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The main real-coded genetic algorithm (RCGA) research effort has been spent on developing
efficient crossover operators. This study presents a taxonomy for this operator that groups its
instances in different categories according to the way they generate the genes of the offspring
from the genes of the parents. The empirical study of representative crossovers of all the
categories reveals concrete features that allow the crossover operator to have a positive influence
on RCGA performance. They may be useful to design more effective crossover models. © 2003
Wiley Periodicals, Inc.

1. INTRODUCTION

Genetic algorithms (GAs) are adaptive methods based on natural evolution
that may be used for search and optimization problems. They process a population
of search space solutions with three operations: selection, crossover, and mutation.1–3

Under their initial formulation, the search space solutions are coded using the
binary alphabet; however, other coding types have been taken into account for the
representation issue such as real coding. The real coding approach seems partic-
ularly natural when tackling optimization problems of parameters with variables in
continuous domains. A chromosome is a vector of floating point numbers in which
their size is kept the same as the length of the vector, which is the solution to the
problem. GAs based on real-number representation are called real-coded GAs
(RCGAs).4,5
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Recently, there has been an increasing interest in solving real-world optimi-
zation problems using RCGAs. Some of their applications include chemometric
problems,6 neural networks,7,8 aerospace design,9–12 biotechnology,13 con-
trol,14–16 economic,17 signal processing,18 microware,19–21 industrial electron-
ics,22 industrial engineering,23,24 tomography,25 water resources management,26

and constrained parameter optimization problems.3

The crossover operator is a method for sharing information between chromo-
somes. Generally, it combines the features of two parent chromosomes to form two
offspring, with the possibility that good chromosomes may generate better ones. It
has always been regarded as the primary search operator in GAs27–29 because it
exploits the available information from the population about the search space.
Moreover, it is one of the components to consider for improving the behavior of the
GA.30

The main RCGA research effort has been spent on developing efficient
crossover operators,4 and as a result, many different instances have been proposed.
At this point, a taxonomy for this operator becomes attractive because it will reveal
and allow us to find properties that are needed in an effective real-parameter
crossover operator. In this study, we propose a taxonomy that groups the models
for this operator in different categories according to the way they generate the
genes of the offspring from the genes of the parents. Furthermore, we perform an
empirical study of representative instances of all the categories, which provides
some clues on the key features that have a positive influence on the crossover
behavior.

Section 2 introduces some issues related to real-parameter crossover opera-
tors. In Section 3, we present the taxonomy for these operators. In Section 4, we
describe an experimental study aimed at determining the goodness associated with
the different groups. Section 5 includes our conclusions and summarizes a few new
promising studies on the topic.

2. CROSSOVER OPERATORS FOR RCGAs

In this section, we deal with the main aspects of the crossover operators for
RCGAs. In Section 2.1, we explain the three mechanisms involved in the appli-
cation of the crossover operator. This is useful to establish the particular features
of the crossover operators analyzed in this study. In Section 2.2, we define different
real-parameter crossover instances that appear in the GA literature. In Section 2.3,
we examine the availability of these operators to adopt different exploration or
exploitation degrees. Finally, in Section 2.4, we review some attempts made for
specifying guidelines for the design of crossover operators for real coding.

2.1. The Crossover Operator

The application of the crossover operator is performed by means of three
different mechanisms:
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(1) Mating selection mechanism (MSM). The MSM determines the way the chromosomes
are mated for applying the crossover to them. The most common MSM pairs the
parents randomly. However, other approaches have appeared.31–33

(2) Offspring generation mechanism (OGM). The OGM produces new chromosomes from
each set of parents formed by the MSM. All the OGMs proposed for the binary coding
may be adapted for working under the real coding. However, this coding offers the
possibility of defining a wide variety of special OGMs that take advantage of its
numerical nature. Generally, they calculate the value of the genes corresponding to
each position in the offspring by combing numerically the values of the genes of the
parents in this position.

(3) Offspring selection mechanisms (OSM). Between all the offspring generated for each
set of parents, this mechanism chooses the ones that will be population members. One
of the most used OSMs selects the best offspring as elements for the next popula-
tion.34–36

Usually, the crossover operator is applied to pairs of chromosomes, generating
two offspring for each one of them, which are introduced in the population.1

However, multiparent crossover operators have been proposed, which combine the
features of more than two parents for generating the offspring.34,37–39 Furthermore,
crossover operators with multiple descendents have been presented,34–36,40–42

which produce more than two offspring for each group of parents. In this case, the
OSM limits the number of offspring that will be population members. All of the
offspring may be created using the same OGM34,42 or by means of different
OGMs.35

We should emphasize that this study relies on crossover operators for real
coding that require only two parents.

2.2. Crossover Operators for Real Coding

Let us assume that C1 � (c1
1, . . . , cn

1) and C2 � (c1
2, . . . , cn

2) are two
chromosomes that have been selected to apply the crossover operator to them. In
the following list we describe the operation of different crossover operators for
RCGAs and show their effects:

Simple crossover.1,2 A position i � {1, 2, . . . , n � 1} is chosen randomly and two new
chromosomes are built:

H1 � �c1
1, c2

1, . . . , ci
1, ci�1

2 , . . . , cn
2�

H2 � �c1
2, c2

2, . . . , ci
2, ci�1

1 , . . . , cn
1�

Two-point crossover.43 Two-point crossover is a generalization of the simple crossover.
Two points of crossover are selected randomly (i, j � {1, 2, . . . , n � 1} with i � j),

Figure 1. Arithmetical crossover with different values for �.
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and the segments of the parent, defined by them, are exchanged for generating two
offspring:

H1 � �c1
1, c2

1, . . . , ci
2, ci�1

2 , . . . , cj
2, cj�1

1 , . . . , cn
1�

H2 � �c1
2, c2

2, . . . , ci
1, ci�1

1 , . . . , cj
1, cj�1

2 , . . . , cn
2�

Uniform crossover.44 Two offspring are created, Hk � (h1
k , . . . , hi

k, . . . , hn
k), k � 1, 2.

The value of each gene in the offspring is determined by the random uniform choice of the
values of this gene in the parents:

hi
k � �ci

1 if u � 0
ci

2 if u � 1

u being a random number that can have a value of zero or one.
Arithmetical crossover.3 Two offspring are produced (Figure 1), Hk � (h1

k , . . . , hi
k, . . . ,

hn
k), k � 1, 2, where hi

1 � � � ci
1 � (1 � �) � ci

2 and hi
2 � � � ci

2 � (1 � �) � ci
1,

where � � [0, 1].
Geometrical crossover.45 Two offspring are built (Figure 2), Hk � (h1

k , . . . , hi
k, . . . , hn

k),
k � 1, 2, where hi

1 � ci
1�

� ci
2l��

and hi
2 � ci

2�

� ci
11��

, with � � [0, 1].
BLX-� (Figure 3).46,47 Two offspring are generated, Hk � (h1

k , . . . , hi
k, . . . , hn

k), k �
1, 2, where hi

k is a randomly (uniformly) chosen number from the interval [Cmin � I�,
Cmax � I�], where Cmax � max{ci

1, ci
2}, Cmin � min{ci

1, ci
2}, and I � Cmax � Cmin.

BLX-�-� (Figure 4).48 Let’s suppose that C1 is the parent with best fitness. Then, two
offspring are produced, Hk � (h1

k , . . . , hi
k, . . . , hn

k), k � 1, 2, where hi
k is a randomly

(uniformly) chosen number from the interval [ci
1 � I � �, ci

2 � I � �] if ci
1 � ci

2, or from
[ci

2 � I � �, ci
2 � I � �] otherwise.

Wright’s heuristic crossover (Figure 5).36 Let’s assume that the fitness of C1 is better than
the one of C2. Then, two offspring are generated, Hk � (h1

k , . . . , hi
k, . . . , hn

k), k � 1,
2, where hi

k � u � (ci
1 � ci

2) � ci
1 and u is a random number belonging to [0, 1].

