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This paper presents a comprehensive review of simulated annealing (SA)-based optimization algorithms. SA-based
algorithms solve single and multiobjective optimization problems, where a desired global minimum/maximum is hidden
among many local minima/maxima. Three single objective optimization algorithms (SA, SA with tabu search and CSA)
and five multiobjective optimization algorithms (SMOSA, UMOSA, PSA, WDMOSA and PDMOSA) based on SA
have been presented. The algorithms are briefly discussed and are compared. The key step of SA is probability
calculation, which involves building the annealing schedule. Annealing schedule is discussed briefly. Computational
results and suggestions to improve the performance of SA-based multiobjective algorithms are presented. Finally, future
research in the area of SA is suggested.
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Introduction

Simulated annealing (SA) is a compact and robust

technique, which provides excellent solutions to single and

multiple objective optimization problems with a substantial

reduction in computation time. It is a method to obtain an

optimal solution of a single objective optimization problem

and to obtain a Pareto set of solutions for a multiobjective

optimization problem. It is based on an analogy of

thermodynamics with the way metals cool and anneal. If a

liquid metal is cooled slowly, its atoms form a pure crystal

corresponding to the state of minimum energy for the metal.

The metal reaches a state with higher energy if it is cooled

quickly. SA has received significant attention in the last two

decades to solve optimization problems, where a desired

global minimum/maximum is hidden among many poorer

local minima/maxima. Kirkpatrick et al (1983) and Černy

(1985) showed that a model for simulating the annealing of

solids, proposed by Metropolis et al (1953), could be used

for optimization of problems, where the objective function

to be minimized corresponds to the energy of states of the

metal. These days SA has become one of the many heuristic

approaches designed to give a good, not necessarily optimal

solution. It is simple to formulate and it can handle mixed

discrete and continuous problem with ease. It is also efficient

and has low memory requirement. SA takes less CPU time

than genetic algorithm (GA) when used to solve optimiza-

tion problems, because it finds the optimal solution using

point-by-point iteration rather than a search over a

population of individuals.

Initially, SA has been used with combinatorial optimiza-

tion problems. Many combinatorial problems belong to a

class known as NP-hard problems, which means that the

computation time, giving an optimal solution, increases with

N as exp(constant�N). Maffioli (1987) showed that SA

can be considered as one type of randomized heuristic

approaches for combinatorial optimization problems. The

well-known travelling salesman problem belongs to this

class. The salesman visits N cities (with given positions) only

once and returns to his city of origin. The objective is to

make the route as short as possible. Afterwards, SA has been

extended to the single and multiobjective optimization

problems with continuous N-dimensional control spaces. A

summary of these approaches is given by Van Laarhoven

and Aarts (1987).

Glover and Greenberg (1989) summarized the approaches

offered by GA, neural networks, tabu search, targeted

analysis and SA. Surveys of the literature on different

evolutionary and metaheuristic-based methods and their

applications are compiled by Coello Coello (1996, 1999) and

van Veldhuizen and Lamont (1998a, 1998b). Despite the

considerable volume of research in single and multiobjective

algorithms based on SA in the last two decades, no survey

has been published in the literature that includes the

multiobjective framework. Surveys on single objective SA

have been performed (Collins et al, 1988; Rutenbar, 1989;

Eglese, 1990) but few multiobjective algorithms to improve

the performance of the SA have been proposed in the recent
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years. This paper presents a survey on single and multi-

objective algorithms based on SA to give an updated

detailed knowledge to the researchers in the area of SA.

The following section presents the application of SA in

different optimization problems. In the section on SA

for optimization, some single as well as multiobjective

algorithms are discussed briefly. Then, the multiobjective

algorithms are compared. Annealing schedule is an essential

part of SA since it determines the performance of SA

algorithm, it is discussed in the succeeding section. Section

on computational results and performance environment,

presents computational results related to SA along with

suggestions to further improve the performance of the SA

algorithm. Finally, the scope for future research is presented

in the succeeding section. The last section presents im-

portance of this work and future scope briefly. Acronyms

and notations are listed in the Appendix.

Applications of SA

SA was started as a method or tool for solving single

objective combinatorial problems, these days it has been

applied to solve single as well as multiple objective

optimization problems in various fields. The problems may

have continuous or discrete variables. SA has been used in

the area of integrated circuits (IC) layout. The problem in IC

layout is placing components on the surface of an IC so as to

optimize subsequent wirability. The IC itself is modelled as a

grid, where each grid point can hold one module. Each set of

module terminals to be wired together forms a net whose

wirability is to be optimized. The chosen cost function is

the estimated wire length. SA terminates when the cost

improvement across three temperatures is very small

(Rutenbar, 1989). It has been applied to the combined

problems of the synthesis of structures/controls and the

actuator-location problem for the design of intelligent

structures. Multiple and conflicting design objectives such

as vibration reduction, dissipated energy, power and a

performance index are included by utilizing an efficient

multiobjective optimization formulation. Piezoelectric mate-

rials are used as actuators in the control system. It can be

used for optimization and an approximation technique is

used to reduce computational effort (Chattopadhyay and

Seeley, 1994). Lucic and Teodorovic (1999) have used it in

airlines. Gradient methods are ineffective in dealing with

many signal processing applications involving optimization

problems with multimodal and non smooth cost functions.

The adaptive simulated annealing (ASA) offers a viable

optimization tool for tackling these difficult nonlinear

optimization problems (Chen and Luk, 1999). Optimization

of batch distillation processes, widely used in chemical

industry can be solved using SA. Hanke and Li (2000) have

showed the potential of SA for developing optimal operation

strategies for batch chemical processes. Recently, it has been

applied in antenna array synthesis (Girard et al, 2001),

multimedia data placement (Terzi et al, 2004) molecular

physics. Suman (2002, 2004a, 2005) has used SA based

multiobjective algorithms to optimize the profit and its

sensitivity of a refinery model problem. Suman (2003) has

applied five SA-based multiobjective algorithms—SMOSA,

UMOSA, PSA, PDMOSA and WMOSA to find a Pareto

set of solutions of a system reliability multiobjective

optimization problem in a short time. In each of these

algorithms, the solution vector explores its neighbourhood

in a way similar to that of Classical SA. Kumral (2003) has

applied chance-constrained programming based on multi-

objective SA to optimize blending of different available ores

in a way that expected value and standard deviation of the

cost of buying ores is minimized while satisfying the quality

specifications.

SA has been greatly used in operational research

problems. Chen et al (1988) reported a new approach to

setup planning of prismatic parts using Hopfield neural net

coupled with SA. Sridhar and Rajendran (1993) have

described three perturbation schemes to generate new

sequences for solving the scheduling problem in cellular

manufacturing system. Suresh and Sahu (1994) have used

SA for assembly line balancing. They only considered single

objective problems. They have found that SA performed at

least as well as the other approaches. Meller and Bozer

(1996) have applied SA to facility layout problems with

single and multiple floors. The facility layout problem is

highly combinatorial in nature and generally exhibits many

local minima. SA achieves low-cost solutions that are much

less dependent on the initial layout than other approaches.

Mukhopadhyay et al (1998) have used SA to solve the

problem of Flexible Manufacturing system (FMS) machine

loading with the objective of minimizing the system

imbalance. Kim et al (2002) have considered a multi-period

multi-stop transportation planning problem in a one-ware-

house multi-retailer distribution system to determine the

routes of vehicles and delivery quantities for each retailer.

They have suggested a two-stage heuristic algorithm based

on SA as an alternative for large problems that cannot be

solved by the column generation algorithm in a reasonable

computation time to minimize the total transportation

distance for product delivery over the planning horizon

while satisfying demands of the retailers. Golenko-Ginzburg

and Sims (1992) have defined a priority list to be any

permutation of a set of symbols, where the symbol for each

job appears the same number of times as its operations. Every

priority list can be associated in a natural way with a feasible

schedule and every feasible schedule arises in the same way.

