
Pergamon
Computer.* Ops Res. Vol. 24, No. 1 I. pp. 1097-1100, 1997

© 1997 Elsevier Science lad
Pll: S0305-05~(97)00031-2 All rights reserved. Printed in Great Britain

0305-0548/97 $17.00+0.00

VARIABLE NEIGHBORHOOD SEARCH

N. Mladenovir:t: and E Hansen't'§
GERAD and l~cole des Hautes I~tudes Commerciales, 3000 chemin de la CSte-Sainte-Catherine, Montreal,

H3T 2A7 Canada

(Received December 1996: in revised form April 1997)

Scope and P u ~ In the last decade much progress was made in the design and application of heuristic
algorithms for a large variety of combinatorial and nonconvex continuous optimization problems. General
heuristics (or metaheuristics, e.g. simulated annealing, tabu search, genetic search) which avoid being trapped
in the first local optimum found have led to much improved results in many practical contexts. However, the
sophistication of such heuristics makes it difficult to pinpoint the reasons for their effectiveness. We examine a
relatively unexplored reason: change of neighborhood in the search. Using this idea and very little more, i.e.,
only a local search routine, leads to a new metaheuristic, which is widely applicable. First computational results
show this scheme outperforms other heuristics for several combinatorial optimization problems. Its effectiveness
is illustrated on the traveling salesman problem without and with backhauls, which have a large number of
practical applications such as the drilling of printed circuit boards, automated warehouse routing and operation
~quencing on numerically controlled machines.

Abstract--Systematic change of neighborhood within a local search algorithm yields a simple and effective
metaheuristic for combinatorial optimization. We present a basic scheme for this purpose which can he
implemented easily using any local search algorithm as a subroutine. Its effectiveness is illustrated by
improvements in the GENIUS algorithm for the traveling salesman problem [I], without and with backhauls 121.
© 1997 Elsevier Science Ltd

I. I N T R O D U C T I O N

Local search methods for combinatorial optimization proceed by performing a sequence of local changes
in an initial solution which improve each time the value of the objective function until a local optimum
is found. That is, at each iteration an improved solution x' in the neighborhood N(x) of the current
solution x is obtained, until no further improvements are found. In recent years, several general heuristics
(or metaheuristics) have been proposed which extend this scheme in various ways and avoid being
trapped in local optima with a poor value (see Reeves [3] for a book-length survey and Osman and
Laporte [4] for an extensive bibliography). The purpose of this note is to show that a simple and effective
metaheuristic may be obtained by proceeding to a systematic change of neighborhood within a local
search algorithm. We call this approach Variable Neighborhood Search (VNS). Contrary to most other
local search methods VNS does not follow a trajectory, but explores increasingly distant neighborhoods
of the current incumbent solution, and jumps from there to a new one if and only if an improvement was
made. In this way often favorable characteristics of the incumbent solution, e.g. that most variables are
already at their optimal value, will be kept and used to obtain promising neighboring solutions. Moreover,
a local search routine is applied repeatedly to get from these neighboring solutions to local optima.

2. V N S A L G O R I T H M

Let us denote a finite set of pre-selected neighborhood structures with N,, (k= 1 km~x), and with
~/',(x) the set of solutions in the k 'h neighborhood of x. Local search heuristics usually use one
neighborhood structure, i.e.. kin,,= I. When using more than one, the following questions have to be
answered.

(i) What Jet should be used and how many of them?;
(it) What should be their order in the search?;

~" To whom all correspondence should be addressed.
-1: Nenad Mladenovi6 received his Ph.D. from the University of Belgrade, Yugoslavia. Currently, he is at GERAD, wbem be has

come for a visit from University of Belgrade. His research interests include nonlinear and combinatorial optimization location,
and clustering.

§ Pierre Hansen received the Agr~gation de I'Enseignement Sup~rieur degree from Brussels University. He is currently director of
GERAD research center and Professor of Operations Research at Ecole des Hautes Etudes Commerciales, Montneal. His
research interests include global and combinatorial optimization, graphs, location, clustering and mathematical chemistry.

1097

1098 N. Mladenovi~ and E Hansen

(iii) What search strategy should be used in changing neighborhoods?

A straightforward answer to these questions is given by the rules of the following basic VNS algorithm.

Initialization. Select the set of neighborhood structures Nk, k= 1 k,~, that will be used in the search;
find initial solution x;

Main step. (1) Set k: = I. (2) Until k =k~x, repeat the following steps: (a) generate a point x' at random
from the k 'h neighborhood o fx (x' ~ .N'k(x)>); (b) apply some local search method with x' as the initial
solution; denote with x" the obtained local optimum; (c) if the solution thus obtained is better than the
incumbent, move there (x: =x"), and continue the search with N~ (k: = 1); otherwise, set k: =k+ 1;

The main step can possibly be iterated until some other stopping condition is met (e.g. maximum
number of iterations, maximum CPU time allowed, or maximum number of iterations between two
improvements). Often successive neighborhoods .K k will be nested. Note that point x' is generated at
random in Step 2(a) in order to avoid cycling, which might occur if any deterministic rule was used.

