and population-oriented simulated annealing.

Complex Syst 4(4):445–460

Metaheuristic optimization frameworks 559

123

http://dx.doi.org/10.1109/52.536457
http://dx.doi.org/10.1023/B:HEUR.0000026900.92269.ec
http://dx.doi.org/10.1023/B:HEUR.0000026900.92269.ec
http://dx.doi.org/10.1016/j.cor.2004.08.012
http://www.sciencedirect.com/science/article/B6VC5-4DBJG28-2/2/57210fee165fec156db017ff5e59aa5f
http://www.sciencedirect.com/science/article/B6VC5-4DBJG28-2/2/57210fee165fec156db017ff5e59aa5f
http://www.sciencedirect.com/science/article/B6VC5-4DBJG28-2/2/57210fee165fec156db017ff5e59aa5f
http://dx.doi.org/10.1002/spe.524
http://dx.doi.org/10.1109/4235.585892
http://ci.nii.ac.jp/naid/10000024547/en/
http://ci.nii.ac.jp/naid/10000024547/en/
http://dx.doi.org/10.1109/ACSSC.1991.186507
http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html
http://dx.doi.org/10.1145/1276958.1277239
http://dx.doi.org/10.1145/1276958.1277239
http://dx.doi.org/10.1111/j.1540-5915.1977.tb01074.x
http://dx.doi.org/10.1111/j.1540-5915.1977.tb01074.x


Goldberg DE, Smith RE (1987) Nonstationary function optimization

using genetic algorithm with dominance and diploidy. In:

Proceedings of the Second International Conference on Genetic

Algorithms on Genetic algorithms and their application, L.

Erlbaum Associates Inc., Hillsdale, pp 59–68

Hansen P, Mladenović N, Perez-Britos D (2001) Variable neighbor-

hood decomposition search. J Heuristics 7(4):335–350. doi:

10.1023/A:1011336210885

Ho YC, Pepyne DL (2002) Simple explanation of the no-free-

lunch theorem and its implications. J Optim Theory Appl

115(3):549–570. http://www.ingentaconnect.com/content/klu/jota/

2002/00000115/00000003/00450394

Holland JH (1975) Adaptation in natural and artificial systems: an

introductory analysis with applications to biology, control, and

artificial intelligence. University of Michigan Press

Holland JH (1992) Adaptation in natural and artificial systems. MIT

Press, Cambridge

Horn J, Nafpliotis N, Goldberg D (1994) A niched pareto genetic

algorithm for multiobjective optimization. In: Proceedings of the

First IEEE Conference on Evolutionary Computation, 1994, vol

1, pp 82–87. doi:10.1109/ICEC.1994.350037

Iredi S, Merkle D, Middendorf M (2001) Bi-criterion optimization

with multi colony ant algorithms. In: Proceedings of the First

International Conference on Evolutionary Multi-Criterion Opti-

mization (EMO ’01), Springer, London, pp 359–372

Jong KAD (1975) An analysis of the behavior of a class of genetic

adaptive systems. Ph.D. thesis, University of Michigan

Kennedy J, Eberhart R (1995) Particle swarm optimization, vol 4. In:

Proceedings., IEEE International Conference on Neural Net-

works, 1995. pp 1942–1948. doi:10.1109/ICNN.1995.488968.

Kennedy J, Mendes R (2002) Population structure and particle swarm

performance. In: Proceedings of the IEEE Congress on Evolu-

tionary Computation (CEC)

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by

simulated annealing. Science 220(4598):671–680. http://www.

jstor.org/stable/1690046

Kitchenham BA (2004) Procedures for undertaking systematic reviews.

Tech. rep., Computer Science Department, Keele University

Knowles JD, Corne DW (2000) Approximating the nondominated

front using the pareto archived evolution strategy. Evol Comput

8(2):149–172. doi:10.1162/106365600568167

Koza JR (1992) Genetic programming: on the programming of

computers by natural selection. MIT Press

Kronfeld M, Planatscher H, Zell A (2010) The EvA2 optimization

framework. In: Blum C, Battiti R (eds) Learning and Intelligent

Optimization Conference, Special Session on Software for

Optimization (LION-SWOP), Springer, Venice, no. 6073 in

Lecture Notes in Computer Science, LNCS, pp 247–250.

http://www.ra.cs.uni-tuebingen.de/publikationen/2010/Kron10E

vA2Short.pdf

Luke S, Panait L, Balan G, Paus S, Skolicki Z, Popovici E, Sullivan

K, Harrison J, Bassett J, Hubley R, Chircop A, Compton J,

Haddon W, Donnelly S, Jamil B, O’Beirne J (2009) Ecj: A java-

based evolutionary computation research system. http://cs.gmu.

edu/eclab/projects/ecj/

Martin Lukasiewycz FR Michael Glab, Helwig S (2009) Opt4j—the

optimization framework for java. http://www.opt4j.org

Meffert K (2006) JUnit Profi-Tips. Entwickler Press

Michalewicz Z (1994) Genetic algorithms plus data structures equals

evolution programs. Springer, New York

Michalewicz Z, Fogel DB (2004) How to solve it: modern heuristics.