Therefore, priority lists are a representation of feasible

schedules that avoid the problems normally associated with

schedule infeasibility. Shutler (2003) has presented priority

list based Monte Carlo implementation of SA, which was

competitive with the current leading schedule based SA

and tabu search heuristics. New job sequences have been
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generated with a proposed perturbation scheme named the

‘modified insertion scheme’ (MIS), which have been used in

the proposed SA algorithm to arrive at a near global

optimum solution. The SA algorithm using the proposed

MIS gave substantial improvement in system imbalance. Its

other applications have been presented by machine loading

problem of FMS (Swarnkar and Tiwari, 2004), part

classification (Tiwari and Roy, 2003), resource constrained

project scheduling (Cho and Kim, 1997), etc. McCormick

and Powell (2004) described a two stage SA algorithm to

derive pump schedules for water distribution in a time short

enough for routine operational use. They have built the

model based on automatic interaction with a hydraulic

simulator, which deals with nonlinear effects from reservoir-

level variations.

Application of SA does not restrict to optimization of

nonlinear objective function, these days it has been applied

for many other purposes. Bell et al (1987) have used it to

cluster tuples in databases. They have attempted to use SA in

circuit board layout design and it suggests that it would be

advantageously applied to clustering tuples in database in

order to enhance responsiveness to queries. Recently, it

has not only been applied for optimization but also for

recognition of patterns and object classification (Liu and

Huang, 1998; Yip and Pao, 1995; Starink and Backer, 1995).

Liu and Huang (1998) have proposed hybrid pattern

recognition based on the evolutionary algorithms with fast

SA that can recognize patterns deformed by transformation

caused by rotation, scaling or translation, singly or in

combination. Object recognition problem as matching of a

global model graph with an input scene graph representing

either a single object or several overlapping objects has

been formulated. Chu et al (1996) have used SA to analyse

the network of interacting genes that control embryonic

development and other biological processes. Suman

(2004b) has proposed a new method for online optimization

of multiobjective optimization algorithm parameters. The

parameters have been optimized using SA-based algorithm.

Generalizational distance and measure C as objective

functions have been considered. They have been optimized

to obtain the optimum values of algorithmic parameters.

The developed technique can be implemented with any

multiobjective optimization algorithm.

SA for optimization

SA for single objective optimization

Suppose that the solution space, S, is a finite set of all

solutions and the objective function, f, is a real valued

function defined for the members of S. The minimization

problem can be formulated to find a solution or state, iAS,

which minimizes f over S.

A simple form of local search, say a descent method, starts

with an initial solution. In the neighbourhood of this

solution a new solution is generated using suitable algo-

rithms and the objective function is calculated. If reduction

in the objective function is observed, the current solution is

updated. Otherwise, the current solution is retained and the

process is repeated until no further reduction in the objective

function is obtained. Thus, the search terminates with a local

minimum, which may or may not be the true global

minimum. Owing to this disadvantage, we do not rely on

this algorithm though this is simple and easy to execute. In

SA, instead of this strategy, the algorithm attempts to avoid

being trapped in a local minimum by sometimes accepting

even the worse move. The acceptance and rejection of the

worse move is controlled by a probability function. The

probability of accepting a move, which causes an increase d
in f, is called the acceptance function. It is normally set to

exp(�d/T), where T is a control parameter, which corre-

sponds to the temperature in analogy with the physical

annealing. This acceptance function implies that the small

increase in f is more likely to be accepted than a large

increase in f. When T is high most uphill moves are accepted,

but as T approaches to zero, most uphill moves will be

rejected. Therefore, SA starts with a high temperature to

avoid being trapped in local minimum. The algorithm

proceeds by attempting a certain number of moves at each

temperature and decreasing the temperature. Thus, the

configuration decisions in SA proceed in a logical order. The

SA based algorithm for single objective optimization is

illustrated in Table 1.

Like other heuristic optimization techniques, there is a

chance of revisiting a solution multiple times in SA as well. It

leads to extra computational time without any improvement

in the optimal solution. Recently, researchers Zolfaghari and

Liang (1999), Swarnkar and Tiwari (2004) and Jeon and

Kim (2004) have attempted to use tabu search with SA to

Table 1 SA for single objective

1. Initialize the temperature.
2. Start with a randomly generated initial solution vector, X,

and generate the objective function.
3. Give a random perturbation and generate a new solution

vector, Y, in the neighbourhood of current solution vector,
X, revaluate the objective function and apply penalty
function approach to the objective function, if necessary.

4. If the generated solution vector is archived, make it the
current solution vector by putting X¼Y. Update the
existing optimal solution and go to Step 6.

5. Else accept Y with the probability:

P ¼ expð�Ds=TÞ ð1Þ

where Ds¼Z(Y)�Z(X).
If the solution is accepted, replace X with Y.

6. Decrease the temperature periodically.
7. Repeat Steps 2–6 until stopping criterion is met.
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avoid revisiting in single objective optimization. A pseudo-

code for SA with tabu search for single objective optimiza-

tion is illustrated in Table 2.

In SA, there is a slow convergence rate for some

optimization problems. Mingjun and Huanwen (2004) have

proposed chaos simulated annealing (CSA) by introducing

chaotic systems to SA. The CSA is different from SA as

chaotic initialization and chaotic sequences replace the

Gaussian distribution. CSA is more likely to converge to

the global optimum solution because it is random, stochastic

and sensitive on the initial conditions. It has been shown that

CSA improves the convergence and is efficient, applicable

and easy to implement. The CSA-based algorithm for single

objective optimization is illustrated in Table 3.

Multiobjective optimization

Nowadays, multiobjective optimization has become an

important research topic for scientists and researchers. This

is due to the multiobjective nature of real world problems

and few ambiguities related to multiobjective optimization.

It is difficult to compare results of one multiobjective

method to another, as there is not a unique optimum in

multiobjective optimization as in single objective optimiza-

tion. So, the best solution in multiobjective terms is decided

by the decision maker. Researchers have developed many

multiobjective optimization procedures. They have a number

of disadvantages and pitfalls. Recently, multiobjective

metaheuristic and evolutionary procedures have become

very popular for multiobjective optimization. The increasing

acceptance of SA and other heuristic algorithms is due to

their ability to: (1) find multiple solutions in a single run, (2)

work without derivatives, (3) converge speedily to Pareto-

Table 2 SA with tabu search for single objective

1. Initialize the temperature and tabulist.
2. Start with a randomly generated initial solution vector, X,

and generate the objective function.
3. Give a random perturbation and generate a new solution

vector, Y, in the neighbourhood of current solution vector,
X revaluate the objective function and apply penalty
function approach to the objective function, if necessary.

4. If Y belongs to the tabu list, go to Step 5 else go to Step 6.
5. If Y does not qualify the aspiration criterion go to Step 2.
6. If the generated solution vector is archived, make it the

current solution vector by putting X¼Y and put Y into
tabu list. Update the existing optimal solution and go to
Step 8.

7. Else accept the Y with the probability:

P ¼ expð�Ds=TÞ ð2Þ

where Ds¼Z(Y)�Z(X).
If the solution is accepted, put Y in the tabu list and replace
X with Y.

8. Decrease the temperature periodically.
9. Repeat Steps 2–8 until stopping criterion is met.

Table 3 CSA for single objective

1. Initialize the temperature.
2. Start with a randomly generated initial solution vector, X, and generate the different chaotic variables (Zki), i¼ 1, 2,yy.,n

by using the chaotic systems:

Zkþ 1 ¼ f ðm;ZkÞ ¼ m�Zkð1� ZkÞ ð3Þ

where ZkA[0, 1], k¼ 0, 1,y.
Zk is the value of the variable Z at the kth iteration, m is called the bifurcation parameter of the system.

