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Ant Colony System: A Cooperative Learning
Approach to the Traveling Salesman Problem

Marco Dorigo, Senior Member, IEEEand Luca Maria Gambardell&jember, IEEE

Abstract—This paper introduces the ant colony system (ACS), Fig. 1(d)]. From now on, new ants will prefer in probability to
a distributed algorithm that is applied to the traveling salesman  choose the lower path, since at the decision point they perceive
problem (TSP). In the ACS, a set of cooperating agents called ants a greater amount of pheromone on the lower path. This in turn

cooperate to find good solutions to TSP’s. Ants cooperate using an . . ..
indirect form of communication mediated by a pheromone they NCréases, with a positive feedback effect, the number of ants

deposit on the edges of the TSP graph while building solutions. choosing the lower, and shorter, path. Very soon all ants will
We study the ACS by running experiments to understand its be using the shorter path.

operation. The results show that the ACS outperforms other  The above behavior of real ants has inspigt system
nature-inspired algorithms such as simulated annealing and evo- an algorithm in which a set of artificial ants cooperate to

lutionary computation, and we conclude comparing ACS-3-opt, . . . ; .
a version of the ACS augmented with a local search procedure, the solution of a problem by exchanging information via

to some of the best performing algorithms for symmetric and Pheromone deposited on graph edges. The ant system has been

asymmetric TSP’s. applied to combinatorial optimization problems such as the
Index Terms—Adaptive behavior, ant colony, emergent behay- traveling salesman problem (TSP) [7], [8], [10], [12] and the
ior, traveling salesman problem. guadratic assignment problem [32], [42].

The ant colony system (ACS), the algorithm presented
in this article, builds on the previous ant system in the
direction of improving efficiency when applied to symmetric

HE natural metaphor on which ant algorithms are basegd asymmetric TSP’s. The main idea is that of having a set

is that of ant colonies. Real ants are capable of finding the agents, called@nts search in parallel for good solutions to
shortest path from a food source to their nest [3], [22] withohe TSP and cooperate through pheromone-mediated indirect
using visual cues [24] by exploiting pheromone informatiotaind global communication. Informally, each ant constructs
While walking, ants deposit pheromone on the ground aRdTSP solution in an iterative way: it adds new cities to a
follow, in probability, pheromone previously deposited byartial solution by exploiting both information gained from
other ants. In Fig. 1, we show a way ants exploit pheromopgst experience and a greedy heuristic. Memory takes the form
to find a shortest path between two points. of pheromone deposited by ants on TSP edges, while heuristic

Consider F|g l(a): ants arriVe at a deCiSion pOint in Whithormation is S|mp|y given by the edge’s |ength
they have to decide whether to turn left or r|ght Since they The main novel idea introduced by ant algoritth, which
have no clue about which is the best choice, they choagg| be discussed in the remainder of the paper, is the syner-
randomly. It can be expected that, on average, half of thgstic use of cooperation among many relatively simple agents
ants decide to turn left and the other half to turn right. Thighich communicate by distributed memory implemented as
happens both to ants moving from left to right (those Who?heromone deposited on edges of a graph.
name begins with an L) and to those moving from right to left This paper is organized as follows. Section Il puts the
(name begins with an R). Fig. 1(b) and (c) shows what happeRgs in context by describing ant system, the progenitor
in the immediately following instants, supposing that all anis; the ACS. Section Il introduces the ACS. Section IV is
walk at approximately the same speed. The number of dashgdjicated to the study of some characteristics of the ACS:
lines is roughly proportional to the amount of pheromone thgfe study how pheromone changes at run time, estimate the
the ants have deposited on the ground. Since the lower patlyigimal number of ants to be used, observe the effects of
shorter than the upper one, more ants will visit it on averagg,eromone-mediated cooperation, and evaluate the role that
and therefore pheromone accumulates faster. After a shQRkromone and the greedy heuristic have in ACS performance.
transitory period the difference in the amount of pheromong, tion v provides an overview of results on a set of standard
on the two paths is sufficiently large so as to influence theg; problems and comparisons of the ACS with well-known
decision of new ants coming into the system [this is shown R neral purpose algorithms like evolutionary computation and
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(c) (d)

Fig. 1. How real ants find a shortest path. (a) Ants arrive at a decision point. (b) Some ants choose the upper path and some the lower path. The
choice is random. (c) Since ants move at approximately a constant speed, the ants which choose the lower, shorter, path reach the oppositatdecision poi
faster than those which choose the upper, longer, path. (d) Pheromone accumulates at a higher rate on the shorter path. The number of dashed lines is
approximately proportional to the amount of pheromone deposited by ants.

TSP

Let V= {a, ..., z} be a set of cities, A = {(r,s):r,s €V} be the edge set, and
8(r,s)= 6(s,r) be a cost measure associated with edge (r,s) € A.

The TSP is the problem of finding a minimal cost closed tour that visits each
city once.

In the case cities r € V are given by their coordinates (x,, y,) and §(r,s) is
the Euclidean distance between r and s, then we have an Euclidean TSP.

ATSP

If 6(r,s) # 8(s,r) for at least some (r,s) then the TSP becomes an asymmetric
TSP (ATSP).

Fig. 2. The traveling salesman problem.

dedicated to the discussion of the main characteristics of thdnformally, ant system works as follows. Each ant gener-

ACS and indicates directions for further research. ates a complete tour by choosing the cities according to a
probabilisticstate transition ruleants prefer to move to cities
II. BACKGROUND which are connected by short edges with a high amount of

: . heromone. Once all ants have completed their togiolbal
Ant systenj10] is the progenitor of all our research effortd’ i i .
ysteniLO] brog heromone updating ruléglobal updating rule, for short) is

with ant algorithms and was first applied to the TSP, whiche" i
is defined in Fig. 2. applied; a fraction of the pheromone evaporates on all edges

Ant system utilizes a graph representation which is the safd9€s that are not refreshed become less desirable), and then
as that defined in Fig. 2, augmented as follows: in addition f#ch ant deposits an amount of pheromone on edges which
the cost measurd(r, s), each edgér, s) has also a desirability belong to its tour in proportion to how short its tour was (in
measurer(r, s), called pheromone which is updated at run other words, edges which belong to many short tours are the
time by artificial ants &nts for short). When ant system isedges which receive the greater amount of pheromone). The
applied to symmetric instances of the TS®r,s) = 7(s,r), process is then iterated.
but when it is applied to asymmetric instances it is possible The state transition rule used by ant system, called a
that 7(r,s) # 7(s,r). random-proportional rule is given by (1), which gives the
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Initialize
Loop /* at this level each lop is called an iteration */
Each ant is positioned on a starting node
Loop /* at this level each lop is called a step */
Each ant applies a state transition rule to incrementally build a solution
and a local pheromone updating rule
Until all ants have built a complete solution

A global pheromone updating rule is applied
Until End condition

Fig. 3. The ACS algorithm.

