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Abstract Particle Swarm Optimization (PSO), in its present form, has been in existence

for roughly a decade, with formative research in related domains (such as social modelling,

computer graphics, simulation and animation of natural swarms or flocks) for some years

before that; a relatively short time compared with some of the other natural computing

paradigms such as artificial neural networks and evolutionary computation. However, in

that short period, PSO has gained widespread appeal amongst researchers and has been

shown to offer good performance in a variety of application domains, with potential for

hybridisation and specialisation, and demonstration of some interesting emergent behav-

iour. This paper aims to offer a compendious and timely review of the field and the

challenges and opportunities offered by this welcome addition to the optimization toolbox.

Part I discusses the location of PSO within the broader domain of natural computing,

considers the development of the algorithm, and refinements introduced to prevent swarm

stagnation and tackle dynamic environments. Part II considers current research in

hybridisation, combinatorial problems, multicriteria and constrained optimization, and a

range of indicative application areas.

Keywords Particle swarm optimization � Natural computing

1 Introduction

Conventional computing paradigms often have difficulty dealing with real world problems,

such as those characterised by noisy or incomplete data or multimodality, because of their

inflexible construction. Natural systems have evolved over millennia to solve such
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problems, and, when closely examined, these systems often contain many simple elements

that, when working together, produce complex emergent behaviour. They have inspired

several natural computing paradigms that can be used where conventional computing

techniques perform unsatisfactorily.

This review considers Particle Swarm Optimization (PSO), a relatively recent addition

to the field of natural computing, that has elements inspired by the social behaviour of

natural swarms, and connections with evolutionary computation. PSO has found wide-

spread application in complex optimization domains, and is currently a major research

topic, offering an alternative to the more established evolutionary computation techniques

that may be applied in many of the same domains.

Part I of the review is structured as follows. The broader context is first established in a

brief examination of natural computing paradigms. The development and refinement of the

particle swarm approach is then treated, with consideration of its historical background, as

well as the state-of-the-art, as evidenced by recent literature. Issues related to dynamic

environments, stagnation, and parameter tuning, are also discussed, followed by a brief

review of selected works on parallel implementations.

2 Natural computing paradigms

In this section, the broader context of natural computing is discussed, within which PSO is

located. Natural computing, as a field of study, considers the computational utility of

architectures and algorithms inspired by nature, and in particular their application to

problems that are resistant to traditional methods (see, for example, Calude et al. (2001)).

Whilst this section considers several selected examples from the field, it is not intended to

provide a comprehensive review; there are many other forms of natural computing that are

not covered here, including inter alia DNA computing, molecular computing, and artificial

immune systems.

Many of the natural computing paradigms share high level attributes such as the ability

to deal with noisy or incomplete data, the ability to solve combinatorial problems,

emergent properties where the complex behaviour of the whole belies the simplicity of the

agents, rules or interactions involved, use of some form of competition and cooperation,

the requirement for some form of learning, and are often computationally efficient with the

possibility of distributed implementation. Turing’s (1952) work on how nature produces

complex patterns by low level rules inspired much of the research into natural computing

and emergent behaviour, which Johnson (2001) describes as ‘‘leaderless individuals using
low level rules to achieve higher levels of sophistication’’. Computationally simple pro-

cessing architectures, inspired by natural artefacts or processes, have been found to provide

complex and useful forms of computation. As with PSO, these often arise from the col-

lective behaviour of decentralised, self organised systems. The drawback of such para-

digms is their inherent non-determinism, and whilst they offer approximate solutions to

problems for which an analytic solution or traditional numerical method is infeasible or

impossible, they present challenges in terms of design and validation.

2.1 Levels of development

Each of the fields of natural computing discussed in this section can be considered to be on

a particular level of organism development. Sipper et al. (1998) discuss three levels of
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development (Fig. 1): phylogeny, the development of a species over time (evolution);

ontogeny, the adaptation (in its own lifetime) of a particular organism to its environment

(specialisation); and epigenesis, the development of a complex organism in which the

overall structure requires ongoing experiential learning to fully develop.

