
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997 53

Ant Colony System: A Cooperative Learning
Approach to the Traveling Salesman Problem

Marco Dorigo,Senior Member, IEEE, and Luca Maria Gambardella,Member, IEEE

Abstract—This paper introduces the ant colony system (ACS),
a distributed algorithm that is applied to the traveling salesman
problem (TSP). In the ACS, a set of cooperating agents called ants
cooperate to find good solutions to TSP’s. Ants cooperate using an
indirect form of communication mediated by a pheromone they
deposit on the edges of the TSP graph while building solutions.
We study the ACS by running experiments to understand its
operation. The results show that the ACS outperforms other
nature-inspired algorithms such as simulated annealing and evo-
lutionary computation, and we conclude comparing ACS-3-opt,
a version of the ACS augmented with a local search procedure,
to some of the best performing algorithms for symmetric and
asymmetric TSP’s.

Index Terms—Adaptive behavior, ant colony, emergent behav-
ior, traveling salesman problem.

I. INTRODUCTION

T HE natural metaphor on which ant algorithms are based
is that of ant colonies. Real ants are capable of finding the

shortest path from a food source to their nest [3], [22] without
using visual cues [24] by exploiting pheromone information.
While walking, ants deposit pheromone on the ground and
follow, in probability, pheromone previously deposited by
other ants. In Fig. 1, we show a way ants exploit pheromone
to find a shortest path between two points.

Consider Fig. 1(a): ants arrive at a decision point in which
they have to decide whether to turn left or right. Since they
have no clue about which is the best choice, they choose
randomly. It can be expected that, on average, half of the
ants decide to turn left and the other half to turn right. This
happens both to ants moving from left to right (those whose
name begins with an L) and to those moving from right to left
(name begins with an R). Fig. 1(b) and (c) shows what happens
in the immediately following instants, supposing that all ants
walk at approximately the same speed. The number of dashed
lines is roughly proportional to the amount of pheromone that
the ants have deposited on the ground. Since the lower path is
shorter than the upper one, more ants will visit it on average,
and therefore pheromone accumulates faster. After a short
transitory period the difference in the amount of pheromone
on the two paths is sufficiently large so as to influence the
decision of new ants coming into the system [this is shown by

Manuscript received October 7, 1996; revised January 18, 1997 and
February 3, 1997. This work was supported by the Swiss National Science
Fund Contract 21-45 653.95.

M. Dorigo is with IRIDIA, Universit̀e Libre de Bruxelles, 1050 Bruxelles,
Belgium (e-mail: mdorigo@ulb.ac.be).

L. M. Gambardella is with IDSIA, 6900 Lugano, Switzerland.
Publisher Item Identifier S 1089-778X(97)03303-1.

Fig. 1(d)]. From now on, new ants will prefer in probability to
choose the lower path, since at the decision point they perceive
a greater amount of pheromone on the lower path. This in turn
increases, with a positive feedback effect, the number of ants
choosing the lower, and shorter, path. Very soon all ants will
be using the shorter path.

The above behavior of real ants has inspiredant system,
an algorithm in which a set of artificial ants cooperate to
the solution of a problem by exchanging information via
pheromone deposited on graph edges. The ant system has been
applied to combinatorial optimization problems such as the
traveling salesman problem (TSP) [7], [8], [10], [12] and the
quadratic assignment problem [32], [42].

The ant colony system (ACS), the algorithm presented
in this article, builds on the previous ant system in the
direction of improving efficiency when applied to symmetric
and asymmetric TSP’s. The main idea is that of having a set
of agents, calledants, search in parallel for good solutions to
the TSP and cooperate through pheromone-mediated indirect
and global communication. Informally, each ant constructs
a TSP solution in an iterative way: it adds new cities to a
partial solution by exploiting both information gained from
past experience and a greedy heuristic. Memory takes the form
of pheromone deposited by ants on TSP edges, while heuristic
information is simply given by the edge’s length.

The main novel idea introduced by ant algorithms, which
will be discussed in the remainder of the paper, is the syner-
gistic use of cooperation among many relatively simple agents
which communicate by distributed memory implemented as
pheromone deposited on edges of a graph.

This paper is organized as follows. Section II puts the
ACS in context by describing ant system, the progenitor
of the ACS. Section III introduces the ACS. Section IV is
dedicated to the study of some characteristics of the ACS:
We study how pheromone changes at run time, estimate the
optimal number of ants to be used, observe the effects of
pheromone-mediated cooperation, and evaluate the role that
pheromone and the greedy heuristic have in ACS performance.
Section V provides an overview of results on a set of standard
test problems and comparisons of the ACS with well-known
general purpose algorithms like evolutionary computation and
simulated annealing. In Section VI we add local optimization
to the ACS, obtaining a new algorithm called ACS-3-opt. This
algorithm is compared favorably with the winner of the First
International Contest on Evolutionary Optimization [5] on
asymmetric TSP (ATSP) problems (see Fig. 2), while it yields
a slightly worse performance on TSP problems. Section VII is

1089–778X/97$10.00 1997 IEEE

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 26,2010 at 14:44:53 EST from IEEE Xplore. Restrictions apply.

54 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997

(a) (b)

(c) (d)

Fig. 1. How real ants find a shortest path. (a) Ants arrive at a decision point. (b) Some ants choose the upper path and some the lower path. The
choice is random. (c) Since ants move at approximately a constant speed, the ants which choose the lower, shorter, path reach the opposite decision point
faster than those which choose the upper, longer, path. (d) Pheromone accumulates at a higher rate on the shorter path. The number of dashed lines is
approximately proportional to the amount of pheromone deposited by ants.

Fig. 2. The traveling salesman problem.

dedicated to the discussion of the main characteristics of the
ACS and indicates directions for further research.

II. BACKGROUND

Ant system[10] is the progenitor of all our research efforts
with ant algorithms and was first applied to the TSP, which
is defined in Fig. 2.

Ant system utilizes a graph representation which is the same
as that defined in Fig. 2, augmented as follows: in addition to
the cost measure , each edge has also a desirability
measure , called pheromone, which is updated at run
time by artificial ants (ants for short). When ant system is
applied to symmetric instances of the TSP, ,
but when it is applied to asymmetric instances it is possible
that .

Informally, ant system works as follows. Each ant gener-
ates a complete tour by choosing the cities according to a
probabilisticstate transition rule; ants prefer to move to cities
which are connected by short edges with a high amount of
pheromone. Once all ants have completed their tours aglobal
pheromone updating rule(global updating rule, for short) is
applied; a fraction of the pheromone evaporates on all edges
(edges that are not refreshed become less desirable), and then
each ant deposits an amount of pheromone on edges which
belong to its tour in proportion to how short its tour was (in
other words, edges which belong to many short tours are the
edges which receive the greater amount of pheromone). The
process is then iterated.

The state transition rule used by ant system, called a
random-proportional rule, is given by (1), which gives the

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 26,2010 at 14:44:53 EST from IEEE Xplore. Restrictions apply.

DORIGO AND GAMBARDELLA: ANT COLONY SYSTEM 55

Fig. 3. The ACS algorithm.

probability with which ant in city chooses to move to the
city

if

otherwise

(1)

where is the pheromone, is the inverse of the
distance , is the set of cities that remain to be
visited by ant positioned on city (to make the solution
feasible), and is a parameter which determines the relative
importance of pheromone versus distance .