It is worth stressing the ease of implementation of both the basic version of VNS (with only one
parameter km~x) and various extensions inspired by tabu search [5-7], and other metaheuristics. Step 2(a)
is easy to program. For example, if 3¢~ is obtained by k-interchanges of solution attributes, one need only
add a few lines (Step 2(a)) in an existing code for a local search method (Step 2(b)). The basic VNS is
in fact a descent, first improvement method. Without much additional effort it could be transformed into
a descent-ascent method (in Step 2(c) set x: =x' even if improvement was not reached) and/or a best
improvement method (make a move to the best neighborhood k* among all km~ of them). Other variants
of the basic VNS could be:

(i) find solution x' in Step 2(a) as the best among b (a parameter) randomly generated solutions from
the k ~ neighborhood;
(ii) introduce kt and k~q,, two parameters that control the change of neighborhood process, i.e., in the
previous algorithm instead of k:=l set k:=kt and instead of k:=k+l set k:=k+k~,~,. Then
intensification and diversification of the search is achieved in an easy and natural way. Indeed, if kz
and/or k~,e p are set to some large integer (-<n), then the search continues in far away regions of the

solution space, i.e., it is diversified; if kl and k,,ep= ~ k a-lm°d a] where a is a small integer and I_b.I is

the largest integer not greater than b, then the search spends more time in the region close to the
incumbent, i.e., it is intensified. (Note that values of k~ and k~q, could be changed at random in each
iteration; for example choose them randomly from [l ,maxl ,k,J4]) ;
(iii) generally speaking, the neighborhood used for local search in Step 2(b) is independent of the
neighborhoods Jqk, k= ! km~, selected in Step 2(a). In the basic VNS, descent local searches (Step
2(b)) always use the same neighborhood structure, which does not necessarily belong to ~ = {N,
,N'k,~}. This is done to point out the simplicity of deriving a VNS algorithm when some local search
routine is available. However, an extended version of VNS could contain more than one neighborhood
in Step 2(b) as well. In that case, many different search strategies in changing the neighborhood
structures in both Step 2(a) and Step 2(b) could be tried out, among which the first improvement one
is the simplest.

3. TRAVELING SALESMAN PROBLEM (TSP)

Given n cities with intercity distances, the traveling salesman problem (TSP) seeks a minimum cost
tour (i.e., a permutation of the cities which minimizes the sum of the n distances between adjacent cities
in the tour). We try our basic VNS with the GENIUS algorithm recently developed by Gendreau et al.
[11.

GENIUS consists of a tour construction phase (GENI, for generalized insertion), followed by a tour
improvement (local minimization) phase (US, for unstringing and stringing). GENI starts with a tour
consisting of three cities. At each iteration, a new city is inserted into the partially constructed tour while
performing a local reoptimization of the tour. The neighborhood Np(v) of each city v is defined as the set
of the p (a parameter) cities already on the tour that are closest to v (if p is greater than the number of
cities on the tour, then all of them define Nr(v)). City v is inserted between two vertices v~ and v~ from
Np(v). There are two types of GENI insertions. Let v~_ t and v~., denote the predecessor and the successor
of v~ for a given orientation.

Variable neighborhood search 1099

Type 1. For both orientations of the tour, insert city v as follows: for all vi and v~ (i~ j) from Np(v) and
all v~Nl,(vi+J (k~ij) , delete arcs (v i, vi+j), (vy, v2+r) and (vk, vA.÷O; insert arcs (vi, v), (v, vi), (vi÷j, vD and
(vj÷~, v~.0; keep the best tour.

Type 2. For both orientations of the tour, insert city v as follows: for all vi and v~ (i# j) from N~,(v), all
vkENI,(Vi÷ ~) (k ~ j , j + 1) and all v¢ ~ Np(vj.t) (e#i, i+ 1), delete arcs (v,, vi÷t), (v¢_ t, vr), (vj, vj.~0 and (vt_ i,
vt); insert arcs (v~, v), (v, v~), (v e, vj.~), (vt_ ~, re_ ~) and (v~+,, v,); keep the best tour.

When all n cities are in the tour, GENI stops. In the local search phase the neighborhood solutions are
defined with delete/insert (or drop/add) moves. Deletion of a city is done using the same type of moves
as in the insertion step, but in reverse order. Extensive computing results in Gendreau et al. [1} and
Johnson and McGeoch [8] show that the GENIUS algorithm is among the best heuristics for the TSP.

