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Abstract—Many areas in power systems require solving one
or more nonlinear optimization problems. While analytical
methods might suffer from slow convergence and the curse of
dimensionality, heuristics-based swarm intelligence can be an
efficient alternative. Particle swarm optimization (PSO), part
of the swarm intelligence family, is known to effectively solve
large-scale nonlinear optimization problems. This paper presents
a detailed overview of the basic concepts of PSO and its variants.
Also, it provides a comprehensive survey on the power system
applications that have benefited from the powerful nature of PSO
as an optimization technique. For each application, technical
details that are required for applying PSO, such as its type, par-
ticle formulation (solution representation), and the most efficient
fitness functions are also discussed.

Index Terms—Classical optimization, particle swarm optimiza-
tion (PSO), power systems applications, swarm intelligence.

I. INTRODUCTION

THE ELECTRIC power grid is the largest man-made
machine in the world. It consists of synchronous gener-

ators, transformers, transmission lines, switches and relays,
active/reactive compensators, and controllers. Various control
objectives, operation actions, and/or design decisions in such
a system require an optimization problem to be solved. For
such a nonlinear nonstationary system with possible noise and
uncertainties, as well as various design/operational constraints,
the solution to the optimization problem is by no means trivial.
Moreover, the following issues need attention: 1) the optimiza-
tion technique selected must be appropriate and must suit the
nature of the problem; 2) all the various aspects of the problem
have to be taken into account; 3) all the system constraints
should be correctly addressed; and 4) a comprehensive yet not
too complicated objective function should be defined.

Various methods exist in the literature that address the op-
timization problem under different conditions. In its simplest
form, this problem can be expressed as follows.
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Find the minimum1 of an objective function

Different optimization methods are classified based on the
type of the search space and the objective (cost)
function . The simplest technique is linear programming
(LP) which concerns the case where the objective function
is linear and the set is specified using only linear equality
and inequality constraints [1]. LP has been applied for solving
various power system problems, such as planning and operation
[2]–[5], economic dispatch [6], [7], state estimation [8]–[10],
optimal power flow [11], [12], protection coordination [9], [13],
unit commitment [10], [14], and maintenance scheduling [15].
For a special case, where some or all variables are constrained
to take on integer values, the technique is referred to as integer
programming [1]. Applications of integer or mixed-integer pro-
gramming in power systems optimization problems have been
reported for power system security assessment [16], unit com-
mitment and generation planning [17]–[19], load management
[20], distribution system planning [21], transmission system
design and optimization [22]–[25], and reliability analysis [26].

However, in general, the objective function or the constraints
or both contain nonlinearities, which raise the concept of non-
linear programming (NLP) [27]. This type of optimization tech-
nique has been extensively used by researchers for solving prob-
lems, such as power system voltage security [28], [29], optimal
power flow [30]–[33], power system operation and planning
[34]–[38], dynamic security [39], [40], power quality [41], unit
commitment [42], reactive power control [43], capacitor place-
ment [44], and optimizing controller parameters [45].

Since NLP is a difficult field, researchers have identified spe-
cial cases for study. A particularly well-studied case [1] is the
one where all the constraints and are linear. This problem
is referred to as linearly constrained optimization. If in addition
to linear constraints, the objective function is quadratic, the op-
timization problem is called quadratic programming (QP). This
specific branch of NLP has also found widespread applications
in the electric power field, in such areas as economic dispatch
[46], [47], reactive power control [48]–[50], optimal power flow
[48], [51], dc load flow [51], transmission system operation and
planning [52], and unit commitment [53].

While deterministic optimization problems are formulated
with known parameters, real-world problems almost invariably

1The maximization problem of the function � is simply translated into the
minimization problem of the function �� .
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include some unknown parameters. This necessitates the intro-
duction of stochastic programming models that incorporate the
probability distribution functions of various variables into the
problem formulation. In its most general case, the technique is
referred to as dynamic programming (DP). Most of the appli-
cations of this optimization technique have been reported for
solving problems such as power system operation and planning
at the distribution level [54]–[59]. Research has also been con-
ducted on applying DP to unit commitment [60], [61].

Although the DP technique has been mathematically proven
to find an optimal solution, it has its own disadvantages. Solving
the DP algorithm in most of the cases is not feasible. Even a nu-
merical solution requires overwhelming computational effort,
which increases exponentially as the size of the problem in-
creases (curse of dimensionality). These restrictive conditions
lead the solution to a suboptimal control scheme with limited
look-ahead policies [62]. The complexity level is even further
exacerbated when moving from finite horizon to infinite horizon
problems, while also considering the stochastic effects, model
imperfections, and the presence of the external disturbances.

Computational intelligence-based techniques, such as genetic
algorithm (GA) and particle swarm optimization (PSO) can be
solutions to the above problems. GA is a search technique used
in computer science and engineering to find the approximate
solutions to optimization problems [63]. GA represents a par-
ticular class of evolutionary algorithms that uses techniques in-
spired by evolutionary biology such as inheritance, mutation,
natural selection, and recombination (or crossover). While it can
rapidly locate good solutions, even for difficult search spaces,
it has some disadvantages associated with it: 1) unless the fit-
ness function is defined properly, GA may have a tendency to
converge towards local optima rather than the global optimum
of the problem; 2) operating on dynamic data sets is difficult;
and 3) for specific optimization problems, and given the same
amount of computation time, simpler optimization algorithms
may find better solutions than GAs.

PSO is another evolutionary computation technique devel-
oped by Eberhart and Kennedy [64], [65] in 1995, which was in-
spired by the social behavior of bird flocking and fish schooling.
PSO has its roots in artificial life and social psychology, as well
as in engineering and computer science. It utilizes a “popula-
tion” of particles that fly through the problem hyperspace with
given velocities. At each iteration, the velocities of the indi-
vidual particles are stochastically adjusted according to the his-
torical best position for the particle itself and the neighborhood
best position. Both the particle best and the neighborhood best
are derived according to a user defined fitness function [65],
[67]. The movement of each particle naturally evolves to an op-
timal or near-optimal solution. The word “swarm” comes from
the irregular movements of the particles in the problem space,
now more similar to a swarm of mosquitoes rather than a flock
of birds or a school of fish [67].

PSO is a computational intelligence-based technique that is
not largely affected by the size and nonlinearity of the problem,
and can converge to the optimal solution in many problems
where most analytical methods fail to converge. It can, there-
fore, be effectively applied to different optimization problems in
power systems. A number of papers have been published in the
past few years that focus on this issue. Moreover, PSO has some

advantages over other similar optimization techniques such as
GA, namely the following.

1) PSO is easier to implement and there are fewer parameters
to adjust.

2) In PSO, every particle remembers its own previous best
value as well as the neighborhood best; therefore, it has a
more effective memory capability than the GA.

3) PSO is more efficient in maintaining the diversity of the
swarm [68] (more similar to the ideal social interaction
in a community), since all the particles use the informa-
tion related to the most successful particle in order to im-
prove themselves, whereas in GA, the worse solutions are
discarded and only the good ones are saved; therefore, in
GA the population evolves around a subset of the best
individuals.

This paper provides a review of the PSO technique, the
basic concepts and different structures and variants, as well
as its applications to power system optimization problems.
A brief introduction has been provided in this section on the
existing optimization techniques that have been applied to
power systems problems. The rest of this paper is arranged as
follows. In Section II, the basic concepts of PSO are explained
along with the original formulation of the algorithm in the
real number space, as well as the discrete number space. The
most common variants of the PSO algorithm are described in
Section III. Section IV provides an extensive literature survey
on the applications of PSO in power systems. Some potential
applications of PSO in power systems, which are not yet
explored in the literature, are briefly discussed in Section V.
Finally, the concluding remarks appear in Section VI.

II. PARTICLE SWARM OPTIMIZATION (PSO): CONCEPTS

AND FORMULATION

A. Basic Concepts

PSO is based on two fundamental disciplines: social science
and computer science. In addition, PSO uses the swarm intel-
ligence concept, which is the property of a system, whereby
the collective behaviors of unsophisticated agents that are in-
teracting locally with their environment create coherent global
functional patterns. Therefore, the cornerstones of PSO can be
described as follows.

1) Social Concepts [67]: It is known that “human intelli-
gence results from social interaction.” Evaluation, comparison,
and imitation of others, as well as learning from experience
allow humans to adapt to the environment and determine op-
timal patterns of behavior, attitudes, and suchlike. In addition,
a second fundamental social concept indicates that “culture and
cognition are inseparable consequences of human sociality.”
Culture is generated when individuals become more similar due
to mutual social learning. The sweep of culture allows individ-
uals to move towards more adaptive patterns of behavior.

2) Swarm Intelligence Principles [64]–[67], [69]: Swarm
Intelligence can be described by considering five fundamental
principles.

1) Proximity Principle: the population should be able to carry
out simple space and time computations.

2) Quality Principle: the population should be able to respond
to quality factors in the environment.
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3) Diverse Response Principle: the population should not
commit its activity along excessively narrow channels.

4) Stability Principle: the population should not change its
mode of behavior every time the environment changes.

5) Adaptability Principle: the population should be able to
change its behavior mode when it is worth the computa-
tional price.

In PSO, the term “particles” refers to population members
which are mass-less and volume-less (or with an arbitrarily
small mass or volume) and are subject to velocities and accel-
erations towards a better mode of behavior.

3) Computational Characteristics [67]: Swarm intelligence
provides a useful paradigm for implementing adaptive systems.
It is an extension of evolutionary computation and includes the
softening parameterization of logical operators like AND, OR,
and NOT. In particular, PSO is an extension, and a potentially
important incarnation of cellular automata (CA). The particle
swarm can be conceptualized as cells in CA, whose states
change in many dimensions simultaneously. Both PSO and CA
share the following computational attributes.

1) Individual particles (cells) are updated in parallel.
2) Each new value depends only on the previous value of the

particle (cell) and its neighbors.
3) All updates are performed according to the same rules.
Other algorithms also exist that are based on swarm intelli-

gence. The ant colony optimization (ACO) algorithm was in-
troduced by Dorigo in 1992 [70]. It is a probabilistic technique
for solving computational problems, which can be reduced to
finding good paths through graphs. It is inspired by the behavior
of ants in finding paths from the colony to the food. In the real
world, ants initially wander randomly, and upon finding food,
they return to their colony while laying down pheromone trails.
If other ants find such a path, they are likely not to keep traveling
at random, but rather follow the trail, returning and reinforcing
it if they eventually find food [71]. However, the pheromone
trail starts to evaporate over time, therefore reducing its attrac-
tive strength. The more time it takes for an ant to travel down
the path and back again, the longer it takes for the pheromones
to evaporate. A short path, by comparison, gets marched over
faster, and thus the pheromone density remains high as it is laid
on the path as fast as it can evaporate. Pheromone evaporation
also has the advantage of avoiding the convergence to a locally
optimal solution. If there were no evaporation at all, the paths
chosen by the first ants would tend to be excessively attractive
to the following ones. In that case, the exploration of the so-
lution space would be constrained. Thus, when one ant finds a
short path from the colony to a food source (i.e., a good solu-
tion), other ants are more likely to follow that path, and positive
feedback eventually leaves all the ants following a single path.