Linear BGA crossover (Figure 6).49 Under the same consideration as mentioned previ-
ously, hi

k � ci
1 � ri � � � 	, where the minus sign is chosen with a probability of 0.9, ri �

0.5 � (bi � ai), � � ¥k�0
15 �k2�k, where �i � {0, 1} is randomly generated with p(�i �

1) � 1/16 and 	 � [(ci
2 � ci

1)/�C1 � C2�].
Simulated binary crossover (Figure 7):4,50 Two offspring are generated, Hk � (h1

k , . . . ,
hi

k, . . . , hn
k), k � 1, 2, where

hi
1 �

1

2
� 
�1 � �k� � ci

1 � �1 � �k� � ci
2� and hi

2 �
1

2
� 
�1 � �k� � ci

1 � �1 � �k� � ci
2�,

Figure 3. BLX-�.

Figure 2. Geometrical crossover with different values for �.
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�k(�0) is a sample from a random number generator having the density

p��� � �
1

2
� �	 � 1��	, if 0 
 � 
 1

1

2
� �	 � 1�

1

�	�2 , if � � 1

This distribution can be obtained easily from a uniform u(0, 1) random number source by
the transformation

��u� � � �2u�1/�	�1� if u�0, 1� 

1

2


2�1 � u��1/�	�1� if u�0, 1� �
1

2

Fuzzy recombination (FR) (Figure 8).51 Two offspring are produced, Hk � (h1
k , . . . ,

hi
k, . . . , hn

k), k � 1, 2. The probability that the ith gene in an offspring has the value �i

is given by the distribution p(�i) � {(ci
1), (ci

2)} where (ci
1) and (ci

2) are triangular
probability distributions having the features shown in Figure 8 (ci

1 � ci
2 is assumed).

Linear crossover (LX) (Figure 9):36 Three offspring, Hk � (h1
k , . . . , hi

k, . . . , hn
k), k �

1, 2, 3, are calculated:

hi
1 �

1

2
ci

1 �
1

2
ci

2, hi
2 �

3

2
ci

1 �
1

2
ci

2, and hi
3 � �1

2
ci

1 �
3

2
ci

2

With this type of crossover an OSM is applied, which chooses the two most promising
offspring of the three to substitute their parents in the population.
Max-Min-arithmetical crossover (MMAX) (Figure 10).35 Hk � (h1

k , . . . , hi
k, . . . , hn

k),
with k � 1, 2, 3, 4, are generated:

hi
1 � �ci

1 � �1 � ��ci
2, hi

2 � �ci
2 � �1 � ��ci

1,

hi
3 � minci

1, ci
2�, and hi

4 � maxci
1, ci

2�

The two best chromosomes are selected as final descendants for the new population.
Dynamic crossover (Figure 11).52 Four offspring are generated because the Dubois
�-crossover, �-crossover, ��-crossover, and ��-crossover were applied to them (see
Appendix A). An OSM is used, which chooses the two most promising offspring of the
four to substitute their parents in the population.

Figure 5. Wright’s heuristic crossover.

Figure 4. BLX-�-�.
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Dynamic heuristic crossover (DHX) (Figure 12).52 Two offspring are generated: one with
the dynamic dominated crossover and the other with the dynamic biased crossover (see
Appendix B).

2.3. Exploration and Exploitation

Real-parameter crossover operators are able to produce exploration or exploi-
tation (at different degrees) depending on the way in which they handle the current
diversity of the population. They may either generate additional diversity starting
from the current one (therefore exploration takes effect) or use this diversity for
creating better elements (therefore exploitation comes into force). This is possible
because of their self-adaptive features.28,53,54

The performance of an RCGA on a particular problem will be determined by
the degrees of exploration and exploitation associated with the crossover operator
being applied. Next, we introduce basic ideas about the availability of the crossover
for adapting different exploration or exploitation degrees.

Let’s consider ci
1, ci

2 � [ai, bi] two genes to be combined with �i � min{ci
1,

ci
2} and �i � max{ci

1, ci
2}. The action interval [ai, bi] of these genes can be

divided into three intervals: [ai, �i], [�i, �i], and [�i, bi]. These intervals bind
three regions to which the resultant genes of some combination of the former may
belong. In addition, considering a region [��i, ��i] with ��i � �i and ��i � �i would
seem reasonable (Figure 13).

These intervals may be classified as exploration or exploitation zones as is
shown in Figure 13. The interval with both genes being the extremes is an
exploitation zone because any gene gi generated by a crossover in this interval
fulfills max{�gi � �i�, �gi � �i�} � ��i � �i�. The two intervals that remain on
both sides are exploration zones because this property is not fulfilled. The region

Figure 6. Linear BGA crossover.

Figure 7. Simulated binary crossover.
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with extremes ��i and ��i could be considered as a relaxed exploitation zone.
Therefore, exploration and/or exploitation degrees may be assigned to any cross-
over operator for RCGAs regarding the way in which these intervals are considered
for generating genes.

The arithmetical crossover with � � 0.5 is a clear example of an exploitative
crossover operator. Contrarily, this operator will show exploration for � � 1 or � �
0. An example of crossover showing relaxed exploitation is BLX-�. In the absence
of selection pressure, all values of � � 0 will show a tendency for the population
to converge toward values in the center of their ranges, producing low diversity
levels in the population and inducing a possible premature convergence toward
nonoptimal solutions. Only when � � 0.5 is a balanced relationship between the
convergence (exploitation) and divergence (exploration) reached, because the
probability that an offspring will lie outside its parents becomes equal to the
probability that it will lie between its parents.

2.4. Principles for the Design of the Crossover

In Refs. 28 and 55, the following guidelines for designing crossovers for
RCGAs are proposed:

Guideline 1. The crossover operator should preserve the statistics of the population such as
mean vector and the variance-covariance matrix.

Figure 9. LX.

Figure 8. FR.
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Guideline 2. Crossover operators should generate offspring having as much diversity as
possible under constraint of Guideline 1.
Guideline 3. Guideline 1 is a guideline when the selection operator works ideally.
However, it may fail to suggest a good region to be searched by the population. To make
the search robust, children should be distributed more widely than in Guideline 1. It should
be noted that the Guideline 1 gives a reference point, and there exists a trade-off between
efficiency and robustness in adopting this guideline.

In Ref. 53, two properties that the crossover should have for successful
applications in real-valued search spaces are postulated (which agree with Guide-
lines 1 and 2):

(1) The crossover operator must produce a children population that has the same mean as
that in the parent population.

(2) The variance of the resulting children population may be larger than that of the parent
population.

Guideline 2 helps to maintain a balance between the spread of solutions under
selection and crossover operators. Because selection emphasizes good solutions by
eliminating bad solutions in a population, it may, generally, reduce the diversity of
the population. If the crossover operator also has a tendency to reduce the diversity
of the population, the overall search algorithm may not have adequate power to
adapt to any function landscape.54 This guideline reveals the importance of
considering the exploration and relaxed exploitation intervals for designing cross-
over operators for RCGAs. This is also shown in Ref. 5, which is an empirical
study comparing several crossovers.

Finally, there are a number of theoretical studies involved with trying to
understand the properties of different real-parameter crossover operators.53,56–62

3. TAXONOMY FOR THE CROSSOVER OPERATOR FOR RCGAs

In this section, we propose a taxonomy that classifies the crossover operators
for the RCGAs presented in Section 2.2. in different groups, focusing on the

Figure 11. Dynamic crossover.

Figure 10. MMAX.
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features associated with the OGMs that are applied on the parents to obtain the
offspring. This taxonomy may be useful to discover the features that allow the
crossover operator to have a positive influence on performance. They include
whether they preserve the genes of the parents in the offspring, whether the genes
of the offspring are obtained from an aggregation function in which its arguments
are the genes of the parents, or whether the genes in the offspring are generated
from a probability distribution defined on the neighborhoods of the genes of the
parents.