probability with which antt in city » chooses to move to the Although ant system was useful for discovering good or

city s optimal solutions for small TSP’s (up to 30 cities), the time
[r(r, 8)] - [n(r S)],g _ required to find such results made it infeasible for larger
: : , i s e Ji(r) problems. We devised three main changes to improve its
pr(r,s) = Z [r(r,w)] - [n(r,w)]” (1) performance which led to the definition of the ACS, presented
ueJi(r) . in the next section.
otherwise

7

where 7 is the pheromoney; = 1/6 is the inverse of the L ACS
distanceé(r, s), Ji(r) is the set of cities that remain to be '
visited by antk positioned on cityr (to make the solution The ACS differs from the previous ant system because
feasible), and3 is a parameter which determines the relativef three main aspects: i) the state transition rule provides a
importance of pheromone versus distaiige> 0). direct way to balance between exploration of new edges and
In (1) we multiply the pheromone on edde, s) by the exploitation ofa priori and accumulated knowledge about the
corresponding heuristic valugr, s). In this way we favor the problem, ii) the global updating rule is applied only to edges
choice of edges which are shorter and which have a greawdtich belong to the best ant tour, and iii) while ants construct
amount of pheromone. a solution alocal pheromone updating rul@ocal updating
In ant system, the global updating rule is implemented &gle, for short) is applied.
follows. Once all ants have built their tours, pheromone is Informally, the ACS works as followsxn ants are initially

updated on all edges according to positioned om cities chosen according to some initialization
m rule (e.g., randomly). Each ant builds a tour (i.e., a feasible
7(r,s) — (1 —a) - 7(r,s) + Z AT(r, 5) (2) solution to the TSP) by repeatedly applying a stochastic greedy

ot rule (the state transition rule). While constructing its tour, an
where ant also modifies the amount of pheromone on the visited

1 edges by applying the local updating rule. Once all ants have

ATy(r,s) = { . if (r,s) € tour done by ank term_lr_1ated th_elr tour, the amount of pheromon_e on edges is
’ k modified again (by applying the global updating rule). As

) ) was the case in ant system, ants are guided, in building their
0<a<1is a pheromone decay parametéy, is the length 4,15 by both heuristic information (they prefer to choose
of the tour performed by arit, andm is the number of ants. ghort edges) and by pheromone information. An edge with
Pheromone updating is intended to allocate a greater amoynigh amount of pheromone is a very desirable choice. The

of pheromone to shorter tours. In a sense, this is similar §6omone updating rules are designed so that they tend to
a reinforcement learning scheme [2], [26] in which bettefie more pheromone to edges which should be visited by

solutions get a higher reinforcement (as happens, for exalis The ACS algorithm is reported in Fig. 3. In the following
ple, in genetic algorithms under proportional selection). The

: : e discuss the state transition rule, the global updating rule,
pheromone updating formula was meant to S|mulat_e_ the changgy the local updating rule.
in the amount of pheromone due to both the addition of new
pheromone deposited by ants on the visited edges and , to -
pheromone evaporation. A."ACS State Transition Rule

Pheromone placed on the edges plays the role of a disin the ACS the state transition rule is as follows: an ant
tributed long-term memory: this memory is not stored locallpositioned on node chooses the city to move to by applying
within the individual ants, but is distributed on the edges d¢he rule given by (3)

the graph. This allows an indirect form of communication

0, otherwise

called stigmergy[9], [23]. The interested reader will find a arg m@XueJk(r){[T (r, u)] : [77_(7‘7 w7},
full description of ant system, of its biological motivations, 5= if g<qo (exploitation ©)
and computational results in [12]. S, otherwise (biased exploration
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whereq is a random number uniformly distributed - - - 1], learn the best action to perform in each possible state in which
qo is a parametef0 < ¢o < 1), and S is a random variable it finds itself, using as the sole learning information a scalar
selected according to the probability distribution given in (Lhumber which represents an evaluation of the state entered
The state transition rule resulting from (3) and (1) isfter it has performed the chosen action. Q-learning is an
called pseudo-random-proportional rulelhis state transition algorithm which allows an agent to learn such an optimal
rule, as with the previous random-proportional rule, favoglicy by the recursive application of a rule similar to that
transitions toward nodes connected by short edges and witma5), in which the termAr(r, s) is set to the discounted
large amount of pheromone. The parametedetermines the evaluation of the next state value. Since the problem our
relative importance of exploitation versus exploration: eveignts have to solve is similar to a reinforcement learning
time an ant in cityr has to choose a city to move to, it problem (ants have to learn which city to move to as a
samples a random number< ¢ < 1. If ¢ < ¢o then the best function of their current location), we set [197(r,s) =
edge, according to (3), is chosen (exploitation), otherwise an max.c s, sy 7(s,2), which is exactly the same formula

edge is chosen according to (1) (biased exploration). used in Q-learning0 < v < 1 is a parameter). The other two
choices were: i) we seh7(r, s) = 79, Wwherery is the initial
B. ACS Global Updating Rule pheromone level, and ii) we sékr(r,s) = 0. Finally, we

Iso ran experiments in which local updating was not applied

In ACS only the globally best ant (i.e., the ant Whicga_ he local updati e i q h )
constructed the shortest tour from the beginning of the tri bi.’s;s?er%:a updating rule is not used, as was the case in

is allowed to deposit pheromone. This choice, together wift! , . ,
Results obtained running experiments (see Table I) on a

the use of the pseudo-random-proportional rule, is intended to ) i ,
make the search more directed: ants search in a neighborh ??H ofggve randomly_/rsg:nz;ateddSg-mty‘lgSP s [13], antgg
of the best tour found up to the current iteration of th Iver30 symmetric [41] and the ry48p asymmetric

algorithm. Global updating is performed after all ants ha 5(}’ ehssenr:iallly sulgge(sjt t_hat Ioclal up&'s\ting Is (j_(afinitgl)/lduseful
completed their tours. The pheromone level is updated orste ?)te:foermzcnieut%a?\“?gcarluSp(\;v;ting(%ﬁv(_ 0) yielas
applying the global updating rule of (4 "s) =170
PPYINg g updating ru @ or with A7r(r,s) = v - max.cj,(s) 7(5,2). The ACS with
7(r,s) — (L—a)-7(r,s) + o - Ar(r, s) (4) A7(r,s) =7 -max.c;,(s) 7(s,2), Which we have called Ant-

Q in [11] and [19], and the ACS witliA7(r, s) = 79, called

where simply ACS hereafter, resulted to be the two best performing
_ [ (L)L, if (r,s) € global-best-tour algorithms, with a similar performance level. Since the ACS

AT(r,s) = g . : : :
0, otherwise local updating rule requires less computation than Ant-Q, we

O<a<1is the pheromone decay parameter is the chose to focus attention on the ACS, which will be used to
o P y P , dng run the experiments presented in the rest of this paper.