The idea of the ant colony algorithm is to mimic this behavior
with “simulated ants” walking around the graph representing
the problem to solve. ACO algorithms have an advantage over
simulated annealing (SA) and GA approaches when the graph
may change dynamically, since the ant colony algorithm can be
run continuously and adapt to changes in real time [71], [72].

Stochastic diffusion search (SDS) is another method from
the family of swarm intelligence, which was first introduced by
Bishop in 1989 as a population-based, pattern-matching algo-
rithm [73]. The agents perform cheap, partial evaluations of a

hypothesis (a candidate solution to the search problem). They
then share information about hypotheses (diffusion of informa-
tion) through direct one-to-one communication. As a result of
the diffusion mechanism, high-quality solutions can be identi-
fied from clusters of agents with the same hypothesis.

In addition to the above techniques, efforts have been made
in the past few years to develop new models for swarm intelli-
gence systems, such as a honey bee colony and bacteria for-
aging [74], [75]. The honey bee colony is considered as an
intelligent system that is composed of a large number of sim-
plified units (particles). Working together, the particles give the
system some intelligent behavior. Recently, research has been
conducted on using the honey bee model to solve optimization
problems. This can be viewed as modeling the bee foraging, in
which the amount of honey has to be maximized within a min-
imal time and smaller number of scouts [74].

Bacteria foraging emulates the social foraging behavior of
bacteria by models that are based on the foraging principles
theory [75]. In this case, foraging is considered as an optimiza-
tion process in which a bacterium (particle) seeks to maximize
the collected energy per unit foraging time. Bacteria foraging
provides a link between the evolutionary computation in a so-
cial foraging environment and the distributed nongradient opti-
mization algorithms that could be useful for global optimization
over noisy conditions. This algorithm has been recently applied
to power systems as well as adaptive control applications [76],
[77].

B. PSO in Real Number Space

In the real number space, each individual possible solution
can be modeled as a particle that moves through the problem
hyperspace. The position of each particle is determined by the
vector and its movement by the velocity of the particle

[78], as shown in (1)

(1)

The information available for each individual is based on its
own experience (the decisions that it has made so far and the suc-
cess of each decision) and the knowledge of the performance of
other individuals in its neighborhood. Since the relative impor-
tance of these two factors can vary from one decision to another,
it is reasonable to apply random weights to each part, and there-
fore the velocity will be determined by

(2)

where , are two positive numbers and , are
two random numbers with uniform distribution in the range of
[0.0, 1.0].

The velocity update equation in (2) has three major compo-
nents [79].

1) The first component is sometimes referred to as “inertia,”
“momentum,” or “habit.” It models the tendency of the par-
ticle to continue in the same direction it has been traveling.



174 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. 2, APRIL 2008

This component can be scaled by a constant as in the mod-
ified versions of PSO.

2) The second component is a linear attraction towards the
best position ever found by the given particle: (whose
corresponding fitness value is called the particle’s best:

), scaled by a random weight . This compo-
nent is referred to as “memory,” “self-knowledge,” “nos-
talgia,” or “remembrance.”

3) The third component of the velocity update equation is a
linear attraction towards the best position found by any par-
ticle: (whose corresponding fitness value is called global
best: ), scaled by another random weight .
This component is referred to as “cooperation,” “social
knowledge,” “group knowledge,” or “shared information.”

According to the formulation above, the following procedure
can be used for implementing the PSO algorithm [80].

1) Initialize the swarm by assigning a random position in the
problem hyperspace to each particle.

2) Evaluate the fitness function for each particle.
3) For each individual particle, compare the particle’s fitness

value with its . If the current value is better than the
value, then set this value as the and the current

particle’s position, , as .
4) Identify the particle that has the best fitness value. The

value of its fitness function is identified as and its
position as .

5) Update the velocities and positions of all the particles using
(1) and (2).

6) Repeat steps 2–5 until a stopping criterion is met (e.g.,
maximum number of iterations or a sufficiently good fit-
ness value).

Richard and Ventura [81] proposed initializing the particles in
a way that they are distributed as evenly as possible throughout
the problem space. This ensures a broad coverage of the search
space. They concluded that applying a starting configuration
based on the centroidal Voronoi tessellations (CVTs) improves
the performance of the PSO compared with the original random
initialization [81]. As an alternative method, Campana et al.
[82] proposed reformulating the standard iteration of PSO into
a linear dynamic system. The system can then be investigated to
determine the initial particles’ positions such that the trajecto-
ries over the problem hyperspace are orthogonal, improving the
exploration mode and convergence of the swarm.

1) Topology of the Particle Swarm: Particles have been
studied in two general types of neighborhoods: 1) global best

and 2) local best [67]. In the neighbor-
hood, the particles are attracted to the best solution found by
any member of the swarm. This represents a fully connected
network in which each particle has access to the information
of all other members in the community [Fig. 1(a)]. However,
in the case of using the local best approach, each particle
has access to the information corresponding to its immediate
neighbors, according to a certain swarm topology. The two
most common topologies are the ring topology, in which each
particle is connected with two neighbors [Fig. 1(b)], and the
wheel topology (typical for highly centralized business organi-
zations), in which the individuals are isolated from one another
and all the information is communicated to a focal individual
[Fig. 1(c)].

Fig. 1. Swarm topologies. (a) Global best. (b) Ring topology. (c) Wheel
topology. (d) Pyramid topology. (e) Von Neumann topology.

Kennedy [83] suggests that the version [Fig. 1(a)] con-
verges fast but may be trapped in a local minimum, while the

network has more chances to find an optimal solution, al-
though with slower convergence.

Kennedy and Mendes [84] have evaluated all topologies in
Fig. 1, as well as the case of random neighbors. In their investi-
gations with a total number of 20 particles, they found that the
best performance occurred in a randomly generated neighbor-
hood with an average size of five particles. The authors also sug-
gested that the Von Neumann configuration may perform better
than other topologies including the version. Nevertheless,
selecting the most efficient neighborhood structure, in general,
depends on the type of problem. One structure may perform
more effectively for certain types of problems, yet have a worse
performance for other problems. The authors also proposed a
fully informed particle swarm (FIPS), where each individual
is influenced by the successes of all its neighbors, rather than
just the best one and itself [85]. Therefore, instead of adding
two terms to the velocity [attraction to the individual and global
(or local) best] and dividing the acceleration constant between
them, the FIPS distributes the weight of the acceleration con-
stant equally across the entire neighborhood [85].

2) Parameter Selection for Particle Swarm: When imple-
menting the particle swarm algorithm, several considerations
must be taken into account to facilitate the convergence and pre-
vent an “explosion” of the swarm. These considerations include
limiting the maximum velocity, selecting acceleration constants,
the constriction factor, or the inertia constant.

a) Selection of maximum velocity: At each iteration step,
the algorithm proceeds by adjusting the distance (velocity) that
each particle moves in every dimension of the problem hyper-
space. The velocity of the particle is a stochastic variable and is,
therefore, subject to creating an uncontrolled trajectory, making
the particle follow wider cycles in the problem space [86], [87].
In order to damp these oscillations, upper and lower limits can
be defined for the velocity [67]



DEL VALLE et al.: PARTICLE SWARM OPTIMIZATION: BASIC CONCEPTS, VARIANTS AND APPLICATIONS IN POWER SYSTEMS 175

Most of the time, the value for is selected empirically,
according to the characteristics of the problem. It is important
to note that if the value of this parameter is too high, then the
particles may move erratically, going beyond a good solution; on
the other hand, if is too small, then the particle’s movement
is limited and the optimal solution may not be reached.

Research work performed by Fan and Shi [88] have shown
that an appropriate dynamically changing can improve the
performance of the PSO algorithm. Additionally, to ensure uni-
form velocity throughout all dimensions, Abido [89], [90] has
proposed a maximum velocity given by

(3)

where is the number of intervals in the th dimension selected
by the user and , are maximum and minimum values
found so far by the particles.

b) Selection of acceleration constants: Acceleration con-
stants and in (2) control the movement of each particle to-
wards its individual and global best position, respectively. Small
values limit the movement of the particles, while large numbers
may cause the particles to diverge. Ozcan and Mohan conducted
several experiments for the special case of a single particle in a
one-dimensional problem space in order to examine the effect
of a deterministic acceleration constant [67], [91]. In this par-
ticular case, the two acceleration constants are considered as a
single acceleration constant , since the individual
and global best positions are the same. The authors concluded
that by an increase in the value of the acceleration constant, the
frequency of the oscillations around the optimal point increases.
For smaller values of , the pattern of the trajectory is similar
to a sinusoidal waveform; however, if the value is increased, the
complex paths of interwoven cyclic trajectories appear. The tra-
jectory goes to infinity for values of greater than 4.0.

The effect of considering a random value for acceleration
constant helps to create an uneven cycling for the trajectory of
the particle when it is searching around the optimal value. Since
the acceleration parameter controls the strength of terms,
a small value will lead to a weak effect; therefore, the particles
will follow a wide path and they will be pulled back only after
a large number of iterations. If the acceleration constant is too
high then the steps will be limited by .

In general, the maximum value for this constant should be
, meaning . A good starting point has

been proposed [67], [91] to be . It is important
to note that and should not necessarily be equal since
the “weights” for individual and group experience can vary ac-
cording to the characteristics of the problem.

c) Selection of constriction factor or inertia constant: Em-
pirical studies performed on PSO indicate that even when the
maximum velocity and acceleration constants are correctly de-
fined, the particles may still diverge, i.e., go to infinity; a phe-
nomena known as “explosion” of the swarm. Two methods are
proposed in the literature in order to control this “explosion:”
constriction factor [92]–[94] and inertia constant [95], [96].

—Constriction Factor: The first method to control the “ex-
plosion” of the swarm was developed by Clerc and Kennedy
[92]. It introduces a constriction coefficient which in the sim-
plest case is called “Type 1” [67]. In general, when several

particles are considered in a multidimensional problem space,
Clerc’s method leads to the following update rule [86]:

(4)

where

(5)

Typically, when this method is used, is set to 4.1 and the
constant is thus 0.729. This results in the previous velocity
being multiplied by 0.729 and each of the two terms
being multiplied by 1.49445 .

In general, the constriction factor improves the convergence
of the particle over time by damping the oscillations once the
particle is focused on the best point in an optimal region. The
main disadvantage of this method is that the particles may
follow wider cycles and may not converge when the individual
best performance is far from the neighborhood’s best perfor-
mance (two different regions).

