
Covariance Matrix Adaptation for
Multi-objective Optimization

Christian Igel christian.igel@neuroinformatik.rub.de
Institut für Neuroinformatik, Ruhr-Universität Bochum, 44780 Bochum, Germany

Nikolaus Hansen nikolaus.hansen@inf.ethz.ch
Computational Laboratory (CoLab), Institute of Computational Science, ETH Zurich,
8092 Zurich, Switzerland

Stefan Roth stefan.roth@neuroinformatik.rub.de
Institut für Neuroinformatik, Ruhr-Universität Bochum, 44780 Bochum, Germany

Abstract
The covariance matrix adaptation evolution strategy (CMA-ES) is one of the most pow-
erful evolutionary algorithms for real-valued single-objective optimization. In this pa-
per, we develop a variant of the CMA-ES for multi-objective optimization (MOO). We
first introduce a single-objective, elitist CMA-ES using plus-selection and step size con-
trol based on a success rule. This algorithm is compared to the standard CMA-ES.
The elitist CMA-ES turns out to be slightly faster on unimodal functions, but is more
prone to getting stuck in sub-optimal local minima. In the new multi-objective CMA-
ES (MO-CMA-ES) a population of individuals that adapt their search strategy as in
the elitist CMA-ES is maintained. These are subject to multi-objective selection. The
selection is based on non-dominated sorting using either the crowding-distance or the
contributing hypervolume as second sorting criterion. Both the elitist single-objective
CMA-ES and the MO-CMA-ES inherit important invariance properties, in particular
invariance against rotation of the search space, from the original CMA-ES. The bene-
fits of the new MO-CMA-ES in comparison to the well-known NSGA-II and to NSDE,
a multi-objective differential evolution algorithm, are experimentally shown.

Keywords
Multi-objective optimization, evolution strategy, covariance matrix adaptation.

1 Introduction

The covariance matrix adaptation evolution strategy (CMA-ES) is one of the most pow-
erful evolutionary algorithms for real-valued optimization (Hansen and Ostermeier,
2001; Hansen et al., 2003; Hansen and Kern, 2004; Hansen, 2006b) with many successful
applications (for an overview see Hansen, 2005). The main advantages of the CMA-ES
lie in its invariance properties, which are achieved by carefully designed variation and
selection operators, and in its efficient (self-) adaptation of the mutation distribution.
The CMA-ES is invariant against order-preserving transformations of the fitness func-
tion value and in particular against rotation and translation of the search space—apart
from the initialization. If either the strategy parameters are initialized accordingly or
the time needed to adapt the strategy parameters is neglected, any affine transforma-
tion of the search space does not affect the performance of the CMA-ES. Rotation of the
search space to test invariance and to generate non-separable functions was proposed

c©2007 by the Massachusetts Institute of Technology Evolutionary Computation 15(1): 1-28

C. Igel, N. Hansen and S. Roth

by Hansen et al. (1995), and the importance of such invariance properties for evolution-
ary algorithms is discussed in depth by Salomon (1996) and Hansen (2000). Note that
an algorithm not being invariant against a certain group of transformations means that
it is biased towards a certain class of problems defined w.r.t. those transformations, for
example to tasks with separable fitness functions. Such a bias is only desirable if the
applications for which the algorithm is designed fall into that special class. We think,
for the transformations mentioned above this assumption is not attractive in general.

The interest in multi-objective optimization (MOO) is increasing rapidly. Several
successful evolutionary MOO algorithms have been developed (Coello Coello et al.,
2002; Deb, 2001), where the main focus of research has been put on the selection and
archiving strategies. Multi-objective evolution strategies with (self-) adaptation of the
search distribution have been proposed (Laumanns et al., 2001; Büche et al., 2003; Igel,
2005), but none of them achieves the invariance properties of the single-objective CMA-
ES. Therefore in this study, we develop a variant of the CMA-ES for real-valued MOO.

In the CMA-ES a small population size is usually sufficient and only one set of
strategy parameters is maintained. For MOO a large population is needed to evolve
a diverse set of solutions, each ideally representing a (Pareto-) optimal compromise
between the objectives. The optimal strategy parameters for the members of this popu-
lation may differ considerably and should therefore be adapted individually. This sug-
gests that it is reasonable to apply a MOO selection mechanism to a population of indi-
viduals each of which uses the strategy adaptation of the CMA-ES (for details about the
covariance matrix adaptation we refer to Hansen and Ostermeier, 2001, and Hansen,
2006b). The standard single-objective CMA-ES relies on non-elitist (µ, λ)-selection, that
is, the best µ of λ offspring form the next parent population and all former parents are
discarded. For each set of strategy parameters to be adapted, several offspring have
to be generated in each generation. If we want to maximize the number of different
strategy parameter sets, given a fixed total number of offspring per iteration, the num-
ber of offspring per parent has to be as small as possible. Therefore, we first develop
a single-objective, elitist CMA-ES with (1+λ)-selection, where λ can be chosen as small
as one. In this elitist (1+λ)-CMA-ES the parent population consists of a single individ-
ual generating λ offspring and the best individual out of parent and offspring becomes
the parent of the next generation. This (1+λ)-CMA-ES inherits all invariance properties
from the original CMA-ES and is integrated into the MOO framework by consider-
ing, roughly speaking, a population of (1+λ) evolution strategies, which are subject to
multi-objective selection. Thus, the new MO-CMA-ES inherits important invariance
properties from the original CMA-ES.

To summarize, the goal of this study is to augment evolutionary real-valued MOO
with efficient adaptation of the search distribution and invariance against transforma-
tions of the search space. To achieve this, we develop an elitist variant of the single-
objective CMA-ES. Its strategy adaptation mechanism can be combined with multi-
objective selection using non-dominated sorting. To improve selection, we propose the
contributing hypervolume as second sorting criterion. For better empirical evaluation,
new biobjective benchmark functions are presented. The article is organized as follows.
In the next section, the new single-objective elitist (1+λ)-CMA-ES is presented and em-
pirically compared to the standard (µ, λ)-CMA-ES. Then, in Section 3, we introduce
the MO-CMA-ES using either the original selection of the non-dominated sorting ge-
netic algorithm II (NSGA-II; Deb et al., 2002) or a new modification thereof based on
the contributing hypervolume of individuals (Emmerich et al., 2005). In Section 4, the
two variants of the MO-CMA-ES are empirically compared with the NSGA-II and non-

2 Evolutionary Computation Volume 15, Number 1

Covariance Matrix Adaptation for Multi-objective Optimization

dominated sorting differential evolution (NSDE; Iorio and Li, 2005). As far as we know,
the latter is the only other evolutionary MOO algorithm invariant against rotation of
the search space. The results substantiate our final conclusions.

2 A Single-objective Elitist CMA Evolution Strategy

In this section we combine the well known (1+λ)-selection scheme of evolution strate-
gies (Rechenberg, 1973; Schwefel, 1995; Beyer and Schwefel, 2002) with the covariance
matrix adaptation. The original update rule for the covariance matrix can be reason-
ably applied in the (1+λ)-selection. The cumulative step size adaptation (path length
control) of the (µ/µ, λ)-CMA-ES is replaced by a success rule based step size control.
The path length control cannot be easily applied, because the update of the evolution
path stalls whenever no successful offspring is produced. If in this case the evolution
path is long, the step size diverges.

Nomenclature In the (1+λ)-CMA-ES, each individual, a, is a 5-tuple a =
[x, psucc, σ, pc, C] comprising its candidate solution vector x ∈ Rn, an averaged suc-
cess rate psucc ∈ [0, 1], the global step size σ ∈ R+, an evolution path pc ∈ Rn, and the
covariance matrix C ∈ Rn×n. Additionally, the following nomenclature is used:

f : Rn → R, x �→ f(x) is the objective (fitness) function to be minimized.

λ
(g+1)
succ =

∣∣∣{i = 1, . . . , λ
∣∣∣f(x(g+1)

i) ≤ f(x(g)
parent)

}∣∣∣ is the number of successful new can-
didate solutions (successful offspring).

N (m, C) is a multi-variate normal distribution with mean vector m and covariance
matrix C. The notation x ∼ N (m, C) denotes that random variable x is distrib-
uted according to the distribution N (m, C).

x
(g)
1:λ ∈ Rn is the best point from

{
x

(g)
1 , . . . , x

(g)
λ

}
, that is, f(x(g)

1:λ) ≤ f(x(g)
i) for all

i = 1, . . . , λ.

2.1 The (1+λ)-CMA-ES

The algorithm is described within three routines. In the main routine, (1+λ)-CMA-ES,
the λ new candidate solutions are sampled and the parent solution aparent is updated
depending on whether any of the new solutions is better than aparent.

Evolutionary Computation Volume 15, Number 1 3

C. Igel, N. Hansen and S. Roth

Algorithm 1: (1+λ)-CMA-ES

g = 0, initialize a
(g)
parent1

repeat2

a
(g+1)
parent ← a

(g)
parent3

for k = 1, . . . , λ do4

x
(g+1)
k ∼ N

(
x

(g)
parent, σ

(g)2C(g)
)

5

updateStepSize

(
a
(g+1)
parent,

λ
(g+1)
succ

λ

)
6

if f
(
x

(g+1)
1:λ

)
≤ f

(
x

(g)
parent

)
then7

x
(g+1)
parent ← x

(g+1)
1:λ8

updateCovariance

(
a
(g+1)
parent,

x
(g+1)
parent − x

(g)
parent

σ
(g)
parent

)
9

g ← g + 110

until stopping criterion is met11

After sampling the new candidate solutions, the step size is updated based on the suc-
cess rate psucc = λ

(g+1)
succ /λ with a learning rate cp (0 < cp ≤ 1).

Procedure updateStepSize(a = [x, psucc, σ, pc, C], psucc)

psucc ← (1− cp) psucc + cppsucc1

σ ← σ · exp

(
1
d

psucc − p
target
succ

1− p
target
succ

)
2

This update rule is rooted in the 1/5-success-rule proposed by Rechenberg (1973) and
is an extension from the rule proposed by Kern et al. (2004). It implements the well-
known heuristic that the step size should be increased if the success rate (i.e., the frac-
tion of offspring better than the parent) is high, and the step size should be decreased
if the success rate is low. The rule is reflected in the argument to the exponential func-
tion. For psucc > ptarget

succ the argument is greater than zero and the step size increases;
for psucc < ptarget

succ the argument is smaller than zero and the step size decreases; for
psucc = ptarget

succ the argument becomes zero and no change of σ takes place.
The argument to the exponential function is always smaller than 1/d and larger

than −1/d if ptarget
succ < 0.5 (a necessary assumption). Therefore, the damping parameter

d controls the rate of the step size adaptation. Using psucc instead of the input argument
psucc = λ

(g+1)
succ /λ primarily smoothes the single step size changes and has only a minor

influence on the maximal possible step size changing rate.
If the best new candidate solution was better than the parent individual (see main

routine), the covariance matrix is updated as in the (1,λ)-CMA-ES (see Hansen and
Ostermeier, 2001).