The taxonomy presented is composed of the following four groups:

Discrete crossover operators (DCOs). This category groups all the crossover operators
presented for binary coding, which are directly applicable to real coding. It includes the
simple, two-point and uniform crossover operators. With these crossovers, the value of
each gene in the offspring coincides with the value of this gene in one of the parents (hi �
{ci

1, ci
2}), i.e., the values of the genes in the parents are not transformed numerically for

obtaining the values of the genes in the offspring. Geometrically, DCOs generate a corner
of the hypercube defined by the component of the two parents. The effect of these
operators, according to the intervals of the generation of genes, is shown in Figure 14.
Aggregation-based crossover operators (ABCOs). The ABCOs include operators that use
an aggregation function that numerically combines the values of the genes of the parents
to generate the value of the genes of the offspring. If [ai, bi] is the action interval for the
ith gene, an aggregation function fi : [ai, bi] 3 [a�i, b�i] ([a�i, b�i] � [ai, bi]) should be
provided. Then, the value for the ith gene of the offspring is computed as fi(ci

1, ci
2). The

arithmetical, geometrical, and LX operators are representatives of ABCOs. In the case of
the arithmetical and LX, the aggregation functions are linear combinations of ci

1 and ci
2.

The ABCOs act as shown in Figure 15, which indicates that the ABCOs may generate
genes in the exploitation interval or in the exploration interval.
Neighborhood-based crossover operators (NBCOs). This group includes crossovers that
determine the genes of the offspring extracting values from intervals defined by neighbor-
hoods associated with the genes of the parents throughout probability distributions.
Examples of NBCOs are BLX-�, simulated binary crossover, and FR, which are based on
uniform, exponential, and triangular probability distributions, respectively. Figure 16

Figure 13. Action interval for ci
1 and ci

2.

Figure 12. DHX.
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shows the neighborhoods considered by NBCOs. In general, this type of operator generates
genes in relaxed exploitation intervals.
Hybrid crossover operators (HCOs). These crossover operators produce offspring by
applying OGMs that belong to the different categories. The MMAX is an HCO, because
it creates two offspring by means of DCOs (the maximum and minimum) and two by an
ABCO (the arithmetical). This operator allows different levels of exploitation and explo-
ration to be introduced simultaneously in the search process.

Table I shows the classification of the crossover operators described in
Section 2.2, according to the taxonomy presented.

Finally, both ABCOs and NBCOs dispose of heuristic crossover operators,
which take into account the goodness of the parents for generating the offspring,
with the objective of leading the search process toward the most promising zones,
e.g., DHX (ABCOs), Wright’s heuristic crossover, linear BGA crossover, and
BLX-�-� (NBCOs).

4. EXPERIMENTS

Minimization experiments on the test suite (described in Appendix C) were
performed with the aim of determining if differences on performance exist between
crossover operators that belong to the categories of the taxonomy proposed. If this
occurs, then, we will be able to discover specific features that allow the crossover
operator to have a positive influence on RCGA behavior.

We have considered a generational RCGA model that applies the nonuniform
mutation operator.3 This operator has been widely used, reporting good results.5

The selection probability calculation follows linear ranking63 (	min � 0.75) and the
sampling algorithm is the stochastic universal sampling.64 The elitist strategy65 is

Figure 15. Possible gene values computed by ABCOs from ci
1 and ci

2.

Figure 14. Effects of the DCOs.
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considered as well, which involves making sure that the best-performing chromo-
some always survives intact from one generation to the next.

We have implemented different RCGAs that are distinguished regarding the
crossover operator applied. They are shown in Table II. The population size is 61
individuals, the probability of updating a chromosome by mutation is 0.125, and
the crossover probability is 0.6. We executed all the algorithms 30 times, each one
with a maximum of 100,000 evaluations.

4.1. Results

Tables DI–DVII in Appendix D show our results. The performance measures
used are the following:

● A performance: average of the best-fitness function found at the end of each run.
● SD performance: standard deviation.
● B performance: best of the fitness values averaged as A performance.

The T1 and T2 columns in these tables show the result of the t-test (at 0.05
level of significance) as follows:

Figure 16. Neighborhoods taken into account by NBCOs.

Table I. Classification of the crossover operators for RCGAs.

Crossover DCOs ABCOs NBCOs HCOs

Simple X
Two-point X
Uniform X
Arithmetical X
Geometric X
Linear X
Wright’s heuristic X
Linear BGA X
Dynamic X
Dynamic heuristic X
BLX-� X
BLX-�-� X
Simulated binary X
FR X
MMAX X
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● T1 is introduced to ascertain if differences in the A performance for the best crossover
operator are significant when compared with the one for the other crossovers in the
respective table. Only crossovers that generate two offspring are considered. Therefore,
this column is empty for MMAX, DX, and LX.

● In T2, the same comparison is made, but taking into account all the crossover operators.

In these columns, the crossover with the best A performance value is marked
with **, and the direction of any significant differences is denoted either by a plus
sign (�) for an improvement in A performance or an approximate sign (�) for
nonsignificant differences.

4.2. Analysis of the Results

We performed the analysis of the results from a double perspective. First, in
Section 4.2.1, we examine the results for the crossover operators that produce two
offspring. Then, in Section 4.2.2, we study the crossover operators with multiple
descendents, which generate more than two offspring and select the two best
offspring to replace the parents in the population (MMAX, DX, and LX). Finally,
in Section 4.2.3, we make conclusions from the results for all the groups of the
taxonomy.

4.2.1. Crossover Operators with Two Offspring

Table III shows the percentages in which each crossover operator with two
offspring has obtained the best A performance on all test functions. Their columns
have the following information:

Table II. RCGA instances implemented.

RCGAs Crossover operator

SX Simple crossover
AX Arithmetical crossover (� � 0.25)
GX Geometrical crossover (� � 0.25)
BLX-0 BLX-� (� � 0.0)
BLX-0.3 BLX-� (� � 0.3)
BLX-0.5 BLX-� (� � 0.5)
SBX-2 Simulated binary crossover (	 � 2)
SBX-5 Simulated binary crossover (	 � 5)
FR Fuzzy recombination (d � 0.5)
BLX-0.5-0 BLX-�-� (� � 0.5 and � � 0)
WHX Wright’s heuristic crossover
2PX Two-point crossover
UX Uniform crossover
BGAX Linear BGA crossover
DHX Dynamic heuristic
MMAX Max-min-arithmetical crossover (� � 0.25)
DX Dynamic crossover
LX Linear crossover
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● Best average/best t-test. Percentage of test functions in which the crossover has obtained
the best A performance (** in T1 column) and the application of the t-test confirms that
it is the best [plus sign (�) in the T1 column associated with the other crossovers].

● Best average/similar t-test. This column shows the same information as the previous
column, but there is a different crossover with no differences in A performance,
according to the t-test (there is another crossover with a � sign in the T1 column).

● Total best. Percentage of test functions in which the crossover operator achieves the best
A performance, without considering the t-test. This percentage is calculated as the sum
of the previous two columns.

● Similar t-test/no best average. Percentage of test functions in which the crossover
operator shows, after the application of the t-test, nonsignificant differences in A
performance regarding the best value (� in the T1 column).

● Total best/similar. Percentage of test functions in which the crossover operator obtains
either the best A behavior or one similar to the best. This percentage is the result of the
sum of the two previous columns.

The best crossovers are the DHX, FR, BLX-�, and SBX:

● DHX produces two offspring around the best parent, one using exploration intervals and
the another by means of the exploitation interval. In addition, it provides diversity levels
that decrease with time, introducing a heuristic local tuning that becomes effective for
RCGA performance.52

● The common feature of FR, BLX-�, and SBX is that they are NBCOs that build the
offspring through relaxed exploitation intervals. This confirms the importance of con-
sidering this type of interval for designing crossover operators for RCGAs5,47,66 (Section
2.4).