3. Generate a new solution vector, Y, in the neighbourhood of current solution vector, X, by using the chaotic variables:

Y ¼ X þ aðupper limit of variable� lower limit of variableÞZk ð4Þ

where i and k are the random integers, Zk is a chaotic variable calculated from Equation (2) and a is a variable which is
decreased by the formula a¼ a exp(�b) in each iteration.

4. If the generated solution vector is archived, make it the current solution vector by putting X¼Y. Update the existing optimal
solution and go to Step 6.

5. Else accept the Y with the probability:

P ¼ expð�Ds=TÞ ð5Þ

where Ds¼Z(Y)�Z(X)
If the solution is accepted, replace X with Y.

6. Decrease the temperature periodically.
7. Repeat Steps 2–6 until stopping criterion is met.
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optimal solutions with a high degree of accuracy, (4)

handle both continuous function and combinatorial optimi-

zation problems with ease, (5) be less susceptible to the

shape or continuity of the Pareto front. These issues

are a real concern for the techniques of mathematical

programming.

Definition of the multiobjective optimization problem. Multi-

objective optimization problem (also called multicriteria,

multiperformance or vector optimization) can be defined

mathematically as:

To find the vector X ¼ ½x1; x2; . . . :;xk�T which will satisfy
the following m inequality:

giðXÞX0; i ¼ 1; 2; 3; . . . . . . . . . :;m ð6Þ

the l equality constraints:

hiðXÞ ¼ 0; i ¼ 1; 2; 3; . . . . . . . . . :; l ð7Þ

and optimize the objective function vector

FðXÞ ¼ ½ f1ðXÞ; f2ðXÞ; . . . . . . . . . . . . . . . . . . . . . ; fNðXÞ�T ð8Þ

where X ¼ ½x1; x2; . . . :; xk�T is the vector of decision variable
vector.

Pareto-optimal solutions. The concept of Pareto-optimal

solutions was formulated by Vilfredo Pareto in the 19th

century (Pareto, 1896). Real-life problems require simulta-

neous optimization of several incommensurable and often

conflicting objectives. Usually, there is no single optimal

solution, but there is a set of alternative solutions. These

solutions are optimal in the wider sense that no other

solutions in the search space are superior to each other

when all the objectives are considered. They are known as

Pareto-optimal solutions. To define the concept of Pareto

optimality, we take the example of a minimization problem

with two decision vectors a, b AX. a is said to dominate b if

8i ¼ f1; 2; . . . ::;Ng : fiðaÞpfiðbÞ
and

9j ¼ f1; 2; . . . . . . ;Ng : fjðaÞofjðbÞ
ð9Þ

When the objectives associated with any pair of non-

dominated solutions are compared, it is found that each

solution is superior with respect to at least one objective.

The set of non-dominated solutions to a multiobjective

optimization problem is known as the Pareto-optimal set

(Zitzler and Thiele, 1998).

SA for multiobjective optimization. Initially, SA has

been used as an optimization tool for combinatorial

optimization problems. Recently, it has been adapted in a

multiobjective framework because of its simplicity and

capability of producing a Pareto set of solutions in single

run with very little computational cost. Additionally, it is

not susceptible to the shape of the Pareto set, whereas these

two issues are real concerns for mathematical programming

techniques. The first multiobjective version of SA has been

proposed by Serafini (1985, 1992). The algorithm of the

method is almost the same as the algorithm of single

objective SA. The method uses a modification of the

acceptance criteria of solutions in the original algorithm.

Various alternative criteria have been investigated in order

to increase the probability of accepting non-dominated

solutions. A special rule given by the combination of

several criteria has been proposed in order to concentrate

the search almost exclusively on the non-dominated

solutions. Thereafter, this method has been used by Ulungu

and Teghem (1994). They have only used the notion of the

probability in the multiobjective framework. Serafini (1994)

has used a SA algorithm on the multiobjective framework.

A target-vector approach to solve a bi-objective optimiza-

tion problem has been used. Ulungu et al (1999) have

proposed a complete MOSA algorithm which they had

tested on a multiobjective combinatorial optimization

problem. A weighted aggregating function to evaluate the

fitness of solutions has been used. The algorithm worked

with only one current solution but maintained a population

with the non-dominated solutions found during the search.

Tuyttens et al (2000) have used the MOSA method for the

bicriteria assignment problem. This method has been

further improved and extensively tested by Ulungu et al

(1998) and an interactive version of MOSA has been used

to solve an industrial problem (UMOSA method). Re-

cently, Suppapitnarm and Parks (1999) have proposed a

different SA based approach to tackle multiobjective

problems (SMOSA method). The algorithm uses only one

solution and the annealing process adjusts each tempera-

ture independently according to the performance of the

solution in each criterion during the search. An archive set

stores all the non-dominated solutions between each of

the multiple objectives. A new acceptance probability

formulation based on an annealing schedule with multiple

temperatures (one for each objective) has also been

proposed. The acceptance probability of a new solution

depends on whether or not it is added to the set of

potentially Pareto-optimal solutions. If it is added to this

set, it is accepted to be the current solution with probability

equal to one. Otherwise, a multiobjective acceptance rule is

used. Czyz
.
ak et al (1994) have proposed another way to

adopt SA to a multiobjective framework, the PSA method.

Czyz
.
ak and Jaszkiewicz (1998) have combined unicriterion

SA and a GA to provide efficient solutions of multicriteria

shortest path problem. A population-based extension of SA

proposed for multiobjective combinatorial optimization

problems has been used. The population of solutions

explored their neighbourhood similarly to the classical SA,

but weights for each objective tuned in each iteration. The

weights for each solution are adjusted in order to increase

the probability of moving away from its closest neighbour-
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hood in a similar way as in the multiobjective tabu search.

Suman (2002, 2003) has proposed two different SA-based

approaches (WMOSA and PDMOSA) to tackle the multi-

objective optimization of constrained problems. Suman

(2003) has also tested five SA algorithms for the system

reliability optimization problem. The goal of these methods

was to generate a set of solutions that are a good

approximation to the whole set of efficient (non-dominated

or Pareto-optimal) solutions in a relatively short time.

Suman (2005) has further improved the SA-based multi-

objective algorithm so that the user does not need to give a

predefined number of maximum iterations. All SA multi-

objective algorithms have the advantage that they allow the

full exploration of the solution space; since, the starting

temperature is high, any move is accepted. The move

becomes selective as temperature decreases with increase in

iteration number and by the end it accepts only the

improving moves.

SA-based multiobjective optimization algorithms

The method of Suppapitnarm and Parks (SMOSA). The

concept of archiving the Pareto-optimal solutions for

solving multiobjective problems with SA has been used by

Suppapitnarm et al (2000). The method enables the search

to restart from an archived solution in a solution region,

where each of the pair of non-dominated solutions is

superior with respect to at least one objective. This is called

a return-to-base strategy. A new acceptance probability

formulation based on an annealing schedule with multiple

temperatures (one for each objective) is also proposed. The

method does not use a composite objective function, the

changes in each objective are compared to each other

directly before archiving. This ensures that the moves to a

non-dominated solution are accepted. It does not use any

weight vector in the acceptance criteria. Hence, the key

probability step is given as

P ¼ min 1;
YN
i¼1
exp

�Dsi
Ti

� � !
ð10Þ

where Dsi¼ (zi(Y)�zi(X)), X is the current solution, Y is the

generated solution, zi is the objective function, Ti is the

annealing temperature and P is the probability. Thus, the

overall acceptance probability is the product of individual

acceptance probabilities for each objective associated with a

temperature Ti. All temperatures are set to a large value at

the start of the search. A statistical record of the values of

each of the objective functions, fi, is maintained. The

temperatures are first lowered after NT1 iterations by setting

each temperature to the standard deviation of the accepted

values of fi. Thereafter, the temperatures are lowered after

every NT2 iterations or NA acceptances. The maximum step

change in the control variables is monitored and is varied to

reduce violation of the constraints.