4 Evolutionary Computation Volume 15, Number 1

Covariance Matrix Adaptation for Multi-objective Optimization

Table 1: Default parameters for the (1+λ)-CMA Evolution Strategy.

Selection:
λ = 1

Step size control:

d = 1 +
n

2 λ
, ptarget

succ =
1

5 +
√

λ/2
, cp =

ptarget
succ λ

2 + ptarget
succ λ

Covariance matrix adaptation:

cc =
2

n + 2
, ccov =

2
n2 + 6

, pthresh = 0.44

Procedure updateCovariance(a = [x, psucc, σ, pc, C], xstep ∈ Rn)

if psucc < pthresh then1

pc ← (1− cc)pc +
√

cc(2 − cc) xstep2

C ← (1− ccov)C + ccov · pcpc
T3

else4

pc ← (1− cc)pc5

C ← (1− ccov)C + ccov ·
(
pcpc

T + cc(2− cc)C
)

6

The update of the evolution path pc depends on the value of psucc (here the smoothing
of λsucc/λ is of considerable relevance). If the smoothed success rate psucc is high, that
is, above pthresh < 0.5, the update of the evolution path pc is stalled. This prevents
an overly fast increase of axes of C when the step size is far too small, for example,
in a linear surrounding. If the smoothed success rate psucc is low, the update of pc is
accomplished by obeying an exponential smoothing. The constants cc and ccov (0 ≤
ccov < cc ≤ 1) are learning rates for the evolution path and the covariance matrix,
respectively. The factor

√
cc(2− cc) normalizes the variance of pc viewed as a random

variable (see Hansen and Ostermeier, 2001). The evolution path pc is used to update the
covariance matrix. The new covariance matrix is a weighted mean of the old covariance
matrix and the outer product of pc. In the second case (line 5), the second summand in
the update of pc is missing and the length of pc shrinks. Although of minor relevance,
the term cc(2 − cc)C (line 6) compensates for this shrinking in C.

Strategy Parameters The (external) strategy parameters are offspring number λ, tar-
get success probability ptarget

succ , step size damping d, success rate averaging parameter
cp, cumulation time horizon parameter cc, and covariance matrix learning rate ccov. De-
fault values are given in Table 1. Most default values are derived from the precursor
algorithms and validated by sketchy simulations on simple test functions: the target
success rate is close to the well-known 1/5 and depends on λ, because the optimal suc-
cess rate in the (1 + λ)-ES certainly decreases with increasing λ (Beyer, 2001, p. 78f).
The parameters for the covariance matrix adaptation are similar to those for the (1,λ)-
CMA-ES.

Initialization The elements of the initial individual, a
(0)
parent are set to psucc = p

target
succ ,

pc = 0, and C = I, where p
target
succ is given in Table 1. The initial candidate solution

x ∈ Rn and the initial σ ∈ R+ must be chosen problem dependent. The optimum
should presumably be within the cube x± 2 σ (1, . . . , 1)T.

Evolutionary Computation Volume 15, Number 1 5

C. Igel, N. Hansen and S. Roth

Table 2: Single-objective test functions to be minimized, where y = Ox and O is an
orthogonal matrix, implementing an angle-preserving linear transformation.

Name Function Initial region

Linear flinear(x) = y1 O−1[6000, 6006]n

Sphere fsphere(x) =
∑n

i=1 x2
i O−1[−1, 5]n

Ellipsoid felli(x) =
∑n

i=1

(
1000

i−1
n−1 yi

)2

O−1[−1, 5]n

Rastrigin frastrigin(x) = 10n +
∑n

i=1

(
y2

i − 10 cos(2πyi)
)

O−1[−1, 5]n

2.2 Simulation of the (1+λ)-CMA-ES

Test functions To validate the essential properties of the search algorithm we use
the single-objective test problems summarized in Table 2. The linear function flinear

tests the ability and the speed to increase the step size σ. On fsphere basic convergence
properties and the speed of step size decrease are tested. On felli the performance of
the CMA procedure, that is, the ability to adapt the distribution shape to the function
topography is examined. On frastrigin, the ability to circumvent local optima is exam-
ined. Apart from flinear, the optimum function value is zero for all functions. The
experimental results are independent of angle-preserving transformations, like trans-
lation and rotation of the search space, that is, they are in particular independent of the
chosen orthogonal transformation matrix O.

Methods We conducted 51 runs for each function and each dimension. The initial
candidate solution x is chosen uniformly randomly in the initial region from Table 2,
and the initial σ = 3 is half of the width of the initial interval. Excepting flinear, the
simulation is stopped when function value differences do not exceed 10−12 or when
the function value becomes smaller than the target function value 10−9. To conduct
statistical testing the runs were ranked. Runs that reached the target function value
were regarded as better and ranked according to their number of function evaluations.
The remaining runs were ranked according to their final function value. To evaluate
statistical significance the non-parametric Mann-Whitney U-test (Wilcoxon rank sum
test) was conducted. If not stated otherwise discussed differences are significant with
p < 0.001.

Results and Discussion The (1+λ)-CMA-ES is compared to the (µ/µW,λ)-CMA-ES,
the standard CMA-ES with weighted global intermediate (µ/µW) recombination as de-
scribed by Hansen and Kern (2004). The former is elitist and has a success rule based
step size adaptation. The latter is non-elitist, uses the cumulative step size adaptation
(path length control), and conducts weighted recombination of all µ = �λ/2	 parents.

On flinear the step size increases linearly on the log-scale in all strategy variants, a
minimal necessary demand on step size control (Hansen, 2006a). The mean number of
function evaluations to increase the step size by one order of magnitude is shown in
Table 3 for two plus- and two comma-strategies. The success rule in the plus-strategy
is up to five times faster than the path length control in the comma-strategies, but this
difference should usually be irrelevant.

Runs on fsphere, felli, and frastrigin are shown in Figure 1. First, we discuss the
comparison between (1+λ)- and (1,λ)-CMA-ES for the same λ (� and � in the figure).
On fsphere and felli the two strategies perform quite similarly. The slight differences on

6 Evolutionary Computation Volume 15, Number 1

Covariance Matrix Adaptation for Multi-objective Optimization

Table 3: Mean number of function evaluations needed to increase the step size by a
factor of ten on flinear, divided by n/5.

n λ (1+1) (1+λ) (1,λ) (µ/µW,λ)

5 8 25 60 98 72
20 12 18 32 96 56

fsphere are primarily the result of different step size change rates. The reason for the
slight differences on felli is presumably the smaller target step size of the success based
adaptation rule. A smaller step size can lead to a more pronounced evolution path that
assists a faster adaptation of the covariance matrix. Both strategies perform identically
on frastrigin in 5D, but in 20D non-elitist (1,λ) finds significantly better solutions. The
reasons are probably the advantage of the comma-selection scheme in escaping local
optima and the larger adapted step sizes.

More pronounced differences can be observed between the default variants (1+1)
and (µ/µW,λ). On fsphere and felli elitist (1+1) is roughly 1.5 times faster than (µ/µW,λ).
On frastrigin the standard (µ/µW,λ) finds the considerably (and significantly) better so-
lutions. Here, the performance of the plus-strategy can be considerably improved if
the step size change rate is slowed down by increasing the damping d, but nevertheless
remains below that of the (µ/µW,λ) strategy.

The empirical results give evidence that the plus-selection is effectively combined
with the covariance matrix adaptation. On the one hand, the plus-selection together
with the success rule based adaptation for the step size makes the evolution strategy
faster by a factor of about 1.5 on unimodal functions. On the other hand, the comma-
strategy is less susceptible to get trapped into sub-optimal local minima for two rea-
sons. First, even a particularly well evaluated individual is abandoned in the next gen-
eration; second, the path length control adapts larger step lengths, in particular within
the recombinant strategy variant (the default one).

3 Covariance Matrix Adaptation for Multi-objective Optimization

Based on the (1+λ)-CMA-ES we propose a multi-objective evolution strategy. After a
brief introduction to evolutionary multi-objective optimization, we present the consid-
ered selection mechanisms, which are based on non-dominated sorting. We propose
an alternative ranking of individuals that have the same level of non-dominance. The
ranking relies on the contributing hypervolume and can be computed efficiently for
two objectives. Then the (1+λ)-MO-CMA-ES is described.

3.1 Multi-objective Optimization

Consider an optimization problem with M objectives f1, . . . , fM : X → R to be mini-
mized. The vector f(x) = (f1(x), . . . , fM (x)) is the objective vector of x ∈ X living in
the objective space RM . The elements of X can be strictly partially ordered using the
concept of Pareto dominance. A solution x ∈ X dominates a solution x′ and we write
x ≺ x′ iff ∀m ∈ {1, . . . , M} : fm(x) ≤ fm(x′) and ∃m ∈ {1, . . . , M} : fm(x) < fm(x′).
The elements of the (Pareto) set {x |x ∈ X∧�x′ ∈ X : x′ ≺ x} are called Pareto optimal.
The corresponding Pareto front is given by {f(x) |x ∈ X ∧ �x′ ∈ X : x′ ≺ x} ⊂ RM .