In (1) we multiply the pheromone on edge by the
corresponding heuristic value . In this way we favor the
choice of edges which are shorter and which have a greater
amount of pheromone.

In ant system, the global updating rule is implemented as
follows. Once all ants have built their tours, pheromone is
updated on all edges according to

(2)

where

if tour done by ant

otherwise

is a pheromone decay parameter, is the length
of the tour performed by ant, and is the number of ants.

Pheromone updating is intended to allocate a greater amount
of pheromone to shorter tours. In a sense, this is similar to
a reinforcement learning scheme [2], [26] in which better
solutions get a higher reinforcement (as happens, for exam-
ple, in genetic algorithms under proportional selection). The
pheromone updating formula was meant to simulate the change
in the amount of pheromone due to both the addition of new
pheromone deposited by ants on the visited edges and to
pheromone evaporation.

Pheromone placed on the edges plays the role of a dis-
tributed long-term memory: this memory is not stored locally
within the individual ants, but is distributed on the edges of
the graph. This allows an indirect form of communication
called stigmergy[9], [23]. The interested reader will find a
full description of ant system, of its biological motivations,
and computational results in [12].

Although ant system was useful for discovering good or
optimal solutions for small TSP’s (up to 30 cities), the time
required to find such results made it infeasible for larger
problems. We devised three main changes to improve its
performance which led to the definition of the ACS, presented
in the next section.

III. ACS

The ACS differs from the previous ant system because
of three main aspects: i) the state transition rule provides a
direct way to balance between exploration of new edges and
exploitation ofa priori and accumulated knowledge about the
problem, ii) the global updating rule is applied only to edges
which belong to the best ant tour, and iii) while ants construct
a solution alocal pheromone updating rule(local updating
rule, for short) is applied.

Informally, the ACS works as follows: ants are initially
positioned on cities chosen according to some initialization
rule (e.g., randomly). Each ant builds a tour (i.e., a feasible
solution to the TSP) by repeatedly applying a stochastic greedy
rule (the state transition rule). While constructing its tour, an
ant also modifies the amount of pheromone on the visited
edges by applying the local updating rule. Once all ants have
terminated their tour, the amount of pheromone on edges is
modified again (by applying the global updating rule). As
was the case in ant system, ants are guided, in building their
tours, by both heuristic information (they prefer to choose
short edges) and by pheromone information. An edge with
a high amount of pheromone is a very desirable choice. The
pheromone updating rules are designed so that they tend to
give more pheromone to edges which should be visited by
ants. The ACS algorithm is reported in Fig. 3. In the following
we discuss the state transition rule, the global updating rule,
and the local updating rule.

A. ACS State Transition Rule

In the ACS the state transition rule is as follows: an ant
positioned on node chooses the city to move to by applying
the rule given by (3)

if exploitation
otherwise biased exploration

(3)

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 26,2010 at 14:44:53 EST from IEEE Xplore. Restrictions apply.

56 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997

where is a random number uniformly distributed in ,
is a parameter , and is a random variable

selected according to the probability distribution given in (1).
The state transition rule resulting from (3) and (1) is

called pseudo-random-proportional rule. This state transition
rule, as with the previous random-proportional rule, favors
transitions toward nodes connected by short edges and with a
large amount of pheromone. The parameterdetermines the
relative importance of exploitation versus exploration: every
time an ant in city has to choose a city to move to, it
samples a random number . If then the best
edge, according to (3), is chosen (exploitation), otherwise an
edge is chosen according to (1) (biased exploration).

B. ACS Global Updating Rule

In ACS only the globally best ant (i.e., the ant which
constructed the shortest tour from the beginning of the trial)
is allowed to deposit pheromone. This choice, together with
the use of the pseudo-random-proportional rule, is intended to
make the search more directed: ants search in a neighborhood
of the best tour found up to the current iteration of the
algorithm. Global updating is performed after all ants have
completed their tours. The pheromone level is updated by
applying the global updating rule of (4)

(4)

where

if global-best-tour
otherwise

is the pheromone decay parameter, and is the
length of the globally best tour from the beginning of the trial.
As was the case in ant system, global updating is intended
to provide a greater amount of pheromone to shorter tours.
Equation (4) dictates that only those edges belonging to the
globally best tour will receive reinforcement. We also tested
another type of global updating rule, callediteration-best, as
opposed to the above calledglobal-best, which instead used

(the length of the best tour in the current iteration of
the trial), in (4). Also, with iteration-best the edges which
receive reinforcement are those belonging to the best tour
of the current iteration. Experiments have shown that the
difference between the two schemes is minimal, with a slight
preference for global-best, which is therefore used in the
following experiments.

C. ACS Local Updating Rule

While building a solution (i.e., a tour) of the TSP, ants visit
edges and change their pheromone level by applying the local
updating rule of (5)

(5)

where is a parameter.
We have experimented with three values for the term

. The first choice was loosely inspired by Q-learning
[40], an algorithm developed to solve reinforcement learning
problems [26]. Such problems are faced by an agent that must

learn the best action to perform in each possible state in which
it finds itself, using as the sole learning information a scalar
number which represents an evaluation of the state entered
after it has performed the chosen action. Q-learning is an
algorithm which allows an agent to learn such an optimal
policy by the recursive application of a rule similar to that
in (5), in which the term is set to the discounted
evaluation of the next state value. Since the problem our
ants have to solve is similar to a reinforcement learning
problem (ants have to learn which city to move to as a
function of their current location), we set [19]

, which is exactly the same formula
used in Q-learning is a parameter). The other two
choices were: i) we set , where is the initial
pheromone level, and ii) we set . Finally, we
also ran experiments in which local updating was not applied
(i.e., the local updating rule is not used, as was the case in
ant system).

Results obtained running experiments (see Table I) on a
set of five randomly generated 50-city TSP’s [13], on the
Oliver30 symmetric TSP [41] and the ry48p asymmetric TSP
[35], essentially suggest that local updating is definitely useful
and that the local updating rule with yields
worse performance than local updating with
or with . The ACS with

, which we have called Ant-
Q in [11] and [19], and the ACS with called
simply ACS hereafter, resulted to be the two best performing
algorithms, with a similar performance level. Since the ACS
local updating rule requires less computation than Ant-Q, we
chose to focus attention on the ACS, which will be used to
run the experiments presented in the rest of this paper.

As will be discussed in Section IV-A, the role of the ACS
local updating rule is to shuffle the tours, so that the early
cities in one ant’s tour may be explored later in other ants’
tours. In other words, the effect of local updating is to make
the desirability of edges change dynamically: every time an
ant uses an edge this becomes slightly less desirable (since it
loses some of its pheromone). In this way ants will make a
better use of pheromone information: without local updating
all ants would search in a narrow neighborhood of the best
previous tour.

D. ACS Parameter Settings

In all experiments of the following sections the numeric
parameters, except when indicated differently, are set to the
following values:

where is the tour length produced by the
nearest neighbor heuristic1 [36] and is the number of cities.
These values were obtained by a preliminary optimization
phase, in which we found that the experimental optimal values
of the parameters were largely independent of the problem,
except for for which, as we said, . The
number of ants used is (this choice is explained

1To be true, any very rough approximation of the optimal tour length would
suffice.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 26,2010 at 14:44:53 EST from IEEE Xplore. Restrictions apply.