length of the globally best tour from the beginning of the ma'(ﬁs will be discussed in Section IV-A. the role of the ACS

As was the case in ant system, global updating is Intendf%)cal updating rule is to shuffle the tours, so that the early

to provide a greater amount of pheromone o shorter tour?t'ies in one ant’s tour may be explored later in other ants’
Equation (4) dictates that only those edges belonging to tﬁe Y P

. . . urs. In other words, the effect of local updating is to make
globally best tour will receive reinforcement. We also testetﬁe desirability of edaes chanae dvnamically: every time an
another type of global updating rule, callédration-best as y g ge dy y: Y

opposed to the above calledobal-best which instead used ant uses an edge this becomes sllgh_tly less deswaple (since it
IPses some of its pheromone). In this way ants will make a

L; (the length of the best tour in the current iteration ) T )
: . . . . better use of pheromone information: without local updating
the trial), in (4). Also, with iteration-best the edges which : .
: . . all ants would search in a narrow neighborhood of the best
receive reinforcement are those belonging to the best to%vious tour
of the current iteration. Experiments have shown that tﬁ)e

difference between the two schemes is minimal, with a slight
preference for global-best, which is therefore used in th& ACS Parameter Settings

following experiments. In all experiments of the following sections the numeric
) parameters, except when indicated differently, are set to the
C. ACS Local Updating Rule following values: 3 = 2,90 = 09,0 = p = 0.1,79 =

While building a solution (i.e., a tour) of the TSP, ants visitn - L.,)~!, where L,,, is the tour length produced by the
edges and change their pheromone level by applying the lobggrest neighbor heuristig36] and is the number of cities.

updating rule of (5) These values were obtained by a preliminary optimization
phase, in which we found that the experimental optimal values
7(r,8) = (L=p)-7(r,8) +p- A7(r,5) (3)  of the parameters were largely independent of the problem,

where0 < <1 is a parameter. except forry for which, as we saidry = (n - L,,,,)~t. The

We have experimented with three values for the terffimber of ants used is = 10 (this choice is explained
Ar(r,s). The first choice was loosely inspired by Q-learning
[40]’ an algor'thm deve|0ped to solve reinforcement Ieammngo be true, any very rough approximation of the optimal tour length would
problems [26]. Such problems are faced by an agent that msistice.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 26,2010 at 14:44:53 EST from IEEE Xplore. Restrictions apply.



DORIGO AND GAMBARDELLA: ANT COLONY SYSTEM 57

TABLE |
A CoMPARISON OF LocAL UPDATING RULES. FIFTY-CiTY PROBLEMS AND OLIVER30 WERE StorPPED AFTER 2500 ITERATIONS, WHILE RY48p
Was HALTED AFTER 10000 frERATIONS. AVERAGES ARE OVER 25 TRIALS. RESULTS IN BoLD ARE THE BEST IN THE TABLE

ACS Ant-Q ACS with At(r,s)=0 ACS without
local-updating
average | std best | average | std best average | std best | average | std best
dev dev dev dev

City Set 1 5.88 0.05] 5.84 5.88 | 0.05 5.84 5.9710.09 5.85 5.96 | 0.09 5.84
City Set 2 6.05 0.03| 5.99 6.07 | 0.07 5.99 6.1310.08 6.05 6.15(0.09 6.05
City Set 3 5.58 0.01| 5.57 5.59 (0.05 5.57 5.72 | 0.12 5.57 5.68 {0.14 5.57
City Set 4 5.74 0.03| 5.70 5.7510.04 5.70 5.83]0.12 5.70 5.79 1 0.05 5.71
City Set 5 6.18 0.01| 6.17 6.18 | 0.01 6.17 6.290.11 6.17 6.27 1 0.09 6.17
Oliver30 424.74 | 2.83 | 423,74 | 424.70 | 2.00 | 423.74 | 427.52|5.21 | 423.74 | 427.31(3.63 |423.91
ry48p 14,625 | 142 | 14,422 | 14,766 | 240 | 14,422 | 15,196 233 |14,734 | 15,308 | 241 |14,796

in Section 1V-B). Regarding their initial positioning, ants are

placed randomly, with at most one ant in each city.
BE: edges of the last best tour

IV. A STUDY OF SOME CHARACTERISTICS OF THEACS

TE: edges which recently

eromone—closeness

ﬁ elonged toa best tour
jo]

A. Pheromone Behavior and Its Relation to Performance g \L
fo})

To try to understand which mechanism the ACS uses t& | UE: uninteresting

direct the search we study how the pheromone-closeness prd;d— ~ edges

uct [7(r,s)] - [n(r, s)]° changes at run time. Fig. 4 shows how ; I 4

the pheromone-closeness product changes with the numberof i n

steps while ants are building a solutfo(steps refer to the Steps

inner loop in Fig. 3: the abscissa goes therefore from #&,to _ . __ , _ o
Fig. 4. Families of edges classified according to different behavior with

wheren is the_ number of C!t_les)' ) ) respect to the pheromone-closeness product. The average level of the
Let us consider three families of edges (see Fig. 4): i) thogeeromone-closeness product changes in each family during one iteration

belonging to the last best tour (BE, best edges), ii) thogkthe algorithm (i.e., during: steps).
which do not belong to the last best tour, but which did

in one of the two preceding iterations (TE, testable edgegjan there is in the case that they all converge to the same tour
and iii) the remaining edges, that is, those that have Ne\Ghich would make the use ofi ants pointless).

belonged to a best tour or have not in the last two iterationSExperimental observation has shown that edges in BE, when
(UE, uninteresting edges). The average pheromone-closenggs achieves a good performance, will be approximately
product is then computed as the average of pheromorgsyngraded to TE after an iteration of the algorithm (i.e.,
closeness values of all the edges within a family. The gragRe external loop in Fig. 3; see also Fig. 4) and that edges in
clearly shows that the ACS favors exploitation of edges g will soon be downgraded to UE, unless they happen to
BE (BE edges are chosen with probabiligy = 0.9) and belong to a new shortest tour.

exploration of edges in TE (recall that, since (3) and (1), | Fig. 5(a) and (b), we report two typical behaviors of

edges \_/\{ith highgr pheromone-closeness product haveahig&%romone level when the system has a good or a bad
probability of being explored). performance respectively.