Without any further information no Pareto-optimal solution can be said to be su-
perior to another. The goal of multi-objective optimization (MOO) is to find a diverse

Evolutionary Computation Volume 15, Number 1 7

C. Igel, N. Hansen and S. Roth

0 500 1000 1500
10

−10

10
−5

10
0

10
5

function evaluations

fu
nc

tio
n

va
lu

e

(1+1)−ES
(1+8)−ES
(1, 8)−ES
(4/4

W
, 8)−ES

0 1000 2000 3000 4000 5000
10

−10

10
−5

10
0

10
5

function evaluations

fu
nc

tio
n

va
lu

e

(1+1)−ES
(1+12)−ES
(1,12)−ES
(6/6

W
,12)−ES

0 500 1000 1500 2000 2500 3000 3500
10

−10

10
−5

10
0

10
5

10
10

function evaluations

fu
nc

tio
n

va
lu

e

(1+1)−ES
(1+8)−ES
(1, 8)−ES
(4/4

W
, 8)−ES

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

10
−10

10
−5

10
0

10
5

10
10

function evaluations
fu

nc
tio

n
va

lu
e

(1+1)−ES
(1+12)−ES
(1,12)−ES
(6/6

W
,12)−ES

0 500 1000 1500 2000 2500
10

0

10
1

10
2

10
3

function evaluations

fu
nc

tio
n

va
lu

e

(1+1)−ES
(1+8)−ES
(1, 8)−ES
(4/4

W
, 8)−ES

0 2000 4000 6000 8000
10

1

10
2

10
3

function evaluations

fu
nc

tio
n

va
lu

e

(1+1)−ES
(1+12)−ES
(1,12)−ES
(6/6

W
,12)−ES

Figure 1: Simulations on Sphere (above), Ellipsoid (middle), and Rastrigin function
(below), in 5D (n = 5, left) and 20D (n = 20, right). Shown is the median out of 51 runs
for the (1+1)-, (1+λ)-, (1,λ)-, and (µ/µW,λ)-CMA-ES. The error bars denote final values
for the 3rd and the 49th run (5%- and 95%-percentile).

set of Pareto-optimal solutions, which provide insights into the trade-offs between the
objectives. When approaching a MOO problem by linearly aggregating all objectives
into a scalar function, each weighting of the objectives yields only a subset of Pareto-
optimal solutions (usually only a single solution). That is, various optimization trials
with different aggregations become necessary to find a diverse set of Pareto-optimal
solutions. Even worse, no linear aggregate exists such that concave parts of the Pareto

8 Evolutionary Computation Volume 15, Number 1

Covariance Matrix Adaptation for Multi-objective Optimization

front become optimal. Therefore, various trials cannot help in case of partially concave
Pareto fronts (cf. Das and Dennis, 1997). Consequently, evolutionary multi-objective
algorithms have become more and more popular for MOO in the last years (Coello
Coello et al., 2002; Deb, 2001).

In the following, we consider evolutionary real-valued MOO, where each individ-
ual a

(g)
i at generation g represents a real-valued candidate solution x

(g)
i ∈ X ⊆ Rn of

an n-dimensional problem with M objectives. For simplicity, we do not distinguish
between fm(a(g)

i) and fm(x(g)
i).

3.2 Multi-objective Selection

Our multi-objective algorithm is based on the non-dominated sorting approach used
in NSGA-II (Deb, 2001; Deb et al., 2002). The individuals are sorted according to their
level of non-dominance. To rank individuals on the same level an additional sorting
criterion is needed. We consider two criteria, the crowding-distance and the contribut-
ing hypervolume.

3.2.1 Non-dominated Sorting
First of all, the elements in a population A of candidate solutions are ranked according
to their level of non-dominance. Let the non-dominated solutions in A be denoted
by ndom(A) = {a ∈ A | �a′ ∈ A : a′ ≺ a}. The Pareto front of A is then given by
{(f1(a), . . . , fM (a)) | a ∈ ndom(A)}. The elements in ndom(A) get rank 1. The other
ranks are defined recursively by considering the set without the solutions with lower
ranks. Formally, let dom0(A) = A, doml(A) = doml−1(A) \ ndoml(A), and ndoml(A) =
ndom(doml−1(A)) for l ∈ {1, . . . }. For a ∈ A we define the level of non-dominance
r(a, A) to be i iff a ∈ ndomi(A). The time complexity of non-dominated sorting of N
elements is O(MN2) (Deb et al., 2002).

A second sorting criterion is needed to rank the solutions having the same level
of non-dominance. This criterion is very important, as usually (in particular in real-
valued optimization of continuous objective functions) after some generations there are
more non-dominated solutions in the population than solutions to be selected. We con-
sider two alternative second sorting criteria: the crowding-distance (Deb et al., 2002)
and the contributing hypervolume (Emmerich et al., 2005).

3.2.2 Crowding-distance
In the NSGA-II, non-dominated solutions A′ with the same level of non-dominance
are ranked according to how much they contribute to the spread (or diversity) of ob-
jective function values in A′. This can be measured by the crowding-distance. For M
objectives, the crowding-distance of a ∈ A′ is given by

c(a, A′) =
M∑

m=1

cm(a, A′)/(fmax
m − fmin

m) ,

where fmax
m and fmin

m are (estimates of) the minimum and maximum value of the mth
objective and

cm(a, A′) :={
∞ , if fm(a) = min{fm(a′) | a′ ∈ A′} or fm(a) = max{fm(a′) | a′ ∈ A′}
min{fm(a′′)− fm(a′) | a′, a′′ ∈ A′ \ {a} : fm(a′) ≤ fm(a) ≤ fm(a′′)} , otherwise.

Evolutionary Computation Volume 15, Number 1 9

C. Igel, N. Hansen and S. Roth

Based on the level of non-dominance and the crowding-distance we define the relation

a ≺c,A′ a′ ⇔ r(a, A′) < r(a′, A′) or[
(r(a, A′) = r(a′, A′)) ∧ (c(a, ndomr(a′,A′)(A′)) > c(a′, ndomr(a′,A′)(A′)))

]
,

for a, a′ ∈ A′. That is, a is better than a′ when compared using ≺c,A′ if either a has a
better (lower) level of non-dominance or a and a′ are on the same level but a is in a
“lesser crowded region of the objective space” and therefore induces more diversity.

The crowding-distance of N non-dominated solutions can be computed efficiently
in O(MN log N) (Deb et al., 2002). However, the crowding-distance is related to the
spread of solutions, which may be a desirable quantity and foster evolvability, but it is
not directly related to progress in terms of selecting better solutions as we will discuss
in section 4.1.

3.2.3 Contributing Hypervolume
The hypervolume measure or S-metric was introduced by Zitzler and Thiele (1998) in
the domain of evolutionary MOO. It can be defined as the Lebesgue measure Λ (i.e., the
volume) of the union of hypercuboids in the objective space (Coello Coello et al., 2002):

Saref(A
′) = Λ

(⋃
a∈ndom(A′)

{(f1(a′), . . . , fM (a′)) | a ≺ a′ ≺ aref}
)

,

where aref is an appropriately chosen reference point. The contributing hypervolume
of a point a ∈ ndom(A′) is given by

∆S(a, A′) := Saref(A
′)− Saref(A

′ \ {a}) .

Using binary indicators for selection was proposed by Zitzler and Künzli (2004), and
they also used a binary indicator based on the hypervolume concept to assign fitness
values to individuals. The contributing hypervolume was also used for selection in
a steady-state evolutionary algorithm proposed by Emmerich et al. (2005). Here, we
adopt the latter approach for the ranking of a whole population.

The rank s(a, A′) of an individual a can be defined recursively based on its con-
tribution to the hypervolume, where ties are broken at random. The individual con-
tributing least to the hypervolume of A′ gets the worst rank. The individual con-
tributing least to the hypervolume of A′ without the individual with the worst rank
is assigned the second worst rank and so on. We call a ∈ A′ a boundary element
if ∆S(a, A′) depends on the choice of the reference point aref. We choose aref such
that all elements in A′ dominate aref and that for any boundary element a ∈ A′

and any non boundary element a′ ∈ A′ we have ∆S(a, A′) > ∆S(a′, A′). (For ex-
ample, this can be achieved by an aref that is extremely bad in each objective. The
exact choice of aref is irrelevant in the following experiments.) That is, the indi-
viduals at the “boundaries” of the Pareto front of A′ are preferably selected. Let
a lower rank be worse. Formally (assuming that argmin breaks ties randomly), for
a ∈ ndom(A′) we have s(a, A′) = 1 if a = argmina′∈A′{∆S(a′, A′)} and s(a, A′) = n if
a = argmina′∈A′{∆S(a′, A′ \ {a′′ | s(a′′, A′) < n})}.

For two objectives, this ranking can be calculated efficiently in log-linear time
in the number of individuals using appropriate data structures and the equation for
∆S(a, A′) given by Emmerich et al. (2005). Unfortunately, the scaling behavior in the
number of objectives is likely to be bad (While, 2005). Still, we can show:

10 Evolutionary Computation Volume 15, Number 1

Covariance Matrix Adaptation for Multi-objective Optimization

Lemma 1. For two objectives, the ranks s(a, A′) of a set A′ of non-dominated individuals
a ∈ A′, |A′| = N , can be computed in O(N log N) time.

Proof. In the following, we describe an algorithm that computes the ranking in log-
linear time by storing the relevant information in appropriate data structures. We con-
sider sorted indexed lists F and S containing individuals sorted by first fitness value
and by contributing hypervolume, respectively. Consider the list S containing an in-
dividual a. Then S[l] returns the lth element of S, index(S, a) gives the number of a in
the list (i.e., S[index(S, a)] = a), and insert(S, a) adds and delete(S, a) removes a from
S. We presume an appropriate data structure (say, an AVL-tree, e.g., Knuth, 1973) that
allows these look-up, insertion, and deletion operations in O(log N) time, where N is
the number of elements in the list.

First, F is filled with the elements in A′ sorted by their first fitness value. Then the
elements in A′ are inserted into S sorted by their contributing hypervolume. This can
also be done in O(N log N), because the contributing hypervolume of an individual a
to the hypervolume of a set B can be computed by

∆S(a, B) =⎧⎪⎨
⎪⎩

(f1(aref)− f1(a)) · (f2(F [index(F, a) − 1])− f2(a)) if a = F [|B|]
(f1(F [index(F, a) + 1])− f1(a)) · (f2(aref)− f2(a)) if a = F [1]
(f1(F [index(F, a) + 1])− f1(a)) · (f2(F [index(F, a) − 1])− f2(a)) otherwise.

Due to the choice of aref, the boundary elements have the largest contributing hypervol-
umes, S[|A′| − 1] and S[|A′|], and thus get the ranks |A′| − 1 and |A′|. Now, if |A′| > 2
we set l ← 1 and the following procedure is repeated |A′| − 2 times. We determine
a← S[1], the element contributing least to the hypervolume, and its neighbors in F by
looking up i← index(F, a), and a−1 ← F [i− 1] and a+1 ← F [i + 1]. Note that a−1 and
a+1 exist, because the elements with the extreme f1 values have the largest contributing
hypervolumes. The individual a is assigned the rank l, s(a, A′)← l, and is deleted from
both lists, delete(S, a) and delete(F, a). We set l ← l + 1. The elements a+1 and a−1 are
deleted from S, delete(S, a−1) and delete(S, a+1). The contributing hypervolumes (to
the hypervolume covered by the remaining elements in F) are recomputed for a+1 and
a−1 using the equation given above, and the elements are reinserted into S according
to the new contributing hypervolumes, insert(S, a−1) and insert(S, a+1).