Now, we make some conclusions about the performance of the groups of the
taxonomy that include crossovers with two offspring. To do this, we have intro-
duced Table IV, which refers to the categories of the taxonomy.

The following most profitable groups are ABCOs and NBCOs:

Table III. Analysis for the crossover operators with two offspring.

Crossover
Best average/

best t-test

Best
average/

similar t-test Total best
Similar t-test/

no best average
Total best/

similar

DHX 23.07% 15.38% 38.45% 15.38% 53.83%
FR 0% 23.07% 23.07% 30.76% 53.83%
BLX-0.3 0% 7.69% 7.69% 38.45% 46.14%
SBX2 0% 7.69% 7.69% 30.76% 38.45%
SBX5 0% 7.69% 7.69% 23.07% 30.76%
AX 0% 7.69% 7.69% 15.38% 23.07%
UX 0% 7.69% 7.69% 7.69% 15.38%
BLX-0 0% 0% 0% 23.07% 23.07%
BLX-0.5 0% 0% 0% 23.07% 23.07%
2PX 0% 0% 0% 15.38% 15.38%
GX 0% 0% 0% 15.38% 15.38%
SX 0% 0% 0% 15.38% 15.38%
BGAX 0% 0% 0% 7.69% 7.69%
WHX 0% 0% 0% 0% 0%
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● ABCOs achieve the best A performance for six test functions: Sphere (Table DI),
Rastrigin (Table DII), Rosenbrock (Table DIV), polynomial fitting problem (Table
DIV), Ackley (Table DV), and Bohachevsky (Table DVI). In addition, after the appli-
cation of the t-test, three ABCO instances are the best, whereas the other three are
similar to crossover operators of the NBCO category.

● For six test functions, the best A results are returned by NBCOs: Schwefel (Table DI),
Griewangk (Table DII), E-F10 (Table DIII), system of linear equations (Table DIII),
FMS parameter identification (Table DV), and Colville (Table DVII). Again, the t-test
confirms that three NBCO instances are the best and that the other three present
similarities with ABCOs.

DCOs outperform the other categories only on the Watson’s function (Table
DVI); however, the t-test reveals that their results are similar to the ones for
crossover operators in other categories.

4.1.2. Crossovers with Two Offspring vs. Crossovers with
Multiple Descendents

This section compares the performance of the crossover operators with two
offspring with one of the crossover operators with multiple descendents (MMAX,
DX, and LX). Table V contains the same information as Table III for the crossover
operators that have obtained the best A performance for each one of the 13 test
functions, considering all the crossovers (Tables DI–DVII, column T2).

Two important observations are shown in Table V:

Table IV. Analysis for the groups of the taxonomy that include crossovers with two
offspring.

Taxonomy groups
Best average/

best t-test

Best
average/

similar t-test Total best
Similar t-test/

no best average
Total best/

similar

ABCOs 23.07% 23.07% 46.14% 30.76% 76.9%
NBCOs 23.07% 23.07% 46.14% 30.76% 76.9%
DCOs 0% 7.69% 7.69% 7.69% 15.38%

Table V. Results analysis of the best crossover operators.

Crossover
Best average/

best t-test

Best
average/

similar t-test Total best
Similar t-test/

no best average
Total best/

similar

DHX 23.07% 15.38% 38.45% 7.69% 46.14%
FR 15.38% 0% 15.38% 7.69% 23.07%
SBX-2 0% 0% 0% 7.69% 7.69%
SBX-5 7.69% 0% 7.69% 15.38% 23.07%
MMAX 0% 7.69% 7.69% 15.38% 23.07%
DX 0% 0% 0% 7.69% 7.69%
LX 23.07% 7.69% 30.76% 7.69% 38.45%
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● Again, the DHX operator is the best operator.
● Two crossovers with multiple descendents, LX and MMAX achieved a significant

performance. Therefore, the generation of more than two offspring and the selection of
the two best seem to be a promising way to improve the behavior of the crossover
operator for RCGAs.

Finally, we show that all of these operators are ABCOs and generate offspring
with both exploration and exploitation features.

4.1.3. Essential Points of the Taxonomy

Table VI analyzes the performance associated with the four groups of the
taxonomy, considering the results for all the crossover operators:

● The ABCO group embraces the majority of crossover operators that provide solutions
with high quality. In particular, for 84.59% of the test functions, they allow the best A
performance to be reached.

● The crossover operators that exploit the numerical nature of the real coding (ABCOs and
NBCOs) consistently outperform the classical DCOs. The poor behavior shown by
DCOs may be explained by the claim made in Ref. 4 about the application of this type
of operator to RCGAs in which Deb et al. state, “they do not have an adequate search
power and thus the search within a decision variable has to mainly rely on the mutation
operator.”

● Finally, we may underline the remarkable results given by the HCO group, which is
composed of one crossover only, the MMAX. In this way, the hybridization of cross-
overs that belong to different categories of the taxonomy arises as a promising technique
to design powerful crossover operators for RCGAs.

5. CONCLUSIONS

This study presented a taxonomy for the crossover operator for RCGAs,
which is an effective tool to reveal the features of this operator that allows RCGA
performance to be enhanced.

An empirical study of different crossover instances presented in the RCGA
literature has been made. The following principal conclusions were reached from
an analysis of the results:

● The category of the taxonomy that groups the majority of crossovers with the best
performance is the ABCOs. NBCOs present a significant behavior as well. These types

Table VI. Analysis for the groups of the taxonomy.

Taxonomy groups
Best average/

best t-test

Best
average/

similar t-test Total best
Similar t-test/

no best average
Total best/

similar

DCOs 0% 0% 0% 7.69% 7.69%
ABCOs 46.14% 23.07% 69.21% 15.38% 84.59%
NBCOs 15.38% 7.69% 23.07% 30.76% 53.83%
HCOs 0% 7.69% 7.69% 15.38% 23.07%
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of operators exploit the numerical nature of real coding. However, the classical DCOs
appear useless for RCGAs.

● The most promising crossover operator is the DHX. It combines both the exploration and
the exploitation of the neighborhood associated with the best parent. Furthermore, their
degrees vary during the run, with the goal of producing a heuristic local tuning.

● Three mechanisms are essential to design powerful crossover operators:

(1) Use of probability distributions defined on relaxed exploitation intervals to generate
the genes of the offspring (NBCOs).

(2) Generation of more than two offspring and the selection of the two best (crossover
operators with multiple descendents).

(3) Creation of offspring using crossovers that belong to different categories of the
taxonomy (hybrid crossovers).

In conclusion, additional research is necessary in some areas of this study,
including the design of hybrid crossovers that combine ABCOs and NBCOs and
the study of NBCOs with multiple descendents based on relaxed exploitation
intervals (initial work is found in Ref. 67). Furthermore, the taxonomy may be
extended with the aim of classifying crossover operators that are applicable to more
than two parents: UNDX,68 BNDX,69 TMX,70 UNDX-m,37 SPX,39 EDX,71 PCX34

and crossover based on confidence intervals.38 Finally, another open issue concerns
the use of different aggregation functions or probability distributions for generating
the genes of an offspring.72
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67. Herrera F, Lozano M, Pérez E, Sánchez AM, Villar P. Multiple crossover per couple with
selection of the two best offspring: An experimental study with the BLX-� crossover
operator for real-coded genetic algorithms. In: Jarijo FJ, Riquelme JC, Toro M, editors.
Advances in Artificial Intelligence—IBERAMIA 2002, LNAI 2527. Berlin: Springer;
2002. pp 392–401.