—Inertia Weight: The second method (proposed by Shi
and Eberhart [95], [96]) suggests a new parameter which will
only multiply the velocity at the previous time step, i.e., ,
instead of having one parameter multiplying the whole right-
hand side as in (4). This parameter can be interpreted as an “in-
ertia constant” , which results in the modified equation for
the velocity of the particle [67]

(6)

The inertia constant can be either implemented as a fixed
value or can be dynamically changing [86], [89], [90], [93], [97].
Essentially, this parameter controls the exploration of the search
space, therefore an initially higher value (typically 0.9) allows
the particles to move freely in order to find the global optimum
neighborhood fast. Once the optimal region is found, the value
of the inertia weight can be decreased (usually to 0.4) in order to
narrow the search, shifting from an exploratory mode to an ex-
ploitative mode. Commonly, a linearly decreasing inertia weight
(first introduced by Shi and Eberhart [98], [99]) has produced
good results in many applications; however, the main disadvan-
tage of this method is that once the inertia weight is decreased,
the swarm loses its ability to search new areas because it is not
able to recover its exploration mode (which does not happen
with Clerc’s constriction coefficient [92]).

Recently, Chen and Li used stochastic approximation theory
to analyze the dynamics of the PSO [100]. The authors proposed
a decreasing coefficient that is reduced to zero as the number of
iterations increases, and a stochastic velocity with fixed expec-
tation to enhance the exploratory mode of the swarm. While the
former facilitates the particles to spread around the problem hy-
perspace at the beginning of the search, the stochastic velocity
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term provides additional exploration ability, thus helping the
particles to escape from local minima.

C. Discrete PSO

The general concepts behind optimization techniques ini-
tially developed for problems defined over real-valued vector
spaces, such as PSO, can also be applied to discrete-valued
search spaces where either binary or integer variables have to be
arranged into particles. A brief discussion about the adaptations
that correspond to either case is presented in this section.

1) Binary PSO: For the particular case of binary PSO, each
individual (particle) of the population has to take a binary de-
cision, either or . In that
sense, according to the social approach of PSO, the probability
of an individual to decide YES or NO can be modeled as [67],
[101]

(7)

In this model, the probability that the th individual chooses
1 for the th bit in the string, i.e., , is a function of
the previous state of that bit, i.e., and , i.e., the
measure of the individual’s predisposition to choose 1 or 0.

This predisposition is derived based on individual and group
performance. Therefore, the probability , implicitly
depends on and . The former is the best individual state
found so far; it is 1 if the best individual success occurred when

was 1, and 0, otherwise. The latter corresponds to the neigh-
borhood best; this parameter is 1 if the best of any member of
the neighborhood occurred when was 1, and 0, otherwise.

Mathematically, determines a threshold in the probability
function , and therefore should be bounded in the
range of [0.0, 1.0]. This threshold can be modeled with the well-
known sigmoidal function

(8)

Applying (8), the state of the th position in the string for the
th individual at time , , can be expressed as [67], [101]

where is a random number with a uniform distribution in the
range of [0.0, 1.0]. This procedure is repeatedly iterated over
each dimension and each individual ,
testing if the current value results in a better evaluation
than . In that case, the value of will be stored as the
best individual state.

Equation (7) implies that the sociocognitive concepts of par-
ticle swarm are included in the function , which states that
the disposition of each individual towards success is adjusted ac-
cording to its own experience as well as that of the community.
Similar to the case of a real number space, and since the rela-
tive importance of individual and social factors may vary from
one decision to another, it seems reasonable to consider random
weights multiplying each part, as in (9) [67], [101]

(9)

where , are two positive numbers and , are
two random numbers with uniform distribution in the range of
[0.0, 1.0].

For all equations presented above, some considerations have
to be made in order to adjust the limits of the parameters. As
for the random weights , , the upper limits for the uniform
distribution are sometimes set arbitrarily, but often in such a way
that the two limits sum up to 4.0. In the case of , a maximum
limit must be determined in order to avoid the threshold being
too close to 0.0 or 1.0. In practice, is typically set to a
value of 4.0, so that there is always at least a probability of

for any bit to change its state (8).
2) Integer PSO: In a more general case, when integer solu-

tions (not necessarily 0 or 1) are needed, the optimal solution
can be determined by rounding off the real optimum values to
the nearest integer [102]. Equations (1) and (2), developed for
a real number space, are used to determine the new position for
each particle. Once is determined, its value in the

th dimension is rounded to the nearest integer value using the
bracket function (10)

(10)

The results presented by Laskari et al. [103] using integer
PSO indicate that the performance of the method is not affected
when the real values of the particles are truncated. Moreover,
integer PSO has a high success rate in solving integer program-
ming problems even when other methods, such as Branch and
Bound fail [103].

III. PSO: VARIANTS

This section describes different variants of the PSO algo-
rithm. Some of these variants have been proposed to incorpo-
rate either the capabilities of other evolutionary computation
techniques, such as hybrid versions of PSO or the adaptation
of PSO parameters for a better performance (adaptive PSO).
In other cases, the nature of the problem to be solved requires
the PSO to work under complex environments as in the case
of the multi-objective or constrained optimization problems or
tracking dynamic systems. This section also presents discrete
variants of PSO and other variations to the original formula-
tion that can be included to improve its performance, such as
dissipative PSO, which introduces negative entropy to prevent
premature stagnation, or stretching and passive congregation
techniques to prevent the particles from being trapped in local
minima.

A. Hybrid PSO

A natural evolution of the particle swarm algorithm can
be achieved by incorporating methods that have already been
tested in other evolutionary computation techniques. Many
authors have considered incorporating selection, mutation and
crossover, as well as the differential evolution (DE), into the
PSO algorithm. The main goal is to increase the diversity of the
population by: 1) either preventing the particles to move too
close to each other and collide [104], [105] or 2) to self-adapt
parameters such as the constriction factor, acceleration con-
stants [106], or inertia weight [107].
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As a result, hybrid versions of PSO have been created and
tested in different applications. The most common ones include
hybrid of genetic algorithm and PSO (GA-PSO), evolutionary
PSO (EPSO) and differential evolution PSO (DEPSO and
C-PSO) which are discussed in this section.

1) Hybrid of Genetic Algorithm and PSO (GA-PSO):
GA-PSO combines the advantages of swarm intelligence and a
natural selection mechanism, such as GA, in order to increase
the number of highly evaluated agents, while decreasing the
number of lowly evaluated agents at each iteration step. There-
fore, not only is it possible to successively change the current
searching area by considering and values, but also
to jump from one area to another by the selection mechanism,
which results in accelerating the convergence speed of the
whole algorithm.

The GA-PSO algorithm basically employs a major aspect
of the classical GA approach, which is the capability of
“breeding.” However, some authors have also analyzed the
inclusion of mutation or a simple replacement of the best
fitted value, as a means of improvement to the standard PSO
formulation [108], [109].

El-Dib et al. [108] considered the application of a reproduc-
tion system that modifies both the position and velocity vectors
of randomly selected particles in order to further improve the
potential of PSO to reach an optimum

(11)

where , represent the position vectors
of randomly chosen particles, are the corre-
sponding velocity vectors of each parent and ,

are the offspring of the breeding process.
Naka et al. [109] suggest replacing agent positions with low

fitness values, with those with high fitness, according to a se-
lection rate , keeping the information of the replaced
agent so that a dependence on the past high evaluation position
is accomplished (HPSO).

2) Hybrid of Evolutionary Programming and PSO (EPSO):
Evolutionary PSO incorporates a selection procedure to the
original PSO algorithm, as well as self-adapting properties for
its parameters. Angeline [110] proposed adding the tournament
selection method used in evolutionary programming (EP) for
this purpose. In this approach, the update formulas remain the
same as in the original PSO algorithm; however, the particles
are selected as follows.

• The fitness value of each particle is compared with other
particles and scores a point for each particle with a worse
fitness value. The population is sorted based on this score.

• The current positions and velocities of the best half of the
swarm replace the positions and velocities of the worst
half.

• The individual best of each particle of the swarm (best and
worst half) remain unmodified. Therefore, at each iteration
step, half of the individuals are moved to positions of the
search space that are closer to the optimal solution than
their previous positions while keeping their personal best
points.

The difference between this method and the original particle
swarm is that the exploitative search mechanism is emphasized.
This should help the optimum to be found more consistently
than the original particle swarm. In addition to the selection
mechanism, Miranda and Fonseca [106], [111], [112] intro-
duced self adaptation capabilities to the swarm by modifying
the concept of a particle to include, not only the objective
parameters, but also a set of strategic parameters (inertia and
acceleration constants, simply called weights).

The general EPSO scheme can be summarized as follows
[106], [111], [112].

• Replication: Each particle is replicated times.
• Mutation: Each particle has its weights mutated.
• Reproduction: Each mutated particle generates an off-

spring according to the particle movement rule.
• Evaluation: Each offspring has a fitness value.
• Selection: Stochastic tournament is carried out in order

to select the best particle which survives to the next
generation.

The particle movement is defined as

(12)

where

(13)

and is a random number with normal distribution, i.e.,
N(0,1).

The global best is also mutated by

(14)

where and are learning parameters that can be either fixed
or dynamically changing as strategic parameters.

3) Hybrid of Differential Evolution and PSO (DEPSO and
C-PSO): A differential evolution operator has been proposed
to improve the performance of the PSO algorithm in two dif-
ferent ways: 1) it can be applied to the particle’s best position to
eliminate the particles falling into local minima (DEPSO) [113],
[114], [115] or 2) it can be used to find the optimal parameters
(inertia and acceleration constants) for the canonical PSO (com-
posite PSO) [116].

a) DEPSO: The DEPSO method proposed by Zang and
Xie [113] alternates the original PSO algorithm and the DE op-
erator, i.e., (1) and (2) are performed at the odd iterations and
(15) at the even iterations. The DE mutation operator is defined
over the particle’s best positions with a trial point
which for the th dimension is derived as

(15)
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where is a random integer value within [1, ] which ensures
the mutation in at least one dimension, is a crossover con-
stant and is the case of for the general
difference vector

(16)

where is the difference between two elements randomly
chosen in the set.

If the fitness value of is better than the one for , then
will replace . After the DE operator is applied to all the parti-
cles’ individual best values, the value is chosen among the

set providing the social learning capability, which might
speed up the convergence.

b) Composite PSO (C-PSO): In most of the previously
presented algorithms, the selection of the PSO parameters

is made basically by trial and error. The use
of algorithms such as GA, EP, or DE may help make this
selection procedure more efficient. Composite PSO algorithm
is a method that employs DE in order to solve the problem of
parameter selection. The resulting algorithm is summarized
next [116].

• Step 1) Initialize to 1 and set the maximum number of
iterations as . Generate initial position of particles ,
initial velocity , and the initial PSO parameters

randomly. The size of , , and is equal to
, the size of the population, and is the current iteration

number.
• Step 2) For each , calculate and as

(17)

Calculate the fitness function value for each particle.
• Apply mutation, crossover, and selection operators of the

DE algorithm to . Let be the best individual produced
by this process. Replace by and repeat the proce-
dure until a terminal number of iterations of DE (selected
a priori) is reached.

• The process continues from Step 2) until the stopping cri-
terion (maximum number of iterations ) is met.