All operations in this loop can be done in constant or logarithmic time, which
proves the lemma.

Based on this ranking and the level of non-dominance we define the relation

a ≺s,A a′ ⇔ r(a, A) < r(a′, A) or[
(r(a, A) = r(a′, A)) ∧ (s(a, ndomr(a′,A)(A)) > s(a′, ndomr(a′,A)(A)))

]
,

for a, a′ ∈ A. That is, a is better than a′ when compared using ≺s,A if either a has a
better level of non-dominance or a and a′ are on the same level but a contributes more
to the hypervolume when considering the points at that level of non-dominance.

3.3 MO-CMA-ES

Now we have all the ingredients for a multi-objective CMA-ES. In the λMO×(1+λ)-MO-
CMA-ES, we maintain a population of λMO elitist (1+λ)-CMA-ES. The kth individual

Evolutionary Computation Volume 15, Number 1 11

C. Igel, N. Hansen and S. Roth

in generation g is denoted by a
(g)
k = [x(g)

k , p
(g)
succ,k, σ

(g)
k , p

(g)
c,k, C

(g)
k]. For simplicity, we

consider only the standard case λ = 1. The extension to λ > 1 is straightforward.
In every generation g each of the λMO parents generates λ = 1 offspring. Parents

and offspring form the set Q(g). The step sizes of a parent and its offspring are updated
depending on whether the mutations were successful, that is, whether the offspring
is better than the parent according to the relation ≺Q(g) . The covariance matrix of the
offspring is updated taking into account the mutation that has led to its genotype. Both
the step size and the covariance matrix update are the same as in the single-objective
(1+λ)-CMA-ES. The best λMO individuals in Q(g) sorted by ≺Q(g) form the next parent
generation.

Putting all together, the λMO×(1+1)-MO-CMA reads:

Algorithm 4: λMO×(1+1)-MO-CMA

g = 0, initialize a
(g)
k for k = 1, . . . , λMO1

repeat2

for k = 1, . . . , λMO do3

a′(g+1)
k ← a

(g)
k4

x′(g+1)
k ∼ N

(
x

(g)
k , σ

(g)
k

2
C

(g)
k

)
5

Q(g) =
{

a′(g+1)
k , a

(g)
k

∣∣ 1 ≤ k ≤ λMO

}
6

for k = 1, . . . , λMO do7

updateStepSize
(
a
(g)
k , λ

(g+1)

succ,Q(g),k

)
8

updateStepSize
(
a′(g+1)

k , λ
(g+1)

succ,Q(g),k

)
9

updateCovariance

(
a′(g+1)

k ,
x′(g+1)

k − x
(g)
k

σ
(g)
k

)
10

for i = 1, . . . , λMO do11

a
(g+1)
i ← Q

(g)
≺:i12

g ← g + 113

until stopping criterion is met14

Here

λ
(g+1)

succ,Q(g),k
=

{
1 , if a′(g+1)

k ≺Q(g) a
(g)
k

0 , otherwise
is the number of successful offspring from

parent a
(g)
k for λ = 1 and

Q
(g)
≺:i is the ith best offspring in Q(g) w.r.t. ≺Q(g) .

We consider two variants of the MO-CMA-ES, the c-MO-CMA and the s-MO-
CMA, which use the crowding-distance and the contributing hypervolume as second
level sorting criterion, respectively. That is, ≺Q(g) :=≺c,Q(g) in the c-MO-CMA and
≺Q(g) :=≺s,Q(g) in the s-MO-CMA, see Section 3.2.

Handling Box constraints Consider an optimization problem with M objectives
f1, . . . , fM : X → R with X = [xl

1, x
u
1] × · · · × [xl

n, xu
n] ⊂ Rn. For x ∈ Rn let

feasible(x) = (min(max(x1, x
l
1), xu

1), . . . , min(max(xn, xl
n), xu

n))T. We define the penal-
ized fitness

fpenalty
m (x) = fm(feasible(x)) + α‖x− feasible(x))‖22

12 Evolutionary Computation Volume 15, Number 1

Covariance Matrix Adaptation for Multi-objective Optimization

where α > 0 is a penalty parameter.
When in this study the MO-CMA-ES is applied to problems with box constraints

the penalized fitness functions f
penalty
m with α = 10−6 are used in the evolutionary

process.

4 Empirical Evaluation of the MO-CMA-ES

In this section, we demonstrate how the MO-CMA behaves on test functions. First, we
discuss performance assessment of stochastic multi-objective algorithms in general and
introduce the performance indicators. Then we empirically compare the c-MO-CMA,
the s-MO-CMA, the NSGA-II, and the differential evolution method NSDE on common
and new benchmark problems.

4.1 Evaluating the Performance of MOO Algorithms

The performance assessment of stochastic multi-objective algorithms is more difficult
than evaluating single-objective algorithms: In empirical investigations, sets of sets,
the non-dominated solutions evolved in multiple trials of different algorithms, have
to be compared. Many ways of measuring the performance of MOO algorithms have
been proposed. In this study, we follow recommendations by Fonseca et al.(2005, see
also Knowles, Thiele, and Zitzler, 2005). We concisely define the performance measures
used, for a detailed description of the methods we refer to the literature (Knowles and
Corne, 2002; Zitzler et al., 2003; Knowles et al., 2005).

Given two sets of solutions A, B ⊆ X there is a common sense definition of one set
being better than the other. Set A is better than B and we write A�B if for every element
a ∈ B there exists an element a′ ∈ A that is not worse than a in each objective, ∀m ∈
{1, . . . , M}, ∀a ∈ B, ∃a′ ∈ A : fm(a′) ≤ fm(a), and ndom(A) �= ndom(B). Otherwise we
have A � B. Regularly for two sets, A and B, neither A � B nor B � A holds. Therefore,
quality indicators are introduced.

A unary quality indicator assigns a real valued quality to a set of solutions. Here,
the hypervolume indicator (Zitzler and Thiele, 1998) and the ε-indicator (Zitzler et al.,
2003) are measured. We use the performance assessment tools contributed to the PISA
(Bleuler et al., 2003) software package with standard parameters.

The hypervolume indicator w.r.t. reference set Aref is defined as

IS,Aref(A) = Saref(Aref)− Saref(A) ,

where aref denotes a (hypothetical) reference point having in each objective an objective
function value worse than all considered individuals. A smaller IS is preferable. The
additive unary ε-indicator w.r.t. reference set Aref is defined as

Iε,Aref(A) = inf {ε ∈ R | ∀a ∈ Aref ∃a′ ∈ A∀m ∈ {1, . . . , M} : fm(a) + ε ≥ fm(a′)} .

The ε-indicator determines the smallest offset by which the fitness values of the ele-
ments in A have to be shifted such that the resulting Pareto front covers the Pareto
front of Aref in the objective space. A smaller Iε,Aref is preferable.

Before the performance indicators are computed, the data are normalized. We
consider two slightly different ways of defining the reference sets. Assume we want to
compare k algorithms on a particular optimization problem after a predefined number
g of generations (this is the standard scenario when using the PISA software package).
For each algorithm we have conducted t trials. We consider the non-dominated indi-
viduals of the union of all kt populations after g generations. Their objective vectors

Evolutionary Computation Volume 15, Number 1 13

C. Igel, N. Hansen and S. Roth

are normalized such that for every objective the smallest and largest objective function
values are mapped to 1 and 2, respectively, by an affine transformation. These indi-
viduals make up the reference set Aref. The mapping to [1, 2]M is fixed and applied to
all objective vectors under consideration. The reference point aref is chosen to have an
objective value of 2.1 in each objective. Otherwise, if we want to compare the evolu-
tion of an indicator value over all generations, we consider the union of all populations
over all algorithms, all trials, and all generations (i.e., (G + 1)kt populations if G is the
number of the final generation) for normalization and computation of Aref and proceed
analogously.

Knowles and Corne (2002) and Zitzler et al. (2003) studied various properties of
quality indicators. Of particular interest is the relation to the “being better” definition
given above. An unary quality indicator is �-compatible, if a better indicator value
for A than for B implies B � A. An indicator is �-complete, if A � B implies a better
indicator value for A than for B. Both the ε-indicator as well as the hypervolume indi-
cator are �-compatible, the hypervolume indicator is also �-complete. The crowding-
distance measure described in section 3.2.2, which is related to the spread of solutions
and not directly to the being better relation defined above, is neither �-compatible nor
�-complete.

Table 4: Standard box constrained benchmark problems to be minimized.

Problem n Variable Objective Optimal
bounds functions solution

FON 3 [−4, 4] f1(x) = 1 − exp

�
−�3

i=1

�
xi − 1√

3

�2
�

x1 = x2 = x3

f2(x) = 1 − exp

�
−�3

i=1

�
xi + 1√

3

�2
�

xi ∈ [−1/
√

3, 1/
√

3]

ZDT1 30 [0, 1] f1(x) = x1 x1 ∈ [0, 1]

f2(x) = g(x)
�
1 −�

x1/g(x)
�

xi = 0

g(x) = 1 + 9
��n

i=2 xi

	
/ (n − 1) i = 2, . . . n

ZDT2 30 [0, 1] f1(x) = x1 x1 ∈ [0, 1]

f2(x) = g(x)
�
1 − (x1/g(x))2

�
xi = 0

g(x) = 1 + 9
��n

i=2 xi

	
/ (n − 1) i = 2, . . . n

ZDT3 30 [0, 1] f1(x) = x1 x1 ∈ [0, 1]

f2(x) = g(x)
�
1 −�

x1/g(x) − x1
g(x)

sin (10πx1)
�

xi = 0

g(x) = 1 + 9
��n

i=2 xi

	
/ (n − 1) i = 2, . . . n

ZDT4 10 x1 ∈ [0, 1] f1(x) = x1 x1 ∈ [0, 1]

xi ∈ [−5, 5] f2(x) = g(x)
�
1 −�

x1/g(x)
�

xi = 0

i = 2, . . . n g(x) = 1 + 10(n − 1) +
�n

i=2

x2

i − 10 cos (4πxi)
�

i = 2, . . . n

ZDT6 10 [0, 1] f1(x) = 1 − exp (−4x1) sin6 (6πx1) x1 ∈ [0, 1]

f2(x) = g(x)
�
1 − (f1(x)/g(x))2

�
xi = 0

g(x) = 1 + 9

��n

i=2 xi

	
/ (n − 1)

�0.25
i = 2, . . . n

4.2 Experiments

Standard Benchmark Functions We consider three groups of test functions. The first
group comprises six common benchmark problems taken from the literature, namely
the function FON proposed by Fonseca and Fleming (1998) and the test functions

14 Evolutionary Computation Volume 15, Number 1

Covariance Matrix Adaptation for Multi-objective Optimization

Table 5: Unconstrained benchmark problems to be minimized, with a = 1000, b = 100,
y = O1x, and z = O2x, where O1 and O2 are orthogonal matrices.