68. Ono I, Kobayashi S. A real-coded genetic algorithm for function optimization using
unimodal normal distribution crossover. In: Bäck T, editor. Proc of the 7th Int Conf on
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APPENDIX A: DYNAMIC CROSSOVER OPERATORS

In Ref. 52, dynamic crossover operators for RCGAs were proposed based on
the use of parameterized fuzzy connectives. These operators keep a suitable
sequence between the exploration and the exploitation along the GA run: “to
protect the exploration in the initial stages and the exploitation later.”

To describe these operators, two steps are followed: in Section A1, we define
function families for the combination of genes and in Section A2, we use these
families to design dynamic crossover operators.

A1. Function Families for the Combination of Genes

Regarding the exploration and exploitation intervals shown in Figure 13, in
Ref. 35, three monotone and nondecreasing functions are proposed: F, S, and M,
defined from [a, b] � [a, b] into [a, b], a, b � ℜ, which fulfill

@c, c� � 
a, b�, F�c, c�� 
 minc, c��, S�c, c�� � maxc, c��,

and minc, c�� 
 M�c, c�� 
 maxc, c��
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Each one of these functions allows us to combine two genes giving results
belonging to each one of the aforementioned intervals. Therefore, each function
will have different exploration or exploitation properties depending on the range
being covered by it.

For an RCGA with a maximum number of generations gmax, in Ref. 52, three
families of functions were proposed: a family of F functions � � (F1, . . . , Fgmax),
a family of S functions � � (S1, . . . , Sgmax), and a family of M functions � �
(M1, . . . , Mgmax), which for 1 � t � gmax � 1 fulfill

@c, c� � 
a, b� Ft�c, c�� 
 Ft�1�c, c�� and Fgmax�c, c�� � minc, c��

@c, c� � 
a, b� St�c, c�� � St�1�c, c�� and Sgmax�c, c�� � maxc, c��

@c, c� � 
a, b� Mt�c, c�� � Mt�1�c, c�� or Mt�c, c�� 
 Mt�1�c, c�� @t

and

Mgmax�c, c�� � Mlim�c, c��

where Mlim is an M function called M limit function. We shall denote �� or ��

an � function family fulfilling the first and the second part of the last property,
respectively.

� and � function families may be built using a parameterized t-norm Tq

converging on the minimum and a parameterized t-conorm Gq converging on the
maximum, respectively. In this study, we use the Dubois parameterized t-norm and
t-conorm:

x, y � 
0, 1�, Tq�x, y� �
x � y

x � y � q
and

Gq�x, y� � 1 �
�1 � x� � �1 � y�

�1 � x� � �1 � y� � q
, 0 
 q 
 1

To do so, a transformation of the genes to be combined is needed from the
interval [a, b] into [0, 1] and, later, the result into [a, b]. Furthermore, we need
a function �� for transforming the values of {1, . . . , gmax} into the range of q.
All this may be summed up in the following equations. Given the Dubois param-
eterized t-norm Tq and t-conorm Gq, we build two function families � �
(F1, . . . , Fgmax) and � � (S1, . . . , Sgmax) as

@c, c� � 
a, b�1 
 t 
 gmax Ft�c, c�� � a � �b � a� � T�F�t��s, s��
@c, c� � 
a, b�1 
 t 
 gmax St�c, c�� � a � �b � a� � G�S�t��s, s��

where s � [(c � a)/(b � a)], s� � [(c� � a)/(b � a)], and �F(t) � �S(t) �
1/t are the transformation functions.

We may obtain � function families using a parameterized averaging function,
e.g.,

@x, y � 
0, 1�, Pq�x, y� � �q xq � yq

2
, �� 
 q 
 �
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This may be accomplished as follows:

@c, c� � 
a, b�, 1 
 t 
 gmax Mt�c, c�� � a � �b � a� � P�M�t��s, s��

In particular, we could obtain an �� and an �� function family using �M �
�M� � 1 � ln( gmax/t) and �M � �M� � 1 � ln(t/gmax), respectively.

A2. �-Crossover, �-Crossover, and �-Crossover

Let’s consider C1
t � (c1

1t, . . . , cn
1t) and C2

t � (c1
2t, . . . , cn

2t), two chromo-
somes that were selected in the generation t, and apply the crossover operator to
them. If Ot is the tth function belonging to an �, �, and � function family, then
we could generate an offspring Ht � (h1

t , . . . , hn
t ) as

hi
t � Ot�ci

1t, ci
2t�, i � 1, . . . , n

If, during the GA run, we use the functions Qs for s � 1, . . . , gmax belonging
to an �, � or � family, as described previously, then we shall call this type of
crossover operator �-crossover, �-crossover, or �-crossover, respectively. Note
that the �-crossovers and the �-crossovers show exploration properties, whereas
�-crossovers show exploitation properties.

The Dubois �, �, and � function families designed in Section A1 may be
used for building an �-crossover, �-crossover, and �-crossover, respectively. In
this study, they will be called the Dubois DHXs.

APPENDIX B: DHX OPERATORS

The DHXs52 put together the features of the heuristic crossovers (offspring
close to the best parent) and the features of the dynamic crossovers (Appendix A).
They allow the level of heuristic effects to be dependent on the current generation
in which they are applied. At the beginning, this level is low and diversity is high
(offspring are distant from parents); later on, the heuristic effects gradually in-
crease.

Let’s suppose C1
t � (c1

1t, . . . , cn
1t) and C2

t � (c1
2t, . . . , cn

2t), two chromo-
somes selected to apply the crossover to them in a generation t. Let’s also suppose
that C1

t is the one with the best fitness. Then, we may generate Ht � (h1
t , . . . , hn

t )
using one of the following DHXs crossovers52:

Dynamic dominated crossover

hi
t � �Ft�ci

1t, ci
2t� if ci

1t 
 ci
2t

St�ci
1t, ci

2t� otherwise i � 1, . . . n

where Ft and St belong to an � and � function family, respectively. We may use the
Dubois � and an � families (Section A2) to obtain the Dubois dynamic dominated
crossover operators. Dynamic dominated crossovers have heuristic exploration properties,
which allow useful diversity to be introduced into the RCGA population.
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Dynamic biased crossover. The hi
t � Mi

t(ci
1t, ci

2t), i � 1, . . . n, where Mi
t belongs to a

function family �� if ci
1t � ci

2t or to ��, otherwise. Both have the same M limit function,
which fulfills

�ci
1t � Mlim�ci

1t, ci
2t�� 
 �ci

2t � Mlim�ci
1t, ci

2t��

The following parameterized averaging operator was used to build such an operator:

@x, y � 
0, 1�, 0 
 q 
 1, Pq�x, y� � q � x � �1 � q� � y

Also, we consider the following initial conditions:

(1) M1(ci
1, ci

2) � [(ci
1 � ci

2)/ 2]
(2) Mlim(ci

1, ci
2) � (1 � �) � ci

1 � � � ci
2

where � is computed as

� � 1 �
f�C1�

f�C1� � f�C2�

f� being the fitness function.

Dynamic biased crossover shows heuristic exploitation properties, which
induce a biased convergence toward the best elements.

APPENDIX C: TEST FUNCTIONS

Sphere model.65

fSph�x� � 	
i�1

n

xi
2

�5.12 � xi � 5.12, n � 25, and fSph( x*) � 0.

Schwefel’s function 1.2.73

fSch�x� � 	
i�1

n 	
j�1

i

xj
2

�65.536 � xi � 65.536, n � 25, and fSch( x*) � 0.

Generalized Rastrigin’s function.74

fRas�x� � a � n � 	
i�1

n

xi
2 � a � cos�� � xi�

a � 10, � � 2 � �, �5.12 � xi � 5.12, n � 25, and fRas( x*) � 0.
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Griewangk’s function.75

fGri�x� �
1

d
	
i�1

n

xi
2 � 


i�1

n

cos�xi

�i� � 1

d � 4000, �600 � xi � 600, n � 25, and fGri( x*) � 0.