Springer

Mladenović N (1995) A variable neighborhood search algorithm - a

new metaheuristic for combinatorial optimization. Abstracts of

papers published at Optimization Week, p 112

Monmarchè N, Venturini G, Slimane M (2000) On how pachycondyla

apicalis ants suggest a new search algorithm. Futur Gener

Comput Syst 16(9):937–946

Montana DJ (1995) Strongly typed genetic programming. Evol

Comput 3(2):199–230. doi:10.1162/evco.1995.3.2.199

Montana DJ, Davis L (1989) Training feedforward neural networks

using genetic algorithms. In: Proceedings of the 11th international

joint conference on Artificial intelligence (IJCAI’ 89). Morgan

Kaufmann Publishers Inc., San Francisco, pp 762–767

Muhlenbein H (1991) Evolution on time and space-the parallel

genetic glgorithm. Foundations of Genetic Algorithms. http://ci.

nii.ac.jp/naid/10016718767/en/

Nossal GJV, Lederberg J (1958) Antibody production by single cells.

Nature 181(4620):1419–1420. doi:10.1038/1811419a0

Nulton JD, Salamon P (1988) Statistical mechanics of combinatorial

optimization. Phys Rev A 37(4):1351–1356. doi:10.1103/Phys

RevA.37.1351

Oliver IM, Smith DJ, Holland JRC (1987) A study of permutation

crossover operators on the traveling salesman problem. In:

Proceedings of the Second International Conference on Genetic

Algorithms on Genetic algorithms and their application, L.

Erlbaum Associates Inc., Hillsdale, pp 224–230

Parejo JA, Racero J, Guerrero F, Kwok T, Smith K (2003) Fom: A

framework for metaheuristic optimization. Computational Sci-

ence ICCS 2003 Lecture Notes in Computer Science

2660:886–895, no-indexada

Parsopoulos K, Vrahatis M (2002a) Recent approaches to global

optimization problems through particle swarm optimization. Nat

Comput 1(2):235–306

Parsopoulos KE, Vrahatis MN (2002b) Particle swarm optimization
method in multiobjective problems. In: Proceedings of the 2002

ACM symposium on Applied computing (SAC ’02), ACM, New

York, pp 603–607. doi:10.1145/508791.508907

Price KV, Storn RM, Lampinen JA (2005) Differential evolution: a

practical approach to global optimization. Natural Comput-

ing Series, Springer, Berlin. http://www.springer.com/west/

home/computer/foundations?SGWID=4-156-22-32104365-0&#38;

teaserId=68063&#38;CENTER_ID=69103

Radcliffe NJ (1991) Forma analysis and random respectful recom-

bination. In: In Foundations of Genetic Algorithms, pp 222–229

Rahman I, Das AK, Mankar RB, Kulkarni BD (2009) Evaluation of

repulsive particle swarm method for phase equilibrium and

phase stability problems. Fluid Phase Equilibria. doi:10.1016/

j.fluid.2009.04.014

Raidl GR (2006) Hybrid metaheuristics. Springer, chap a unified view

on hybrid metaheuristics, pp 1–12

Rechenberg I (1965) Cybernetic solution path of an experimental

problem. Royal Aircraft Establishment Library Translation 1122,

Farnborough

Renders JM, Bersini H (1994) Hybridizing genetic algorithms with

hill-climbing methods for global optimization: two possible

ways. In: Proceedings of the First IEEE Conference on

Computational Intelligence, vol 1, pp 312–317. doi:10.1109/

ICEC.1994.349948

Roli A, Blum C (2008) Hybrid metaheuristics: an introduction. In:

Hybrid metaheuristics, Springer

Rothlauf F (2006) Representations for genetic and evolutionary

algorithms, 2nd edn. Springer

Sasaki D (2005) Armoga: an efficient multi-objective genetic

algorithm. Tech. rep.