Problem n Initial Objective Optimal
region functions solution

ELLI1 10 [−10, 10] f1(y) = 1
a2n

�n
i=1 a

2 i−1
n−1 y2

i y1 = · · · = yn

f2(y) = 1
a2n

�n
i=1 a

2 i−1
n−1 (yi − 2)2 y1 ∈ [0, 2]

ELLI2 10 [−10, 10] f1(y) = 1
a2n

�n
i=1 a

2 i−1
n−1 y2

i

f2(z) = 1
a2n

�n
i=1 a

2 i−1
n−1 (zi − 2)2

CIGTAB1 10 [−10, 10] f1(y) = 1
a2n

�
y2
1 +

�n−1
i=2 ay2

i + a2y2
n

�
y1 = · · · = yn

f2(y) = 1
a2n

�
(y1 − 2)2 +

�n−1
i=2 a (yi − 2)2 + a2(yn − 2)2

�
y1 ∈ [0, 2]

CIGTAB2 10 [−10, 10] f1(y) = 1
a2n

�
y2
1 +

�n−1
i=2 ay2

i + a2y2
n

�
f2(z) = 1

a2n

�
(z1 − 2)2 +

�n−1
i=2 a (zi − 2)2 + a2(zn − 2)2

�

ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 proposed by Zitzler et al. (2000), see Table 4. All
functions have box constraints also given in the table. In the five ZDT problems, most
components of the optimal solution lie on the boundary of box constraints (this might
favor the NSGA-II operators for box constraints, see Appendix A). For this reason we
question the relevance of these test functions and we consider them only because they
were frequently used in former studies.

Unconstrained Test Functions with Quadratic Objectives The second group of
benchmarks are functions where for each objective the objective function is quadratic
(a quadratic approximation close to a local optimum is reasonable for any smooth
enough fitness function), see Table 5. They are of the general form fm(x) = xT Qx =
xT OT

mAOmx, where x ∈ Rn, Q, Om, A ∈ Rn×n with Om orthogonal and A diagonal
and positive definite. There are two types of functions, ELLI and CIGTAB, which dif-
fer in the eigenspectrum of Q. In each optimization run the coordinate system of the
objective functions is changed by a random choice of Om. The Gram-Schmidt orthog-
onalization procedure can be used to construct random orthonormal basis vectors, the
columns of Om, from (0, I)-normally distributed random vectors. In the case of the
test functions ELLI1 and CIGTAB1 the same rotation O is used for both objective func-
tions (i.e., O1 = O2). In the more general case of ELLI2 and CIGTAB2 two independent
rotation matrices O1 and O2 are generated, which are applied to the first and second
objective function, respectively.

Generalized ZDT Problems The third group of problems shown in Table 6 are new
benchmarks that generalize the ZDT problems to allow a rotation of the search space
as in the second group. Already Deb (1999) proposed to use a rotation matrix together
with multi-objective test functions, but his suggestion was, to the best of our knowl-
edge, never realized for the ZDT set of benchmark problems. The boundaries of the
variables make it difficult to combine rotation and the ZDT functions, because the box
constraints must be satisfied after rotation has taken place, for example to ensure that
the objectives are actually conflicting. To address this difficulty, we propose three non-
linear auxiliary functions, see Table 7.

In the first function ZDT4’ the rotation is applied to all but the first coordinates.

Evolutionary Computation Volume 15, Number 1 15

C. Igel, N. Hansen and S. Roth

Table 6: New benchmark problems to be minimized, y = Ox, where O ∈ Rn×n is an
orthogonal matrix, and ymax = 1/ maxj(|o1j |). In the case of ZDT4’, o1j = oj1 = 0 for
1 < j ≤ n and o11 = 1. For the definition of h, hf , and hg see Table 7.

Problem n Variable Objective Optimal
bounds function solution

ZDT4’ 10 x1 ∈ [0, 1] f1(x) = x1 x1 ∈ [0, 1]

xi ∈ [−5, 5] f2(x) = g(y)
�
1 −�

x1/g(y)
�

yi = 0

i = 2, . . . n g(y) = 1 + 10(n − 1) +
�n

i=2

y2

i − 10 cos (4πyi)
�

i = 2, . . . n

IHR1 10 [−1, 1] f1(x) = |y1| y1 ∈ [0, ymax]

f2(x) = g(y) hf

�
1 −�

h(y1)/g(y)
�

yi = 0

g(y) = 1 + 9
��n

i=2 hg(yi)
	

/ (n − 1) i = 2, . . . n

IHR2 10 [−1, 1] f1(x) = |y1| y1 ∈ [−ymax, ymax]

f2(x) = g(y) hf

�
1 − (y1/g(y))2

�
yi = 0

g(y) = 1 + 9
��n

i=2 hg(yi)
	

/ (n − 1) i = 2, . . . n

IHR3 10 [−1, 1] f1(x) = |y1| y1 ∈ [0, ymax]

f2(x) = g(y) hf

�
1 −�

h(y1)/g(y) − h(y1)
g(y)

sin (10πy1)
�

yi = 0

g(y) = 1 + 9
��n

i=2 hg(yi)
	

/ (n − 1) i = 2, . . . n

IHR4 10 [−5, 5] f1(x) = |y1| y1 ∈ [0, ymax]

f2(x) = g(y) hf

�
1 −�

h(y1)/g(y)
�

yi = 0

g(y) = 1 + 10(n − 1) +
�n

i=2

y2

i − 10 cos (4πyi)
�

i = 2, . . . n

IHR6 10 [−1, 1] f1(x) = 1 − exp (−4 |y1|)) sin6 (6πy1) y1 ∈ [−ymax, ymax]

f2(x) = g(y) hf

�
1 − (f1(x)/g(y))2

�
yi = 0

g(y) = 1 + 9

��n

i=2 hg(yi)
	

/ (n − 1)
�0.25

i = 2, . . . n

Table 7: Auxiliary functions for Table 6.

h : R→ [0, 1], x �→
(
1 + exp

(
−x√

n

))−1

hf : R→ R, x �→
{

x if |y1| ≤ ymax
1 + |y1| otherwise

hg : R→ R≥0, x �→ x2

|x|+0.1

That is, we consider y = Ox, where O ∈ Rn×n is an orthogonal matrix with o1j =
oj1 = 0 for 1 < j ≤ n and o11 = 1. In the other functions the rotation matrices
are not restricted. Compared to the ZDT functions, the search space is expanded and
the Pareto front is not completely located on the boundaries anymore. The lower end
y1 = 0 of the Pareto front is induced by the absolute value in the definition of f1. The
ends y1 = ±ymax of the Pareto front are determined by hf , see Table 7. The value ymax
can be chosen between 1 and 1/ maxj(|o1j |), and in the latter case the Pareto optimal
solution y1 = ymax lies on the search space boundary. If ymax is chosen larger, up to∑

j |o1j | or 5
∑

j |o1j |, respectively, parts of the Pareto front would lie on the boundary
again and the Pareto front would not be linear in search space anymore. The function
h : R → [0, 1], see Table 7, is monotonic and emulates the original variable boundary

16 Evolutionary Computation Volume 15, Number 1

Covariance Matrix Adaptation for Multi-objective Optimization

x1 ∈ [0, 1]. Similarly, the function hg : R → R≥0 emulates the original lower variable
boundary of xi ≥ 0 for i = 2, . . . , n.

NSGA-II We compare the c-MO-CMA and the s-MO-CMA with the real-coded non-
dominated sorting genetic algorithm II (NSGA-II). The real-coded NSGA-II (Deb, 2001;
Deb et al., 2002) uses non-dominated sorting and the crowding-distance for selection,
and real-valued genetic algorithm (GA) operators, namely polynomial mutation and
simulated binary crossover (SBX). A detailed description of how these operators work
is given in Appendix A based on Deb and Agrawal (1999) and Deb et al. (2003). These
operators have their roots in GAs and are tailored for box constraints. Note that they
are particularly well-suited when the optimal solutions lie on the boundary of a box
constraint. They operate component-wise and therefore implicitly favor separability.
Thus, the NSGA-II is perfectly customized for the benchmark problems in Table 4.

NSDE To our knowledge, the only other evolutionary MOO approach that is invari-
ant against rotation and rescaling of the search space is non-dominated sorting differ-
ential evolution (NSDE). Hence, we compare our methods to NSDE as described by
Iorio and Li (2005).

In every generation g of NSDE, each parent x
(g)
i generates one offspring x′(g)

i ac-
cording to

x′(g)
i = x

(g)
i + K

(
x

(g)

r
(g)
i,3

− x
(g)
i

)
+ F

(
x

(g)

r
(g)
i,1

− x
(g)

r
(g)
i,2

)
,

where r
(g)
i,1 , r

(g)
i,2 , r

(g)
i,3 ∈ {1, . . . , µ} are randomly chosen indices obeying∣∣{r(g)

i,1 , r
(g)
i,2 , r

(g)
i,3 , i

}∣∣ = 4 and K and F are real-valued parameters. The new par-
ents are selected from the former parents and their offspring by non-dominated sorting
using the crowding-distance.

The described variation rule is known as DE/current-to-rand/1 in single-objective
differential evolution (Price, 1999). The individuals in the population span the subspace
of the search space reachable by the algorithm. All offspring are linearly dependent on
the parents. This bears the risk that selection may lead to a degenerated population that
is restricted to some subspace not containing the desired solutions. The risk depends
on the relation between the dimension n of the search space and the population size.
The higher the dimension and the smaller the population size the higher is this risk.

Parameter Setting and Initialization For the real-coded NSGA-II we used the same
parameter setting as Deb et al. (2002). We set the mutation probability to the inverse of
the genotype space dimension, pm = n−1, and the crossover probability to pc = 0.9. The
distribution indices of the crossover and mutation operator were set to ηc = ηm = 20.
In the case of the unconstrained benchmark functions in Table 5 the boundaries of the
mutation and crossover operator were set to the boundaries of the initial regions. See
Appendix A for a description of the real-coded NSGA-II variation operators and their
parameters.

The parameters of the NSDE were set to K = 0.4 and F = 0.8 as done by Iorio and
Li (2005). Constraints are handled as in the MO-CMA-ES, see section 3.3.