An interesting aspect is that while edges are visited by
ants, the appl.ic:_iti.on of thg local updating rule (5) makgs theé'r' The Optimal Number of Ants
pheromone diminish, making them less and less attractive, and
therefore favoring the exploration of edges not yet visited. Consider Fig. €.Let .7 be the average pheromone level
Local updating has the effect of lowering the pheromone & €dges in BE just after they are updated by the global
visited edges so that these become less desirable and therdf@fating rule ana; o the average pheromone level on edges
will be chosen with a lower probability by the other ants it BE just before they are updated by the global updating
the remaining steps of an iteration of the algorithm. As ®ile (170 is also approximately the average pheromone level
consequence, ants never converge to a common path. This fagtedges in TE at the beginning of the inner loop of the
which was observed experimentally, is a desirable prope@{gorithm). Under the hypothesis that the optimal values of
given that if ants explore different paths then there is a highér and ¢z are known, an estimate of the optimal number
probability that one of them will find an improving solutionof ants can be computed as follows. The local updating

2The graph in Fig. 4 is an abstraction of graphs obtained experimentally3Note that this figure shows the average pheromone level, while Fig. 4
Examples of these are given in Fig. 5. showed the average pheromone-closeness product.
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Fig. 5. Families of edges classified according to different behavior with CPU time (sec)

respect to the level of the pheromone-closeness product. Problem: Eil51
[14]. (a) Pheromone-closeness behavior when the system performancesils 7. Cooperation changes the probability distribution of first finishing
good. Best solution found after 1000 iterations: 426,= p = 0.1. (b) times: cooperating ants have a higher probability to find quickly an optimal

Pheromone-closeness behavior when the system performance is bad. B&sftion. Test problem: CCAO [21]. The number of ants was sebte 4.
solution found after 1000 iterations: 465,= p = 0.9.

. . . . C. Cooperation Among Ants
rule is a first-order linear recurrence relation of the form

T. = T._1(1 — p) + 7op, Which has closed form given by This section presents the results of two simple experiments
T. = To(1 — p)* — 7o(1 — p)* + 7o. Knowing that just before Which show that the ACS effectively exploits pheromone-

global updatingl} = ¢27, (this corresponds to the start pOimmediated cooperation. Since artificial ants cooperate by ex-
of the BE curve in Fig. 6) and that after all ants have buihanging information via pheromone, to have noncooperating
their tour and just before global updating, = o170 (this ants it is enough to make ants blind to pheromone. In practice
corresponds to the end point of the BE curve in Fig. 6), wiis is obtained by deactivating (4) and (5) and setting the
obtaing; = @o(1 — p)* — (1 — p)* + 1. Considering the fact initial level of pheromone tory = 1 on all edges. When
that edges in BE are chosen by each ant with a probabilkgmparing a colony of cooperating ants with a colony of
>qo, then a good approximation to the numheof ants that noncooperating ants, to make the comparison fair, we use
locally update edges in BE is given by= m- . Substituting CPU time to compute performance indexes so as to discount
in the above formula we obtain the following estimate of thtor the higher complexity, due to pheromone updating, of the

optimal number of ants: cooperative approach.
In the first experiment, the distribution dirst finishing
log(p1 — 1) —log(p2 — 1) times defined as the time elapsed until the first optimal
- o0 - log(1 — p) ) solution is found, is used to compare the cooperative and the

noncooperative approaches. The algorithm is run 10 000 times,

This formula essentially shows that the optimal number @hd then we report on a graph the probability distribution
ants is a function ofp; and ¢,. Unfortunately, until now, (density of probability) of the CPU time needed to find the
we have not been able to identify the form of the functiongptimal value (e.g., if in 100 trials the optimum is found
©1(n) and p2(n), which would tell howy; and ¢, change after exactly 220 iterations, then for the value 220 of the
as a function of the problem dimension. Still, experimentabscissa we will have’(220) = 100/10000). Fig. 7 shows
observation shows that the ACS works well when the ratibat cooperation greatly improve s the probability of finding
(1 — 1)/(p2 — 1) ~ 0.4, which givesm = 10. quickly an optimal solution.
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525 TABLE 1l
= Cooperating ants ComPARISON OF ACS WITH OTHER HEURISTICS ON RANDOM
_ INSTANCES OF THESYMMETRIC TSP. @MPARISONS ONAVERAGE
Notncooperahng ToUuR LENGTH OBTAINED ON FIvE 50-QTY PROBLEMS
ants
£ Problem name ‘ ACS SA | EN SOM
& (average) (average) (average) (average)
2 Cityset1 : 5.88 5.88 5.98 6.06
City set 2 ‘ 6.05 6.01 6.03 6.25
Cityset3d | 5.58 5.65 5.70 5.83
,,,,,,,,,,, |
— City set 4 i 5.74 5.81 5.86 5.87
49.5 — . e | Cityset5 | 6.18 6.33 6.49 6.70

0 100 200 300 400 500 600 700 800
Cpu time (msec)

Fig. 8. Cooperating ants find better solutions in a shorter time. Test problem: The reason that ACS without the heuristic function performs

CCAQ [21]. Average on 25 runs. The number of ants was seb te- 4. better than ACS without pheromone is that in the first case,
although not helped by heuristic information, the ACS is still
460 guided by reinforcement provided by the global updating rule
ass + T 7 ACSstandard in the form of pheromone, while in the second case the ACS
’ ** ACS no heuristic reduces to a stochastic multigreedy algorithm.
450 ~ ACS no pheromone

V. ACS: SOME COMPUTATIONAL RESULTS

FEEFN
» ~
o (5]
S —.

We report on two sets of experiments. The first set compares
the ACS with other heuristics. The choice of the test problems
was dictated by published results found in the literature. The
second set tests the ACS on some larger problems. Here the
- ) comparison is performed only with respect to the optimal or
2 4 6 8 10 12 14 16 18 20 22 24 26 28 a0 the best known result. The behavior of the ACS is excellent

Number of ants in both cases.
Fig. 9. Comparison between ACS standard, ACS with no heuristic (i.e., we Most of the tegt pr.oblejms can . be found in
set3 = 0), and ACS in which ants neither sense nor deposit pheromonESPLIB:  http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/
Problem: Oliver30. Averaged over 30 triald) 000/m iterations per trial. TSPLIB95/TSPLIB.html. When they are not available in
this library we explicitly cite the reference where they can

In the second experiment (Fig. 8) the best solution fourkte found.
is plotted as a function of time (ms) for cooperating and Given that during an iteration of the algorithm, each ant
noncooperating ants. The number of ants is fixed for bofioduces a tour, the total number of tours generated in the
cases:n = 4. It is interesting to note that in the cooperativéeported results is given by the number of iterations multiplied
case, after 300 ms, the ACS always found the optimal solutid®, the number of ants. The result of each trial is given by the
while noncooperating ants where not able to find it after 83Zest tour generated by the ants. Each experiment consists of
ms. During the first 150 ms (i.e., before the two lines iAt least 15 trials.