DORIGO AND GAMBARDELLA: ANT COLONY SYSTEM 57

TABLE I
A COMPARISON OFLOCAL UPDATING RULES. FIFTY-CITY PROBLEMS AND OLIVER30 WERE STOPPEDAFTER 2500 ITERATIONS, WHILE RY48P

WAS HALTED AFTER 10 000 ITERATIONS. AVERAGES ARE OVER 25 TRIALS. RESULTS IN BOLD ARE THE BEST IN THE TABLE

in Section IV-B). Regarding their initial positioning, ants are
placed randomly, with at most one ant in each city.

IV. A STUDY OF SOME CHARACTERISTICS OF THEACS

A. Pheromone Behavior and Its Relation to Performance

To try to understand which mechanism the ACS uses to
direct the search we study how the pheromone-closeness prod-
uct changes at run time. Fig. 4 shows how
the pheromone-closeness product changes with the number of
steps while ants are building a solution2 (steps refer to the
inner loop in Fig. 3: the abscissa goes therefore from 1 to
where is the number of cities).

Let us consider three families of edges (see Fig. 4): i) those
belonging to the last best tour (BE, best edges), ii) those
which do not belong to the last best tour, but which did
in one of the two preceding iterations (TE, testable edges),
and iii) the remaining edges, that is, those that have never
belonged to a best tour or have not in the last two iterations
(UE, uninteresting edges). The average pheromone-closeness
product is then computed as the average of pheromone-
closeness values of all the edges within a family. The graph
clearly shows that the ACS favors exploitation of edges in
BE (BE edges are chosen with probability and
exploration of edges in TE (recall that, since (3) and (1),
edges with higher pheromone-closeness product have a higher
probability of being explored).

An interesting aspect is that while edges are visited by
ants, the application of the local updating rule (5) makes their
pheromone diminish, making them less and less attractive, and
therefore favoring the exploration of edges not yet visited.
Local updating has the effect of lowering the pheromone on
visited edges so that these become less desirable and therefore
will be chosen with a lower probability by the other ants in
the remaining steps of an iteration of the algorithm. As a
consequence, ants never converge to a common path. This fact,
which was observed experimentally, is a desirable property
given that if ants explore different paths then there is a higher
probability that one of them will find an improving solution

2The graph in Fig. 4 is an abstraction of graphs obtained experimentally.
Examples of these are given in Fig. 5.

Fig. 4. Families of edges classified according to different behavior with
respect to the pheromone-closeness product. The average level of the
pheromone-closeness product changes in each family during one iteration
of the algorithm (i.e., duringn steps).

than there is in the case that they all converge to the same tour
(which would make the use of ants pointless).

Experimental observation has shown that edges in BE, when
ACS achieves a good performance, will be approximately
downgraded to TE after an iteration of the algorithm (i.e.,
one external loop in Fig. 3; see also Fig. 4) and that edges in
TE will soon be downgraded to UE, unless they happen to
belong to a new shortest tour.

In Fig. 5(a) and (b), we report two typical behaviors of
pheromone level when the system has a good or a bad
performance respectively.

B. The Optimal Number of Ants

Consider Fig. 6.3 Let be the average pheromone level
on edges in BE just after they are updated by the global
updating rule and the average pheromone level on edges
in BE just before they are updated by the global updating
rule is also approximately the average pheromone level
on edges in TE at the beginning of the inner loop of the
algorithm). Under the hypothesis that the optimal values of

and are known, an estimate of the optimal number
of ants can be computed as follows. The local updating

3Note that this figure shows the average pheromone level, while Fig. 4
showed the average pheromone-closeness product.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 26,2010 at 14:44:53 EST from IEEE Xplore. Restrictions apply.

58 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997

(a)

(b)

Fig. 5. Families of edges classified according to different behavior with
respect to the level of the pheromone-closeness product. Problem: Eil51
[14]. (a) Pheromone-closeness behavior when the system performance is
good. Best solution found after 1000 iterations: 426,� = � = 0:1. (b)
Pheromone-closeness behavior when the system performance is bad. Best
solution found after 1000 iterations: 465,� = � = 0:9.

rule is a first-order linear recurrence relation of the form
, which has closed form given by

. Knowing that just before
global updating (this corresponds to the start point
of the BE curve in Fig. 6) and that after all ants have built
their tour and just before global updating, (this
corresponds to the end point of the BE curve in Fig. 6), we
obtain . Considering the fact
that edges in BE are chosen by each ant with a probability

, then a good approximation to the numberof ants that
locally update edges in BE is given by . Substituting
in the above formula we obtain the following estimate of the
optimal number of ants:

This formula essentially shows that the optimal number of
ants is a function of and . Unfortunately, until now,
we have not been able to identify the form of the functions

and , which would tell how and change
as a function of the problem dimension. Still, experimental
observation shows that the ACS works well when the ratio

, which gives .

Fig. 6. Change in average pheromone level during an algorithm iteration for
edges in the BE family. The average pheromone level on edges in BE starts at
'2�0 and decreases each time an ant visits an edge in BE. After one algorithm
iteration, each edge in BE has been visited on averagem � q0 times, and the
final value of the pheromone level is'1�0.

Fig. 7. Cooperation changes the probability distribution of first finishing
times: cooperating ants have a higher probability to find quickly an optimal
solution. Test problem: CCAO [21]. The number of ants was set tom = 4.

C. Cooperation Among Ants

This section presents the results of two simple experiments
which show that the ACS effectively exploits pheromone-
mediated cooperation. Since artificial ants cooperate by ex-
changing information via pheromone, to have noncooperating
ants it is enough to make ants blind to pheromone. In practice
this is obtained by deactivating (4) and (5) and setting the
initial level of pheromone to on all edges. When
comparing a colony of cooperating ants with a colony of
noncooperating ants, to make the comparison fair, we use
CPU time to compute performance indexes so as to discount
for the higher complexity, due to pheromone updating, of the
cooperative approach.

In the first experiment, the distribution offirst finishing
times, defined as the time elapsed until the first optimal
solution is found, is used to compare the cooperative and the
noncooperative approaches. The algorithm is run 10 000 times,
and then we report on a graph the probability distribution
(density of probability) of the CPU time needed to find the
optimal value (e.g., if in 100 trials the optimum is found
after exactly 220 iterations, then for the value 220 of the
abscissa we will have . Fig. 7 shows
that cooperation greatly improve s the probability of finding
quickly an optimal solution.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 26,2010 at 14:44:53 EST from IEEE Xplore. Restrictions apply.

DORIGO AND GAMBARDELLA: ANT COLONY SYSTEM 59

Fig. 8. Cooperating ants find better solutions in a shorter time. Test problem:
CCAO [21]. Average on 25 runs. The number of ants was set tom = 4.

Fig. 9. Comparison between ACS standard, ACS with no heuristic (i.e., we
set � = 0), and ACS in which ants neither sense nor deposit pheromone.
Problem: Oliver30. Averaged over 30 trials,10000=m iterations per trial.