B. Adaptive PSO

Other authors have suggested other adjustments to the param-
eters of the PSO algorithm: adding a random component to the
inertia weight [86], [117], [118], applying Fuzzy logic [119],
[120], using a secondary PSO to find the optimal parameters of
a primary PSO [121], Q-learning [122], or adaptive critics [123],
[124].

Zhang et al. [125] have also considered the adjustment of
the number of particles and the neighborhood size. The PSO
algorithm is modified by adding an improvement index for the
particles of the swarm

(18)

where is the fitness function value for particle at
iteration .

An improvement threshold has to be defined as the limit
for the minimum acceptable improvement. Then, the adaptive
strategies are as follows [125].

1) Adjust the swarm size: If the particle has enough improve-
ment but it is the worst particle in its neighborhood, then
remove the particle. On the other hand, if the particle does
not have enough improvement but it is the best particle in
its neighborhood, then generate a new particle.

2) Adjust the inertia weight: The more a particle improves
itself, the smaller the area this particle needs to explore. In
contrast, if the particle has a deficient improvement then it
is desirable to increase its search space. The adjustment of
the inertia weight is done accordingly.

3) Adjust the neighborhood size: If the particle is the best
in its neighborhood but it has not improved itself enough,
then the particle needs more information and the size of
the neighborhood has to be increased. If the particle has
improved itself satisfactorily, then it does not need to ask
many neighbors and its neighborhood size can be reduced.

In a similar fashion, Li [126] has proposed a species-based
PSO (SPSO). According to this method, the swarm population
is divided into species of subpopulations based on their sim-
ilarity. Each species is grouped around a dominating particle
called the species seed. At each iteration step, the species seeds
are identified and adopted as neighborhood bests for the species
groups. Over successive iterations, the adaptation of the species
allows the algorithm to find multiple local optima, from which
the global optimum can be identified.

C. PSO in Complex Environment

1) Multiobjective Particle Swarm Optimization (MOPSO):
Multiobjective optimization problems consist of several objec-
tives that need to be achieved simultaneously. One simple way
to approach this problem is to aggregate the multiple objectives
into one objective function considering weights that can be fixed
or dynamically changing during the optimization process [127].
The main disadvantage of this approach is that it is not always
possible to find the appropriate weighted function. Moreover, it
is sometimes desired to consider the tradeoffs between the mul-
tiple objectives and, therefore, to find the multiple Pareto op-
timal solutions (Pareto front) [102].

Recently, several MOPSO algorithms have been developed
based on the Pareto optimality concept. The main issue to be
addressed is the selection of the cognitive and social leaders
( and ) such that they can provide an effective guidance
to reach the most promising Pareto front region but at the same
time maintain the population diversity.

For the selection procedure two typical approaches are sug-
gested in the literature: selection based on quantitative standards
and random selection. In the first case, the leader is determined
by some procedure, without any randomness involved, such as
the Pareto ranking scheme [128], the sigma method [129] or the
dominated tree [130]. However, in the random approach, the se-
lection for a candidate is stochastic and proportional to certain
weights assigned to maintain the population diversity (crowding
radius, crowding factor, niche count, etc.) [131]. For instance,
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Ray and Liew [132] choose the particles that perform better to
be the leaders (SOL) and the remaining particles tend to move
towards a randomly selected leader from this leader group where
the leader with fewer followers has the highest probability of
being selected.

Coello and Lechuga [133] have also incorporated the Pareto
dominance into the PSO algorithm. In this case, the nondomi-
nated solutions are stored in a secondary population and the pri-
mary population uses a randomly selected neighborhood best
from this secondary population to update their velocities. The
authors proposed an adaptive grid to generate well-distributed
Pareto fronts and mutation operators to enhance the exploratory
capabilities of the swarm [134].

Keeping the same two goals (obtaining a set of nondominated
solutions as close as possible to the Pareto front and maintaining
a well-distributed solution set along the Pareto front), Li [135]
proposed sorting the entire population into various nondomina-
tion levels such that the individuals from better fronts can be
selected. In this way, the selection process pushes towards the
true Pareto front.

Other authors have developed different approaches such as
combining canonical PSO with auto fitness sharing concepts
[136], dynamic neighborhood PSO, or vector evaluated PSO,
being the last two explained in the next sections.

a) Dynamic Neighborhood PSO (DN-PSO): The dynamic
neighborhood method for solving multiobjective optimization
problems has been developed by Hu and Eberhart [137], [138].
In this approach, the PSO algorithm is modified in order to lo-
cate the Pareto front.

• The multiple objectives are divided into two groups:
and . is defined as the neighborhood objective, while

is defined as the optimization objective. The choices of
and are arbitrary.

• At each iteration step, each particle defines its neighbor-
hood by calculating the distance to all other particles and
choosing the closest neighbors. In this case, the distance
is described as the difference between fitness values for the
first group of objective functions.

• Once the neighborhood has been determined, the best local
value is found among the neighbors in terms of the fitness
value of the second group of objective functions.

• The global best updating strategy considers only the solu-
tions that dominate the current value.

An extended memory, for storing all Pareto optimal solu-
tions in a current generation, has been introduced in order to
reduce computational time and make the algorithm more effi-
cient [138]. Bartz–Beielstein et al. [139] proposed having an
archive of fixed size in which the decision of selection or dele-
tion is taken according to the influence of each particle on the
diversity of the Pareto front.

b) Vector Evaluated PSO (VEPSO): Parsopoulos and
Vrahatis [102] proposed the vector evaluated particle swarm
optimization (VEPSO) algorithm, which is based in the con-
cept of the vector evaluated genetic algorithm (VEGA). In
the VEPSO algorithm, two or more swarms are used in order
to search the problem hyperspace. Each swarm is evaluated
according to one of the objective functions and the information
is exchanged between them. As a result the knowledge coming

from other swarms is used to guide each particle’s trajectory
towards Pareto optimal points. The velocity update equation for
an -objective function problem can be formulated as [140]

(19)

where

Index defines the swarm number ;

Index corresponds to the particle number
;

is the constriction factor of swarm ;

is the inertia weight of swarm ;

is the best position found by particle in swarm ;

is the best position found for any particle in swarm
.

If the ring topology [Fig. 1(b)] is used, then

(20)

The VEPSO algorithm also enables the swarms to be im-
plemented in parallel computers that are connected in an Eth-
ernet network [141]. In this case, the algorithm is called parallel
VEPSO.

2) Constraint Handling in PSO: Real problems are often
subject to different constraints that limit the search space to a
certain feasible region. Two different approaches exist in the
literature that handle constraints applied to a PSO algorithm.
One approach is to include the constraints in the fitness func-
tion using penalty functions, while the second approach deals
with the constraints and fitness separately.

The main advantage of the second approach is that there are
no additional parameters introduced in the PSO algorithm and
there is also no limit to the number or format of the constraints
[131]. The PSO basic equations for velocity and position update
remain unchanged. After the new positions are determined for
all the particles, each solution is checked to determine if it be-
longs to the feasible space or not. If the feasibility conditions are
not met, one of the following actions can be taken: the particle is
reset to the previous position, or the particle is reset to its ,
or the nonfeasible solution is kept, but the is not updated
(just feasible solutions are stored in the memory) [131], or the
particle is rerandomized [142]. In addition, during the initial-
ization process, all particles can be reinitialized until they find
feasible solutions [131].

In his work with several popular benchmark functions, Hu
[131] concluded that the PSO algorithm is efficient in handling
constrained optimization problems by finding better solutions in
less time. The PSO algorithm does not require domain knowl-
edge or complex techniques, and no additional parameters need
to be tuned. The limitations of the method appear in problems



180 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. 2, APRIL 2008

with extremely small feasible spaces, where other constraint
handling techniques may need to be developed.

3) Dynamic Tracking in PSO: The classical particle swarm
algorithm has been proven to be very effective and computation-
ally efficient in solving static optimization problems. However,
this method might not be as efficient when applied to a dynamic
system in which the optimal value may change repeatedly. An
adaptive approach has been introduced to the original PSO al-
gorithm in order to compensate for this problem. The concept of
adaptation has been incorporated by either rerandomizing par-
ticles or dynamically changing the parameters of the PSO [87],
[143].

Hu and Eberhart [144] introduced two methods to detect
environmental changes: the “changed- -value” and the
“fixed- -values.” The former method suggests reevalu-
ating the fitness function for at each iteration step. If

refers to the same particle but its corresponding fitness
function value is different, then it is assumed that the dynamics
of the system has changed. Since this assumption may not be
necessarily true for all dynamic systems, the second method is
proposed, in which the locations of and the second best
particle are monitored. If none of them change in a certain
number of iterations, the algorithm assumes that a possible
optimum has been found. Various strategies are employed in
both methods to deal with environmental changes by adapting
the swarm. These include rerandomizing a certain number of
particles (10%, 50%, or 100% of the population size), resetting
certain particles, rerandomizing the or a combination of
the previous strategies [144], [145].

In a similar approach, Das and Venayagamoorthy [146], [147]
have proposed a modification to the standard PSO called small
population PSO (SPPSO). The algorithm uses a small popula-
tion of particles (five or less) which is regenerated every it-
erations; all particles are replaced except by the particle
in the swarm and the population attributes are transmitted
to the new generation to keep the memory characteristics algo-
rithm. Under this scheme, the performance of the PSO is im-
proved under dynamic conditions, making it more suitable for
online applications, as well as hardware implementation.

D. Discrete PSO Variants

Further modifications to the Binary version of PSO have been
developed to improve the performance of the algorithm in dif-
ferent applications. Mohan and Al-Kazemi have proposed the
following variations [148].

• Direct approach, in which the classical PSO algorithm
is applied and the solutions are converted into bit strings
using a hard decision decoding process.

• Bias vector approach, in which the velocity’s update is ran-
domly selected from the three parts in the right-hand side
of (2), using probabilities depending on the value of the fit-
ness function.

• Mixed search approach, where the particles are divided
into multiple groups and each of them can dynamically
adopt a local or a global version of PSO.

The authors have also suggested unifying PSO with other evo-
lutionary algorithms and with quantum theory. In the latter case,

the use of a quantum bit (Q-bit) is proposed to probabilistically
represent a linear superposition of states (binary solutions) in
the search space [80], [149], [150]. Their results show that the
proposed method is faster and more efficient compared to the
classical binary PSO and other evolutionary algorithms, such as
the GA.

A different approach was proposed by Cedeño and Agrafiotis
[151], in which the original particle swarm algorithm is adapted
to the discrete problem of feature selection by normalizing the
value of each component of the particle’s position vector at each
run. In this way, the location of the particles can be viewed as
the probabilities that are used in a roulette wheel to determine
whether the entry takes 1 or 0, which determines whether
the th feature in the th particle is selected or not in the next
generation.

E. Other Variants of PSO

1) Gaussian PSO (GPSO): The classical PSO algorithm per-
forms its search in the median between the global and local best.
The way in which the search is performed, as well as the conver-
gence of the swarm in the optimal area, depends on how the pa-
rameters such as acceleration and inertia constants are adjusted.
In order to correct these perceived weaknesses, some authors
have introduced Gaussian functions for guiding the movements
of the particles [152]–[154]. In this approach, the inertia con-
stant is no longer needed and the acceleration constant is re-
placed by random numbers with Gaussian distributions [153],
[154].