Expansion of F10.76

eF10�x� � f10�x1, x2� � · · · f10�xi�1, xi� · · · � f�xn, x1�

f10�x, y� � �x2 � y2�0.25 � 
sin2�50 � �x2 � y2�0.1� � 1�

x, y � (�100,100], eF10( x*) � 0.

Generalized Rosenbrock’s function.65

fRos�x� � 	
i�1

n�1

�100�xi�1 � xi
2�2 � �xi � 1�2�

�5.12 � xi � 5.12, n � 25, and fRos( x*) � 0.

Systems of linear equations.77 The problem may be stated as solving for the
elements of a vector X, given the matrix A and vector B in the expression: A � X
� B. The evaluation function used for these experiments is

Psle�x1, . . . , xn� � 	
i�1

n 	
j�1

n

�aij � xj� � bj

Clearly, the best value for this objective function is Psle( x*) � 0. Interparameter
linkage (i.e., nonlinearity) is controlled easily in systems of linear equations; their
nonlinearity does not deteriorate as increasing numbers of parameters are used, and
they have proven to be quite difficult.

We have considered a 10-parameter problem instance. Its matrices are the follow-
ing:


5 4 5 2 9 5 4 2 3 1
9 7 1 1 7 2 2 6 6 9
3 1 8 6 9 7 4 2 1 6
8 3 7 3 7 5 3 9 9 5
9 5 1 6 3 4 2 3 3 9
1 2 3 1 7 6 6 3 3 3
1 5 7 8 1 4 7 8 4 8
9 3 8 6 3 4 7 1 8 1
8 2 8 5 3 8 7 2 7 5
2 1 2 2 9 8 7 4 4 1

 
1
1
1
1
1
1
1
1
1
1

 � 
40
50
47
59
45
35
53
50
55
40
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Frequency modulation sounds parameter identification.78 The problem is to
specify six parameters a1, w1, a2, w2, a3, and w3 of the frequency modulation
sound model represented by

y�t� � a1 � sin�w1 � t � � � a2 � sin�w2 � t � � � a3 � sin�w3 � t � ����

with � � (2 � �/100). The fitness function is defined as the summation of square
errors between the evolved data and the model data as follows:

Pfms�a1, w1, a2, w2, a3, w3� � 	
t�0

100

�y�t� � y0�t��
2

where the model data are given by the following equation:

y0�t� � 1.0 � sin�5.0 � t � � � 1.5 � sin�4.8 � t � � � 2.0 � sin�4.9 � t � ����

Each parameter is in the range of �6.4–6.35. This is a highly complex multimodal
problem having strong epistasis, with minimum value Pfms( x*) � 0.

Polynomial fitting problem.79 This problem lies in finding the coefficients of the
following polynomial in z:

P�z� � 	
j�0

2k

cj � zj, k � 0 is an integer

such that P( z) � [�1, 1] for z � [�1, 1], and P(1.2) � T2k(1.2) and
P(�1.2) � T2k(�1.2), where T2k( z) is a Chebychev polynomial of degree 2k.

The solution to the polynomial fitting problem consists of the coefficients of
T2k( z). This polynomial oscillates between �1 and 1 when its argument z is
between �1 and 1. Outside this region, the polynomial rises steeply in the direction
of high positive ordinate values. This problem has its roots in electronic filter
design and challenges an optimization procedure by forcing it to find parameter
values with grossly different magnitudes, something very common in technical
systems. The Chebychev polynomial used here is:

T8�z� � 1 � 32 � z2 � 160 � z4 � 256 � z6 � 128 � z8

It is a nine-parameter problem. The pseudocode algorithm shown in the following
was used in order to transform the constraints of this problem into an objective
function to be minimized, called PChev. We consider that C � (c0, . . . , c8) is the
solution to be evaluated and PC( z) � ¥j�0

8 cj � zj.

Choose p0, . . . , p100 from [�1, 1];
R � 0;
For i � 0, . . . , 100 do

If (�1 � PC( pi) or PC( pi) � 1) then
R 4 R � (1 � PC( pi))2;

If (PC(1.2) � T8(1.2) � 0) then
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R 4 R � (PC(1.2) � T8(1.2))2;
If (PC(�1.2) � T8(�1.2) � 0) then

R 4 R � (PC(�1.2) � T8(�1.2))2;
Return R;

Each parameter (coefficient) is in the range of �512–512. The objective function
value of the optimum is PChev(C*) � 0.

Ackley’s function.80

fAck�x� � �a � exp��b � �1

n
	
i�1

n

xi
2� � exp�1

n
	
i�1

n

cos � � xi� � a � e

a � 20, b � 0.2, � � 2 � �, �32.768 � xi � 32.768, n � 25, and fAck( x*) �
0.

Bohachevsky’s function.81

fBoh�x� � x1
2 � 2x1

2 � 0.3 cos�3�x1�cos�4�x2� � 0.3

�6 � xi � 6 and fBoh( x*) � 0.

Watson’s function.81

fWat�x� � 	
i�1

30 �	
j�1

5

�jai
j�1xj�1� � �	

j�1

6

ai
j�1xj�2

� 1�2

� x1
2

ai � [(i � 1)/ 29], �2 � xi � 2, and fWat( x*) � 2.28800e � 3.

Colville’s function.81

fCol�x� � 100�x1
2 � x2�

2 � �1 � x1�
2 � 90�x3

2 � x4� � �1 � x3�
2

� 0.1��1 � x2�
2 � �1 � x4�� � 19.8�x2 � 1��x4 � 1�

�10 � xi � 10 and fCol( x*) � 0.
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APPENDIX D: RESULTS OF THE EXPERIMENTS

Table DI. Results for the sphere model and the Schwefel’s function 1.2.

Sphere B A T1 T2 SD Schwefel B A T1 T2 SD

SX 1.84E�09 5.75E�09 � � 3.90E�09 SX 7.75E�01 6.10E�02 � � 3.36E�02

AX 1.74E�09 1.09E�08 � � 6.53E�09 AX 1.15E�01 4.03E�01 � � 2.68E�01

GX 2.09E�09 1.35E�08 � � 1.21E�08 GX 1.30E�02 5.94E�02 � � 5.10E�02

BLX-0 2.54E�09 1.28E�08 � � 1.09E�08 BLX-0 9.86E�00 4.00E�01 � � 1.84E�01

BLX-0.3 1.27E�11 7.51E�11 � � 5.35E�11 BLX-0.3 8.04E�00 3.37E�01 � � 1.56E�01

BLX-0.5 6.12E�07 6.31E�06 � � 8.11E�06 BLX-0.5 5.76E�02 1.36E�03 � � 2.60E�02

SBX-2 4.38E�10 1.97E�09 � � 1.17E�09 SBX-2 7.09E�01 7.56E�00 ** � 4.28E�00

SBX-5 6.00E�11 2.76E�10 � � 2.08E�10 SBX-5 1.14E�01 9.54E�01 � � 7.97E�01

FR 4.62E�12 1.30E�11 � � 6.52E�12 FR 1.10E�00 8.97E�00 � � 7.08E�00

BLX-0.5-0 1.15E�01 3.19E�01 � � 9.55E�00 BLX-0.5-0 8.14E�03 1.46E�04 � � 4.90E�03

WHX 3.93E�03 4.54E�02 � � 4.58E�02 WHX 7.43E�01 2.09E�03 � � 2.49E�03

2PX 8.82E�10 3.77E�09 � � 3.61E�09 2PX 1.24E�02 4.78E�02 � � 2.56E�02

UX 1.73E�09 1.06E�08 � � 8.13E�09 UX 2.64E�02 7.21E�02 � � 3.44E�02

BGAX 2.15E�03 4.98E�03 � � 1.95E�03 BGAX 4.03E�01 1.11E�02 � � 5.67E�01

DHX 1.35E�15 1.37E�14 ** ** 9.63E�15 DHX 1.91E�01 6.04E�01 � � 2.99E�01

MMAX 1.80E�12 3.17E�11 � 3.75E�11 MMAX 4.46E�01 1.77E�02 � 8.32E�01

DX 1.29E�09 5.75E�09 � 3.73E�09 DX 1.18E�02 4.39E�02 � 1.71E�02

LX 6.94E�11 3.19E�10 � 1.70E�10 LX 4.11E�02 3.86E�01 ** 2.66E�01

Table DII. Results for the Rastrigin and Griewank’s functions.