Fig. 8 cross) noncooperating ants outperform cooperating ants:
good values of pheromone level are still being learned, aAd Comparison with Other Heuristics

therefore the overhead due to pheromone updating is not yefg compare the ACS with other heuristics we consider two
compensated by the advantages which pheromone can progg of TSP problems. The first set comprises five randomly
in terms of directing the search toward good solutions.  generated 50-city problems, while the second set is composed
of three geometric problerhef between 50 and 100 cities. It
D. The Importance of the Pheromone and is important to test the ACS on both random and geometric
the Heuristic Function instances of the TSP because these two classes of problems
Experimental results have shown that the heuristic functidd@ve structural differences that can make them difficult for a
n is fundamental in making the algorithm find good solutiongarticular algorithm and at the same time easy for another one.
in a reasonable time. In fact, whg¢h= 0 ACS performance Table Il reports the results on the random instances. The
worsens significantly (see the ACS no heuristic graph euristics with which we compare the ACS are simulated
Fig. 9). annealing (SA), elastic net (EN), and self-organizing map
Fig. 9 also shows the behavior of ACS in an experimefOM). Results on SA, EN, and SOM are from [13] and
in which ants neither sense nor deposit pheromone (ACS [##]. The ACS was run for 2500 iterations using ten ants (this
pheromone graph). The result is that not using pheromone a@gounts to approximately the same number of tours searched
deteriorates performance. This is a further confirmation of the‘Geometric problems are problems taken from the real world (for example,
results on the role of cooperation presented in Section IV-Ghey are generated choosing real cities and real distances).
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TABLE I
ComPARISON OFACS wiTH OTHER HEURISTICS ONGEOMETRIC INSTANCES OF THESYMMETRIC TSP. WE REPORT THEBEST INTEGER TOUR LENGTH, THE BEST

REAL ToUR LENGTH (IN PARENTHESEY, AND THE NUMBER OF TOURS REQUIRED TO FIND THE BEST INTEGER TOUR LENGTH (IN SQUARE
BRACKETS). N/A MEANS “NOT AVAILABLE .” IN THE LAST COLUMN THE OPTIMAL LENGTH IS AVAILABLE ONLY FOR INTEGER TOUR LENGTHS

Problem name

ACS GA EP SA Optimum
Eil50 425 428 426 443 425
(50-city problem) (427.96) (N/A) (427.86) (N/A) (N/A)
[1,830] [25,000] [100,000] [68,512]
Eil75 535 545 542 580 535
(75-city problem) (542.37) (N/A) (549.18) (N/A) (N/A)
[3,480] {80,000] [325,000] [173,250]
KroA100 21,282 21,761 N/A N/A 21,282
(100-city problem) (21,285.44) (N/A) (N/A) (N/A) (N/A)
[4,820] [103,000] [N/A] [N/A]

by the heuristics with which we compare our results). The AQ®longing to the candidate list. Only if none of the cities in
results are averaged over 25 trials. The best average tour lertgth candidate list can be visited then it considers the rest of
for each problem is in boldface: the ACS almost always offetke cities. The ACS with the candidate list (see Table 1V) was
the best performance. able to find good results for problems up to more than 1500
Table Il reports the results on the geometric instances. Thities. The time to generate a tour grows only slightly more
heuristics with which we compare the ACS in this case aretlaan linearly with the number of cities (this is much better
genetic algorithm (GA), evolutionary programming (EP), anthan the quadratic growth obtained without the candidate list);
simulated annealing (SA). The ACS is run for 1250 iteratiorsn a Sun Sparc-server (50 MHz) it took approximately 0.02
using 20 ants (this amounts to approximately the same numbesf CPU time to generate a tour for the d198 problem, 0.05
of tours searched by the heuristics with which we compasefor the pcb442, 0.07 s for the att532, 0.13 s for the rat783,
our results). ACS results are averaged over 15 trials. In tliad 0.48 s for the fl1577 (the reason for the more than linear
case comparison is performed on the best results, as oppdsetease in time is that the number of failures, that is, the
to average results as in previous Table Il (this choice wasmber of times an ant has to choose the next city outside of
dictated by the availability of published results). The differendbe candidate list increases with the problem dimension).
between integer and real tour length is that in the first case
distances between cities are measured by integer numbers,
while in the second case by floating point approximations of VI. ACS PLUS LOCAL SEARCH

real numbers. In Section V we have shown that the ACS is competi-
Results using EP are from [15], and those using GA are frotige with other nature-inspired algorithms on some relatively
[41] for Eil50 and Eil75, and from [6] for KroA100. Resultssimple problems. On the other hand, in past years much
using SA are from [29]. Eil50, Eil75 are from [14] and arevork has been done to define ad-hoc heuristics (see [25]
included in TSPLIB with an additional city as Eil51.tsp andor an overview) to solve the TSP. In general, these ad-hoc
Eil76.tsp. KroA100 is also in TSPLIB. The best result foheuristics greatly outperform, on the specific problem of the
each problem is in boldface. Again, the ACS offers the bessP, general purpose algorithms approaches like evolutionary
performance in nearly every case. Only for the Eil50 problegbmputation and simulated annealing. Heuristic approaches to
does it find a slightly worse solution using real-valued distan¢ee TSP can be classified as tour constructive heuristics and
as compared with EP, but the ACS only visits 1830 tourgsur improvement heuristics (these last also called local opti-
while EP used 100 000 such evaluations (although it is possiligzation heuristics). Tour constructive heuristics (see [4] for an
that EP found its best solution earlier in the run, this is nelverview) usually start selecting a random city from the set of
specified in the paper [15]). cities and then incrementally build a feasible TSP solution by
adding new cities chosen according to some heuristic rule. For
example, the nearest neighbor heuristic builds a tour by adding
the closest node in terms of distance from the last node inserted
When trying to solve big TSP problems it is commorin the path. On the other hand, tour improvement heuristics
practice [28], [35] to use a data structure known asiadidate start from a given tour and attempt to reduce its length by
list. A candidate list is a list of preferred cities to be visitedexchanging edges chosen according to some heuristic rule until
it is a static data structure which contains, for a given city local optimum is found (i.e., until no further improvement
i, the ¢l closest cities, ordered by increasing distancds; is possible using the heuristic rule). The most used and well-
is a parameter that we set td = 15 in our experiments. known tour improvement heuristics are 2-opt and 3-opt [30],
We implemented therefore a version of the ACS [20] whicand Lin—Kernighan [31] in which, respectively, two, three,
incorporates a candidate list;: an ant in this extended versiand a variable number of edges are exchanged. It has been
of the ACS first chooses the city to move to among thosxperimentally shown [35] that, in general, tour improvement

B. ACS on Some Bigger Problems
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TABLE IV
ACS RERFORMANCE FORSOME BIGGER GEOMETRIC PROBLEMS (OVER 15 TRIALS). WE REPORT THEINTEGER LENGTH OF THE SHORTEST TOUR FOUND, THE
NUMBER OF TOURS REQUIRED TO FIND IT, THE AVERAGE INTEGER LENGTH, THE STANDARD DEVIATION, THE OPTIMAL SOLUTION (FOR FL1577 WE GIVE, IN SQUARE
BRACKETS, THE KNOWN LOWER AND UPPER BOUNDS, GIVEN THAT THE OPTIMAL SOLUTION |s NOT KNOWN), AND THE RELATIVE ERROR OFACS