Secrest and Lamont [152] proposed the following update
formula:

(21)

where

distance between global and local
best. If both points are the same,
then it is set to one;

a constant between zero and one
that determines the “trust” be-
tween the global and local best.
The larger is, the more par-
ticles will be placed around the
global best;

a constant between zero and one
that establishes the point between
the global and the local
best that is a standard de-
viation from both;

a zero-mean Gaussian random
number with standard deviation of

;
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a random number between zero to
one with uniform distribution;

a random vector with magnitude
of one, and its angle is uniformly
distributed from zero to .

Considering this modification to the PSO algorithm, the area
around the global and local best is predominately searched. As
the global and local best get closer together, the standard devia-
tion decreases and the area being searched converges.

Krohling [153], [154] has proposed a different method for
updating the velocity at each iteration step, namely

(22)
where and are positive random numbers generated
according to the absolute value of the Gaussian probability dis-
tribution, i.e., .

Considering the previous modifications in the velocity update
formula, the coefficients of the two terms are automati-
cally generated by using a Gaussian probability distribution. So,
there is no need to specify any other parameters. Furthermore,
the author claims that by using the Gaussian PSO, the maximum
velocity is no longer needed.

2) Dissipative PSO (DPSO): DPSO introduces negative en-
tropy to stimulate the model in PSO, creating a dissipative struc-
ture that prevents premature stagnation [155], [156]. The nega-
tive entropy introduces an additional chaos in the velocity of the
particles as follows:

(23)

where and are both random numbers between 0 and 1.
Analogously, the chaos for the location of the particles is rep-

resented by

(24)

where is a random number between 0 and 1 and
is another random number with predefined

lower and upper limits [155].
The chaos introduces the negative entropy that keeps the

system out of the equilibrium state. Then, the self organization
of dissipative structures, along with the inherent nonlinear
interactions in the swarm, lead to sustainable development from
fluctuations [156].

3) PSO With Passive Congregation (PSOPC): Passive con-
gregation, a mechanism that allows animals to aggregate into
groups, has been proposed by He et al. [157] as a possible alter-
native to prevent the PSO algorithm from being trapped in local
optima and to improve its accuracy and convergence speed. The
inclusion of passive congregation modifies the original velocity
update formula to

(25)

where , , and are random numbers between 0 and 1,
is the passive congregation coefficient, and is a particle ran-
domly selected from the swarm.

However, the work presented by He et al. in [157] does not
include specifications for the value of the congregation coeffi-
cient, or how it affects the performance of the algorithm. These
two aspects are important aspects for future research.

4) Stretching PSO (SPSO): The main issue in many global
optimization techniques is the problem of convergence in the
presence of local minima. Under these conditions, the solution
may fall in the local minima when the search begins, and it may
stagnate itself. Parsopoulos and Vrahatis [102] presented a mod-
ified PSO algorithm called “stretching” (SPSO) that is oriented
towards solving the problem of finding all global minima.

In this algorithm, the so-called deflection and stretching tech-
niques, as well as a repulsion technique are incorporated into
the original PSO. The first two techniques apply the concept of
transforming the objective function by incorporating the already
found minimum points. The latter (repulsion technique) adds the
ability to guarantee that all particles will not move toward the
already found minima [102], [116]. Hence, the proposed algo-
rithm can avoid the already found solutions and, therefore, have
more chances to find the global optimal solution to the objective
function.

The equations used are two-stage transformations. Assuming
that a fitness function is chosen for the problem, the first trans-
formation stage transforms the original fitness function
into with representing any particle, which eliminates
all the local minima that are located above , where rep-
resents a detected local minimum

(26)

The second stage stretches the neighborhood of upwards,
since it assigns higher function values to the points in the upward
neighborhood

(27)

In (26) and (27), , . and are arbitrarily chosen positive
constants and is the triple valued sign function

(28)

None of the stages alter the local minima located below ;
therefore, the location of the global minimum is left unchanged
[102].

5) Cooperative PSO (CPSO): The cooperative PSO (CPSO),
as a variant of the original PSO algorithm, is presented by Van
den Bergh and Engelbrecht [94]. CPSO employs cooperative
behavior in order to significantly improve the performance of
the original PSO algorithm. It uses multiple swarms to optimize
different components of the solution vector cooperatively.

Following the same approach as Potter’s cooperative coevo-
lutionary genetic algorithm (CCGA), in CPSO, the search space
is explicitly partitioned by splitting the solution vectors into
smaller vectors. Two new algorithms are proposed
and .

In the CPSO-S algorithm, a swarm with -dimensional vec-
tors is partitioned into -swarms of one-dimensional vectors,
with each swarm attempting to optimize a single component of



182 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. 2, APRIL 2008

TABLE I
APPLICATION OF PSO TECHNIQUE TO POWER SYSTEMS BY TECHNICAL AREAS

the solution vector. A credit assignment mechanism is designed
to evaluate each particle in each swarm; for instance the original
fitness function for the th swarm can be evaluated, keeping all
other components constant. The advantage of the CPSO-S
approach is that only one component is modified at a time, there-
fore, many combinations are formed using different members
from different swarms, yielding the desired fine-grained search
and a significant increase in the solution diversity.

The algorithm called is a modification of the
previous method in which the position vector is divided in
parts instead of .

On the other hand, given that the PSO has the ability to es-
cape from pseudominimizers, and the algorithm
has faster convergence on certain functions, the
combines these two techniques by executing one iteration of

followed by one iteration of the standard PSO
algorithm.

Baskar and Suganthan [158] have proposed a cooperative
scheme, referred to as concurrent PSO (CONPSO), where the
problem hyperspace is implicitly partitioned by having two
swarms searching concurrently for a solution with frequent
message passing of information .

Recently, a new hierarchal cooperative particle swarm op-
timizer was proposed by combining the implicit and explicit
space decomposition techniques adopted in CPSO-S and
CONPSO [159]. The combination is achieved by having two
swarms concurrently searching for a solution, while each one
employs the CPSO-S technique. The results provided in [159]
show that the proposed approach outperforms the CONPSO,
the CPSO-S, and the CPSO-H for four selected benchmark
functions, namely, the Rosenbrock function (unimodal), the
Griewank function (multimodal), the Ackley function (multi-
modal), and the Rastrigin function (multimodal) [159].

6) Comprehensive Learning PSO (CLPSO): In this new
strategy, the conventional equation for the velocity update is
modified to [160]

(29)
where correspond to the dimension index and

defines which particles’ the particle should follow.

For each dimension of particle , a random number is gener-
ated; if this number is greater than a certain value (where
is called the learning probability), then the particle will follow
its own , otherwise it will learn from another particle’s

. In the latter case, a tournament selection is applied to de-
termine which particle’s will be used.

1) Two random particles are selected from the swarm

(30)

where is the population size.
2) Their values are compared and the best one is

selected.
3) The winner particle is used as an exemplar to learn from.
Additionally, to ensure that the particles learns from good ex-

emplars and to minimize the time wasted following poor direc-
tions, the particles are allowed to learn until a refreshing gap ,
defined as a certain number of iterations, is reached. After that
the values of are reassigned for all particles in the swarm.

In the CLPSO algorithm, the parameters, , , and
have to be tuned. In the case of the learning probability ,
Liang et al. [160] have proposed to use a different value for
each particle to given them different levels of exploration and
exploitation ability. In this scheme, the advantages of this
learning strategy are that all the particles are potential leaders;
therefore, the chances of getting trapped in local minima are
reduced by the cooperative behavior of the swarm. In addition,
the particles use different exemplars for each dimension, which
are renewed after some iterations (refreshing gap), giving more
diversity in the searching process.

IV. PSO: APPLICATIONS TO POWER SYSTEMS

This section presents an overview of the applications of the
PSO technique to power systems problems. Table I summarizes
the applications where PSO has been applied for solving the
optimization problem, along with the type of PSO used and the
major publications associated with the application.

The topics addressed in this section include those presented
by AlRashidi and El-Hawari [161], plus some new areas under
development. In addition, technical details are offered for each
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application to allow the reader to perform similar experiments
and solve problems of the same characteristics.

A. Reactive Power and Voltage Control

In general, an electric power network is prone to sudden
changes to its configuration, as the lines and loads are switched
on and off. In such a dynamic system, keeping the voltage
within an allowable range for the consumers is one of the most
important operating tasks of the utilities. In order to achieve
this, the power utility operators can control the synchronous
generators, transformer tap settings, FACTS devices and shunt
reactors in a way that they generate the required amount of
reactive power to maintain the bus voltages at the desired level.
An online control strategy to achieve this is referred to as
reactive power and voltage control, or volt/var control (VVC)
in short.

Essentially, any VVC strategy needs to ensure that voltage
security is met, such that the system conditions do not migrate
towards a voltage collapse. Several conventional techniques
exist in the literature for evaluating voltage contingency anal-
ysis [162]. In general, VVC can be formulated as follows:

(31)

subject to the following constraints.
• Voltage at each node must lie within its permissible range.
• Power flow of each branch must be lower than the max-

imum allowable.
• Transformer tap positions must be within the available

range of steps.
• Generator reactive powers must lie within their permissible

range.
In addition to the above constraints, VVC can be formulated

to keep the voltage security of the power system [163].
The conventional methods using analytical optimization

techniques tend to get more complicated as the dimensions of
the system increase. PSO is an effective optimization strategy
which handles mixed-integer nonlinear optimization problems
(MINLP) with ease and can be an alternative solution to the
above problem [163]–[167]. It is specifically helpful when
sources of intermittent generation present complications to
the VVC problem due to additional physical and economic
constraints [164].

It has been shown that PSO-based VVC is faster than the con-
ventional enumeration method [163], [166] converges to a solu-
tion with lower losses [164] or does both [165]. Mantawy and
Al-Ghamdi compared the efficiency of PSO with those of GAs,
improved linear and NLP in a multimachine power system, and
showed that PSO provided the best solution in terms of the total
active power losses [167]. Zhang and Liu successfully applied
the technique to part of the power network in China with 151
buses and 22 transmission lines [166]. Zhang et al. [125] also
proposed an adaptive PSO algorithm in which the size of the
swarm population and the neighborhood size can be adaptively
adjusted according to the rate of improvement in the particles.
The technique outperforms the conventional PSO in both the
final solution and the simulation runtime.

An objective function should be defined for the PSO. This
function can be the total active power losses in the network
[125], [163], [165]–[167] or the total reactive power losses
[164]. The conventional PSO should be expanded in order to be
able to incorporate both continuous and discrete variables in a
single particle. The continuous variables include the generator
AVR operating values, while the discrete values include the
on-load tap changers (OLTC) of the transformers, the number
of the reactive power compensation equipment and the number
of the wind turbine generators [163], [164]. A particle can be
defined as

(32)

where , , and are the generator terminal voltage (AVR
setting), transformer tap setting and the shunt compensator, re-
spectively, defined for every single component [166].