The SMOSA algorithm. The basic steps involved in the

SMOSA algorithm for a problem having N objective

functions and n decision variables are as follows:

1. Start with a randomly generated initial solution vector, X

(an n� 1 vector whose elements are decision variables)
and evaluate all objective functions and put it into a

Pareto set of solutions.

2. Give a random perturbation and generate a new solution

vector, Y, in the neighbourhood of current solution

vector, X, re-evaluate the objective functions and apply a

penalty function approach to the corresponding objective

functions, if necessary.

3. Compare the generated solution vector with all the

solutions in the Pareto set and update the Pareto set, if

necessary.

4. If the generated solution vector is archived, make it the

current solution vector by putting X¼Y and go to Step 7.

5. If the generated solution vector is not archived, accept it

with the probability:

P ¼ min 1;
YN
i¼1
exp

�Dsi
Ti

� � !
ð11Þ

where Dsi¼ (zi(Y)�zi(X))

If the generated solution is accepted, make it the current

solution vector by putting X¼Y and go to Step 7.

6. If the generated solution vector is not accepted, retain the

earlier solution vector as the current solution vector and

go to Step 7.

7. Periodically, restart with a randomly selected solution

from the Pareto set. While periodically restarting with the

archived solutions, Suppapitnarm et al (2000) have

recommended biasing towards the extreme ends of the

trade-off surface.

8. Reduce the temperature periodically using a problem-

dependent annealing schedule.

9. Repeat Steps 2–8, until a predefined number of iterations

is carried out.

The method of Ulungu and Teghem (UMOSA). For a

multiobjective problem, a move from the present position

to a new position can result in three different possibilities:

(a) Improving moves with respect to all objectives is always

accepted with probability one. (b) Simultaneous improve-

ment and deterioration with respect to different objectives.

In this case neither the new move nor the current solution

dominates each other. Therefore, the strategy devised must

be sound enough to discriminate between both the

solutions. (c) Deterioration with respect to all objectives

is accepted with a calculated probability. Here, a strategy

has been adapted to handle these situations. The UMOSA

algorithm of Ulungu et al (1998, 1999) uses a strategy called

the criterion scalarizing approach since probability to

accept the new solution must take into account the distance
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between the old and the new move. The multidimensional

criteria space (Df) is projected into a one-dimensional space
(Ds) by using scalarizing functions. Scalarizing functions
aggregate the multi-criteria into a unicriterion one using a

weight vector. In this approach, the new move is accepted

with the probability:

P ¼ 1; if Dsp0 ð12Þ

¼ exp
�Ds
T

� �
; if Ds40 ð13Þ

where Ds can be defined by:

Ds ¼ sðZðYÞ; lÞ � sðZðXÞ; lÞ; sðZ; lÞ ¼
XN
l¼1

llzl ð14Þ

where l is a weight vector.
This method works with predefined diversified weight

vector. This set of weights is uniformly generated. Two

scalarizing functions have been used: the easiest function, the

weighted sum and the Chebysev norm, L. The effect of using

different scalarizing functions is small due to the stochastic

character of the method. These issues are discussed in detail

in Ulungu et al (1995, 1998) and Teghem et al (2000).

The UMOSA Algorithm. The basic steps involved in

the UMOSA algorithm for a problem having N objective

functions and n decision variables are as follows:

1. Generate a wide diversified set L of uniform random

weight vectors, where ll¼ (lil, i¼ 1, 2,yy.,N) and

normalize them between 0 and 1, such that
Pi¼N

i¼1 l
l
i ¼ 1.

2. Start with a randomly generated initial solution vector,

X (an n� 1 vector whose elements are decision

variables), evaluate all objective functions and apply a

penalty function approach to the corresponding objec-

tive functions, if necessary and put them into a Pareto

set of solutions.

3. Give a random perturbation and generate a new

solution vector, Y, in the neighbourhood of current

solution vector, X, revaluate the objective functions and

apply a penalty function approach to the corresponding

objective functions, if necessary.

4. Compare the generated solution vector with all solutions

in the Pareto set and update the Pareto set, if necessary.

5. If the generated solution vector is archived, make it the

current solution vector by putting X¼Y and go to Step 8.

6. Accept the generated solution vector as the current

solution vector, if it is not archived with the probability

P ¼ 1; if Dsp0

¼ exp
�Ds
T

� �
; if Ds40 ð15Þ

where Ds¼ s(Z(Y),l)�s(Z(X), l), sðZ; lÞ ¼
PN

l¼1 llzl.

If the generated solution is accepted, make it the

current solution vector by putting X¼Y and go to

Step 8.

7. If the generated solution vector is not accepted, retain

the earlier solution vector as current solution vector and

go to Step 8.

8. Periodically, restart with a randomly selected solution

from the Pareto set. While periodically restarting with

the archived solutions, Suppapitnarm et al (2000) have

recommended biasing towards the extreme ends of the

trade-off surface.

9. Reduce the temperature periodically using a problem-

dependent annealing schedule.

10. Repeat Steps 3–9, until a predefined number of

iterations are carried out.

11. Repeat Steps 1–10 for each weight vector ll of the
set L.

Pareto simulated annealing. Czyz
.
ak and Jaszkiewicz

(1996, 1997a, 1997b, 1998) have modified the procedure

of Ulungu et al (1995) by combining unicriterion SA with a

GA to provide efficient solutions. This method, known as

Pareto simulated annealing (PSA), generates a good

approximation of the efficient solution set in a relatively

short time. PSA uses the concept of neighbourhood,

acceptance of new solutions with some probability and

annealing schedule from SA and the concept of using a

sample population of interacting solutions from GA. PSA

uses scalarizing functions based on probabilities for

accepting new solutions. In each iteration of the procedure,

a set of solutions called generating samples controls the

objective weights used in the acceptance probability. This

assures that the generating solutions cover the whole set

of efficient solutions. One can increase or decrease the

probability of improving values of a particular objective

by controlling the weights. The higher the weight associated

with a given objective, the lower the probability of

accepting moves that decrease the value of this objective

and the greater the probability of improving the value of

this objective.

The PSA algorithm. The basic steps involved in the PSA

algorithm for a problem having N objective functions and n

decision variables are as follows:

1. Choose a starting sample of generating solutions, XAG

and update the non-dominated set, for each solution of

generating solution set.

2. Generate a random solution,Y, in the neighbourhood of

each solution XAG in the generating sample, evaluate all

the objectives and add penalty values to the correspond-

ing objective functions, if necessary.

3. Update the archived set of efficient solutions with Y if it

is non-dominated.

B Suman and P Kumar—A survey of simulated annealing 1149



4. Select. a non-dominated solution, X0, from set G closest

to X.

5. If there exists no such X0 or it is the first iteration with X

then set random weights such that

8j; ljX0 and
X
j

lj ¼ 1 ð16Þ

6. Else for each objective function zj

lj ¼
alxj ; zjðXÞXzjðX 0Þ
lxj =a; zjðXÞozjðX 0Þ

�
ð17Þ

where, a is greater than one.
Normalize the weight such that

P
j lj ¼ 1.

7. Accept solution with the probability

P ¼ min 1;
YN
i¼1
exp

�Dsi
Ti

� � !
ð18Þ

where Dsi¼ li(zi(Y)�zi(X)).

This is known as Rule SL in which all the objectives are

aggregated with a weighted sum of the objectives. If the

solution is accepted, make it the current solution vector

and go to Step 9.