Because the size of the neighborhood depends on p, we immediately get a set of neighborhood
structures for VNS by denoting with ~ge(x) all tours obtained by delete/insert (defined with Type 1 and
Type 2 deletion and insertion moves of the GENIUS algorithm) with parameter value p. The basic VNS
algorithm using US as a local search routine (G+VNS) works as follows:

Initialization. Choose p and find an initial tour r by GENI; set k,,~ = [p/2+ 1];
Main step. (1) Set k=2; (2) Until k=km~,, repeat the following steps: (a) Find a new tour by the US

procedure with parameter value k; denote it by r; (b) If this is the best solution obtained so far, set k=2;
otherwise, set k=k + 1;

The value of kma x w a s selected in order for GENIUS and G+VNS to take similar computing times.
Results on the same type of test problems (i.e., Euclidean instances) as reported in Gendreau et al. [1]

are given in Table 1. It appears that 0.75% improvements in value is obtained on average within a similar
CPU time (increase of 1.8%). Moreover, improvements are obtained for all problem sizes. The
improvements are significant when compared with other studies. For example a 0.5% improvement on
average for the 2.5-opt heuristic [9] over the 2-opt heuristic (on random Euclidean instances as well) at
the cost of a 30%--40% increase in running time is reported in Johnson and McGeoch [8]. Usually CPU
time for G+VNS in Table 1 is larger than CPU time for GENIUS. Exceptions are instances with 700 and
800 cities. That could be explained by the small size of the sample chosen, i.e., for n->600, average
results on 10, not 100, instances are reported.

4. TRAVELING SALESMAN PROBLEM WITHBACKHAULS(TSPB)

In the traveling salesman problem with backhauls (TSPB) customers (or cities) are divided into three
disjoint sets: depot, line-haul L and backhaul B customers. Starting from the depot, a route must be
designed such that all linehaul customers are visited contiguously before all back.haul customers. In fact,
TSPB is a single-vehicle routing problem which can be reformulated into a TSP by adding large distances
(or costs) between customers that belong to different subsets (L or B).

In Gendreau et aL [2} six heuristic methods for TSPB are proposed and compared. Their results
indicate that, in terms of solution quality, GENIUS (applied to the reformulated problem) is the best
algorithm. In Table 2 we compare GENIUS with our GENIUS based VNS on the series of random
Euclidean instances, as designed and explained in [2]. It appears that a 0.40% improvement in value is
obtained on average with 30% increase in running time. Again, improvement is obtained for all problem
sizes.

Preliminary tests of the basic VNS algorithm on the p-median problem, the multisource Weber

Table I. TSP: average i~sults for random Euclidean problems over 100 trials for n= 100 500
and 10 trials for n--600 1000.

Best value found % Imp CPU times
n p k.~, GENI GENIUS G+VNS GENIUS G÷VNS

I00 6 4 801.35 789.66 786.39 0.42 4.7 5.9
200 6 4 II 10.37 1 0 9 3 . 6 5 1087.59 0.56 12.6 12.3
300 6 4 1.34.9.80 1327.46 1318.50 0.68 21.8 21.7
400 6 4 1 5 5 7 . 2 8 1 5 3 2 . 1 5 1521.89 0.67 38.3 44.0
500 6 4 1732.54 1 7 0 5 . 4 4 1691.98 0.80 4-4.3 56.6
600 6 4 1 8 8 4 . 7 6 1 8 5 8 . 5 0 1837.43 1.15 1.34.4 160.8
700 6 4 2041.34 2010.96 1989.74 1.07 224.8 215.5
800 6 4 2178.99 2148.37 2135.05 0.62 392.8 284.8
gO0 6 4 2314.80 2276.25 2264.36 0.53 505.1 595.0
1000 6 4 2439.02 2405.24 2381.40 1.00 354.3 367.3

Average 1741.03 1 7 1 4 . 7 7 1701.43 0.75 173.31 176.39

I I00 N. Mladenovi~ and P. Hansen

Table 2. TSPB: average results for random Euclidean problems over 30 trials.