We used the standard parameters of the (1+1)-CMA-ES in the MO-CMA-ES. For
the functions FON, ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 we set σ(0) equal to 60 %
of xu

2 − xl
2 (we rescaled the first component of ZDT4 to [−5, 5]). In the unconstrained

problems, Table 5, we set σ(0) equal to 60 % of the initialization range of one component.
In all algorithms the population size (λMO) was set to 100 as in the study by Deb

et al. (2002) to allow for a better comparison.

Evolutionary Computation Volume 15, Number 1 17

C. Igel, N. Hansen and S. Roth

Table 8: Results on common benchmark problems. The upper and lower table show
the median of 100 trials after 50000 evaluations of the hypervolume-indicator and the ε-
indicator, respectively. The smallest value in each column is printed in bold, the largest
in italics. The superscripts I, II, III, and IV indicate whether an algorithm is statisti-
cally significantly better than the s-MO-CMA, c-MO-CMA, NSGA-II, and NSDE, re-
spectively (two-sided Wilcoxon rank sum test, p < 0.001, slanted superscripts refer to
a significance level of p < 0.01).

Hypervolume indicator
algorithm FON ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
s-MO-CMA 0.00467II ,III ,IV 0.00217II ,III ,IV 0.00247II ,III,IV 0.00105II ,III,IV 0.22792IV 0.00051II ,III,IV

c-MO-CMA 0.00643III ,IV 0.00375IV 0.00416IV 0.00186IV 0.22286IV 0.00064IV

NSGA-II 0.00855 0.00264II ,IV 0.00316IV 0.00140II ,IV 0.00016I ,II,IV 0.00062II ,IV

NSDE 0.00719III 0.10872 0.09133 0.09326 0.80156 0.00121

ε-indicator
algorithm FON ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
s-MO-CMA 0.00684II ,III ,IV 0.00459II ,III ,IV 0.00502II ,III,IV 0.00317II ,III,IV 0.21138IV 0.00148II ,III,IV

c-MO-CMA 0.01414 0.01124IV 0.01280IV 0.00870IV 0.20985IV 0.00305
NSGA-II 0.01388 0.00818II ,IV 0.01033 0.00711II ,IV 0.00186I ,II,IV 0.00256II ,IV

NSDE 0.01436 0.08017 0.08533 0.09936 0.73511 0.00328

Table 9: Results on new unconstrained, rotated benchmark problems. The upper and
lower tables show the median of 100 trials after 50000 evaluations of the hypervolume-
indicator and the ε-indicator, respectively.

Hypervolume indicator
algorithm ELLI1 ELLI2 CIGTAB1 CIGTAB2

s-MO-CMA 0.00345II ,III ,IV 0.00003III 0.00314II ,III,IV 0.00001III ,IV

c-MO-CMA 0.00624III ,IV 0.00003III 0.00545III ,IV 0.00000I ,III,IV

NSGA-II 0.00750 0.00023 0.00584IV 0.00005
NSDE 0.00687III 0.00002I ,II,III 0.00694 0.00001III

ε-indicator
algorithm ELLI1 ELLI2 CIGTAB1 CIGTAB2

s-MO-CMA 0.00577II ,III ,IV 0.00011II ,III 0.00561II ,III ,IV 0.00019II ,III

c-MO-CMA 0.01378 0.00013III 0.01357 0.00022III

NSGA-II 0.01305IV 0.00049 0.01418 0.00033
NSDE 0.01405 0.00009I ,II,III 0.01405 0.00018I ,II , III

Methods For each pair of test function and optimization algorithm 100 trials with
different initial populations were conducted. For each test problem, the 100 initial pop-
ulations and the randomly generated rotation matrices for the rotated problems were
the same for each algorithm.

Results The characteristics of the Pareto fronts after 500 generations (50000 fitness
evaluations) are shown in Tables 8, 9, and 10 for the three groups of benchmark prob-
lems. The superscripts I, II, III, and IV indicate whether a value is statistically significant
compared to the s-MO-CMA, c-MO-CMA, NSGA-II, and NSDE, respectively (paired
Wilcoxon rank sum test, p < 0.001, slanted superscripts refer to a significance level of

18 Evolutionary Computation Volume 15, Number 1

Covariance Matrix Adaptation for Multi-objective Optimization

Table 10: Results on new, rotated, constrained benchmark problems. The upper and
lower tables show the median of 100 trials after 50000 evaluations of the hypervolume-
indicator and the ε-indicator, respectively.

Hypervolume indicator
algorithm ZDT4’ IHR1 IHR2 IHR3 IHR4 IHR6
s-MO-CMA 0.16774IV 0.00323III ,IV 0.04140II ,III ,IV 0.02401II , III,IV 0.00683III ,IV 0.01093III ,IV

c-MO-CMA 0.18962IV 0.00284III ,IV 0.04323III 0.02402III ,IV 0.00759III ,IV 0.01076III ,IV

NSGA-II 0.18282IV 0.01939IV 0.06383 0.02409IV 0.01725IV 0.04053
NSDE 0.75090 0.02012 0.04289II ,III 0.02415 0.03600 0.02391III

ε-indicator
algorithm ZDT4’ IHR1 IHR2 IHR3 IHR4 IHR6
s-MO-CMA 0.16626IV 0.01053III ,IV 0.16396III ,IV 0.03996III ,IV 0.00669III ,IV 0.02123III

c-MO-CMA 0.18465IV 0.00937III ,IV 0.16428III ,IV 0.03996III ,IV 0.00746III ,IV 0.02170III

NSGA-II 0.16531IV 0.03147IV 0.21648 0.04003IV 0.01777IV 0.05727
NSDE 0.69407 0.03214 0.16497III 0.04008 0.03321 0.02899III

ELLI2 CIGTAB2

10
−4

10
−2

10
−4

10
−3

10
−2

10
−1

first objective

se
co

nd
 o

bj
ec

tiv
e

c−MO−CMA
NSGA−II

10
−4

10
−2

10
−4

10
−2

first objective

se
co

nd
 o

bj
ec

tiv
e

c−MO−CMA
NSGA−II

Figure 2: Population plots in objective space for c-MO-CMA and NSGA-II on the test
functions ELLI2 and CIGTAB2 on logarithmic scale. The populations after 500 genera-
tions of the first 5 trials are shown. Note the different shapes of the Pareto fronts due to
the different coordinate transformations and that s-MO-CMA, which is not shown in
this figure, has a significantly better performance on these functions even compared to
c-MO-CMA.

p < 0.01). Figure 2 shows population plots of the first five trials after 500 generations
of the c-MO-CMA and NSGA-II for ELLI2 and CIGTAB2 in the objective space. Perfor-
mance indicators for ELLI2, CIGTAB2, and ZDT4’ after 1000 generations are given in
Table 11. A corresponding population plot for c-MO-CMA and NSGA-II on ZDT4’ af-
ter 1000 is shown in Figure 3. In Figure 4, the evolution of the median of the ε-Indicator
is shown for the four test problems with quadratic objective functions. As described in
Section 4.1, the reference sets and therefore the absolute values in Figure 4 are different
from those in Table 9, although they are computed from the same trials.

Evolutionary Computation Volume 15, Number 1 19

C. Igel, N. Hansen and S. Roth

Table 11: Results on the new benchmark problems ELLI2, CIGTAB2, and ZDT4’ after
100000 evaluations. The upper and lower tables show the median of 100 trials of the
hypervolume-indicator and the ε-indicator, respectively. In the corresponding figure,
the populations after 1000 generations of the first 5 trials on ZDT4’ are plotted.

Hypervolume indicator
algorithm ELLI2 CIGTAB2 ZDT4’
s-MO-CMA 0.00001III ,IV 0.00000II ,III,IV 0.15583III ,IV

c-MO-CMA 0.00001I ,III,IV 0.00000III ,IV 0.18808III ,IV

NSGA-II 0.00018 0.00005 0.22316IV

NSDE 0.00002III 0.00001III 0.80157

ε-indicator
algorithm ELLI2 CIGTAB2 ZDT4’
s-MO-CMA 0.00009II , III ,IV 0.00033II ,III ,IV 0.14434III ,IV

c-MO-CMA 0.00014III 0.00042III 0.17247III ,IV

NSGA-II 0.00044 0.00073 0.20273IV

NSDE 0.00010II , III 0.00034II , III 0.73926

ZDT4’

0 0.2 0.4 0.6 0.8 1

4

6

8

10

12

14

16

18

first objective

se
co

nd
 o

bj
ec

tiv
e

c−MO−CMA
NSGA−II

Figure 3: Populations generated by c-MO-CMA and NSGA-II after 1000 generations on
ZDT4’. The first 5 of the 100 trials described in Table 11 are plotted.

Discussion The three methods NSGA-II, NSDE, and c-MO-CMA rely on the same
multi-objective selection criteria. Comparing their performance in terms of the ε-
indicator and the hypervolume indicator allows for a fair comparison of the different
variation strategies. Because the selection in s-MO-CMA almost directly aims at op-
timizing hypervolume, using the latter for comparisons of s-MO-CMA with the other
algorithms is biased.

When looking at both the ε-indicator and the hypervolume indicator in the tables,
s-MO-CMA is statistically significantly better than NSGA-II in all benchmark problems
except ZDT4, where NSGA-II is significantly better, and ZDT4’, where after 500 genera-
tions the lower values reached by the evolution strategies are not statistically significant
(see below).