8. If the solution is not accepted, retain the earlier solution

as a current solution and go to Step 9.

9. Reduce the temperature periodically using a problem-

dependent annealing schedule.

10. Repeat Steps 1–8, until a predefined number of

iterations are carried out.

The detailed discussion on PSA is described by Czyz
.
ak

and Jaszkiewicz (1996, 1997a, 1997b), Hapke et al (1996,

1997, 1998a, 1998b), Jaszkiewicz (1997) and Jaszkiewicz and

Ferhat (1999).

Multiobjective simulated annealing using constraints
violation in acceptance criterion (WMOSA)

Constrained multiobjective optimization is important for

practical problem solving. Constraint handling is a crucial

part of a real-world problem. Most of the SA-based

algorithms handle constraints by using a separate technique

like a penalty function approach. WMOSA algorithm

(Suman, 2002, 2003, 2004a, 2004b) has attempted to handle

constraints with its main algorithm by using a weight

vector in the acceptance criterion by directing the move

towards the feasible solutions. It does not use any extra

technique to handle constraints. It has been shown that the

substantial reduction in computational time can be achieved

without worsening the quality of solution with WMOSA.

Weight vector, W, depends on the number of constraints

violated by the solution vector and the objective function

vector. W is an N dimensional column vector. Its element

is given by

Wj ¼ðNumber of constraints satisfied by the solution
vector and the objective function vector þ number of

constraints satisfied by the jth element of the objective

function vector ðif there are constraints on the jth
element of the objective functionspecificallyÞÞ=
ðNumber of constraints on the solution vector and
the objective function vector þ number of constraints

onthe jth element of the objective function vector

ðif there are constraints on the jth element of the
objective function vector specificallyÞÞ

ð19Þ

where N is the number of objective functions.

The WMOSA Algorithm. The basic steps involved in

the WMOSA algorithm for a problem having N objective

functions and n decision variables are as follows:

1. Start with randomly generated initial solution vector, X

(an n� 1 vector whose elements are decision variables),
evaluate all objective functions and put it into a Pareto set

of solutions.

2. Give a random perturbation and generate a new solution

vector, Y, in the neighbourhood of current solution

vector, X, and revaluate the objective functions.

3. Compare the generated solution vector with all solutions

in the Pareto set and update the Pareto set, if necessary.

4. If the generated solution vector is archived, make it the

current solution vector by putting X¼Y and go to Step 7.

5. Accept the generated solution vector, if it is not archived,

with the probability

P ¼ exp �Ds
T

� �
ð20Þ

where Ds¼W(Y)Z(Y)�W(X)Z(X) and W vector is

defined in Equation (16).

If the generated solution vector is accepted make it the

current solution vector by putting X¼Y and go to Step 7.

6. If the generated solution vector is not accepted, retain the

earlier solution vector and go to Step 7.

7. Periodically, restart with a randomly selected solution

from the Pareto set. While periodically restarting with

the archived solutions, Suppapitnarm et al (2000) has

recommended biasing towards the extreme ends of the

trade-off surface.

8. Reduce the temperature periodically using a problem-

dependent annealing schedule.

9. Repeat Steps 2–8, until a predefined number of iterations

is carried out.
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Multiobjective simulated annealing using pareto-domina-
tion-based acceptance criterion (PDMOSA). A strategy

of Pareto-domination based fitness can easily be

adapted to simulate annealing in the acceptance criterion.

This novel idea is used to formulate the PDMOSA

algorithm (Suman, 2003, 2004a, 2004b, 2005). Here, fitness

of a generated solution in the acceptance criteria is used.

Fitness of a solution is defined as one plus the number

of dominating solutions in Pareto-optimal set (con-

taining both feasible as well as infeasible solutions). The

larger the value of fitness, the worse is the solution.

Initially, fitness difference between the current and the

generated solution is less and the temperature is high

so any move is accepted due to both of them. This

gives a way to explore the full solution space. As the

number of iterations increases, temperature decreases and

fitness difference between the current and generated

solutions may increase. Both make the acceptance move

more selective and it results in a well-diversified solution

in true Pareto-optimal solutions. In this algorithm, the

penalty function approach is used to deal with infeasible

solutions and the weight vector is not used in acceptance

criterion.

The major difference between other SA-based algorithms

and PDMOSA is that PDMOSA need not use the

objective function value in the acceptance criterion. PDMO-

SA uses a fitness value, which can be obtained from the

Pareto set of solutions (containing both feasible as well

as infeasible solutions). This makes the calculation of

the probability step simpler and the move tends towards

the non-dominated solutions, which is of interest in multi-

objective problems. In this way, it has the advantages of

diversification of Pareto-optimal solutions over all other

algorithms and computational cost over algorithms that

use a penalty function approach, that is, SMOSA, UMOSA

and PSA.

The PDMOSA algorithm. The basic steps involved in

the PDMOSA algorithm for a problem having N objective

functions and n decision variables are as follows:

1. Start with randomly generated initial solution vector, X

(an n� 1 vector whose elements are decision variables),
evaluate all objective functions and put them into a set of

potentially Pareto-optimal solutions.

2. Give a random perturbation and generate a new solution

vector, Y, in the neighbourhood of the current solution

vector, X. Re-evaluate the objective functions and apply a

penalty function approach to the corresponding objective

functions, if necessary.

3. Compare the generated solution vector with all poten-

tially Pareto-optimal solutions (feasible as well as

infeasible solutions) and update the set of potentially

Pareto-optimal solutions, if necessary. This solution set is

used for the fitness calculation of a solution and go to

Step 6.

4. Accept the generated solution vector as the current

solution vector with probability, which is given by

P ¼ exp
�Ds0

T

� �
ð21Þ

where Ds0 ¼S0
i�1,current�S0

i,generated and where S
0
i,generated is

the Pareto-domination-based fitness of generated solution

at iteration number i. S0
i�1,current is the Pareto-domina-

tion-based fitness of current solution at iteration

number i–1.

The fitness of the current solution at iteration number i,

S0
i,current¼ 1þ the number of solutions from the poten-

tially Pareto-optimal solutions set generated so far

dominating the current solution at iteration number i.

This means that the better solutions have lower fitness

values and fitness has to be minimized. If the generated

solution is accepted take it as the current solution vector

by putting X¼Y and go to Step 6.

5. If the generated solution vector is not accepted, retain the

earlier solution vector as the current solution vector and

go to Step 6.

6. Periodically, restart with a randomly selected solution

from the set of potentially Pareto-optimal solutions.

7. Reduce the temperature periodically using a problem-

dependent annealing schedule.

8. Repeat Steps 2–7 until a predefined number of iterations

is carried out and take out a set of feasible Pareto-optimal

solutions from the Pareto-optimal solution set that has

feasible as well as infeasible solutions.

Comparison of multiobjective algorithms

The SMOSA method does not form a composite objective

function between each of the objectives (Suppapitnarm et al,

2000). This method tests a solution for acceptance by a new

probability test based on the product of changes in all

objectives only if the solution is not archived. Thus, this

method improves the performance of the algorithm by

reducing the computation time. This method gives the

outcome of a multiobjective optimization as a number of

optimal solutions from which a user may choose a particular

solution in a number of ways. The method has been

successfully applied to problems with two or three objectives.

This method was applied to a two objective problem with a

simple equation of constraint in the objectives. SMOSA gave

performance comparable to that of a well-developed GA.

This method can be further improved by applying it to a

wide range of problems with more than three objectives.

UMOSA method uses the criterion scalarizing approach

to project the multidimensional criteria space (Df ) into a
one-dimensional space (Ds) (Ulungu et al, 1999). This

method builds a list of potentially efficient solutions that

are not dominated by any other generated solution.