Best value found % Imp CPU times
n IBIIn k k~, GENI GENIUS G+VNS GENIUS G+VNS

100 0.1 6 4 1012.50 994.12 987.11 0.71 4.7 5.4
0.2 6 4 1068.70 1047 .01 1044.66 0.22 4.8 5.8
0.3 6 4 1 1 0 9 . 6 6 1088 .09 1085.34 0.25 4.8 5.5
0.4 6 4 I 125.63 1106.69 I 102.29 0.40 5. I 5.4
0.5 6 4 1133.87 I 114.34 1108.68 0.51 4.4 5.6

200 0. I 6 4 1 4 1 8 . 6 3 1387 .22 1378.80 0.61 36.3 31.6
0.2 6 4 1 4 9 8 . 8 3 1470 .95 1464.88 0.41 32.4 35.9
0.3 6 4 1 5 5 0 . 5 2 1525.26 1519.93 0.35 31.7 30.7
0.4 6 4 1585.76 1555.26 1548.73 0.42 31.2 38.8
0.5 6 4 1 5 8 6 . 9 3 1554 .13 1546.97 0.46 39.6 43.1

300 0.1 6 4 1720.82 1683.76 1675.82 0.47 106.4 109.3
0.2 6 4 1 8 2 4 . 6 2 1784.80 1782.62 0.12 105.9 87.2
0.3 6 4 1886.48 1854.86 1849.05 0.31 70.9 100.1
0.4 6 4 1903.29 1874 .43 1865.75 0.47 69.6 105.6
0.5 6 4 1927.34 1892.20 1887.35 0.26 72.3 101.1

500 0.1 6 4 2197.16 2158.79 2156.61 0.10 325.6 343.6
0.2 6 4 2342.99 2297. I I 2292.04 0.22 289.5 248. I
0.3 6 4 2409.80 2370.45 2363.16 0.3L 317.7 383.3
0.4 6 4 2443.12 2399.35 2388.07 0.47 374.0 326. I
0.5 6 4 2464. I I 2418.20 2405.55 0.53 405.9 472.2

1000 0. I 6 4 3099.17 3042.60 3029.76 0.42 1130.3 1417.9
0.2 6 4 3281.34 3232.65 3213.61 0.59 1211.1 1637.2
0.3 6 4 3366.07 3314.80 3302.93 0.36 1019.8 1643.1
0.4 6 4 3451.02 3387.43 3366.23 0.63 1302.8 1898.3
0.5 6 4 3455.69 3388.16 3379.67 0.25 1324.6 1762.6
Average 20M.56 1997 .71 1989.82 0.39 332.86 433.74

problem (or continuous location-allocation problem), the minimum sum-of-squares clustering problem
and the weighted maximum satisfiability problem are equally favorable.

We are well aware that some building blocks of VNS were exploited before by others (for an early
example, Erlenkotter's DUALOC algorithm [10] for the simple plant location problem uses two
neighborhood structures) and that other metaheuristics incorporate similar strategies, attained by other
means (e.g. the candidate list diversification and intensification strategies of Tabu search modify the set
of solutions from which one is selected at each iteration through forbidden moves, i.e. Tabu lists, or
exploitation of long term memory). However, the proposed basic scheme for VNS appears to be new, to
the best of our knowledge, and is very effective. In view of the ease with which it can be applied to a
variety of problems we believe it is worthy of further study and use.

Acknowledgements--Research supported by ONR grant N00014-95-1-0917. NSERC (Natural Scientific Research and Engineering
Council of Canada) grant GPO105574 and FCAR (Fonds pour la Formation de Chercheurs et I'Aide t la Recherche) grant
95ER1048. We thank Michel Gendreau. Alain Hertz and Gilbert Laporte for making the GENIUS code available to us.

R E F E R E N C E S

I. Gendreau, M., Hertz, A. and Laporte. G., New insertion and postoptimization procedures for the traveling salesman problem.
Operations Research, 1992, 40, 1086-1094.

2. Gendreau, M., Hertz, A. and Laporte. G., The traveling salesman problem with backhauls. Computers and Operations
Research, 1996, 23, 501-508.

3. Reeves, C., ed., Modern Heuristic Techniques for Combinatorial Problems. Blackwells, Oxford, 1993.
4. Osmano I. H. and Laporte, G., Metaheufistics. A bibl iography. Annals of Operational Research, 1996, 63, 513--628.
5. GIover, E, Tabu Search-Part I. ORSA Journal of Computing., 1989, 1, 190-206.
6. GIover, E, Tabu Search--Part II. ORSA Journal of Computing, 1990, 2, 4--32.
7. Hansen, P. and Jaumard, B., Algorithms for the maximum satisfiability problem. Computing, 1990, 44, 279-303.
8. Johnson. D. S. and McGeoch, L. A., The traveling salesman problem, a case study in local optimization. In Local search in

combinatorial optimization, eds E.H.L. Aarts and J.K. Lenstra. Wiley, New York, 1997 (to appear).
9. Bentley, J. L., Fast algorithms for geometric traveling salesman problem. ORSA Journal of Computing, 1992, 4, 387--411.

10. Erlenkotter, D., A dual-based procedure for uncapacitated facility location. Operations Research, 1978, 26, 992-10091 I.