Schaffer JD, Morishima A (1987) An adaptive crossover distribution

mechanism for genetic algorithms. In: Proceedings of the Second

International Conference on Genetic Algorithms on Genetic

algorithms and their application, L. Erlbaum Associates Inc.,

Hillsdale, pp 36–40

560 J. A. Parejo et al.

123

http://dx.doi.org/10.1023/A:1011336210885
http://www.ingentaconnect.com/content/klu/jota/2002/00000115/00000003/00450394
http://www.ingentaconnect.com/content/klu/jota/2002/00000115/00000003/00450394
http://dx.doi.org/10.1109/ICEC.1994.350037
http://dx.doi.org/10.1109/ICNN.1995.488968
http://www.jstor.org/stable/1690046
http://www.jstor.org/stable/1690046
http://dx.doi.org/10.1162/106365600568167
http://www.ra.cs.uni-tuebingen.de/publikationen/2010/Kron10EvA2Short.pdf
http://www.ra.cs.uni-tuebingen.de/publikationen/2010/Kron10EvA2Short.pdf
http://cs.gmu.edu/eclab/projects/ecj/
http://cs.gmu.edu/eclab/projects/ecj/
http://www.opt4j.org
http://dx.doi.org/10.1162/evco.1995.3.2.199
http://ci.nii.ac.jp/naid/10016718767/en/
http://ci.nii.ac.jp/naid/10016718767/en/
http://dx.doi.org/10.1038/1811419a0
http://dx.doi.org/10.1103/PhysRevA.37.1351
http://dx.doi.org/10.1103/PhysRevA.37.1351
http://dx.doi.org/10.1145/508791.508907
http://www.springer.com/west/home/computer/foundations?SGWID=4-156-22-32104365-0&#38;teaserId=68063&#38;CENTER_ID=69103
http://www.springer.com/west/home/computer/foundations?SGWID=4-156-22-32104365-0&#38;teaserId=68063&#38;CENTER_ID=69103
http://www.springer.com/west/home/computer/foundations?SGWID=4-156-22-32104365-0&#38;teaserId=68063&#38;CENTER_ID=69103
http://dx.doi.org/10.1016/j.fluid.2009.04.014
http://dx.doi.org/10.1016/j.fluid.2009.04.014
http://dx.doi.org/10.1109/ICEC.1994.349948
http://dx.doi.org/10.1109/ICEC.1994.349948


Schwefel HP (1981) Numerical optimization of computer models.

Wiley, New York

Sloane NJA, Hardin RH (1991–2003) Gosset: a general-purpose

program for designing experiments. http://www.research.att.

com/njas/gosset/index.html

de Souza MC, Martins P (2008) Skewed vns enclosing second order

algorithm for the degree constrained minimum spanning tree

problem. Eur J Oper Res 191(3):677–690. doi:10.1016/

j.ejor.2006.12.061, http://www.sciencedirect.com/science/article/

B6VCT-4N2KTC4-7/2/7799160d76fbba32ad42f719ee72bbf9

Stutzle T, Hoos H (1997) Max–min ant system and local search for

the traveling salesman problem. In: EEE International Confer-

ence on Evolutionary Computation, 1997, pp 309–314. doi:

10.1109/ICEC.1997.592327.

Suganthan PN (1999) Particle swarm optimiser with neighbourhood

operator. In: Proceedings of the IEEE Congress on Evolutionary

Computation (CEC), pp 1958–1962

Suresh R, Mohanasundaram K (2004) Pareto archived simulated

annealing for permutation flow shop scheduling with multiple

objectives, vol 2. In: IEEE Conference on Cybernetics and

Intelligent Systems, 2004, pp 712–717. doi:10.1109/ICCIS.