UMOSA method can be easily adapted in an interactive
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way to provide satisfying results to the decision maker

according to his choices. Ulungu et al (1999) have applied

this method to the knapsack problem, which is a classical

combinatorial optimization problem. Experiments in both

single objective and multiobjective cases have been con-

ducted. It is found that the most critical parameter is the

cooling factor and it is stressed that its value should be close

to 0.975. The same value of the cooling factor for the bi-

objective case has been used and it is shown that this method

provides a good approximation of the potentially efficient set.

The PSA method uses the concepts of SA and GA for the

optimization of multiobjective combinatorial problems

(Czyz
.
ak and Jaszkiewicz, 1998). The use of a population

of generating solutions, each of them exploring the search

space according to SA, assures that the generating solutions

cover the whole set of efficient solutions. This method can

have parallel implementation as the calculations required for

each solution may be done on different processors. Czyz
.
ak

and Jaszkiewicz (1998) have used this method to solve a

multiobjective knapsack problem. PSA gave better results

than the method of Serafini even in the case of sequential

implementation if the size of the generating sample is

appropriately set. The method of Serafini, similar to single

objective SA, gives a set of potentially efficient solutions for

a multiobjective optimization problem. PSA can be further

improved by adaptive setting of the size of generating sample

and using concepts of other metaheuristics procedures.

The WMOSA method attempts to handle constraints with

its main algorithm by using a weight vector in the acceptance

criterion (Suman, 2002). This method has been applied on

three multiobjective optimization problems and it has been

shown that WMOSA takes the least computation time since

it does not need to use the penalty function approach to

handle the constraints. Suman (2003) has shown that the

WMOSA algorithm performs reasonably well for contin-

uous functions as well as for combinatorial problems with a

large number of constraints.

The PDMOSA method uses Pareto-domination based

fitness to simulate annealing in the acceptance criterion

(Suman, 2004a, 2004b) because a good approximation of

true Pareto set is needed in multiobjective. Pareto set instead

of the value of the objective function at the probability step

is used. Thus, this method diversifies the Pareto-optimal

solutions and reduces the computation time. Suman (2004a,

2004b) has shown that this method is next to the WMOSA

method in terms of computation time. It is also shown that

PDMOSA generates well-diversified Pareto-optimal solution

and performs reasonably well for continuous function

problems with fewer variables.

Annealing schedule

The setting of the parameters for the SA-based algorithm

determines the generation of the new solution. The precise

rate of cooling is an essential part of SA as it determines the

performance of the SA-based algorithm. A high cooling rate

leads to poor results because of lack of the representative

states, while a low cooling rate requires high computation

time to get the result. The following choices must be

made for any implementation of SA and they constitute

the annealing schedule: initial value of temperature (T),

cooling schedule, number of iterations to be performed

at each temperature and stopping criterion to terminate the

algorithm.

Initial value of temperature (T)

Initial temperature is chosen such that it can capture the

entire solution space. One choice is a very high initial

temperature as it increases the solution space. However, at a

high initial temperature, SA performs a large number of

iterations, which may be without giving better results.

Therefore, the initial temperature is chosen by experimenta-

tion depending upon the nature of the problem. The range of

change, Df0 in the value of the objective function with

different moves is determined. The initial value of tempera-

ture should be considerably larger than the largest Df0
encountered. van Laarhoven et al (1988) have proposed a

method to select the initial temperature based on the initial

acceptance ratio w0, and the average increase in the objective
function, Df0:

T ¼ � Df0
lnðw0Þ

ð22Þ

where w0 is defined as the number of accepted bad moves
divided by the number of attempted bad moves. A similar

formula has been proposed by Sait and Youssef (1999) with

the only difference being in the definition of w0. They have
defined w0 as the number of accepted moves divided by the
number of attempted moves. A simple way of selecting initial

temperature has been proposed by Kouvelis and Chiang

(1992). They have proposed to select the initial temperature

by the formula

P ¼ exp
�Ds
T

� �
ð23Þ

where P is the initial average probability of acceptance and is

taken in the range of 0.50–0.95. Still no conclusion has been

made about the method of selection of initial temperature.

Cooling schedule

Cooling schedule determines functional form of the change

in temperature required in SA. The earliest annealing

schedules have been based on the analogy with physical

annealing. Therefore, they set initial temperature high

enough to accept all transitions, which means heating up

substances till all the molecules are randomly arranged
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in liquid. A proportional temperature is used, that is,

T(iþ 1)¼ aT(i), where a is a constant known as the cooling
factor and it varies from 0.80 to 0.99. Finally, temperature

becomes very small and it does not search any smaller energy

level. It is called the frozen state.

Three important cooling schedules are logarithmic,

Cauchy and exponential (Azencott, 1992). SA converges to

the global minimum of the cost function if temperature

change is governed by a logarithmic schedule in which the

temperature T(i) at step i is given by T(i)¼T0/log i (Geman

and Geman, 1984). This schedule requires the move to be

drawn from a Gaussian distribution. A faster schedule is the

Cauchy schedule in which T(i)¼T0/i converges to the global

minimum when moves are drawn from a Cauchy distribu-

tion (Szu and Hartley, 1987). It is sometimes called ‘fast

simulated annealing’. The fastest is exponential or geometric

schedule in which T(i)¼T0 exp(�Ci) where C is a constant.

There is no rigorous proof of the convergence of this

schedule to the global optimum although good heuristic

arguments for its convergence have been made for a system

in which annealing state variables are bounded (Ingber,

1989).

A proportional temperature cooling schedule does not

lead to equilibrium at low temperature. Therefore, there is a

need for a small number of transitions to be sufficient to

reach the thermal equilibrium. However, recently a serious

attempt has been made with ASA (Gong et al, 2001). Few

annealing schedules use information about the cost function

obtained during the annealing run itself. Such a schedule is

called an adaptive cooling schedule (Ingber, 1989; Azizi and

Zolfaghari, 2004). An adaptive cooling schedule tries to keep

the annealing temperature close to the equilibrium as well as

reducing the number of transitions to reach equilibrium. It

adjusts the rate of temperature decrease based on the past

history of the run. Otten and van Ginneken (1984) have

proposed the following cooling schedule:

Tiþ 1 ¼ Ti �
1

Mk

T3
k

s2ðTiÞ
ð24Þ

where s2 is the variance of the objective function at

equilibrium and Mk is given by

Mk ¼
fmax þ Ti lnð1 þ dÞ
s2ðTiÞ lnð1 þ dÞ Ti ð25Þ

where fmax is an estimated maximum value of the objective

function.

Similar to Equation (3), van Laarhoven et al (1988) have

proposed the following cooling schedule:

Tiþ 1 ¼
Ti

1 þ ðlnð1 þ dÞTi=3sTiÞ
ð26Þ

where d is a small real number.
One of the adaptive cooling schedules is the adaptive

schedule of Lam. The Lam schedule (Lam and Delosme,

1988a, 1988b) has been derived by optimizing the rate at

which temperature can be decreased subject to the constraint

of maintaining quasi-equilibrium. It is given as

Skþ 1 ¼ Sk þ l
1

sðSkÞ

� �
1

S2ks
2ðSkÞ

� �

� 4r0ðSkÞð1� r0ðSkÞÞ2

ð2� r0ðSkÞÞ2

 !
ð27Þ

where Si¼ 1/Ti and Ti is the temperature at ith iteration of

the cost function E. s(Sk) is the standard deviation of E at
this step and r0(Sk) is the acceptance ratio, that is, the ratio
of accepted to attempted moves. The following four factors

play important roles:

(a) l is a quality factor. Making smaller l improves the
quality of the solution, but it also increases the

computation time.

(b) 1/(s(Sk)) measures the distance of the system from quasi-
equilibrium.

(c) ð1=ðS2ks2ðSkÞÞÞ is the inverse of the statistical specific
heat which depends on the variance.