The multi-modal ZDT4 is separable, in the sense that the optima form a regular
axis-parallel grid. The recombination operator in NSGA-II exploits this kind of sepa-

20 Evolutionary Computation Volume 15, Number 1

Covariance Matrix Adaptation for Multi-objective Optimization

ELLI1 ELLI2

0 100 200 300 400 500
10

−3

10
−2

10
−1

10
0

number of generations

m
ed

ia
n

of
 ε

−
in

di
ca

to
r

va
lu

e

c−MO−CMA
s−MO−CMA
NSGA−II
NSDE

0 100 200 300 400 500
10

−5

10
−4

10
−3

10
−2

10
−1

number of generations

m
ed

ia
n

of
 ε

−
in

di
ca

to
r

va
lu

e

c−MO−CMA
s−MO−CMA
NSGA−II
NSDE

CIGTAB1 CIGTAB2

0 100 200 300 400 500
10

−3

10
−2

10
−1

10
0

number of generations

m
ed

ia
n

of
 ε

−
in

di
ca

to
r

va
lu

e

c−MO−CMA
s−MO−CMA
NSGA−II
NSDE

0 100 200 300 400 500
10

−5

10
−4

10
−3

10
−2

number of generations

m
ed

ia
n

of
 ε

−
in

di
ca

to
r

va
lu

e

c−MO−CMA
s−MO−CMA
NSGA−II
NSDE

Figure 4: Simulations of the multi-objective algorithms on four rotated test functions.
Shown is the median of the ε-indicator of the first 20 trials. The reference sets and there-
fore the absolute values are different compared to Table 9, see Section 4.1. In the first
approximately 100 and 120 generations, the plots for c-MO-CMA and s-MO-CMA over-
lap in case of ELLI1 and CIGTAB1, respectively. After that, the plots for c-MO-CMA,
NSGA-II, and NSDE can hardly be distinguished. On CIGTAB2 and in particular on
ELLI2, the plots for c-MO-CMA and s-MO-CMA are very close. Note that ELLI2 and
CIGTAB2 are the only benchmark problems considered in this study where the NSDE
outperforms the other methods.

rability by combining (locally) optimal settings of different variables: the crossover of
local optima always delivers another optimum being better in almost half of the cases
and eventually the global optimum. MO-CMA-ES does not exploit this kind of sepa-
rability and cannot find close to optimal solutions. When the search space is rotated
such that the optima do not necessarily lie on a regular axis-parallel grid, NSGA-II is
no longer superior as can be seen from the ZDT4’ results. On the contrary, the perfor-
mance of the evolution strategies is not impaired. After 500 generations the differences
are not significant at p < 0.01, because the median absolute deviation (and the vari-
ance) for the single algorithms is quite high due to the huge number of local optima
of the ZDT4’ function. However, after 1000 generations the evolution strategies are
significantly better than NSGA-II w.r.t. both performance indicators, see Table 11. Fig-

Evolutionary Computation Volume 15, Number 1 21

C. Igel, N. Hansen and S. Roth

ure 3 shows that on ZDT4’ NSGA-II suffers more under premature convergence than
the evolution strategies.

The s-MO-CMA differs in two main aspects from the NSGA-II. First, the adapta-
tion of the individual Gaussian mutation distributions uses the CMA instead of real-
valued GA operators. Second, the sorting is based on the contributing hypervolume
instead of the crowding-distance. To investigate the impact of these two differences,
we compare c-MO-CMA and s-MO-CMA, which differ only in the selection scheme,
and c-MO-CMA and NSGA-II. The latter two algorithms differ in the variation opera-
tors, but have the same selection mechanism.

Selection based on the hypervolume seems to be superior. It often leads to signif-
icantly better results in terms of the measured indicators for s-MO-CMA compared to
c-MO-CMA, whereas only in two cases c-MO-CMA outperforms s-MO-CMA signifi-
cantly.

On the ZDT benchmark problems, Table 8, the NSGA-II is superior to the c-MO-
CMA. The indicator values are significantly better on ZDT1, ZDT3, ZDT4, and ZDT6.
On these functions, NSGA-II can take advantage of the separability as described above.
On FON, the c-MO-CMA is significantly better than the NSGA-II in terms of the hyper-
volume indicator.

On the rotated benchmark problems with one global coordinate system, ELLI1 and
CIGTAB1, the c-MO-CMA and the NSGA-II do not differ significantly w.r.t ε-indicator
but only w.r.t. the hypervolume indicator. The reason why the c-MO-CMA does not
reach better ε-indicator values than the NSGA-II—despite the fact that the evolution
strategy can adapt its mutation distribution to the rotated coordinate systems—lies in
the selection mechanism. After an initial phase, NSGA-II and c-MO-CMA as well as
NSDE suffer from the fact that the crowding-distance is not related to the being bet-
ter relation defined in Section 4.1. Depending on the population size, this limits the
progress of the algorithms in terms of the ε-indicator (and, although not obvious from
all presented results, also in terms of the hypervolume indicator). This can be observed
in Figure 4, left. After approximately 120 and 100 generations on ELLI1 and CIGTAB1,
respectively, the three methods relying on the crowding-distance fluctuate around a
sub-optimal level without any progress w.r.t. the ε-indicator. Their final performance is
determined by the second sorting criterion, the corresponding plots can not be distin-
guished.

When looking at the problems ELLI2 and CIGTAB2, where, roughly speaking, the
appropriate coordinate system varies along the Pareto front, both MO-CMA-ES vari-
ants clearly outperform NSGA-II. In this general case, the adaptation of arbitrary nor-
mal mutation distributions, individually along the Pareto front, seems to be of great
importance. The resulting Pareto fronts are visualized in Figure 2 (note that the s-MO-
CMA leads to even better results on these functions). On the IHR problems, c-MO-CMA
is significantly better than NSGA-II w.r.t. both indicators. These results confirm that the
invariance properties of the MO-CMA really matter, see also Figure 4, right.

Figure 4 reveals that the evolution strategies are slower in the early generations
on the four test problems with quadratic objective functions compared to the other
methods. It takes some time for the CMA to adapt the strategy parameters during
which NSDE and NSGA-II make significantly more progress (at least for the initial
CMA strategy parameters and learning rates used in this study).

Overall the NSDE performed worst of all methods. However, on ELLI2 and
CIGTAB2, until 500 generations most indicator values are better than the correspond-
ing values of the evolution strategies. This changes after more evaluations, see Table 11.

22 Evolutionary Computation Volume 15, Number 1

Covariance Matrix Adaptation for Multi-objective Optimization

This result does not carry over to the other benchmarks with rotated search spaces. On
some of the IHR tasks, IHR1, IHR3, and IHR4, NSDE is even significantly worse than
the NSGA-II. The differential evolution algorithm in the considered form seems to have
problems with higher dimensionality, as can be conjectured based on the results on
ZDT1, ZDT2, and ZDT3, as well as multi-modality, as reflected by the performance on
ZDT4 and ZDT4’.

The question arises whether tuning the external parameters of the MO-CMA-ES,
NSDE, or NSGA-II would qualitatively affect their performance. We conducted a pa-
rameter study for the NSGA-II with different values for pm, pc, ηm, and ηc on the new
benchmark problems with quadratic objective functions without observing remarkably
improved behavior. We think that the experiments in this section well reflect the prin-
cipal conceptual advantages and limitations of the algorithms.

5 Summary and Conclusions

We presented the single-objective (1+λ)-CMA-ES, an elitist evolution strategy (ES) with
covariance matrix adaptation (CMA). It combines plus-selection and success rule based
step size control with the powerful covariance matrix adaptation. The empirical eval-
uation reveals that the (1+1)-CMA-ES works reliably and that it is faster by a factor
of about 1.5 on unimodal functions compared to the standard CMA-ES with comma-
selection.

While the new (1+1)-CMA-ES is slightly faster than the default (µ/µ, λ)-CMA-ES, it
is more susceptible to get trapped into sub-optimal local minima. In particular for this
reason we stick to the comma-variant as default recommendation for single-objective
optimization.

Based on the (1+λ)-CMA-ES we developed the λMO×(1+λ)-MO-CMA-ES, a multi-
objective CMA-ES, which combines the strategy parameter adaptation of λMO elitist
(1+λ) strategies with multi-objective selection based on non-dominated sorting. Two
variants were considered, c-MO-CMA and s-MO-CMA, using the crowding-distance
and the contributing hypervolume as second sorting criterion, respectively.

The MO-CMA strategies are independent of the chosen coordinate system. Apart
from the respective initializations, their behavior does not change if the search space is
translated, rotated, and/or rescaled. The single-objective CMA-ES with plus-selection
is additionally invariant against order-preserving transformations of the fitness func-
tion value, the MO-CMA-ES is not, because of the second level sorting criterion for se-
lection. However, in comparison to other multi-objective evolutionary algorithms, the
invariance properties of the MO-CMA-ES are an important feature, because they al-
low for a generalization from results obtained on benchmark functions and real world
problems.

In experiments we compared c-MO-CMA, s-MO-CMA, NSGA-II, and the differen-
tial evolution approach NSDE. The s-MO-CMA algorithm appears to be the superior
method. It significantly outperforms the NSGA-II on all but one of the considered test
problems: the NSGA-II is faster than the s-MO-CMA only on the ZDT4 problem where
the optima form a regular axis-parallel grid, because NSGA-II heavily exploits this kind
of separability. However, otherwise s-MO-CMA is superior. Our results clearly show
that both the new selection mechanism and in particular the covariance matrix adap-
tation improve the search behavior in case of the s-MO-CMA. The rotation-invariant
NSDE showed the worst performance of all methods on the ZDT problems, but gave
good results on the two test problems where the appropriate coordinate system varies
along the Pareto front.

Evolutionary Computation Volume 15, Number 1 23

C. Igel, N. Hansen and S. Roth

The ranking in the s-MO-CMA, based on the contributing hypervolume, can be
computed in log-linear time in the number of individuals for two objectives, but the
algorithm scales badly for an increasing number of objectives. We do not regard the
bad scaling behavior as a severe drawback, in particular because in multi-objective op-
timization applications usually less than five objectives are considered. This is not only
because the applications do not give rise to more objectives, but also because otherwise
the results would be too hard to interpret (e.g., to visualize). Further, in real-world ap-
plications the costs for generating offspring and selection can often be neglected com-
pared to the time needed for the fitness evaluation. If the contributing hypervolume
cannot be used for selection because of a high number of objectives, the c-MO-CMA
provides an alternative. However, one could replace the second sorting criterion with
still another indicator-based measure. The underlying performance indicator should
have the desired properties discussed in section 4.1 and should be efficient to compute
for a higher number of objectives. For example, the ε-indicator is a promising candidate
(Zitzler and Künzli, 2004).

In conclusion, with the caveat of the so far limited empirical data basis, the s-
MO-CMA is a promising candidate to become the method of choice for real-valued
non-separable optimization problems with multiple criteria given that the maximum
number of fitness evaluations is not too small to allow for an adaptation of the strategy
parameters.

Acknowledgments

We thank K. Deb and co-workers and C. M. Fonseca, J. D. Knowles, L. Thiele, and
E. Zitzler for making their software available. The first author gratefully acknowledges
support from the Honda Research Institute Europe GmbH.

A NSGA-II Operators

The NSGA-II uses the polynomial mutation operator for optimization problems with
box constrains (Deb and Agrawal, 1999; Deb et al., 2003). Let c = (c1, . . . , cn) with
ci ∈ [xl

i, x
u
i], 1 ≤ i ≤ n. The parameter ηm > 0 is called the distribution index of the

mutation.