In the second experiment (Fig. 8) the best solution found
is plotted as a function of time (ms) for cooperating and
noncooperating ants. The number of ants is fixed for both
cases: . It is interesting to note that in the cooperative
case, after 300 ms, the ACS always found the optimal solution,
while noncooperating ants where not able to find it after 800
ms. During the first 150 ms (i.e., before the two lines in
Fig. 8 cross) noncooperating ants outperform cooperating ants:
good values of pheromone level are still being learned, and
therefore the overhead due to pheromone updating is not yet
compensated by the advantages which pheromone can provide
in terms of directing the search toward good solutions.

D. The Importance of the Pheromone and
the Heuristic Function

Experimental results have shown that the heuristic function
is fundamental in making the algorithm find good solutions

in a reasonable time. In fact, when ACS performance
worsens significantly (see the ACS no heuristic graph in
Fig. 9).

Fig. 9 also shows the behavior of ACS in an experiment
in which ants neither sense nor deposit pheromone (ACS no
pheromone graph). The result is that not using pheromone also
deteriorates performance. This is a further confirmation of the
results on the role of cooperation presented in Section IV-C.

TABLE II
COMPARISON OF ACS WITH OTHER HEURISTICS ONRANDOM

INSTANCES OF THESYMMETRIC TSP. COMPARISONS ONAVERAGE

TOUR LENGTH OBTAINED ON FIVE 50-CITY PROBLEMS

The reason that ACS without the heuristic function performs
better than ACS without pheromone is that in the first case,
although not helped by heuristic information, the ACS is still
guided by reinforcement provided by the global updating rule
in the form of pheromone, while in the second case the ACS
reduces to a stochastic multigreedy algorithm.

V. ACS: SOME COMPUTATIONAL RESULTS

We report on two sets of experiments. The first set compares
the ACS with other heuristics. The choice of the test problems
was dictated by published results found in the literature. The
second set tests the ACS on some larger problems. Here the
comparison is performed only with respect to the optimal or
the best known result. The behavior of the ACS is excellent
in both cases.

Most of the test problems can be found in
TSPLIB: http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/
TSPLIB95/TSPLIB.html. When they are not available in
this library we explicitly cite the reference where they can
be found.

Given that during an iteration of the algorithm, each ant
produces a tour, the total number of tours generated in the
reported results is given by the number of iterations multiplied
by the number of ants. The result of each trial is given by the
best tour generated by the ants. Each experiment consists of
at least 15 trials.

A. Comparison with Other Heuristics

To compare the ACS with other heuristics we consider two
sets of TSP problems. The first set comprises five randomly
generated 50-city problems, while the second set is composed
of three geometric problems4 of between 50 and 100 cities. It
is important to test the ACS on both random and geometric
instances of the TSP because these two classes of problems
have structural differences that can make them difficult for a
particular algorithm and at the same time easy for another one.

Table II reports the results on the random instances. The
heuristics with which we compare the ACS are simulated
annealing (SA), elastic net (EN), and self-organizing map
(SOM). Results on SA, EN, and SOM are from [13] and
[34]. The ACS was run for 2500 iterations using ten ants (this
amounts to approximately the same number of tours searched

4Geometric problems are problems taken from the real world (for example,
they are generated choosing real cities and real distances).

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 26,2010 at 14:44:53 EST from IEEE Xplore. Restrictions apply.

60 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997

TABLE III
COMPARISON OFACS WITH OTHER HEURISTICS ONGEOMETRIC INSTANCES OF THESYMMETRIC TSP. WE REPORT THEBEST INTEGER TOUR LENGTH, THE BEST

REAL TOUR LENGTH (IN PARENTHESES), AND THE NUMBER OF TOURS REQUIRED TO FIND THE BEST INTEGER TOUR LENGTH (IN SQUARE

BRACKETS). N/A MEANS “NOT AVAILABLE .” I N THE LAST COLUMN THE OPTIMAL LENGTH IS AVAILABLE ONLY FOR INTEGER TOUR LENGTHS

by the heuristics with which we compare our results). The ACS
results are averaged over 25 trials. The best average tour length
for each problem is in boldface: the ACS almost always offers
the best performance.

Table III reports the results on the geometric instances. The
heuristics with which we compare the ACS in this case are a
genetic algorithm (GA), evolutionary programming (EP), and
simulated annealing (SA). The ACS is run for 1250 iterations
using 20 ants (this amounts to approximately the same number
of tours searched by the heuristics with which we compare
our results). ACS results are averaged over 15 trials. In this
case comparison is performed on the best results, as opposed
to average results as in previous Table II (this choice was
dictated by the availability of published results). The difference
between integer and real tour length is that in the first case
distances between cities are measured by integer numbers,
while in the second case by floating point approximations of
real numbers.

Results using EP are from [15], and those using GA are from
[41] for Eil50 and Eil75, and from [6] for KroA100. Results
using SA are from [29]. Eil50, Eil75 are from [14] and are
included in TSPLIB with an additional city as Eil51.tsp and
Eil76.tsp. KroA100 is also in TSPLIB. The best result for
each problem is in boldface. Again, the ACS offers the best
performance in nearly every case. Only for the Eil50 problem
does it find a slightly worse solution using real-valued distance
as compared with EP, but the ACS only visits 1830 tours,
while EP used 100 000 such evaluations (although it is possible
that EP found its best solution earlier in the run, this is not
specified in the paper [15]).

B. ACS on Some Bigger Problems

When trying to solve big TSP problems it is common
practice [28], [35] to use a data structure known as acandidate
list. A candidate list is a list of preferred cities to be visited;
it is a static data structure which contains, for a given city
, the closest cities, ordered by increasing distances;

is a parameter that we set to in our experiments.
We implemented therefore a version of the ACS [20] which
incorporates a candidate list: an ant in this extended version
of the ACS first chooses the city to move to among those

belonging to the candidate list. Only if none of the cities in
the candidate list can be visited then it considers the rest of
the cities. The ACS with the candidate list (see Table IV) was
able to find good results for problems up to more than 1500
cities. The time to generate a tour grows only slightly more
than linearly with the number of cities (this is much better
than the quadratic growth obtained without the candidate list);
on a Sun Sparc-server (50 MHz) it took approximately 0.02
s of CPU time to generate a tour for the d198 problem, 0.05
s for the pcb442, 0.07 s for the att532, 0.13 s for the rat783,
and 0.48 s for the fl1577 (the reason for the more than linear
increase in time is that the number of failures, that is, the
number of times an ant has to choose the next city outside of
the candidate list increases with the problem dimension).