(d) ðð4r0ðSkÞð1� r0ðSkÞÞ2Þ=ðð2� r0ðSkÞÞ2ÞÞ is equal to

r2/2 where r2 is the variance of the average energy
change during a move. It is a measure of how effectively

the state space is sampled and was found to be at a

maximum value when r0E0.44.

Azizi and Zolfahgari (2004) have used an adaptive

annealing schedule that adjusts the temperature dynamically

based on the profile of the search path. Such adjustments

could be in any direction including the possibility of

reheating. In their first proposed method, an adaptive

temperature control scheme has been used that changes

temperature based on the number of consecutive impro-

ving moves. In the second method, a tabulist has been

added to the ASA algorithm in order to avoid revisits to

the solutions.

Triki et al (2004) have studied annealing schedules. They

have performed experiments to construct an optimum

annealing schedule that showed that there was no clearly

better annealing schedule than the logarithmic schedule to

ensure convergence towards the set of optima with prob-

ability one. They have developed software to calculate a

practical and optimum annealing schedule for a given

objective function. They have also conducted experiments

on adaptive annealing schedules to compare classical

annealing schedules. They proposed the following cooling

schedules:

Tiþ 1 ¼ Ti exp � lTi

sðTiÞ

� �
ð28Þ

Tiþ 1 ¼ Ti 1� Ti
DðTiÞ
s2ðTiÞ

� �
ð29Þ
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They have showed that several classical adaptive tempera-

ture decrement rules proposed in the literature, that had

different theoretical foundations and different mathematical

equations, were in fact the same practical rule. They have

calculated a new adaptive decrement rule for controlling and

tuning the SA algorithm.

Other cooling schedules make a more direct appeal to the

theoretical results on asymptotic convergence. Lundy and

Mees (1986) have proposed an annealing schedule where

there is only a single iteration at each temperature. They

have used heuristic arguments to derive a temperature

function of form

Tiþ 1 ¼
Ti

1 þ BTi
ð30Þ

where B is a constant. Equation (9) is equivalent to

Ti ¼
C1

1 þ iC2
ð31Þ

where C1 and C2 are constants. SA proposed by Connolly

(1987, 1988) suggested that the majority of the iterations

should be conducted at a suitably fixed temperature.

The choice of decreasing the temperature is an important

issue as there has been a conflict, since early days of SA,

between theory and practice. There is no universally valid

conclusion in the literature. However, a general choice is to

cool the system slowly at the stage where the objective

function is rapidly improving.

Number of iterations

The number of iterations at each temperature is chosen so

that the system is sufficiently close to the stationary

distribution at that temperature. Aarts and Korst (1989)

and van Laarhoven and Aarts (1987) refer this as ‘quasi-

equilibrium’. Enough number of iterations at each tempera-

ture should be performed if temperature is decreased

periodically. If less number of iterations is performed, all

represented states will not be searched and the solution will

not be able to reach the global optimum. The value of the

number of iterations depends on the nature of the problem.

Again, there is no general agreement about it.

Stopping criterion

Various stopping criteria have been developed with time. (i)

Total number of iterations and number of iterations to move

at each temperature have been given. This criterion leads to

higher computation time without much update in f and

sometimes it may lead to local minimum due to less number

of iterations. The number of iterations used by an algorithm

depends on the complexity of a problem, which may not be

known beforehand. (ii) A minimum value of temperature

and number of iterations to move at each temperature has

been given. This idea is generated with the fact that the

chance of improvement in a solution is rare once the

temperature is close to zero. At very low temperature, moves

will be trapped in the neighbourhood of the current solution.

(iii) Number of iterations to move at each temperature and a

predefined number of iterations to get a better solution

(called FROZEN) has been given.

Computational results and performance improvement

SA is a stochastic algorithm, which requires a neighbour-

hood as well as a number of parameters to specify a cooling

schedule. Many variants of the basic algorithms have been

proposed. Therefore, it requires considerable testing of the

algorithms to give sound conclusions. Johnson et al (1989),

van Laarhoven (1988) and Lundy and Mees (1986) have

shown that SA works better than the descent algorithm.

Hertz and de Werra (1987) have shown that tabu search

works better than SA in graph colouring problem. On the

other hand, Bland and Dawson (1989) have obtained better

results with SA for layout optimization problems. It is a

premature stage to make any judgment about the perfor-

mance of SA. SA has been applied to many problems where

no problem specific algorithms were available. They include

problems of VLSI design and molecular structure. SA

provides good solutions for a football pool problem (Wille,

1987; van Laarhoven, 1988). Johnson et al (1989, 1991) have

shown that SA outperforms the classical Kernighan and Lin

algorithm in both quality and speed for certain type of

random graphs. In 1992, Ingber and Rosen (1992) have

proposed a very fast simulated reannealing (VFSR) method

that is efficient in its search strategy and which statistically

guarantees to find the global optima. Their results reveal

that the VSFR method is orders of magnitude more efficient

than a GA. Pirlot (1996) has showed that tabu search works

well then SA, though he was not sure if he has used the

correct annealing schedule. However, Johnson et al (1989)

and van Laarhoven (1988) have shown that there was not

much difference in the solution with different annealing

schedule. Recently, Youssef et al (2003) have studied

SA, tabu and evolutionary algorithm together. They have

shown that tabu and evolutionary algorithms outperform

over SA.

The SA algorithm for single objective problems sometimes

accepts solutions, which are worse than the current solution.

Therefore, it is possible that the final solution can be worse

than the best solution. It is suggested to store the best

solution to improve the performance of SA. It is supported

by Glover and Greenberg (1989) and Connolly (1988). Anily

and Federguen (1987), Faigle and Schrader (1988), Romeo

and Sangiovanni-Vincentelli (1985) and Matsuo et al (1988)

have considered to replace the standard probability function

exp (�d/T). Grover (1986), Greene and Supowit (1986) and
Tovey (1988) have suggested using an approximate value of
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d rather than the exact value. A very important way of

improving a heuristic technique is to mix two algorithms.

Attempts have been made to improve the performance of SA

by combining it with another algorithm. There are two ways

of using SA with another algorithm. In the first way, a good

initial guess is provided to the SA algorithm which is

improved by SA (Chams et al, 1987; and Johnson, 1989). In

the second way, SA is implemented by using a parallel

version of the algorithm. A nice discussion is found in the

book by Aarts and Korst (1989). Lam and Delsome (1988a,

b) have attempted to improve SA algorithm by adaptively

controlling the rate of temperature decrease and the size of

moves so as to maximize the optimization efficiency. Chu

et al (1996) proposed a parallelized Lam’s version of SA so

that SA can be parallelized. SA is difficult to parallelize due

to its intrinsic serial nature and direct parallelization of the

Metropolis algorithm. Their approach involves strategies of

pooling statistics of both state and algorithm parameters

while stirring the system. Rosen and Harmonosky (2003)

have improved SA by using discrete decision variable

space. Tiwari and Roy (2003) have proposed an SA-hybrid

algorithm. Jeon and Kim (2004) have proposed an

efficient SA that uses tabu search to get an optimal solution

fast. Nwana et al (2004) have mixed SA with branch and

bound.

Although the SA method can find the optimal solution to

most single and multiobjective optimization problems, the

algorithm always requires numerous numerical iterations to

yield a good solution. Suman et al (2005) has proposed

orthogonal SA, which combines SA with fractional factorial

analysis and enhances the convergence and accuracy of the

solution. Fractional factorial analysis, which involved

several factorial experiments based on orthogonal tables to

determine the best combination of factors, has been

incorporated. The performance of the orthogonal SA

method has been evaluated by solving several global

optimization problems. It has been shown that the

orthogonal SA method outperforms the SA in solving

global optimization problems with a linear or nonlinear

objective function. CSA uses SA with chaotic systems

(Mingjun and Huanwen, 2004). The CSA is different from

SA as chaotic initialization and chaotic sequences replace the

Gaussian distribution. However, the theory of the algorithm

of CSA and the method of combining SA to chaotic system

need to be further improved.