Procedure mutatePolynomial(c ∈ [xl
1, x

u
1]× · · · × [xl

n, xu
n])

foreach 1 ≤ i ≤ n do1

u � U [0, 1]2

if u ≤ pm then3

α← min{ci − xl
i, x

u
i − ci}

(xu
i − xl

i)4

z � U [0, 1]5

δ ←
{

[(2z) + (1− 2z)(1− α)ηm+1]
1

ηm+1 − 1 , if z ≤ 0.5
1− [2 · (1− z) + 2 · (z − 0.5)(1− α)ηm+1]

1
ηm+1 , otherwise6

ci ← ci + δ · (xu
i − xl

i)7

The simulated binary crossover operator (SBX) for constrained problems (Deb and
Agrawal, 1999; Deb et al., 2003) with distribution index ηc > 0 is defined as follows.

24 Evolutionary Computation Volume 15, Number 1

Covariance Matrix Adaptation for Multi-objective Optimization

Procedure SBX(c1,c2 ∈ [xl
1, x

u
1]× · · · × [xl

n, xu
n])

foreach 1 ≤ i ≤ n do1

u � U [0, 1[2

if u ≥ 0.5 then3

y1 ← min(c1i, c2i)4

y2 ← max(c1i, c2i)5

if (y2 − y1) > ε then6

β ← 1 +
2

y2 − y1
·min{(y1 − xl

i), (x
u
i − y2)}7

α← 2− β−(ηc+1)8

z � U [0, 1]9

γ ←
⎧⎨
⎩

(zα)
1

ηc+1 , if z ≤ 1
α(

1
2−zα

) 1
ηc+1

, otherwise10

else11

γ ← 112

[c1]i ← 0.5 · [(y1 + y2)− γ · (y2 − y1)]13

[c2]i ← 0.5 · [(y1 + y2) + γ · (y2 − y1)]14

The parameter ε, which determines when two values are regarded as too close, is set
to ε = 10−12. Due to numerical problems, these operators rather frequently hit the
upper and lower bounds. In these cases, the mutation operator sets the corresponding
variable xi to some value chosen from [xl

i, x
u
i] uniformly at random.

References

Beyer, H.-G. (2001). The Theory of Evolution Strategies. Springer-Verlag.

Beyer, H.-G. and H.-P. Schwefel (2002). Evolution strategies: A comprehensive intro-
duction. Natural Computing 1(1), 3–52.

Bleuler, S., M. Laumanns, L. Thiele, and E. Zitzler (2003). PISA – A platform and pro-
gramming language independent interface for search algorithms. In C. M. Fonseca,
P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele (Eds.), Evolutionary Multi-Criterion Op-
timization (EMO 2003), Volume 2632 of LNCS, pp. 494 – 508. Springer-Verlag.

Büche, D., S. D. Müller, and P. Koumoutsakos (2003). Self-adaptation for multi-objective
evolutionary algorithms. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and
L. Thiele (Eds.), Proceedings of the Second International Conference on Evolutionary Multi-
Criterion Optimization (EMO 2003), Volume 2632 of LNCS, pp. 267–281. Springer-
Verlag.

Coello Coello, C. A., D. A. Van Veldhuizen, and G. B. Lamont (2002). Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers.

Das, I. and J. E. Dennis (1997). A closer look at drawbacks of minimizing weighted
sums of objectives for pareto set generation in multicriteria optimization problems.
Structural Optimization 14(1), 63–69.

Deb, K. (1999). Multi-objective genetic algorithms: Problem difficulties and construc-
tion of test problems. Evolutionary Computation 7(3), 205–230.

Evolutionary Computation Volume 15, Number 1 25

C. Igel, N. Hansen and S. Roth

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. Wiley.

Deb, K. et al. (2003).
http://www.iitk.ac.in/kangal/code/new nsga/nsga2code.tar.

Deb, K. and S. Agrawal (1999). A niched-penalty approach for constraint handling in
genetic algorithms. In R. Albrecht, A. Dobnikar, D. Pearson, and N. Steele (Eds.),
International Conference on Artifical Neural Networks and Genetic Algorithms, pp. 235–
243. Springer-Verlag.

Deb, K., S. Agrawal, A. Pratap, and T. Meyarivan (2002). A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–
197.

Emmerich, M., N. Beume, and B. Naujoks (2005). An EMO algorithm using the hy-
pervolume measure as selection criterion. In C. A. C. Coello, E. Zitzler, and A. H.
Aguirre (Eds.), Third International Conference on Evolutionary Multi-Criterion Optimiza-
tion (EMO 2005), Volume 3410 of LNCS, pp. 62–76. Springer-Verlag.

Fonseca, C. M. and P. J. Fleming (1998). Multiobjective optimization and multiple con-
straint handling with evolutionary algorithms—Part II: Application example. IEEE
Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 28(1), 38–47.

Fonseca, C. M., J. D. Knowles, L. Thiele, and E. Zitzler (2005). A tutorial on the per-
formance assessment of stochastic multiobjective optimizers. Presented at the Third
International Conference on Evolutionary Multi-Criterion Optimization (EMO 2005).

Hansen, N. (2000). Invariance, self-adaptation and correlated mutations in evolution
strategies. In Proceedings of the 6th International Conference on Parallel Problem Solving
from Nature (PPSN VI), Volume 1917 of LNCS, pp. 355–364. Springer-Verlag.

Hansen, N. (2005). References to CMA-ES applications.
http://www.bionik.tu-berlin.de/user/niko/cmaapplications.pdf.

Hansen, N. (2006a). An analysis of mutative σ-self-adaptation on linear fitness func-
tions. Evolutionary Computation 14(3), accepted.

Hansen, N. (2006b). The CMA evolution strategy: A comparing review. In I. I.
J. A. Lozano, P. Larraãga and E. Bengoetxea (Eds.), Towards a new evolutionary com-
putation. Advances on estimation of distribution algorithms., Volume 192 of Studies in
Fuzziness and Soft Computing. Springer-Verlag.

Hansen, N. and S. Kern (2004). Evaluating the CMA evolution strategy on multimodal
test functions. In X. Yao et al. (Eds.), Parallel Problem Solving from Nature (PPSN VIII),
Volume 3242 of LNCS, pp. 282–291. Springer-Verlag.

Hansen, N., S. D. Müller, and P. Koumoutsakos (2003). Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adapt ation (CMA-ES).
Evolutionary Computation 11(1), 1–18.

Hansen, N. and A. Ostermeier (2001). Completely derandomized self-adaptation in
evolution strategies. Evolutionary Computation 9(2), 159–195.

26 Evolutionary Computation Volume 15, Number 1

Covariance Matrix Adaptation for Multi-objective Optimization

Hansen, N., A. Ostermeier, and A. Gawelczyk (1995). On the adaptation of arbitrary
normal mutation distributions in evolution strategies: The generating set adapta-
tion. In L. Eshelman (Ed.), Proceedings of the Sixth International Conference on Genetic
Algorithms, Pittsburgh, pp. 57–64. Morgan Kaufmann.

Igel, C. (2005). Multi-objective model selection for support vector machines. In C. A. C.
Coello, E. Zitzler, and A. H. Aguirre (Eds.), Third International Conference on Evolu-
tionary Multi-Criterion Optimization (EMO 2005), Volume 3410 of LNAI, pp. 534–546.
Springer-Verlag.

Iorio, A. and X. Li (2005). Solving rotated multi-objective optimization problems us-
ing differential evolution. In G. I. Webb and X. Yu (Eds.), Proceedings of the 17th
Joint Australian Conference on Artificial Intelligence, Volume 3339 of LNCS, pp. 861–872.
Springer-Verlag.

Kern, S., S. D. Müller, N. Hansen, D. Büche, J. Ocenasek, and P. Koumoutsakos (2004).
Learning probability distributions in continuous evolutionary algorithms – a com-
parative review. Natural Computing 3, 77–112.

Knowles, J., L. Thiele, and E. Zitzler (2005, July). A tutorial on the performance as-
sessment of stochastic multiobjective optimizers. 214, Computer Engineering and
Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich.

Knowles, J. D. and D. W. Corne (2002). On metrics for comparing non-dominated
sets. In Congress on Evolutionary Computation Conference (CEC 2002), pp. 711–716.
IEEE Press.

Knuth, D. E. (1973). The art of computer programming (1st ed.), Volume 3: Sorting and
searching, Chapter 6, pp. 451–471. Addison-Wesley.

Laumanns, M., G. Rudolph, and H.-P. Schwefel (2001). Mutation control and con-
vergence in evolutionary multi-objective optimization. In R. Matousek and P. Os-
mera (Eds.), Proceedings of the 7th International Mendel Conference on Soft Computing
(MENDEL 2001), pp. 24–29. Brno, Czech Republic: University of Technology.

Price, K. V. (1999). An introduction to differential evolution. In D. Corne, M. Dorigo,
and F. Glover (Eds.), New Ideas in Optimization, London, pp. 79–108. McGraw-Hill.

Rechenberg, I. (1973). Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzip-
ien der Biologischen Evolution. Werkstatt Bionik und Evolutionstechnik. Stuttgart:
Frommann-Holzboog.

Salomon, R. (1996). Reevaluating genetic algorithm performance under coordinate ro-
tation of benchmark functions. BioSystems 39(3), 263–278.

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. Sixth-Generation Computer
Technology Series. John Wiley & Sons.

While, L. (2005). A new analysis of the LebMeasure algorithm for calculating hyper-
volume. In C. A. C. Coello, E. Zitzler, and A. H. Aguirre (Eds.), Third International
Conference on Evolutionary Multi-Criterion Optimization (EMO 2005), Volume 3410 of
LNCS, pp. 326–340. Springer-Verlag.

Evolutionary Computation Volume 15, Number 1 27

C. Igel, N. Hansen and S. Roth

Zitzler, E., K. Deb, and L. Thiele (2000). Comparison of multiobjective evolutionary
algorithms: Empirical results. Evolutionary Computation 8(2), 173–195.

Zitzler, E. and S. Künzli (2004). Indicator-based selection in multiobjective search. In
X. Yao et al. (Eds.), Parallel Problem Solving from Nature (PPSN VIII), Volume 3242 of
LNCS, pp. 832–842. Springer-Verlag.

Zitzler, E. and L. Thiele (1998). Multiobjective optimization using evolutionary algo-
rithms — a comparative case study. In A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P.
Schwefel (Eds.), Fifth International Conference on Parallel Problem Solving from Nature
(PPSN-V), pp. 292–301. Springer-Verlag.

Zitzler, E., L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert da Fonseca (2003).
Performance assesment of multiobjective optimizers: An analysis and review. IEEE
Transactions on Evolutionary Computation 7(2), 117–132.

28 Evolutionary Computation Volume 15, Number 1