VI. ACS PLUS LOCAL SEARCH

In Section V we have shown that the ACS is competi-
tive with other nature-inspired algorithms on some relatively
simple problems. On the other hand, in past years much
work has been done to define ad-hoc heuristics (see [25]
for an overview) to solve the TSP. In general, these ad-hoc
heuristics greatly outperform, on the specific problem of the
TSP, general purpose algorithms approaches like evolutionary
computation and simulated annealing. Heuristic approaches to
the TSP can be classified as tour constructive heuristics and
tour improvement heuristics (these last also called local opti-
mization heuristics). Tour constructive heuristics (see [4] for an
overview) usually start selecting a random city from the set of
cities and then incrementally build a feasible TSP solution by
adding new cities chosen according to some heuristic rule. For
example, the nearest neighbor heuristic builds a tour by adding
the closest node in terms of distance from the last node inserted
in the path. On the other hand, tour improvement heuristics
start from a given tour and attempt to reduce its length by
exchanging edges chosen according to some heuristic rule until
a local optimum is found (i.e., until no further improvement
is possible using the heuristic rule). The most used and well-
known tour improvement heuristics are 2-opt and 3-opt [30],
and Lin–Kernighan [31] in which, respectively, two, three,
and a variable number of edges are exchanged. It has been
experimentally shown [35] that, in general, tour improvement

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 26,2010 at 14:44:53 EST from IEEE Xplore. Restrictions apply.

DORIGO AND GAMBARDELLA: ANT COLONY SYSTEM 61

TABLE IV
ACS PERFORMANCE FORSOME BIGGER GEOMETRIC PROBLEMS (OVER 15 TRIALS). WE REPORT THEINTEGER LENGTH OF THE SHORTEST TOUR FOUND, THE

NUMBER OF TOURS REQUIRED TO FIND IT, THE AVERAGE INTEGER LENGTH, THE STANDARD DEVIATION, THE OPTIMAL SOLUTION (FOR FL1577 WE GIVE, IN SQUARE

BRACKETS, THE KNOWN LOWER AND UPPERBOUNDS, GIVEN THAT THE OPTIMAL SOLUTION IS NOT KNOWN), AND THE RELATIVE ERROR OFACS

heuristics produce better quality results than tour constructive
heuristics. A general approach is to use tour constructive
heuristics to generate a solution and then to apply a tour
improvement heuristic to locally optimize it.

It has been shown recently [25] that it is more effective
to alternate an improvement heuristic with mutations of the
last (or of the best) solution produced, rather than iteratively
executing a tour improvement heuristic starting from solutions
generated randomly or by a constructive heuristic. An example
of successful application of the above alternate strategy is the
work by Freisleben and Merz [17], [18], in which a genetic
algorithm is used to generate new solutions to be locally
optimized by a tour improvement heuristic.

The ACS is a tour construction heuristic which, like
Freisleben and Merz’s genetic algorithm, produces a set of
feasible solutions after each iteration which are in some sense
a mutation of the previous best solution. It is, therefore, a
reasonable guess that adding a tour improvement heuristic to
the ACS could make it competitive with the best algorithms.

We therefore have added a tour improvement heuristic to
the ACS. To maintain the ACS’s ability to solve both TSP and
ATSP problems we have decided to base the local optimization
heuristic on arestricted 3-optprocedure [25], [27] that, while
inserting/removing three edges on the path, considers only 3-
opt moves that do not revert the order in which the cities are
visited. In this case it is possible to change three edges on
the tour , , and with three other edges ,

, and maintaining the previous orientations of all the
other subtours. In case of ATSP problems, where in general

, this 3-opt procedure avoids unpredictable
tour length changes due to the inversion of a subtour. In
addition, when a candidate edge to be removed is
selected, the restricted 3-opt procedure restricts the search for
the second edge to be removed only to those edges such
that .

The implementation of the restricted 3-opt procedure
includes some typical tricks which accelerate its use for
TSP/ATSP problems. First, the search for the candidate nodes
during the restricted 3-opt procedure is only made inside the
candidate list [25]. Second, the procedure uses a data structure
called don’t look bit [4] in which each bit is associated to a
node of the tour. At the beginning of the local optimization
procedure all the bits are turned off and the bit associated to
node is turned on when a search for an improving move
starting from fails. The bit associated to nodeis turned off
again when a move involving is performed. Third, only in
the case of symmetric TSP’s, while searching for 3-opt moves
starting from a node, the procedure also considers possible
2-opt moves with as first node; the move executed is the
best one among those proposed by 3-opt and by 2-opt. Last, a
traditional array data structure to represent candidate lists and
tours is used (see [16] for more sophisticated data structures).

ACS-3-opt also uses candidate lists in its constructive part;
if there is no feasible node in the candidate list it chooses the
closest node out of the candidate list (this is different from
what happens in the ACS where, in case the candidate list
contains no feasible nodes, then any of the remaining feasible
cities can be chosen with a probability which is given by the
normalized product of pheromone and closeness). This is a
reasonable choice since most of the search performed by both
the ACS and the local optimization procedure is made using
edges belonging to the candidate lists. It is therefore pointless
to direct search by using pheromone levels which are updated
only very rarely.

A. Experimental Results

The experiments on ATSP problems presented in this section
have been executed on a SUN Ultra1 SPARC Station (167
Mhz), while experiments on TSP problems on a SGI Challenge
L server with eight 200 MHz CPU’s, using only a single

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 26,2010 at 14:44:53 EST from IEEE Xplore. Restrictions apply.

62 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997

Fig. 10. The ACS-3-opt algorithm.

TABLE V
RESULTS OBTAINED BY ACS-3-OPT ON ATSP PROBLEMS TAKEN FROM THE FIRST INTERNATIONAL CONTEST ON EVOLUTIONARY OPTIMIZATION [5]. WE REPORT THE

LENGTH OF THE BEST TOUR FOUND BY ACS-3-OPT, THE CPU TIME USED TO FIND IT, THE AVERAGE LENGTH OF THE BEST TOUR FOUND AND THE AVERAGE CPU
TIME USED TO FIND IT, THE OPTIMAL LENGTH, AND THE RELATIVE ERROR OF THEAVERAGE RESULT WITH RESPECT TO THEOPTIMAL SOLUTION

processor due to the sequential implementation of ACS-3-opt.
For each test problem, ten trials have been executed. ACS-
3-opt parameters were set to the following values (except if
differently indicated):

, and .
Asymmetric TSP Problems:The results obtained with

ACS-3-opt on ATSP problems are quite impressive. Exper-
iments were run on the set of ATSP problems proposed in
the First International Contest on Evolutionary Optimization
[5] (see also http://iridia.ulb.ac.be/langerman/ICEO.html). For
all the problems ACS-3-opt reached the optimal solution in a
few seconds (see Table V) in all the ten trials, except in the
case of ft70, a problem considered relatively hard, where the
optimum was reached eight out of ten times.

In Table VI results obtained by ACS-3-opt are compared
with those obtained by ATSP-GA [17], the winner of the ATSP
competition. ATSP-GA is based on a genetic algorithm that
starts its search from a population of individuals generated
using a nearest neighbor heuristic. Individuals are strings of
cities which represent feasible solutions. At each step two
parents and are selected, and their edges are recombined
using a procedure called DPX-ATSP. DPX-ATSP first deletes
all edges in that are not contained in and then reconnects

the segments using a greedy heuristic based on a nearest
neighbor choice. The new individuals are brought to the local
optimum using a 3-opt procedure, and a new population is
generated after the application of a mutation operation that
randomly removes and reconnects some edges in the tour.

The 3-opt procedure used by ATSP-GA is very similar to
our restricted 3-opt, which makes the comparison between
the two approaches straightforward. ACS-3-opt outperforms
ATSP-GA in terms of both closeness to the optimal solution
and of CPU time used. Moreover, ATSP-GA experiments have
been performed using a DEC Alpha Station (266 MHz), a
machine faster than our SUN Ultra1 SPARC Station.