Rastrigin B A T1 T2 SD Griewangk B A T1 T2 SD

SX 2.08E�07 6.63E�01 � � 5.93E�01 SX 1.00E�06 2.91E�02� � 2.75E�02
AX 9.94E�01 3.97E�00 � � 2.59E�00 AX 3.59E�06 1.78E�02� � 1.87E�02
GX 1.39E�01 1.94E�01 � � 3.80E�00 GX 7.42E�06 1.38E�02� � 1.15E�02
BLX-0 9.94E�01 4.47E�00 � � 2.01E�00 BLX-0 2.26E�06 1.55E�02� � 1.82E�02
BLX-0.3 4.97E�00 7.86E�00 � � 1.80E�00 BLX-0.3 1.10E�08 1.54E�02� � 1.56E�02
BLX-0.5 6.08E�01 8.72E�01 � � 1.25E�01 BLX-0.5 5.06E�03 5.29E�01� � 2.16E�01
SBX-2 6.96E�00 1.36E�01 � � 4.56E�00 SBX-2 3.22E�07 1.91E�02� � 2.28E�02
SBX-5 2.98E�00 7.13E�00 � � 2.15E�00 SBX-5 8.69E�08 2.32E�02� � 2.51E�02
FR 1.19E�01 1.96E�01 � � 4.84E�00 FR 3.21E�09 7.71E�03** � 9.60E�03
BLX-

0.5-0
1.01E�02 1.48E�02 � � 2.90E�01 BLX-

0.5-0
4.07E�01 1.10E�02� � 3.27E�01

WHX 5.28E�01 9.98E�01 � � 3.09E�01 WHX 1.01E�00 1.14E�00� � 1.25E�01
2PX 1.52E�07 6.96E�01 � � 7.77E�01 2PX 7.07E�07 2.65E�02� � 2.45E�02
UX 6.03E�07 6.96E�01 � � 7.33E�01 UX 2.15E�06 2.22E�02� � 1.93E�02
BGAX 5.33E�00 1.04E�01 � � 2.32E�00 BGAX 8.66E�01 9.77E�01� � 5.21E�02
DHX 8.52E�13 1.13E�11 ** ** 1.09E�11 DHX 1.76E�12 9.67E�03� � 1.32E�02
MMAX 2.62E�09 9.28E�01 � 9.23E�01 MMAX 8.07E�09 1.31E�02 � 1.60E�02
DX 2.85E�06 1.85E�00 � 1.30E�00 DX 8.96E�07 1.35E�02 � 1.27E�02
LX 5.56E�00 3.06E�01 � 2.97E�01 LX 5.81E�08 2.30E�03 ** 5.04E�03
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Table DIII. Results for the expansion of F10 and the system of linear equations.

EF10 B A T1 T2 SD SLE B A T1 T2 SD

SX 9.61E�01 1.91E�00 � � 7.05E�01 SX 6.35E�01 3.68E�02 � � 2.32E�02
AX 1.66E�00 3.37E�00 � � 1.79E�00 AX 2.84E�00 2.50E�01 � � 1.89E�01
GX 1.36E�01 5.83E�01 � � 2.64E�01 GX 5.55E�00 5.31E�01 � � 5.27E�01
BLX-0 1.12E�00 2.15E�00 � � 8.62E�01 BLX-0 7.44E�00 2.74E�01 � � 1.67E�01
BLX-0.3 1.58E�01 3.18E�01 � � 1.21E�01 BLX-0.3 1.44E�00 2.03E�01 ** � 2.16E�01
BLX-0.5 6.74E�00 1.47E�01 � � 4.54E�00 BLX-0.5 1.42E�00 2.62E�01 � � 2.69E�01
SBX-2 3.21E�00 1.35E�01 � � 8.26E�00 SBX-2 5.40E�01 3.54E�01 � � 3.82E�01
SBX-5 2.54E�00 1.99E�01 � � 1.46E�01 SBX-5 8.03E�00 1.14E�02 � � 8.52E�01
FR 1.54E�01 2.45E�01 ** ** 7.29E�02 FR 3.53E�00 2.66E�01 � � 1.72E�01
BLX-

0.5-0
1.41E�02 1.66E�02 � � 1.50E�01 BLX-0.5-0 5.59E�02 1.26E�03 � � 3.63E�02

WHX 1.20E�02 1.58E�02 � � 2.29E�01 WHX 4.43E�00 3.78E�02 � � 3.79E�02
2PX 5.45E�01 1.60E�00 � � 8.98E�01 2PX 8.36E�01 2.82E�02 � � 1.55E�02
UX 1.14E�00 2.70E�00 � � 1.16E�00 UX 6.76E�01 3.68E�02 � � 2.00E�02
BGAX 1.61E�01 2.36E�01 � � 4.72E�00 BGAX 3.25E�01 2.00E�02 � � 1.37E�02
DHX 1.74E�01 1.31E�00 � � 8.92E�01 DHX 5.62E�01 1.27E�02 � � 5.19E�01
MMAX 4.84E�01 3.15E�00 � 2.20E�00 MMAX 4.39E�01 1.12E�02 � 5.95E�01
DX 1.36E�00 5.71E�00 � 3.84E�00 DX 2.78E�01 1.98E�02 � 1.00E�02
LX 4.35E�01 8.89E�01 � 3.14E�01 LX 2.81E�01 2.69E�00 ** 1.90E�00

Table DIV. Results for the Rosenbrock’s function and the polynomial fitting problem.

Rosenbrock B A T1 T2 SD PFP B A T1 T2 SD

SX 2.33E�01 4.48E�01 � � 3.03E�01 SX 6.39E�02 5.24E�03 � � 4.05E�03
AX 2.13E�01 2.25E�01 � � 3.98E�01 AX 2.01E�01 1.97E�02 ** � 1.24E�02
GX 2.21E�01 2.27E�01 � � 1.80E�01 GX 2.65E�01 3.45E�02 � � 2.84E�02
BLX-0 2.05E�01 2.22E�01 � � 5.88E�01 BLX-0 4.54E�01 2.89E�02 � � 2.16E�02
BLX-0.3 1.92E�01 2.18E�01 � � 7.35E�01 BLX-0.3 3.53E�01 2.19E�02 � � 1.55E�02
BLX-0.5 2.09E�01 2.61E�01 � � 1.42E�01 BLX-0.5 1.95E�01 3.16E�02 � � 2.58E�02
SBX-2 1.74E�01 2.99E�01 � � 1.98E�01 SBX-2 3.99E�01 4.18E�02 � � 2.85E�02
SBX-5 1.64E�00 3.90E�01 � � 2.71E�01 SBX-5 4.58E�01 8.03E�02 � � 8.99E�02
FR 1.56E�01 2.54E�01 � � 1.53E�01 FR 6.06E�00 4.51E�02 � � 3.38E�02
BLX-0.5-0 4.40E�03 1.81E�04 � � 1.08E�04 BLX-0.5-0 2.19E�04 1.59E�05 � � 1.36E�05
WHX 2.77E�01 1.39E�02 � � 9.91E�01 WHX 3.39E�02 3.94E�03 � � 5.15E�03
2PX 1.31E�01 4.70E�01 � � 3.18E�01 2PX 6.21E�02 4.77E�03 � � 3.22E�03
UX 1.60E�00 5.10E�01 � � 2.96E�01 UX 3.60E�02 4.56E�03 � � 5.50E�03
BGAX 1.26E�01 7.85E�01 � � 6.01E�01 BGAX 2.83E�02 2.05E�03 � � 1.62E�03
DHX 1.99E�01 2.17E�01 ** ** 5.70E�01 DHX 1.14E�02 7.40E�02 � � 4.65E�02
MMAX 1.59E�01 2.67E�01 � 1.53E�01 MMAX 2.57E�02 1.28E�03 � 9.59E�02
DX 7.10E�02 3.25E�01 � 2.25E�01 DX 3.12E�02 2.07E�03 � 1.69E�03
LX 2.13E�01 2.20E�01 � 3.03E�01 LX 9.64E�03 6.35E�01 ** 9.03E�01
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Table DVI. Results for the Watson and Bohachevsky’s functions.