Also, Krami et al. [168] presented a new method based on
Pareto dominance together with PSO for the reactive power
planning problem. Two disagreeing objective functions related
to the cost and the active power losses are optimized. The
approach considers the maximum allowable voltage deviation
at each bus and assumes that all load busses are possible
candidates for reactive compensation. The experimental results
demonstrate the efficiency of the proposed approach for reac-
tive power planning problem [168].

B. Economic Dispatch (ED)

Economic dispatch (ED) is a milestone problem in power
systems. The objective here is to find an optimal operating con-
dition for the generation units in order to minimize their oper-
ational costs whilst constraints are met. When the load opera-
tion condition of the system is assumed to be constant, the ED
is called static ED. However, the problem is referred to as dy-
namic economic dispatch (DED) when an online approach is
used in order to meet the load demand over a given operational
period. It is an extension to the conventional ED in the sense that
it takes the nonlinear characteristics of generation units into ac-
count. The nonlinear characteristics of the generation units in-
clude discontinuous prohibited zones, ramp rate limits, and non-
smooth or convex cost functions. In general, DED is solved for
short periods of time in which the system load conditions can be
assumed constant, where it is solved to meet the power balance
constraints and generation limits in each short period of time. As
a more accurate tool for the ED problem, DED is fundamental
for real-time control of power systems and is considered a dif-
ficult dynamic optimization problem.

The ED or the DED problems can be formulated with or
without smooth cost functions. In the case of ED with a smooth
cost function, the operating cost of each generator is represented
by a quadratic function as given by

(33)
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where

is the total generation cost;

is the cost function of generation ;

, , are the cost coefficients of generator ;

is the electrical output of generator ;

is the group of all generators.

The total generation cost optimization is subject to power bal-
ance and operational limits constraints.

In the case of the ED problem with a nonsmooth cost function,
the total generation cost function has non differentiable points.
This represents a more realistic problem since real issues are
considered, e.g., valve-point effects and change of fuels.

For the valve-point effect problem, the total generation cost
is in most of the cases described as the addition of quadratic and
sinusoidal functions, which makes the problem nonconvex. The
operating cost of each generation unit for this case is given by

(34)

where , are the coefficients regarding generator valve-
point effects.

For a multiple fuels problem, the total generation cost is ex-
pressed as a piecewise quadratic function. The operating cost of
each generation unit for this case is shown in (35)

...
...

...

(35)

where , , and are the cost coefficients of generator
for the th power level.

In order to solve the ED problem, many methods have been
proposed in the literature, which include the mathematical ap-
proach (MA), DP, EP, SA, tabu search (TS), artificial neural
networks (ANNs), and GA [169]. A recent summary on the
application of PSO to ED problems [170] indicates that the
PSO-based application outperforms most of these heuristic and
mathematical algorithms.

Aruldoss et al. [171] reported the application of PSO to re-
serve constrained dynamic dispatch of units with valve-point ef-
fects problem. A hybrid approach, by integrating the PSO with
the sequential quadratic programming (SQP), is presented and
compared with EP-SQP approach. For all test cases, the quality
of the solution, convergence, reliability, constraints handling,
and computational effort, the PSO-SQP is shown to be supe-
rior. Also, Park et al. [169] have applied PSO to ED problem
with nonsmooth cost functions. Their new approach provided
high probability solution for a three generator test system and
quasi-optimums for a 40 generator test system. The proposed
methodology is shown to be superior compared with conven-
tional numeric methods, ANN, and EP. Similar results have
been reported in [172]. In addition, Gaing [173] has applied PSO
to solve the ED problem considering the generator constraints.
For different test systems with 6, 15, and 40 generators, the

PSO again gave better results regarding solution quality, con-
vergence, and computational effort when compared with the GA
method.

Several other papers have been published regarding the appli-
cation of PSO to the ED problem: Sinha and Purkayastha [174]
proposed a hybrid method that integrates the main features of
PSO with EP, Pancholi and Swarup [175] applied PSO for secu-
rity constrained ED, Zhao et al. [176] solved the DED problem
applying PSO technique in bid-based environment in a competi-
tive electricity market, El-Gallad et al. [177] proposed the appli-
cation of PSO to solve the ED problem considering prohibited
operating zones, and Kumar et al. [178] applied PSO to emis-
sion and economic dispatch problem. In general, a particle can
be defined as

(36)

where is the electrical output of generator for particle .
Stochastic and deterministic models for the power dispatch

are also used and optimized by an improved PSO algorithm.
The Pareto-dominance concept is used to tackle the multiob-
jective optimization problem which is designed to handle the
economic power dispatch, while considering the environmental
impact [179]. Results showed that PSO produces more econom-
ical solutions as compared with weighted aggregation and evo-
lutionary optimization [179].

C. Power System Reliability and Security

Distribution system reliability is defined in terms of adequacy
of supply, which is related to the existence of sufficient facili-
ties in the system to satisfy the load demands within the system
constraints, and security, which is the ability of the system to
overcome the disturbances occurring inside it [180]. Analyzing
the reliability indices of a power system is historically done
using contingency analysis, which in a large network, consid-
ering multiple failures, can be extremely complicated and time
consuming. Robinson successfully applied binary PSO for iden-
tifying the set of network elements which if disrupted, would
possibly lead to a cascading series of events resulting in a wide-
spread damage to the network [181].

Feeder reconfiguration is a technique used by some re-
searchers for improving the quality/price of service provided
to the customers, while maintaining/increasing the reliability
of the network. The problem is formulated as a nonlinear
optimization problem subject to the security constraints of the
distribution network such as not exceeding the feeder capac-
ities or busbar voltage magnitudes, while keeping the radial
network structure. Several authors have successfully reported
the application of binary PSO in feeder reconfiguration in the
distribution system [182]–[184]. In all cases, the particle is
defined as an array consisting of binary numbers. Each binary
number corresponds to a switch in the distribution network that
can be open or closed. By changing the status of the switches,
the configuration of the distribution network can be modified.

Binary PSO has been used in order to reconfigure the distribu-
tion network for aggregating the loads [182], [183]. Chang and
Lu [182] used an objective function defined as the sum of the
feeder load factors to be maximized, which results in the feeder
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load being at or near peaks most of the time. This will bring sav-
ings for customers and reduce generation costs for producers,
which in turn helps increase the customer purchasing power
in the market. Shen and Lu [183] defined the objective func-
tion as maximizing the matching index between the customer
power quality requirements with the feeder service quality, so
that more reliable feeders can supply customers with special
power quality requirements. Jin et al. [184] applied PSO for
feeder reconfiguration in order to balance the load between the
feeders. This helps to reduce the losses, as well as to increase the
system reliability margin. The sum of the load balancing indices
is defined as the objective function that needs to be minimized
subject to the network security constraints.

As another technique used for increasing the reliability of the
power system, Kurutach and Tuppadung [185], [186] applied
PSO in order to find the most appropriate positions to place sec-
tionalized devices in the distribution lines. This directly affects
the outage duration of the feeders and if done properly, can im-
prove the reliability of the network. The objective function was
defined as minimizing the annual feeder interruption cost, while
the particles were considered to be the location of the switch in
the network. It is shown in [185] that PSO convergences within
a few iterations, but due to its nonlinearity and nondifferentia-
bility, the problem cannot be easily formulated and solved using
traditional linear or NLP methods.

Research has also been done on the applications of PSO in
identifying points on the security border of the power system,
thereby identifying a vulnerability margin metric for the oper-
ating point [187]. In their proposed method, Kassabalidis et al.
[187] showed that PSO can be used to evaluate the security index
of the power system in real time. The goal is to identify as many
points on the security border as possible and this is achieved
by defining a separate swarm for each point to be placed on the
border, where each operating condition is defined as a particle.

Recently, PSO has also been used to tackle the under voltage
load shedding (UVLS) problem. The concept of dynamic secu-
rity-constrained optimal power flow is employed to develop the
model to be optimized. Results from PSO and GA are compared,
where PSO produces better solutions compared to GA [188].

D. Generation Expansion Problem (GEP)

The deregulation of electrical markets has created compe-
tition between electric utilities. This competition has caused
the generation expansion problem (GEP) to become an in-
creasingly important issue to be considered by investors when
making economical decisions. The GEP consists in determining
what, when, where, and how to install new generation units in
order to meet the power system requirements while constraints
regarding load demand, reliability, operating conditions, power
quality, and security are met. GEP maximizes profits, as well
as minimizes the investment risks over the long-term planning
horizon. The GEP can be mathematically formulated as a high
dimensional, nonlinear, nonconvex, mix-integer and highly
constrained optimization problem with the least cost of the
investment as the objective function. The complexity of the
problem rapidly increases if many practical constraints are
taken into account. Thus, mathematical formulations have to be
simplified in order to get solutions.

Methods to solve the GEP can be generally categorized into
two types: traditional mathematical programming methods
and methods based on heuristic techniques. The traditional
mathematical methods include DP, mix-integer programming
(MIP), branch and bound, Benders’ decomposition, network
flow methods, and others. These methods are usually strict
in mathematics, strong in numerical manipulations, weak in
handling qualitative constraints, and slower in computational
performance [189]. The heuristic techniques mainly include
the application of Artificial Intelligence (AI) approaches, such
as GAs, DE, EP, evolutionary strategy (ES), ACO, PSO, TS,
SA, and a hybrid approach [190]. The main advantage of the
heuristic techniques is their flexibility for handling numerous
qualitative constraints that are common in the GEP in the
deregulated power industry.

The application of PSO for solving GEP has been reported in
the literature [190]–[192]. The application and comparison of
metaheuristic techniques to solve the GEP has been presented
in [190], where PSO is compared with eight other metaheuristic
techniques in terms of the success rate and execution time. The
performance of the metaheuristic techniques is improved by the
application of a virtual mapping procedure, intelligent initial
population generation, and penalty factor approach. Optimal
and near-optimal solutions are reached within a reasonable
amount of time. In addition, Kannan et al. [116] have presented
the application of the PSO technique and its variants to the
GEP. In this case, three different test cases are used for compar-
ison with DP. The comparisons are based on computation time,
success rate, and error limit. The virtual mapping procedure
is also used here. For all test cases, the PSO technique and
its variants produce better results in much less time compared
with DP. Among the PSO variants, it was observed that the
constriction factor approach performed comparatively better.
Additionally, Sensarna et al. [191] have presented the applica-
tion of PSO to GEP with a parametric approach for planning
and transmission expansion including topology optimization,
capital expenses, power losses, network security, and revenue.
Likewise, Slochanal et al. [192] have presented the application
of PSO to the generation expansion planning problem in a
competitive environment.