Symmetric TSP Problems:If we now turn to symmetric
TSP problems, it turns out that STSP-GA (STSP-GA exper-
iments have been performed using a 175 MHz DEC Alpha
Station), the algorithm that won the First International Contest
on Evolutionary Optimization in the symmetric TSP category,
outperforms ACS-3-opt (see Tables VII and VIII). The results
used for comparisons are those published in [18], which are
slightly better than those published in [17].

Our results, on the other hand, are comparable to those
obtained by other algorithms considered to be very good. For
example, on the lin318 problem ACS-3-opt has approximately

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 26,2010 at 14:44:53 EST from IEEE Xplore. Restrictions apply.

DORIGO AND GAMBARDELLA: ANT COLONY SYSTEM 63

TABLE VI
COMPARISON BETWEEN ACS-3-OPT AND ATSP-GA ON ATSP PROBLEMS TAKEN FROM THE FIRST INTERNATIONAL CONTEST

ON EVOLUTIONARY OPTIMIZATION [5]. WE REPORT THEAVERAGE LENGTH OF THE BEST TOUR FOUND, THE AVERAGE CPU
TIME USED TO FIND IT, AND THE RELATIVE ERROR WITH RESPECT TO THEOPTIMAL SOLUTION FOR BOTH APPROACHES

TABLE VII
RESULTS OBTAINED BY ACS-3-OPT ON TSP PROBLEMS TAKEN FROM THE FIRST INTERNATIONAL CONTEST ON EVOLUTIONARY OPTIMIZATION [5]. WE REPORT THE

LENGTH OF THE BEST TOUR FOUND BY ACS-3-OPT, THE CPU TIME USED TO FIND IT, THE AVERAGE LENGTH OF THE BEST TOUR FOUND AND THE AVERAGE CPU
TIME USED TO FIND IT, AND THE OPTIMAL LENGTH AND THE RELATIVE ERROR OF THEAVERAGE RESULT WITH RESPECT TO THEOPTIMAL SOLUTION

TABLE VIII
COMPARISON BETWEEN ACS-3-OPT AND STSP-GAON TSP PROBLEMS TAKEN FROM THE FIRST INTERNATIONAL CONTEST

ON EVOLUTIONARY OPTIMIZATION [5]. WE REPORT THEAVERAGE LENGTH OF THE BEST TOUR FOUND, THE AVERAGE CPU
TIME USED TO FIND IT, AND THE RELATIVE ERROR WITH RESPECT TO THEOPTIMAL SOLUTION FOR BOTH APPROACHES

the same performance as the “large step Markov chain algo-
rithm” [33]. This algorithm is based on a simulated annealing
mechanism that uses as improvement heuristic a restricted 3-
opt heuristic very similar to ours (the only difference is that
they do not consider 2-opt moves) and a mutation procedure
called double-bridge. (The double-bridgemutation has the

property that it is the smallest change (four edges) that can
not be reverted in one step by 3-opt, LK, and 2-opt.)

A fair comparison of our results with the results obtained
with the currently best performing algorithms for symmet-
ric TSP’s [25] is difficult since they use as local search a
Lin–Kernighan heuristic based on a segment-tree data structure

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 26,2010 at 14:44:53 EST from IEEE Xplore. Restrictions apply.

64 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997

[16] that is faster and gives better results than our restricted-
3-opt procedure. It will be the subject of future work to add
such a procedure to the ACS.

VII. D ISCUSSION AND CONCLUSIONS

An intuitive explanation of how the ACS works, which
emerges from the experimental results presented in the preced-
ing sections, is as follows. Once all the ants have generated
a tour, the best ant deposits (at the end of iteration) its
pheromone, defining in this way a “preferred tour” for search
in the following algorithm iteration . In fact, during
iteration ants will see edges belonging to the best tour as
highly desirable and will choose them with high probability.
Still, guided exploration [see (3) and (1)] together with the fact
that local updating “eats” pheromone away (i.e., it diminishes
the amount of pheromone on visited edges, making them less
desirable for future ants) allows for the search of new, possibly
better tours in the neighborhood5 of the previous best tour. So
the ACS can be seen as a sort of guided parallel stochastic
search in the neighborhood of the best tour.

Recently there has been growing interest in the application
of ant colony algorithms to difficult combinatorial problems.
A first example is the work of Schoonderwoerdet al. [37],
who apply an ant colony algorithm to the load balancing
problem in telecommunications networks. Their algorithm
takes inspiration from the same biological metaphor as ant
system, although their implementation differs in many details
due to the different characteristics of the problem. Another
interesting ongoing research is that of Stützle and Hoos who
are studying various extensions of ant system to improve its
performance: in [38] they impose an upper and lower bound
on the value of pheromone on edges, and in [39] they add
local search, much in the same spirit as we did in the previous
Section VI.

Besides the two works above, among the “nature-inspired”
heuristics, the closest to the ACS seems to be Baluja and Caru-
ana’s population based incremental learning (PBIL) [1]. PBIL,
which takes inspiration from genetic algorithms, maintains a
vector of real numbers, the generating vector, which plays a
role similar to that of the population in GA’s. Starting from this
vector, a population of binary strings is randomly generated;
each string in the population will have theth bit set to one
with a probability which is a function of theth value in the
generating vector (in practice, values in the generating vector
are normalized to the interval [0, 1] so that they can directly
represent the probabilities). Once a population of solutions
is created, the generated solutions are evaluated, and this
evaluation is used to increase (or decrease) the probabilities in
the generating vector so that good (bad) solutions in the future
generations will be produced with higher (lower) probability.
When applied to TSP, PBIL uses the following encoding: a
solution is a string of size bits, where is the number
of cities; each city is assigned a string of length which is
interpreted as an integer. Cities are then ordered by increasing
integer values; in case of ties the left-most city in the string

5The form of the neighborhood is given by the previous history of the
system, that is, by pheromone accumulated on edges.

comes first in the tour. In the ACS, the pheromone matrix plays
a role similar to Baluja’s generating vector, and pheromone
updating has the same goal as updating the probabilities in the
generating vector. Still, the two approaches are very different
since in the ACS the pheromone matrix changes while ants
build their solutions, while in PBIL the probability vector
is modified only after a population of solutions has been
generated. Moreover, the ACS uses heuristic to direct search,
while PBIL does not.

There are a number of ways in which the ant colony
approach can be improved and/or changed. A first possibility
regards the number of ants which should contribute to the
global updating rule. In ant system all the ants deposited their
pheromone, while in the ACS only the best one does: obvi-
ously there are intermediate possibilities. Baluja and Caruana
[1] have shown that the use of the two best individuals can
help PBIL to obtain better results, since the probability of
being trapped in a local minimum becomes smaller. Another
change to the ACS could be, again taking inspiration from
[1], allowing ants which produce very bad tours to subtract
pheromone.