Watson B A T1 T2 SD Bohachevsky B A T1 T2 SD

SX 1.10E�00 1.12E�00 � � 2.57E�02 SX 7.65E�13 1.15E�11 � � 1.19E�11
AX 1.11E�00 1.12E�00 � � 8.41E�03 AX 1.96E�12 2.29E�11 � � 1.67E�11
GX 1.11E�00 1.12E�00 � � 1.55E�02 GX 1.17E�12 2.19E�11 � � 3.26E�11
BLX-0 1.11E�00 1.11E�00 � � 6.04E�03 BLX-0 1.35E�13 2.29E�11 � � 3.60E�11
BLX-0.3 1.11E�00 1.11E�00 � � 2.79E�03 BLX-0.3 2.22E�16 7.52E�14 � � 1.23E�13
BLX-0.5 1.11E�00 1.16E�00 � � 3.50E�02 BLX-0.5 7.09E�13 7.84E�12 � � 7.70E�12
SBX-2 1.11E�00 1.37E�00 � � 2.74E�01 SBX-2 4.48E�14 1.74E�12 � � 2.08E�12
SBX-5 1.11E�00 1.13E�00 � � 4.73E�02 SBX-5 1.99E�15 1.91E�13 � � 4.30E�13
FR 1.11E�00 1.11E�00 � � 1.09E�02 FR 1.07E�14 7.33E�14 � � 6.92E�14
BLX-0.5-0 2.87E�00 1.16E�01 � � 5.20E�00 BLX-0.5-0 1.69E�00 8.02E�00 � � 3.73E�00
WHX 2.34E�00 8.54E�00 � � 2.68E�00 WHX 2.21E�05 7.32E�01 � � 7.73E�01
2PX 1.11E�00 1.11E�00 � � 1.22E�02 2PX 7.15E�13 4.44E�12 � � 4.71E�12
UX 1.11E�00 1.11E�00 ** � 3.11E�03 UX 4.44E�13 2.22E�11 � � 2.44E�11
BGAX 1.17E�00 1.31E�00 � � 1.04E�01 BGAX 1.33E�04 6.55E�04 � � 3.72E�04
DHX 1.11E�00 1.11E�00 � � 3.69E�03 DHX 0.00E�00 0.00E�00 ** ** 0.00E�00
MMAX 1.10E�00 1.10E�00 ** 4.62E�05 MMAX 0.00E�00 4.07E�16 � 1.03E�15
DX 1.10E�00 1.10E�00 � 1.41E�04 DX 8.68E�13 1.12E�11 � 7.75E�12
LX 1.11E�00 1.16E�00 � 2.65E�02 LX 1.55E�15 4.39E�14 � 5.51E�14

Table DV. Results for the FMS parameter identification and the Ackley’s function.

FMSPI B A T1 T2 SD Ackley B A T1 T2 SD

SX 6.05E�08 1.15E�01 � � 6.17E�00 SX 1.86E�04 4.05E�04 � � 1.32E�04
AX 1.17E�01 2.14E�01 � � 3.28E�00 AX 2.43E�04 5.13E�04 � � 1.93E�04
GX 3.66E�07 1.85E�01 � � 6.46E�00 GX 2.77E�04 5.55E�04 � � 1.69E�04
BLX-0 1.14E�01 2.05E�01 � � 4.05E�00 BLX-0 2.19E�04 5.40E�04 � � 2.45E�04
BLX-0.3 9.65E�13 1.39E�01 � � 6.75E�00 BLX-0.3 1.45E�05 3.92E�05 � � 1.52E�05
BLX-0.5 3.40E�12 1.50E�01 � � 4.56E�00 BLX-0.5 2.42E�03 1.02E�02 � � 6.38E�03
SBX-2 1.15E�01 1.79E�01 � � 4.05E�00 SBX-2 1.17E�04 2.27E�04 � � 8.51E�05
SBX-5 4.36E�15 1.08E�01 � � 4.98E�00 SBX-5 2.95E�05 9.26E�05 � � 4.54E�05
FR 2.84E�15 7.30E�00 ** ** 6.67E�00 FR 7.18E�06 1.81E�05 � � 6.44E�06
BLX-0.5-0 1.15E�01 2.30E�01 � � 3.58E�00 BLX-0.5-0 1.33E�01 1.65E�01 � � 1.09E�00
WHX 1.80E�01 2.37E�01 � � 2.08E�00 WHX 2.61E�00 4.28E�00 � � 9.25E�01
2PX 8.71E�09 1.01E�01 � � 7.79E�00 2PX 1.14E�04 2.54E�04 � � 8.31E�05
UX 1.15E�07 1.14E�01 � � 6.63E�00 UX 1.88E�04 4.19E�04 � � 1.52E�04
BGAX 1.12E�04 1.20E�01 � � 6.12E�00 BGAX 4.67E�01 8.73E�01 � � 3.34E�01
DHX 1.03E�11 1.64E�01 � � 7.91E�00 DHX 1.52E�07 3.81E�07 ** ** 1.67E�07
MMAX 1.05E�06 1.57E�01 � 7.62E�00 MMAX 1.21E�05 2.87E�05 � 1.41E�05
DX 2.19E�05 1.42E�01 � 7.58E�00 DX 1.14E�04 3.78E�04 � 1.61E�04
LX 1.16E�01 2.06E�01 � 3.31E�00 LX 3.62E�05 8.29E�05 � 2.75E�05
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Table DVII. Results for the Colville’s function.

Coville B A T1 T2 SD

SX �1.64E�02 �1.63E�02 � � 3.42E�00
AX �1.63E�02 �1.50E�02 � � 1.39E�01
GX �1.61E�02 �1.44E�02 � � 1.39E�01
BLX-0 �1.62E�02 �1.54E�02 � � 6.78E�00
BLX-0.3 �1.64E�02 �1.62E�02 � � 4.29E�00
BLX-0.5 �1.64E�02 �1.62E�02 � � 4.71E�00
SBX-2 �9.00E�02 �8.81E�02 � � 1.94E�01
SBX-5 �9.00E�02 �8.86E�02 ** ** 1.82E�01
FR �1.64E�02 �1.63E�02 � � 3.15E�00
BLX-0.5-0 �1.25E�02 �4.04E�01 � � 4.02E�01
WHX �1.64E�02 �1.62E�02 � � 4.71E�00
2PX �1.64E�02 �1.63E�02 � � 2.00E�00
UX �1.64E�02 �1.61E�02 � � 5.13E�00
BGAX �1.64E�02 �1.64E�02 � � 5.68E�14
DHX �1.64E�02 �1.62E�02 � � 2.46E�00
MMAX �1.64E�02 �1.59E�02 � 7.27E�00
DX �1.64E�02 �1.58E�02 � 8.80E�00
LX �1.64E�02 �1.61E�02 � 5.05E�00
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