E. State Estimation

Online state estimation is a crucial factor in distribution
control centers, especially with the introduction of distributed
generators (DGs) to the power system. Power utilities need to
have an online and accurate estimate of the loads and DG out-
puts, while only limited measurements are normally available
throughout the network. State estimation can be formulated as
a weighted least mean square problem

(37)

where , , and are the state variable , measurement value
(normally voltages and currents) for measurement variable and
its related weighting factor respectively. Also, is the power
flow equation that relates the state variable to the measure-
ment variable .
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Assuming that the magnitudes of the voltages and currents
are available at the sending end and the remote terminal units
(RTU) across the network, conventional techniques using sta-
tistical or sensitivity analysis methods can be applied to per-
form the above minimization problem [109]. These techniques
assume that the objective function is differentiable and contin-
uous. However, with nonlinear devices present in the network
such as var compensators, DGs and transformers with on load
tap changers, the system equations and, therefore, the objective
function are nonlinear, discontinuous, and not differentiable.
With its strong nonlinear optimization capabilities PSO can be
an efficient alternative solution to this problem. Hybrid PSO
(GA-PSO) is proposed in the literature that is able to tackle the
above optimization problem [109], [193]. The same objective
function is defined for PSO, whose particles consist of the states
of the power system. Naka et al. [109] showed that hybrid PSO
is more accurate in estimating the states of the system than the
conventional PSO.

F. Load Flow and Optimal Power Flow

Load flow study is the most basic tool for power system
analysis and design; it is used for power system operation
and planning, economic scheduling, as well as transient sta-
bility, voltage stability, and contingency studies. The load flow
equations include power balance equations, for both active
and reactive powers at each bus. Therefore, the load flow
problem can be formulated as an optimization problem, where
the objective is to find the voltage magnitudes and angles that
minimize the difference between the input and the output power
at each bus [108]. Usually, the load flow problem is solved by
conventional numerical methods like Newton–Raphson (NR) or
Gauss–Seidel (GS), however, these techniques may fail under
certain power system conditions (heavy loaded system) or due
to an ill-conditioned Jacobian matrix [108]. For this reason, an
approach considering an evolutionary computational technique
such as PSO may be interesting to analyze.

The problem formulation can be stated as follows:

(38)

where and are defined according to the nonlinear power
flow equations.

The optimization problem is subject to the following:
• scheduled value of slack bus voltage;
• scheduled values of PV bus voltages and powers.
In this case, a particle can be defined as

(39)

where correspond to the magnitude and phase of the
voltage at bus .

In order to improve the performance of PSO, EL-Dib et al.
[108] have proposed the use of a decreasing constriction factor,
as well as establishing mutation in the particles as in GAs. It
was reported that by using these techniques, the PSO is able to
solve the load flow problem with the desirable tolerance and
find the solution in high loading cases where NR fails to do
so. A similar approach can be used to find the contributions of

each generator in the transmission system. The problem can be
formulated as a multiobjective optimization problem that takes
into account nonlinear characteristics of the power systems such
as generator prohibited operating zones and line thermal limits.
Particularly, the contributions of generators to the real-power
flows in transmission lines are modeled as positions of agents
in the swarm.

Vlachogiannis and Lee [141] consider the parallel VEPSO to
solve this problem in four different test systems. The feasibility
of the proposed methodology is demonstrated and compared
with other analytical methods. Results show that the parallel
VEPSO algorithm is slower than the analytical method, al-
though it is capable of obtaining high accuracy results within a
reasonable computing time.

In the case of optimal power flow, the purpose is to find an
optimal solution for a certain power system objective, such as
the overall fuel cost or total losses, by adjusting the system
control variables, i.e., real and reactive powers, voltages at dif-
ferent buses, etc. [90]. Traditionally, conventional optimization
techniques are used to solve this nonlinear problem, including
linear and nonlinear programming (LP and NLP), interior point
method, quadratic programming (QM), and sequential uncon-
strained minimization techniques. All of these methods give
satisfactory results, however they present some disadvantages
in terms of the computational effort or the convergence speed.
As an answer to these drawbacks, stochastic optimization tech-
niques, including PSO, have been applied to solve the optimal
power flow problem.

The problem can be formulated as [90]

(40)

where is the desired power system objective function,
is the vector of dependent variables such as load bus voltages or
apparent power flow and is the vector of control variables such
as active and reactive powers, voltage magnitudes at generator
buses and suchlike.

The problem is subject to the following constraints.
• Load flow equations.
• Generation constraints: lower and upper limits for each

generator.
• Transformers constraints: minimum and maximum tap

setting.
• Shunt VAR constraints.
• Upper and lower limits for control variables.
• Security constraints.
The previous formulation can be modified to convert it into an

unconstrained optimization problem where the constraints are
included in the objective function using penalty functions [90].
In this case, each particle has to be defined according to the con-
trol variables such as voltage magnitudes at different generators

, transformer tap settings , and reactive compensation

(41)

For this particular problem, the performances of PSO and
PSO with passive congregation have been compared with
classical optimization methods and other evolutionary compu-
tational techniques like GAs [90], [157]. The reported results on
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small size power systems (IEEE 30 bus system) indicate that,
with the appropriate definition of the parameters (decreased
inertia constant, adjusted velocity limits), PSO and its variants
perform well, finding better solutions with less computational
effort. However, tests performed on large power systems (IEEE
one-area RTS96 or IEEE 118 bus system), showed that the
quality of the PSO solution deteriorates as the number of con-
trol variables increases [155], therefore, the capabilities of PSO
to provide satisfactory solutions for large-scale power systems
has yet to be demonstrated.

G. Power System Identification and Control

Power system stability is defined as “the ability of an electric
power system, for a given initial operating condition, to regain a
state of operating equilibrium after being subjected to a physical
disturbance, with most system variables bounded so that prac-
tically the entire system remains intact” [194]. Obtaining and
maintaining stability conditions in any large power system, even
in the presence of disturbances, has always been a difficult task
to achieve, due to the high complexity of the network and the
increasing incorporation of nonlinear switching devices. Sev-
eral control technologies have been used in the past to overcome
this problem, including classical tools such as PI controllers and
modern approaches like neurocontrollers or fuzzy logic-based
controllers. Currently, the challenge lies in incorporating evolu-
tionary computational techniques in order to improve the per-
formance of the existing and proposed controllers, as well as to
develop more accurate system identifiers.

1) Controller Tuning: Specifically, PSO has been proposed
in the literature as an efficient algorithm to tune the gains in
classical PID controllers, as well as in nonlinear controllers
[195]–[201]. Each particle is normally defined as a possible set
of proportional, derivative and integral gains plus an integrative
time constant

(42)

By defining the objective function in terms of the system re-
sponse overshoot, rise time, settling time or steady-state error,
each particle can be evaluated in terms of the fitness function.
Stability criteria such as Routh–Hurwitz can be used as a means
to bound the particles within the stable region of the system
response.

Abido [195] and Das and Venayagamoorthy [147], [196] have
presented the application of PSO to optimal design of power
system stabilizers (PSSs). Time-domain as well as frequency-
domain eigenvalue analyses are conducted in order to evaluate
the effectiveness of the approach under different operating con-
ditions, i.e., disturbances, loading conditions, and system con-
figuration changes. The proposed approach proves to be more
efficient in providing damping for the system compared with
the GA-based method. Similarly, Karimi et al. [197] have in-
vestigated the application of PSO to power system stability en-
hancement by tuning of a backstepping controller.

Okada et al. [198] have shown the use of PSO for param-
eter tuning of a fixed structure controller. Abdel–Magid and
Abido [199], and Gaing [200] independently studied the tuning
of an automatic generation control (AGC) systems using PSO.

Venayagamoorthy has applied PSO for finding the optimal pa-
rameters of the PI controllers in a unified power flow controller
(UPFC) [201] and Das et al. have done similarly with SPPSO in
the case of a static VAR compensator (SVC) [146]. The design
of optimal SVC damping controllers using SPPSO is reported
in [202]. These studies indicate that, in general, the PSO-based
approach has some advantages over the other techniques such
as GA. These advantages include easy implementation, stable
convergence characteristics, good computational efficiency, and
more robustness.

In addition, Qiao et al. [203] have used the PSO algorithm
to find the optimal parameters of the PI controllers for the rotor
side converter of a doubly fed induction generator powered by
a variable speed wind turbine. The main goal is to minimize the
overcurrent in the rotor circuit during grid faults. Results show
that the proposed approach is successful in finding the optimal
parameters of the PI controllers and it improves the transient
performance of the wind turbine generator system over a wide
range of operating conditions.

Furthermore, the PSO algorithm has also been used in a fault
tolerant control scheme for a static synchronous series com-
pensator [204]. The system consists of a sensor evaluation and
missing sensor restoration scheme SERS cascaded with a P-Q
decoupled control scheme. An auto-encoder is used to capture
the correlations between all of its input data. These correlations
are then used by the PSO to search for the optimal estimates of
the missing data when sensor readings are lost.

2) System Identification and Intelligent Control: PSO has
also been applied to more complex structures such as ANNs in
order to solve the problem of power systems identification and
control. Application of PSO as a training algorithm of neural
networks has been reported in [117], [205], and [206]. For such
applications, the particles can be defined as arrays including the
synaptic weight matrices of the hidden and output layers of the
neural network

(43)

The objective function corresponds to the mean-squared error
(MSE) between the estimated and the actual physical values of
the output

(44)

Gudise and Venayagamoorthy [205] have compared the ef-
ficiency of PSO with the conventional backpropagation (BP)
training algorithm for a multilayer perceptron neural network
(MLPN). Their simulation results show that for a small static
system PSO converges to a smaller MSE in (44), with less com-
putational effort (six times less the number of operations) com-
pared with BP.

Mohagheghi et al. [117] have also investigated the efficiency
of PSO-based training of radial basis function neural network
(RBFN) and MLPN-based identifiers for a small power system.
For a RBFN identifier, simulation results indicate comparable
performances between PSO and BP, while in the case of a
MLPN identifier, the performance of PSO is considerably
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better, obtaining an average reduction of 84% in the MSE value
compared with BP [117], [118].

Kiran et al. [207] and Jetti et al. [208] have also shown the ef-
ficiency of PSO in training a generalized neuron (GN) and dual
function neuron to identify and control the dynamics of a SVC
in the 12 bus FACTS benchmark power system, respectively.
Also, Chia–Feng [206] has applied a hybrid of GA and PSO for
designing and training recurrent networks and has demonstrated
its superiority over the conventional techniques.

Moreover, Reynolds et al. [209] have developed an inter-
esting implementation of PSO for inversion of large neural net-
works. Although results are promising, the algorithm is still too
slow to be used in real-time applications. Also, Hirata et al.
[210] investigated the performance of PSO in finding the op-
timal weights for a Lyapunov-based neurocontroller for the gov-
ernor of a synchronous machine. In this study, they define a
generic objective function as

(45)

where and is the energy function of the system
including the control signal of the neurocontroller. Since is
a nondifferentiable function, BP cannot be applied in this case,
therefore, PSO represents an interesting alternative to adjust the
parameters of the controller.