A second possibility is to move from the current parallel
local updating of pheromone to a sequential one. In the ACS
all ants apply the local updating rule in parallel, while they
are building their tours. We could imagine a modified ACS
in which ants build tours sequentially: the first ant starts,
builds its tour, and as a side effect, changes the pheromone
on visited edges. Then the second ant starts and so on until
the last of the ants has built its tour. At this point the
global updating rule is applied. This scheme will determine
a different search regime, in which the preferred tour will
tend to remain the same for all the ants (as opposed to the
situation in the ACS, in which local updating shuffles the
tours). Nevertheless, the search will be diversified since the
first ants in the sequence will search in a neighborhood of
the preferred tour that is more narrow than later ones (in fact,
pheromone on the preferred tour decreases as more ants eat it
away, making the relative desirability of edges of the preferred
tour decrease). The role of local updating in this case would be
similar to that of the temperature in simulated annealing, with
the main difference that here the temperature changes during
each algorithm iteration.

Last, it would be interesting to add to the ACS a more
effective local optimizer than that used in Section VI. A
possibility we will investigate in the near future is the use
of the Lin–Kernighan heuristic.

Another interesting subject of ongoing research is to es-
tablish the class of problems that can be attacked by the
ACS. Our intuition is that ant colony algorithms can be
applied to combinatorial optimization problems by defining
an appropriate graph representation of the problem considered
and a heuristic that guides the construction of feasible solu-
tions. Then, artificial ants much like those used in the TSP
application presented in this paper can be used to search for
good solutions of the problem under consideration. The above
intuition is supported by encouraging, although preliminary,
results obtained with ant system on the quadratic assignment
problem [12], [32], [42].

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 26,2010 at 14:44:53 EST from IEEE Xplore. Restrictions apply.

DORIGO AND GAMBARDELLA: ANT COLONY SYSTEM 65

In conclusion, in this paper we have shown that the ACS
is an interesting novel approach to parallel stochastic opti-
mization of the TSP. The ACS has been shown to compare
favorably with previous attempts to apply other heuristic
algorithms like genetic algorithms, evolutionary programming,
and simulated annealing. Nevertheless, competition on the TSP
is very tough, and a combination of a constructive method
which generates good starting solution with local search which
takes these solutions to a local optimum seems to be the best
strategy [25]. We have shown that the ACS is also a very
good constructive heuristic to provide such starting solutions
for local optimizers.

APPENDIX A
THE ACS ALGORITHM

1)/* Initialization phase*/
For each pair End-for
For to do

Let be the starting city for ant

/* is the set of yet to be visited cities for
ant in city */

/* is the city where ant
is located */

End-for
2) /* This is the phase in which ants build their tours.

The tour of ant is stored in Tour */
For to do
If
Then

For to do
Choose the next city according to (3) and (1)

Tour
End-for

Else
For to do
/* In this cycle all the ants go back to the initial

city */

Tour
End-for

End-if
/* In this phase local updating occurs and pheromone is

updated using (5)*/
For to do

/* New city for ant */
End-for

End-for
3) /* In this phase global updating occurs and pheromone is

updated */
For to do
Compute /* is the length of the tour done by

ant */
End-for

Compute
/*Update edges belonging to using (4) */
For each edge

End-for
4) If (End condition True)
then Print shortest of
else goto Phase 2

ACKNOWLEDGMENT

The authors wish to thank N. Bradshaw, G. Di Caro,
D. Fogel, and five anonymous referees for their precious
comments on a previous version of this article.

REFERENCES

[1] S. Baluja and R. Caruana, “Removing the genetics from the standard
genetic algorithm,” inProc. ML-95, 12th Int. Conf. Machine Learning.
Palo Alto, CA: Morgan Kaufmann, 1995, pp. 38–46.

[2] A. G. Barto, R. S. Sutton, and P. S. Brower, “Associative search
network: A reinforcement learning associative memory,”Biological
Cybern., vol. 40, pp. 201–211, 1981.

[3] R. Beckers, J. L. Deneubourg, and S. Goss, “Trails and U-turns in the
selection of the shortest path by the ant Lasius Niger,”J. Theoretical
Biology, vol. 159, pp. 397–415, 1992.

[4] J. L. Bentley, “Fast algorithms for geometric traveling salesman prob-
lems,” ORSA J. Comput., vol. 4, pp. 387–411, 1992.

[5] H. Bersini, M. Dorigo, S. Langerman, G. Seront, and L. M. Gambardella,
“Results of the first international contest on evolutionary optimization
(1st ICEO),” inProc. IEEE Int. Conf. Evolutionary Computation, IEEE-
EC 96, pp. 611–615.

[6] H. Bersini, C. Oury, and M. Dorigo, “Hybridization of genetic algo-
rithms,” Université Libre de Bruxelles, Belgium, Tech. Rep. IRIDIA/95-
22, 1995.

[7] A. Colorni, M. Dorigo, and V. Maniezzo, “Distributed optimization by
ant colonies,” inProc. ECAL91—Eur. Conf. Artificial Life. New York:
Elsevier, 1991, pp. 134–142.

[8] , “An investigation of some properties of an ant algorithm,”
in Proc. Parallel Problem Solving from Nature Conference (PPSN 92)
New York: Elsevier, 1992, pp. 509–520.

[9] J. L. Deneubourg, “Application de l’ordre par fluctuationsà la descrip-
tion de certaines ´etapes de la construction du nid chez les termites,”
Insect Sociaux, vol. 24, pp. 117–130, 1977.

[10] M. Dorigo, “Optimization, learning and natural algorithms,” Ph.D.
dissertation, DEI, Politecnico di Milano, Italy, 1992 (in Italian).

[11] M. Dorigo and L. M. Gambardella, “A study of some properties of Ant-
Q,” in Proc. PPSN IV—4th Int. Conf. Parallel Problem Solving from
Nature. Berlin, Germany: Springer-Verlag, 1996, pp. 656–665.

[12] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: Optimization
by a colony of cooperating agents,”IEEE Trans. Syst, Man, Cybern. B,
vol. 26, no. 2, pp. 29–41, 1996.

[13] R. Durbin and D. Willshaw, “An analogue approach to the travelling
salesman problem using an elastic net method,”Nature, vol. 326, pp.
689–691, 1987.

[14] S. Eilon, C. D. T. Watson-Gandy, and N. Christofides, “Distribution
management: Mathematical modeling and practical analysis,”Oper. Res.
Quart., vol. 20, pp. 37–53, 1969.

[15] D. B. Fogel, “Applying evolutionary programming to selected traveling
salesman problems,”Cybern. Syst: Int. J., vol. 24, pp. 27–36, 1993.

[16] M. L. Fredman, D. S. Johnson, L. A. McGeoch, and G. Ostheimer, “Data
structures for traveling salesmen,”J. Algorithms, vol. 18, pp. 432–479,
1995.

[17] B. Freisleben and P. Merz, “Genetic local search algorithm for solving
symmetric and asymmetric traveling salesman problems,” inProc. IEEE
Int. Conf. Evolutionary Computation, IEEE-EC 96, 1996, pp. 616–621.

[18] , “New genetic local search operators for the traveling salesman
problem,” in Proc. PPSN IV—4th Int. Conf. Parallel Problem Solving
from Nature. Berlin, Germany: Springer-Verlag, 1996, pp. 890–899.