Problem name ACS ACS ACS Standard | Optimum Relative error
bestinteger | number of average | deviation 2
length tours integer (1-(2)
1) generated length o
to best
d198 15,888 585,000 16,054 71 15,780 0.68 %

(198-city problem)

pcb442 51,268 595,000 51,690 188 50,779 0.96 %
(442-city problem)

att532 28,147 830,658 28,523 275 27,686 1.67 %
(532-city problem)

rat783 9,015 991,276 9,066 28 8,806 2.37%
(783-city problem)

fl1577 22,977 942,000 23,163 116 [22,204 — 3.27+3.48 %
(1577-city problem) 22,249]

heuristics produce better quality results than tour constructiveThe implementation of the restricted 3-opt procedure
heuristics. A general approach is to use tour constructiiecludes some typical tricks which accelerate its use for
heuristics to generate a solution and then to apply a tolUSP/ATSP problems. First, the search for the candidate nodes
improvement heuristic to locally optimize it. during the restricted 3-opt procedure is only made inside the

It has been shown recently [25] that it is more effectiveandidate list [25]. Second, the procedure uses a data structure
to alternate an improvement heuristic with mutations of thealled don't look bit [4] in which each bit is associated to a
last (or of the best) solution produced, rather than iterativeipde of the tour. At the beginning of the local optimization
executing a tour improvement heuristic starting from solutiof§ocedure all the bits are turned off and the bit associated to
generated randomly or by a constructive heuristic. An examgl@de r is turned on when a search for an improving move
of successful application of the above alternate strategy is $@rting from: fails. The bit associated to nodes turned off

work by Freisleben and Merz [17], [18], in which a geneti@gain when a move involving is performed. Third, only in

algorithm is used to generate new solutions to be locallj€ c@se of symmetric TSP’s, while searching for 3-opt moves

optimized by a tour improvement heuristic. starting from a _nodey the procedure also considers po_ssible
The ACS is a tour construction heuristic which, like?"OPt moves withr as first node; the move executed is the

Freisleben and Merz's genetic algorithm, produces a set %‘?St one among those proposed by 3-opt and by 2-opt. Last, a

feasible solutions after each iteration which are in some sel%%d'tlonal array data structure to represent candidate lists and

a mutation of the previous best solution. It is, therefore, tgurs Is used (see [16] for more sophlsycgted data str'uctures).
. . ... ACS-3-opt also uses candidate lists in its constructive part;
reasonable guess that adding a tour improvement heur|5t|c|ft

) . . ) %ere is no feasible node in the candidate list it chooses the
the ACS could make it competitive with the best algorlthms’(‘:losest node out of the candidate list (this is different from

th W:Ctge;? fore.h;a\{e t?]dd:gsa} tOLtJ)fl'Jl[m{orovae;ttE(::-ruSnst|c \g}uat happens in the ACS where, in case the candidate list
€ - 10 maintain the S ability fo solve bo aNfontains no feasible nodes, then any of the remaining feasible

ATSP problems we have decided to base the local optimizati(girﬁeS can be chosen with a probability which is given by the
heuristic on aestricted 3-optprocedure [25], [27] that, while pormalized product of pheromone and closeness). This is a
inserting/removing three edges on the path, considers only 3z sonable choice since most of the search performed by both
opt moves that do not revert the order in which the cities af§e ACS and the local optimization procedure is made using
visited. In this case it is possible to change three edges @fyes belonging to the candidate lists. It is therefore pointless

the tour(k, 1), (p,q), and(r, s) with three other edge§t,q), to direct search by using pheromone levels which are updated
(p,s), and(r, ) maintaining the previous orientations of all theynly very rarely.

other subtours. In case of ATSP problems, where in general

8(k,l) # 6(1, k), this 3-opt procedure avoids unpredictable

tour length changes due to the inversion of a subtour. fh Experimental Results

addition, when a candidate eddé,/) to be removed is  The experiments on ATSP problems presented in this section
selected, the restricted 3-opt procedure restricts the searchHave been executed on a SUN Ultral SPARC Station (167
the second edg@, ¢) to be removed only to those edges sucMhz), while experiments on TSP problems on a SGI Challenge
that 6(k,q) < 8(k,1). L server with eight 200 MHz CPU's, using only a single
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Initialize
Loop /* at this level each loop is called an iteration */
Each ant is positioned on a starting node

Loop /* at this level each loop is called a step */
Each ant applies a state transition rule to incrementally build a solution
and a local pheromone updating rule

Until all ants have built a complete solution

Each ant is brought to a local minimum using a tour improvement

heuristic based on 3-opt

A global pheromone updating rule is applied

Until End_condition

Fig. 10. The ACS-3-opt algorithm.

TABLE V
REsuLTs OBTAINED BY ACS-3-CPT ON ATSP RROBLEMS TAKEN FROM THE FIRST INTERNATIONAL CONTEST ON EVOLUTIONARY OPTIMIZATION [5]. WE REPORT THE
LENGTH OF THE BEST Tour FounDp By ACS-3-CeT, THE CPU TiME USED TO FIND IT, THE AVERAGE LENGTH OF THE BEST TOUR FOUND AND THE AVERAGE CPU
TiME Usep TO FIND IT, THE OPTIMAL LENGTH, AND THE RELATIVE ERROR OF THEAVERAGE RESULT WITH RESPECT TO THEOPTIMAL SOLUTION

Problem name ACS-3-opt ACS-3-opt ACS-3-opt 1 ACS-3-opt Optimum % Error
best result best result average average
(length) (sec) (length) (sec)
p43 2,810 1 2,810 2 2,810 0.00 %
(43-city problem)
ry48p 14,422 2 14,422 19 14,422 0.00 %
(48-city problem)
ft70 38,673 3 38,679.8 6 38,673 0.02 %
(70-city problem)
kro124p 36,230 3 36,230 | 25 36,230 0.00 %
(100-city problem) |
ftv170 2,755 17 2755 | 68 2,755 0.00 %
(170-city problem) |

" ftv170 trials were run setting ¢/=30.