Regarding fuzzy logic-based controllers, an important issue
is to define both the membership functions and weights of
the rule set. Several authors have dealt with this problem for
controllers: Control of permanent magnet synchronous motor
for electric vehicle [211], load frequency control (LFC) [212],
optimal control of a grid independent photovoltaic system
[213], [214], and control of flexible AC transmission systems
(FACTS) devices, particularly, a thyristor controlled series ca-
pacitor (TCSC) [215]. For this type of problem, the suggested
definition of the particle is as follows [216]:

(46)

where
is the shape function defined by integer value,
e.g., for Gaussian functions;

and are the left and right boundaries, respectively;

is the weight.

If a more detailed shape is desirable, then other parameters
can be incorporated to the particle such as means and standard
deviations for the particular case of Gaussian membership func-
tions [212], [215].

The objective function may vary according to the nature of the
process to be controlled. For instance, Juang and Lu propose a
fuzzy-based load frequency control, in which the fitness func-
tion is given by the minimization of the frequency deviations
of two interconnected areas [212]. The same authors propose to
use the root mean square error (RMSE) for speed deviations in
the case of using a TCSC. In both applications, the hybrid be-
tween GA and PSO is used, which is found to be efficient in the
search for better performing fuzzy rules in the proposed Fuzzy
logic-base controllers [212], [215].

H. Other Applications

Several other applications have been reported in the literature
in which PSO is used as a solution for a nonlinear optimization
problem.

1) Electric Machinery: The application of PSO in the field of
electric machines has not been extensively explored. Neverthe-
less, Emara et al. [217] applied PSO to estimate the stator fault
in induction motors. Their proposed scheme detects the fault oc-
currence by monitoring the spectral content of the line current.
PSO is used to design an estimator, which iteratively changes the
estimated percentage of the stator faulty turns and compares the
motor model outputs (stator currents) with the online measured
faulty motor’s currents. The difference between the measured
and estimated motor currents is the function to be minimized by
the swarm optimizer. They verified the validity and reliability
of the proposed technique on experimental setups [217].

Bao et al. [218] applied PSO for an optimal design of a trans-
verse flux permanent motor with the objective of reducing the
cogging torque. Cogging torque is a part of the total torque de-
veloped by the motor that does not contribute to the net effective
torque, and can result in pulsating torque, as well as speed ripple
and vibration. Magnetic arc length is one of the most important
parameters that directly affect the pitch and the surface area of
the permanent magnet machine and, therefore, the resultant cog-
ging torque produced by the machine. Reducing the magnet arc
length decreases the surface area of the permanent magnet and,
hence, the resultant cogging torque. However, this also reduces
the magnetic flux produced by the machine and worsens the per-
formance of the machine. Therefore, there should be a tradeoff
between the two factors. Bao et al. applied PSO to find the op-
timum magnet arc length and thickness which gives a net torque
which is still above a predefined desired value [218].

2) Capacitor and FACTS Placement: Capacitor allocation
plays an important role in distribution system planning and op-
eration. Optimal placement of capacitors in a network can help
reduce the losses, improve the power factor, improve the voltage
profile, provide on the spot reactive power generation, and there-
fore release the capacity of lines and feeders [219]. The nature
of the problem is a nonlinear optimization approach which can
be efficiently solved using PSO.

Each particle in this approach can be defined as a vector of
integer numbers. Each entry of the vector corresponds to the
amount of shunt compensation at a specific location (node) in
the system. The capacitors can be fixed or variable. Different
objective functions can then be defined for the purpose of up-
dating the particles. Esmin et al. have used the total sum of the
branch losses in the system as the objective function which is
evaluated by executing the load flow after every iteration [97].
Yu et al. have considered the system total harmonic distortion as
the objective function [220]. A harmonic load flow is performed
after every iteration in order to determine the total harmonic dis-
tortion of the system.

Following a similar approach, Hernandez et al. [221] and
del Valle et al. [222] have used PSO in finding the optimal
STATCOM location and size in a medium size power system
(45 bus power network). STATCOM is a shunt type of a FACTS
device. In this case, the fitness function is defined based on
the voltage profile throughout the power system, in a way that
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the voltage deviations of the buses, with respect to their cor-
responding nominal values, are minimized by installing a min-
imum STATCOM size.

3) Generator Maintenance and Unit-Commitment Sched-
uling: Koay and Srinivasan have introduced the application of
PSO to generator maintenance scheduling [223]. Results are
obtained for a practical scheduling and optimization problem
for which evolutionary computation (EC)-based approaches
have previously been applied and found to be effective. It
has been shown that PSO-based approaches produce superior
performance compared with GA or ES. The paper also presents
a hybrid spawning PSO and ES; in this approach, valuable fea-
tures from both PSO and ES are combined to provide a simple
hybrid model that could be readily used in other applications.

For the unit-commitment scheduling problem, Miranda and
Win–Oo [224] have presented the application of differential
evolutionary particle swarm optimization to the unit com-
mitment-generator scheduling power system problem. In this
case, given a set of generators and their generation cost curves,
it is determined which generators should operate or not and
at which generation level, thus minimizing the overall cost
which include startup and operational costs for a particular
set of system operating conditions. The used algorithm is an
improved version of the EPSO that incorporates an improve-
ment in the movement rule by adjusting the memory element.
The PSO-based algorithm is compared with other GA-based
algorithms and produces better results [224].

4) Short-Term Load Forecasting (STLF): Another area in
which PSO has recently found application is short-term load
forecasting (STLF). One publication [225] has applied PSO in
order to identify the autoregressive moving average with ex-
ogenous variable (ARMAX) model of the load. The paper pre-
sented an alternative technique of model order determination
and parameter estimation to achieve a global minimum fore-
casting error within an efficient computation time. The fitting
accuracy of the model is also improved. The proposed tech-
nique is tested on four different types of practical power load
data for one-day and one-week ahead. The PSO-based load fore-
casting has a better forecasting accuracy, with superior conver-
gence characteristics, and shorter executing time than the EP
and traditional stochastic time series (STS) methods.

5) Generator Contributions to Transmission System: One
recent publication has been devoted to the application of PSO
to generator contributions to transmission systems [226]. It
presents a parallel VEPSO algorithm for determining gener-
ator contributions to the transmission system under various
generator and transmission line constraints. The problem is
formulated as a multiobjective optimization problem that takes
into account nonlinear characteristics of the power systems
such as generator prohibited operating zones and thermal limits
of lines. The contributions of generators to the real-power
flows in transmission lines are modeled as positions of agents
or particles in the swarm. For four different test systems, the
feasibility of the proposed methodology is demonstrated and
compared with other analytical methods. Although the results
show that the parallel VEPSO algorithm is slower than the
analytical method, it is capable of obtaining high accuracy
results within a reasonable computing time.

V. FUTURE APPLICATIONS

The previous section provided an overview of the existing ap-
plications of PSO in power systems. However, the capabilities
of PSO are by no means limited to those applications. Many
decision problems in planning, operation and control of power
systems require a nonlinear stochastic optimization problem to
be solved and this is too sophisticated for any analytically based
approach to handle. An increase in the size of the power network
can further degrade the effectiveness of these analytical tech-
niques. Many of these optimization problems can be readily for-
mulated and addressed by PSO. Some potential power system
related applications of PSO that are not yet explored in the lit-
erature are briefly discussed in this section.

Previously, it has been shown that PSO-based techniques can
be used in order to solve the nonlinear optimization problem
of capacitor placement in a power network [220]. This can be
further extended to include more components in the network,
such as the on-load tap changing transformers and/or FACTS
devices. While an analytical-based technique might suffer from
the curse of dimensionality, PSO can still manage to provide the
optimum solution in terms of the appropriate tap/switch position
or firing angle.

Power system design at the distribution level is another area
where PSO can further prove its efficiency. Successful appli-
cations of PSO have been reported in distribution system re-
configurations for aggregating the loads [182], [183], balancing
loads between the feeders [184], or finding the most appropriate
locations for sectionalized devices [185], [186]. However, the
problem can be extended to more general cases of designing
the distribution system layout, such as deciding on the locations
of substations, configurations of the overhead lines, transformer
design, and size or topology of the cable system. Financial com-
putations as well as the future expansion considerations can be
incorporated into the fitness function.

Electric machinery design is the area which seems least ex-
plored by PSO. In fact, as far as the authors know, the only
work published to date on the application of PSO to electric ma-
chinery design was reported by Bao et al. [218]. In this work,
PSO was applied in order to optimize the design to reduce the
cogging torque of a transverse flux permanent motor. Neverthe-
less, the literature has reported the application of other artifi-
cial intelligence-based techniques such as GA, ANN, and fuzzy
logic to the electric machinery design problem [227]–[229]. In
general, results show that the application of such techniques
can improve the design by optimizing the desired parameters,
while meeting the required technical specifications. Clearly, de-
tailed studies need to be carried out in order to evaluate the
effectiveness of PSO compared with the other available tech-
niques in this field. Potentially, PSO can be successfully applied
for designing various aspects of electric machines, such as the
winding, mass/volume, air gap, and operational parameters.

In all the applications reviewed in this paper, the PSO algo-
rithm is executed offline. It uses the previously stored system
data in order to solve an optimization problem. Any change to
the problem/power system environment requires saving the new
information and re-executing the PSO algorithm offline. How-
ever, many applications in power systems need an online solu-
tion, which is updated at every specified time step. Controller
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design is perhaps the most important application that belongs to
this category. Modifications need to be done to the PSO algo-
rithm in such a way that it is able to efficiently work in online ap-
plications. Preliminary work by one of the authors has reported
the use of PSO to train a generalized neuron online [230].

VI. CONCLUSION

Solving an optimization problem is one of the common sce-
narios that occur in most engineering applications. Classical
techniques such as LP and NLP are efficient approaches that
can be used in special cases. As the complexities of the problem
increase, especially with the introduction of uncertainties to the
system, more complicated optimization techniques, such as sto-
chastic programming or DP have to be used. However, these
analytical methods are not easy to implement for most of the
real-world problems. In fact, for many problems, the curse of
dimensionality makes the approach unfeasible to implement.

The above issues are of particular importance when solving
optimization problems in a power system. As a highly non-
linear, nonstationary system with noise and uncertainties, a
power network can have a large number of states and parame-
ters. Implementing any of the classical analytical optimization
approaches might not be feasible in most of the cases. On the
other hand, PSO can be an alternative solution. It is a sto-
chastic-based search technique that has its roots in artificial life
and social psychology, as well as in engineering and computer
science. It utilizes a “population,” called particles, which flows
through the problem hyperspace with given velocities; in each
iteration, velocities are stochastically adjusted considering the
historical best position for the particle itself and the neigh-
borhood best position (both of them defined according to a
predefined fitness function). Then, the movement of each par-
ticle naturally evolves to an optimal or near-optimal solution.

This paper has described the basic concepts of PSO along
with its numerous variants that can be employed in different op-
timization problems. In addition, a review of the applications
of PSO in power systems-based optimization problems is pre-
sented to give the reader some insight of how PSO can serve as a
solution to some of the most complicated engineering optimiza-
tion problems.
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