2004.1460675

Syswerda G (1991) Foundations of genetic algorithms. Morgan

Kaufmann, chap a study of reproduction in generational and

steady-state genetic algorithms

Talbi EG (2002) A taxonomy of hybrid metaheuristics. J Heuristics

8(5):541–564

Ulungu E, Teghem J, Fortemps P, Tuyttens D (1999) Mosa method: a

tool for solving multiobjective combinatorial optimization

problems. J Multi Criter Decis Anal 8(4):221–236

Van Veldhuizen DA, Lamont GB (2000) Multiobjective optimization

with messy genetic algorithms. In: Proceedings of the 2000

ACM symposium on Applied computing (SAC ’00), ACM, New

York, pp 470–476. doi:10.1145/335603.335914

Ventura S, Romero C, Zafra A, Delgado J, Hervás C (2008) Jclec: a java

framework for evolutionary computation. Soft computing—a

fusion of foundations, methodologies and applications

12(4):381–392. 10.1007/s00500-007-0172-0

Vesterstrm JS, Riget J (2002) Particle swarms: extensions for

improved local, multi-modal, and dynamic search in numerical

optimization. Ph.D. thesis, Dept. of Computer Science, Univer-

sity of Aarhus

Voß S (2001) Meta-heuristics: the state of the art. pp 1–23

Voß S (2002) Optimization software class libraries. Kluwer Aca-

demic Publishers

Wagner S (2009) Heuristic optimization software systemsm odeling

of heuristic optimization algorithms in the heuristic lab software

environment. Ph.D. thesis, Johannes Kepler University, Linz

Whitley D (1989) The genitor algorithim and selection pressure: Why

rank-based allocation of reproductive trials is best. In: Proceed-

ings of the Third International Conference on Genetic Algo-

rithms, pp 116–121

Whitley D, Rana S, Heckendorn RB (1999) The island model genetic

algorithm: on separability, population size and convergence. CIT

J Comput Inf Technol 7(1):33–47

Wilke DN, Kok S, Groenwold AA (2007) Comparison of linear and

classical velocity update rules in particle swarm optimization:

notes on diversity. International. Int J Numer Methods Eng

70(8):962–984

Wilson GC, Mc Intyre A, Heywood MI (2004) Resource review:

Three open source systems for evolving programs–lilgp, ecj and

grammatical evolution. Genet Program Evolv Mach

5(1):103–105. doi:10.1023/B:GENP.0000017053.10351.dc

Wolpert DH, Macready WG (1997) No free lunch theorems for

optimization. IEEE Trans Evol Comput 1(1):67–82. doi:

10.1109/4235.585893.

Wright AH (1994) Genetic algorithms for real parameter optimiza-

tion. In: Foundations of genetic algorithms, Morgan Kaufmann,

pp 205–218

Yao X, Liu Y (1996) Fast evolutionary programming. In: Proc. 5th

Ann. Conf. on Evolutionary Programming

Zhou H, Grefenstette JJ (1986) Induction of finite automata by genetic

algorithms. In: Proceedings of the 1986 IEEE International

Conference on Systems, Man, and Cybernetics, pp 170–174

Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a

comparative case study and the strength pareto approach. IEEE

Trans Evol Computation 3(4):257–271

Zitzler E, Laumanns M, Thiele L (2001) Spea2: Improving the

strength pareto evolutionary algorithm. Tech. rep., Computer

Engineering and Networks Laboratory (TIK). Department of

Electrical Engineering. Swiss Federal Institute of Technology

(ETH)

Metaheuristic optimization frameworks 561

123

http://www.research.att.com/njas/gosset/index.html
http://www.research.att.com/njas/gosset/index.html
http://dx.doi.org/10.1016/j.ejor.2006.12.061
http://dx.doi.org/10.1016/j.ejor.2006.12.061
http://www.sciencedirect.com/science/article/B6VCT-4N2KTC4-7/2/7799160d76fbba32ad42f719ee72bbf9
http://www.sciencedirect.com/science/article/B6VCT-4N2KTC4-7/2/7799160d76fbba32ad42f719ee72bbf9
http://dx.doi.org/10.1109/ICEC.1997.592327
http://dx.doi.org/10.1109/ICCIS.2004.1460675
http://dx.doi.org/10.1109/ICCIS.2004.1460675
http://dx.doi.org/10.1145/335603.335914
http://dx.doi.org/10.1007/s00500-007-0172-0
http://dx.doi.org/10.1023/B:GENP.0000017053.10351.dc
http://dx.doi.org/10.1109/4235.585893

	Metaheuristic optimization frameworks: a survey and benchmarking
	Abstract
	Introduction and motivation
	Metaheuristic optimization frameworks
	Why are MOFs valuable?
	Drawbacks: all that glitters are not gold

	Review method
	Research questions
	Source material
	Inclusion and exclusion criteria
	Comparision criteria

	Metaheuristic techniques (C1)
	Characteristics description
	Assessment and feature coverage analysis
	Comparative analysis

	Adapting to a problem and its structure (C2)
	Characteristics description
	Assessment and feature coverage analysis
	Comparative analysis

	Advanced characteristics (C3)
	Characteristics description
	Assessment and feature cover analysis
	Comparative analysis


	Global optimization process support (C4)
	Characteristics description
	Assessment and feature cover analysis
	Comparative analysis


	Design, implementation and licensing (C5)
	Characteristics description
	Assessment and feature cover analysis

	Documentation and support (C6)
	Comparative analysis

	Discussion and challenges
	Capabilities discussion
	Evolution of the ecosystem of MOFs
	Potential areas of improvement of current frameworks

	Conclusions
	Acknowledgments
	Appendix: Data tables
	References