Complete physical analogy and theoretical studies

on SA are well documented in the literature. Apart from

the discussed references, they are described by Aarts

and van Laarhoven (1985), Alspector and Allen (1987),

Casotto et al (1987), Chams et al (1987), Chu et al (1996),

Eglese and Rand (1987), Farhat (1987), Hejak (1988),

Jerrum and Sinclair (1988), van Laarhoven et al (1988,

1992), Mitra et al (1986), Sasaki and Hajek (1988) and

Wright (1989).

Direction of future research

SA-based optimization algorithms can be used to optimize

single as well as multiobjective optimization problems. It has

been applied in various fields like process system engineer-

ing, operational research, smart materials etc. Though in the

last two decades a lot of work has been done in this area,

most of it has been concentrated on application of some

conventional or ad-hoc techniques to certain difficult

problems. Therefore, there are still many open problems.

Some of them have been discussed herein.

Annealing schedule has been a topic of research in SA

since it has been used as an optimization technique. It is used

at the probability step in SA and therefore, it governs the

move. A wise choice of annealing schedule can save

computational time and can improve the quality of solution.

However, it has not been explored properly though few

attempts have been made in past. A sincere effort is required

to choose an optimal annealing schedule for a problem. An

attention is needed to select the initial temperature and to

decide the number of iterations to be performed at each

temperature.

The search space in SA is explored one by one and in a

sequential manner. Therefore, there is a chance of revisiting

a solution multiple times, which leads to extra computation

time without improving the quality of the solution. Recently,

researchers have attempted to use tabu search with SA to

avoid revisiting. However, avoidance of revisiting a solution

by tabu search depends on the size of the tabu list. A large

tabu list is also computationally intensive. Additionally, it

has been used only in single objective optimization problems.

SA with tabu search should be more effective in multi-

objective since the management of a Pareto set is compu-

tationally intensive.

SA generates the new solution vector randomly; it is

inefficient for searching for the optimal solution of large

parameter optimization problems. Suman et al (2005)

performed factorial experiments according to orthogonal

tables to generate a better new solution vector. This

orthogonal SA method should be further investigated as it

has the potential to optimize complex optimization pro-

blems. The basis for the selection of the initial solution

vector should also be investigated.

In SA, the selection of an initial solution vector and the

next move require the lower and upper bound of the solution

vector, the neighbourhood of all solution vectors, to be

specified. In real-life optimization problem, the neighbour-

hood of all solution vectors may not be known. SA can be

extended to search the neighbourhood of the solution vector

in a manner it has been extended to estimate the algorithmic

parameters.

SA-based optimization algorithms use few parameters in

their algorithms as in other optimization methods. It will

be advantageous if the effect of each parameter on the

performance of the algorithms has been studied. Then, the
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optimal values of the parameters to obtain the best results

can be obtained. SA-based multiobjective algorithms give a

Pareto set of solutions. It is difficult for a decision maker to

decide on the solution due to the considerable large size of

Pareto set. It would be better if we could reduce the Pareto

set to a less (desired) number of solutions based on the

choice of the decision maker. Such an attempt has been

made by Kunha et al (1997). They clustered together points

that were within a certain distance of each other in the

Pareto front.

Multiobjective optimization has multiple goals unlike

single objective and it makes it difficult to measure the

quality of the solution. Several attempts have been made to

measure the quality of a solution (van Veldhuizen and

Lamont, 1998b; Zitzler and Thiele, 1998; Srinivas and Deb,

1994; Suman, 2005). Some of them are based on visualiza-

tion, whereas some use matrices. The method of matrices is

the most promising so far. A general measurement technique

to measure the performance of an algorithm should be

developed. Methods need to be developed to handle a

situation when a particular objective function is more

desirable. Bentley and Wakefield (1997) proposed the use

of weights to estimate the importance of an objective, which

may not be always true.

Researchers have started to solve problems of single

objective with constraint as a multiobjective optimization by

considering constraints as separate objectives (Fonseca and

Fleming, 1995; Surry and Mudge, 1995). Similarly, a

multiobjective optimization problem can be solved as a

single objective problem with one objective function and the

rest of the objective functions can be treated as the

constraints. Improvement in this front is required since it

may give promising results in term of saving in computa-

tional cost and quality of solution. There should be a set of

benchmark problems (constraints and unconstraint) that can

be used to test the SA-based old and new multiobjective

algorithms. Therefore, a few benchmark problems should be

formulated.

Conclusions

SA-based algorithms solve single objective and multiobjec-

tive optimization problems, where a desired global mini-

mum/maximum is hidden among many local minima/

maxima. These methods have attractive and unique features

when compared with other optimization technique. Firstly,

a solution does not get trapped in a local minimum or

maximum by sometimes accepting even the worse move.

Secondly, configuration decisions proceed in a logical

manner in SA. The paper provides a comprehensive review

of SA-based optimization algorithms. Few single and

multiobjective algorithms have been presented briefly and

their applications have been discussed. Each of the

algorithms has their own advantages and requires reasonable

computation time. Therefore, all algorithms should be

suggested to use to generate a larger set of optimal solutions

giving a wider choice to the decision maker. Annealing

schedule is an essential part of SA as it determines the

performance of the SA algorithm. Computational results

show some conflicting results when SA is compared with

other algorithms. Therefore, it is premature to judge the

performance of SA. The performance of SA-based multi-

objective algorithms can be improved by using optimal

annealing schedule, other algorithmic parameters and by

using SA with another algorithm. The areas of future

research in SA have been suggested and they are: choosing

an optimal annealing schedule, using tabu search with SA,

selecting new solution vector efficiently, studying effect of

algorithmic parameters on the performance of SA, reducing

the Pareto set to a smaller number of solutions and

measuring the quality of a solution.
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Appendix

Acronyms

ASA Adaptive Simulated Annealing

GA Genetic Algorithm

PDMOSA Pareto Dominant basedMultiobjective Simu-

lated Annealing

PSA Pareto Simulated Annealing

SA Simulated Annealing

CSA Chaotic Simulated Annealing

SMOSA Suppapitnarm Multiobjective Simulated

Annealing

UMOSA Ulungu Multiobjective Simulated Annealing

WMOSA Weight based Multiobjective Simulated

Annealing

Notation

a, b decision vector

B, C, C1, C2 constant

DE change in energy

F objective function vector

f objective function value

fmax estimated maximum value of the objective

function

Df multidimensional criteria space

Df0 range of change in the value of the objective

function

g inequality constraint violation

h equality constraint violation

I a column vector with all elements equal to 1.

i, j index

J number of constraints on the solution vector

K a constant

KB Boltzmann’s constant

L set of uniform random weight vectors

LN Chebysev norm

l number of equality constraint

m no of inequality constraint

Mk objective function at eqilibrium

N number of objective functions
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n number of decision variables

Prob probability

S(A) spacing of a Pareto set A

DS0 change in fitness value

Ds one-dimensional space

T annealing temperature (controlling parameter

in the algorithm)

W weight vector

X current solution vector

Y generated solution vector

Z vector whose elements are objective function

value ie zi after applying the penalty function

approach

Zk Chaotic variable

Greek symbols

a a constant

b a constant

d parameter for probability calculation

l weight vector

s2 variance of the objective function at equilibrium

m bifurcation parameter of the system

w0 defined as the number of accepted bad moves divided

by the number of attempted bad moves

Received December 2004;
accepted July 2005 after two revisions

1160 Journal of the Operational Research Society Vol. 57, No. 10