[19] L. M. Gambardella and M. Dorigo, “Ant-Q: A reinforcement learning
approach to the traveling salesman problem,” inProc. ML-95, 12th Int.
Conf. Machine Learning. Palo Alto, CA: Morgan Kaufmann, 1995,
pp. 252–260.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 26,2010 at 14:44:53 EST from IEEE Xplore. Restrictions apply.

66 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997

[20] , “Solving symmetric and asymmetric TSP’s by ant colonies,”
Proc. IEEE Int. Conf. Evolutionary Computation, IEEE-EC 96, 1996,
pp. 622–627.

[21] B. Golden and W. Stewart, “Empiric analysis of heuristics,” inThe
Traveling Salesman Problem, E. L. Lawler, J. K. Lenstra, A. H. G.
Rinnooy-Kan, and D. B. Shmoys, Eds. New York: Wiley, 1985.

[22] S. Goss, S. Aron, J. L. Deneubourg, and J. M. Pasteels, “Self-organized
shortcuts in the argentine ant,”Naturwissenschaften, vol. 76, pp.
579–581, 1989.

[23] P. P. Grass´e, “La reconstruction du nid et les coordinations inter-
individuelles chez Bellicositermes natalensis et Cubitermes sp.
La théorie de la stigmergie: Essai d’interpr´etation des termites
constructeurs,”Insect Sociaux, vol. 6, pp. 41–83, 1959.

[24] B. Hölldobler and E. O. Wilson,The Ants. Berlin: Springer-Verlag,
1990.

[25] D. S. Johnson and L. A. McGeoch, “The travelling salesman problem:
a case study in local optimization,” inLocal Search in Combinatorial
Optimization, E. H. L. Aarts and J. K. Lenstra, Eds. New York: Wiley:
New York, 1997.

[26] L. P. Kaelbling, L. M. Littman, and A. W. Moore, “Reinforcement
learning: A survey,”J. Artif. Intell. Res., vol. 4, pp. 237–285, 1996.

[27] P.-C. Kanellakis and C. H. Papadimitriou, “Local search for the asym-
metric traveling salesman problem,”Oper. Res., vol. 28, no. 5, pp.
1087–1099, 1980.

[28] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy-Kan, and D. B. Shmoys,
Eds.,The Traveling Salesman Problem. New York: Wiley, 1985.

[29] F.-T. Lin, C.-Y. Kao, and C.-C. Hsu, “Applying the genetic approach to
simulated annealing in solving some NP-Hard problems,”IEEE Trans.
Syst., Man, Cybern., vol. 23, pp. 1752–1767, 1993.

[30] S. Lin., “Computer solutions of the traveling salesman problem,”Bell
Syst. J., vol. 44, pp. 2245–2269, 1965.

[31] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the
traveling salesman problem,”Oper. Res., vol. 21, pp. 498–516, 1973.

[32] V. Maniezzo, A. Colorni, and M. Dorigo, “The ant system applied to the
quadratic assignment problem,” Université Libre de Bruxelles, Belgium,
Tech. Rep. IRIDIA/94-28, 1994.

[33] O. Martin, S. W. Otto, and E. W. Felten, “Large-step Markov chains
for the TSP incorporating local search heuristics,”Oper. Res. Lett., vol.
11, pp. 219–224, 1992.

[34] J.-Y. Potvin, “The traveling salesman problem: A neural network
perspective,”ORSA J. Comput., vol. 5, no. 4, pp. 328–347, 1993.

[35] G. Reinelt,The Traveling Salesman: Computational Solutions for TSP
Applications. New York: Springer-Verlag, 1994.

[36] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, “An analysis of
several heuristics for the traveling salesman problem,”SIAM J. Comput.,
vol. 6, pp. 563–581, 1977.

[37] R. Schoonderwoerd, O. Holland, J. Bruten, and L. Rothkrantz, “Ant-
based load balancing in telecommunications networks,”Adaptive Be-
havior, vol. 5, no. 2, 1997.

[38] T. Stützle and H. Hoos, “Improvements on the ant system, introducing
the MAX-MIN ant system,” inProc. ICANNGA97—Third Int. Conf.
Artificial Neural Networks and Genetic Algorithms. Wien, Germany:
Springer-Verlag, 1997.

[39] , “The MAX-MIN ant system and local search for the travel-
ing salesman problem,” inProc. ICEC’97—1997 IEEE 4th Int. Conf.
Evolutionary Computation, 1997, pp. 309–314.

[40] C. J. C. H. Watkins, “Learning with delayed rewards,” Ph.D. dissertation,
Psychology Dept., Univ. of Cambridge, UK, 1989.

[41] D. Whitley, T. Starkweather, and D. Fuquay, “Scheduling problems
and travelling salesman: the genetic edge recombination operator,” in
Proc. the 3rd Int. Conf. Genetic Algorithms. Palo Alto, CA: Morgan
Kaufmann, 1989, pp. 133–140.

[42] L. M. Gambardella, E. Taillard, and M. Dorigo, “Ant colonies for QAP,”
IDSIA, Lugano, Switzerland, Tech. Rep. IDSIA 97-4, 1997.

Marco Dorigo (S’92–M’92–SM’96) was born in
Milan, Italy, in 1961. He received the Laurea (Mas-
ter of Technology) degree in industrial technologies
engineering in 1986 and the Ph.D. degree in in-
formation and systems electronic engineering in
1992 from Politecnico di Milano, Milan, Italy, and
the title of Agrégé de l’Enseignement Sup´erieur,
from the Universit́e Libre de Bruxelles, Belgium,
in 1995.

From 1992 to 1993 he was a Research Fellow
at the International Computer Science Institute of

Berkeley, CA. In 1993 he was a NATO-CNR Fellow and from 1994 to 1996
a Marie Curie Fellow. Since 1996 he has been a Research Associate with
the FNRS, the Belgian National Fund for Scientific Research. His research
areas include evolutionary computation, distributed models of computation,
and reinforcement learning. He is interested in applications to autonomous
robotics, combinatorial optimization, and telecommunications networks.

Dr. Dorigo is an Associate Editor for the IEEE TRANSACTIONS ONSYSTEMS,

MAN, AND CYBERNETICS and for the IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION. He is a member of the Editorial Board ofEvolutionary
Computationand of Adaptive Behavior. He was awarded the 1996 Italian
Prize for Artificial Intelligence. He is a member of the Italian Association for
Artificial Intelligence (AI*IA).

Luca Maria Gambardella (M’91) was born in
Saronno, Italy, in 1962. He received the Laurea
degree in computer science in 1985 from the Univer-
sità degli Studi di Pisa, Facoltà di Scienze Matem-
atiche Fisiche e Naturali.

Since 1988 he has been Research Director at
IDSIA, Istituto Dalle Molle di Studi sull’ Intelli-
genza Artificiale, a private research institute located
in Lugano, Switzerland, supported by Canton Ti-
cino and Swiss Confederation. His major research
interests are in the area of machine learning and

adaptive systems applied to robotics and optimization problems. He is leading
several research and industrial projects in the area of collective robotics,
cooperation and learning for combinatorial optimization, scheduling, and
simulation supported by the Swiss National Fundation and by the Swiss
Technology and Innovation Commission.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 26,2010 at 14:44:53 EST from IEEE Xplore. Restrictions apply.