processor due to the sequential implementation of ACS-3-offte segments using a greedy heuristic based on a nearest
For each test problem, ten trials have been executed. AGfeighbor choice. The new individuals are brought to the local
3-opt parameters were set to the following values (exceptdptimum using a 3-opt procedure, and a new population is
differently indicated):m = 10,8 = 2,90 = 0.98,&« = p = generated after the application of a mutation operation that
0.1,70 = (n - Ln,)™t, and el = 20. randomly removes and reconnects some edges in the tour.
Asymmetric TSP Problemsthe results obtained with The 3-opt procedure used by ATSP-GA is very similar to
ACS-3-opt on ATSP problems are quite impressive. Expepur restricted 3-opt, which makes the comparison between
iments were run on the set of ATSP problems proposed time two approaches straightforward. ACS-3-opt outperforms
the First International Contest on Evolutionary OptimizatioATSP-GA in terms of both closeness to the optimal solution
[5] (see also http://iridia.ulb.ac.be/langerman/ICEO.html). Fand of CPU time used. Moreover, ATSP-GA experiments have
all the problems ACS-3-opt reached the optimal solution inleeen performed using a DEC Alpha Station (266 MHz), a
few seconds (see Table V) in all the ten trials, except in teachine faster than our SUN Ultral SPARC Station.
case of ft70, a problem considered relatively hard, where theSymmetric TSP Problemdf we now turn to symmetric
optimum was reached eight out of ten times. TSP problems, it turns out that STSP-GA (STSP-GA exper-
In Table VI results obtained by ACS-3-opt are compareidhents have been performed using a 175 MHz DEC Alpha
with those obtained by ATSP-GA [17], the winner of the ATSFStation), the algorithm that won the First International Contest
competition. ATSP-GA is based on a genetic algorithm thah Evolutionary Optimization in the symmetric TSP category,
starts its search from a population of individuals generateditperforms ACS-3-opt (see Tables VIl and VIII). The results
using a nearest neighbor heuristic. Individuals are strings wded for comparisons are those published in [18], which are
cities which represent feasible solutions. At each step tvstightly better than those published in [17].
parentsz andy are selected, and their edges are recombinedOur results, on the other hand, are comparable to those
using a procedure called DPX-ATSP. DPX-ATSP first deletexbtained by other algorithms considered to be very good. For
all edges inz that are not contained in and then reconnects example, on the 1in318 problem ACS-3-opt has approximately
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TABLE VI
CoMPARISON BETWEEN ACS-3-CpT AND ATSP-GA oN ATSP FROBLEMS TAKEN FROM THE FIRST INTERNATIONAL CONTEST
ON EVOLUTIONARY OPTIMIZATION [5]. WE REPORT THE AVERAGE LENGTH OF THE BEST TOUR FOUND, THE AVERAGE CPU
TiME USeD 1O FIND IT, AND THE RELATIVE ERROR WITH RESPECT TO THEOPTIMAL SOLUTION FOR BOTH APPROACHES

Problem name ACS-3-opt | ACS-3-opt ACS-3-opt . ATSP-GA ATSP-GA ATSP-GA
average average % error average average % error
(length) (sec) (iength) (sec)
p43 2,810 2 0.00 % ‘ 2,810 10 0.00 %
(43-city problem)
ry48p 14,422 19 0.00 % 14,440 30 012 %
(48-city problem)
ft70 38,679.8 6 0.02 % 38,683.8 639 0.03 %
(70-city problem)
kro124p 36,230 25 0.00 % 36,235.3 115 0.01 %
(100-city problem)
ftv170 2,755 68 0:00 % 2,766.1 211 0.40 %
(170-city problem)
TABLE VII

REsuLTs OBTAINED BY ACS-3-CPT ON TSP RROBLEMS TAKEN FROM THE FIRST INTERNATIONAL CONTEST ON EVOLUTIONARY OPTIMIZATION [5]. WE REPORT THE
LENGTH OF THE BEST TourR FOunD BY ACS-3-CpT, THE CPU TiME USED TO FIND IT, THE AVERAGE LENGTH OF THE BEST TOUR FOUND AND THE AVERAGE CPU
TiMe Usep TO FIND IT, AND THE OPTIMAL LENGTH AND THE RELATIVE ERROR OF THEAVERAGE RESULT WITH RESPECT TO THEOPTIMAL SOLUTION

Problem name ACS-3-opt | ACS-3-opt | ACS-3-opt | ACS-3-opt | Optimum % Error
best result best result average average
(length) (sec) (length) (sec)
d198 15,780 16 15,781.7 238 15,780 | 0.01 %
(198-city problem)
lin318 42,029 101 42,029 537 42,029 | 0.00 %
(318-city problem)
att532 27,693 133 27,718.2 810 27,686 | 0.11 %
(532-city problem)
rat7g3 8,818 1,317 8.,837.9 1,280 8,806 0.36 %
(783-city problem)
" lin318 trials were run setting q,=0.95.
TABLE VIl

ComPARISON BETWEEN ACS-3-CPT AND STSP-GAON TSP ROBLEMS TAKEN FROM THE FIRST INTERNATIONAL CONTEST
ON EVOLUTIONARY OPTIMIZATION [5]. WE REPORT THE AVERAGE LENGTH OF THE BEST TOUR FOUND, THE AVERAGE CPU
TiME USED TO FIND IT, AND THE RELATIVE ERROR WITH RESPECT TO THEOPTIMAL SOLUTION FOR BOTH APPROACHES

Problem name ACS-3-opt | ACS-3-opt i ACS-3-opt | STSP-GA STSP-GA STSP-GA
average average | % error average average % error
(length) (sec) (length) (sec)
d198 15,781.7 238 0.01 % 15,780 253 0.00 %
(198-city problem)
lin318 42,029 537 0.00 % 42,029 2,054 0.00 %
(318-city problem)
atts32 27,718.2 810 0.11% 27,693.7 11,780 0.03%
(532-city problem)
rat7e3 8,837.9 1,280 0.36 % 8,807.3 21,210 0.01 %
(783-city problem)

the same performance as the “large step Markov chain algweperty that it is the smallest change (four edges) that can
rithm” [33]. This algorithm is based on a simulated annealingot be reverted in one step by 3-opt, LK, and 2-opt.)
mechanism that uses as improvement heuristic a restricted 3A fair comparison of our results with the results obtained
opt heuristic very similar to ours (the only difference is thawith the currently best performing algorithms for symmet-
they do not consider 2-opt moves) and a mutation procedure TSP’'s [25] is difficult since they use as local search a
called double-bridge (The double-bridgemutation has the Lin—Kernighan heuristic based on a segment-tree data structure
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[16] that is faster and gives better results than our restrictezbmes first in the tour. In the ACS, the pheromone matrix plays
3-opt procedure. It will be the subject of future work to ada role similar to Baluja’s generating vector, and pheromone
such a procedure to the ACS. updating has the same goal as updating the probabilities in the
generating vector. Still, the two approaches are very different
since in the ACS the pheromone matrix changes while ants
S ) ~build their solutions, while in PBIL the probability vector

An intuitive explanation of how the ACS works, whichis modified only after a population of solutions has been
emerges from the experimental results presented in the precggherated. Moreover, the ACS uses heuristic to direct search,
ing sections, is as follows. Once all the ants have generaigfliie PBIL does not.

a tour, the best ant deposits (at the end of iteraipils  There are a number of ways in which the ant colony

pheromone, defining in this way a “preferred tour” for searcfyproach can be improved and/or changed. A first possibility
in the following algorithm iterationt + 1. In fact, during regards the number of ants which should contribute to the
iterationt 41 ants will see edges belonging to the best tour @gophal updating rule. In ant system all the ants deposited their
highly desirable and will choose them with high prObab'“typheromone, while in the ACS only the best one does: obvi-

Still, guided exploration [see (3) and (1)] together with the fag,qly there are intermediate possibilities. Baluja and Caruana
that local updating “eats” pheromone away (i.e., it diminish§8] have shown that the use of the two best individuals can
the amount of pheromone on visited edges, making them I35, pg|L to obtain better results, since the probability of

desirable for future ants) allows for the search of new, poss'%éing trapped in a local minimum becomes smaller. Another
better tours in the neighborhobdf the pr_evious best tour. Sochange to the ACS could be, again taking inspiration from

the ACS can be seen as a sort of guided parallel stochagiit 4jjowing ants which produce very bad tours to subtract

search in the neighborhood of the best tour. pheromone.

Recently there has been growing interest in the applications gecond possibility is to move from the current parallel
of z_int colony algorithms to difficult combinatorial problems;qyqg updating of pheromone to a sequential one. In the ACS
A first example is the work of Schoonderwoeed al [37], 4| ants apply the local updating rule in parallel, while they
who apply an ant colony algorithm to the load balancingye pjiiding their tours. We could imagine a modified ACS
problem in telecommunications networks. Their algorithm, \yhich ants build tours sequentially: the first ant starts,

takes inspiration from the same biological metaphor as afiljigs its tour, and as a side effect, changes the pheromone
system, although their implementation differs in many details;, \;sited edges. Then the second ant starts and so on until
due to the different characteristics of the problem. Anoth@ts |ast of them ants has built its tour. At this point the

interesting ongoing research is that otiite and Hoos Who |51 pdating rule is applied. This scheme will determine
are studying various extensions of ant system to improve gsdiﬁerent search regime, in which the preferred tour will
performance: in [38] they impose an upper and lower bound,q 1 remain the same for all the ants (as opposed to the
on the value of pheromone on edges, and in [39] they adfl ation in the ACS, in which local updating shuffles the
local search, much in the same spirit as we did in the previo, o) Nevertheless, the search will be diversified since the
Section VI. ) ___ first ants in the sequence will search in a neighborhood of
B?S'F’es the two works above, among the natur.e—lnspwegw preferred tour that is more narrow than later ones (in fact,
heuristics, the closest to the ACS seems to be Baluja and Cafljaomone on the preferred tour decreases as more ants eat it
ana’s population based incremental learning (PBIL) [1]. PBIlalway, making the relative desirability of edges of the preferred

which takes inspiration from genetic algorithms, maintains @, ‘jecrease). The role of local updating in this case would be

vector of real numbers, the generating vector, which playssgyijar to that of the temperature in simulated annealing, with

role similar to that of the population in GA's. Starting from thisthe main difference that here the temperature changes during
vector, a population of binary strings is randomly generategéch algorithm iteration

each string in the population will have thith bit set to one
with a probability which is a function of théth value in the oo chive |ocal optimizer than that used in Section VI. A

generating vector (in practice, values in the generating vecijlsqiniity we will investigate in the near future is the use

are normalized to the interval [0, 1] so that they can direct f the Lin—Kernighan heuristic

represent the probabilities). Once a population of squtions_Another interesting subject of ongoing research is to es-

IS crea.ted,' the gengrated solutions are evaluated, and [Qkﬁish the class of problems that can be attacked by the
evaluation is used to increase (or decrease) the probabilitie\Rg ¢ intuition is that ant colony algorithms can be
the gengratlng_l\lltte)ctor sz tha’;gopﬁl E]t.)ag) SOIIUt'Ons n tg]ebfﬁtﬁﬁplied to combinatorial optimization problems by defining
8\(/3;1erat|on? \3" ?Splgo s;ﬁ_ wit Ihg ‘lff”(OV.V‘“r) pro 3, "t_yan appropriate graph representation of the problem considered
en appie _to ! uses the fo owing encoding: g,q g neuristic that guides the construction of feasible solu-
solqt!on IS astrl_ng.of size logy n b|t.s, wheren is the nl_me_er tions. Then, artificial ants much like those used in the TSP
pf cities; each C|ty_|s aSS|gne_q a string of Iengthnwhl_ch IS" application presented in this paper can be used to search for
!nterpreted as an integer. C!tles are then order_ed_by INCreasy¥dbd solutions of the problem under consideration. The above
integer values; in case of ties the left-most city in the striny tuition is supported by encouraging, although preliminary,
5The form of the neighborhood is given by the previous history of th@esuItS obtained with ant system on the quadrat'c assignment
system, that is, by pheromone accumulated on edges. problem [12], [32], [42].

VII. DiscussiON AND CONCLUSIONS

Last, it would be interesting to add to the ACS a more
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In conclusion, in this paper we have shown that the ACS
is an interesting novel approach to parallel stochastic opti-
mization of the TSP. The ACS has been shown to compare
favorably with previous attempts to apply other heuristic
algorithms like genetic algorithms, evolutionary programming,
and simulated annealing. Nevertheless, competition on the TSP
is very tough, and a combination of a constructive method
which generates good starting solution with local search which
takes these solutions to a local optimum seems to be the best
strategy [25]. We have shown that the ACS is also a very
good constructive heuristic to provide such starting solutions
for local optimizers.
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ComputeLy,est

[*Update edges belonging tby,.s; Using (4) */
For each edgér, s)

T(ThySk) = (1 — a)7(rk, sk) + @ (Lpest) ™t
End-for

4) If (End.condition= True)

then Print shortest ol

else goto Phase 2
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APPENDIX A
THE ACS ALGORITHM

1)/* Initialization phase*/ (1]
For each paifr, s) 7(r, s) := 7o End-for
Fork:=1tomdo

Let 4, be the starting city for ant

(i) =A{1,---,n} —rp,

I* J.(rr1) is the set of yet to be visited cities for

antk in city rpq */
T = Tl [* r is the city where ant
k is located */

(2]
(3]

(4]

[5]
End-for
2) [* This is the phase in which ants build their tours.
The tour of antt is stored in Toug. */
Fori:=1ton do
If i<n
Then
Fork:=1tom do
Choose the next city;, according to (3) and (1)
Ji(s1) = Jr(r1) — s
TOUfk(i) = (7‘k, Sk)

(6]

(7]

(8]

El

End-for
Else (0]
Fork:=1tom do [11]
/* In this cycle all the ants go back to the initial
city 71 */ [12]
Sk ‘= Tkl
Tour,(¢) == (rx, sk) 13]
End-for
End-if
/* In this phase local updating occurs and pheromone is 14l
updated using (5)*/
Fork :=1tom do (15]
T(rks sk) i= (1 = p)7(rxs s2) + P70 [16]
7, = s I* New city for antk */
End-for [17]
End-for

3) /* In this phase global updating occurs and pheromone is
updated */ (18]
Fork :=1tom do

ComputeL;, /* L, is the length of the tour done by
ant k*/
End-for

[19]

comments on a previous version of this article.
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