2.2 Models of human intelligence

Artificial Neural Networks (ANNs) are a model of the epigenetic programme of the human

brain. McCulloch and Pitts (1943) first modelled the physical aspects, and Hebb (1949)

introduced the first learning algorithm. The paradigm offers huge potential since, with

approximately 100 billion basic processing elements (neurons), the human brain is a

massively powerful parallel computing system. ANNs can provide a variety of behaviours

depending on their structure and training; see Haykin (1999) for a thorough treatment. As

with most natural computing paradigms, the neural approach offers a mechanism for

problem solving that does not require an analytic approach, but one where input-output

mappings are learnt through a supervised or unsupervised training regime. They function

as flexible computational structures, having numerous advantages over conventional

computation systems, including inter alia their ability to approximate solutions with noisy

or missing data, graceful degradation, and generalisation to a solution for which the input

has not been seen during training. They also share the primary drawbacks of natural

computing paradigms: unpredictability and the difficulty of validation due to their ‘black

box’ nature.

First developed by Feigenbaum et al. (1971) of Stanford University for the Dendral

project (1965–1983), Knowledge Based Systems (KBSs) represent a different perspective

on the (human) brain’s epigenetic process (although it may be argued that this is not within

the taxonomy of natural computing, its consideration is pertinent to this section of the

review). Unlike ANNs, there is no attempt to model the physical structure; an inference

engine fulfils that role. Learning is modelled by the construction of rules that are produced

under the guidance of domain experts and held in a knowledge base. The abstract process

of reasoning occurs when the inference engine fires rules as a result of data input. This
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Fig. 1 Orthogonal levels of organism development (adapted from Sipper et al. (1998), with the addition of
the epigenesis axis)
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explicit knowledge representation and reasoning offers the advantage that knowledge can

be updated dynamically due to the separation of knowledge from the inference engine, and,

unlike ANNs, a KBS can provide a rationale behind its decisions. It is, however, very

dependent on the experts’ ability or willingness to impart their domain knowledge, and

suffers from poor generalisation and adaptiveness.

2.3 Competitive populations

Not all natural computing paradigms seek to model human processes. Friedberg’s auto-

matic programming machine (1958) introduced Evolutionary Algorithms (EAs), which are

a stochastic, population-based phylogenic solution that exploits useful inheritance and

competition between individuals on a ‘survival of the fittest’ basis. The field of EAs can

be broadly divided into a number of sub-fields: Genetic Algorithms (GAs) begun by

Bremermann (1958) but generally given a broader appeal by Holland (1962, 1975) and

Goldberg (1989), Evolution Strategies (ESs) by Rechenberg (1965), Evolutionary Pro-

gramming (EP) by Fogel et al. (1966) and, more recently, Genetic Programming (GP),

initially developed by Koza (1992) and Differential Evolution (DE) by Storn and Price

(1995). Evolutionary approaches offer a number of advantages (largely shared by PSO)

including inter alia general applicability across a wide range of problems, no requirement

for prior knowledge of the problem space, and ease of development. As with all heuristic

search/optimization approaches (including those based on ant colonies or particle swarm),

the ‘‘No Free Lunch’’ theorems apply (Wolpert and Macready 1997), essentially recogn-

ising that general applicability comes at the cost of domain specific performance, and that

there is no one best approach for all domains. Further, there are no guarantees of finding a

globally optimal solution, even within a specified tolerance. The iterated evaluation of the

objective function may be computationally expensive, hence the interest in computational

distribution, for which evolutionary algorithms are particularly well suited, see, for

example, Cantú-Paz (2000).

2.4 Cooperative populations

Whilst EAs are primarily competitive, Ant Colony Systems (ACS) and PSO adopt a more

cooperative strategy. They could be said to be ontogenetic since the population may be

thought of as a multicellular organism adapting to optimize its performance in its envi-

ronment. ACS (Colorni et al. 1991; Dorigo and Stützle 2004) generally use the metaphor of

ants searching for food to represent the search/optimization process, incorporating the

division of labour and the use of pheromone trails to assist with the autonomous organi-

sation of the group. This is advantageous because poor solutions are avoided and difficult

tasks are divided between many individuals; premature convergence to sub-optimal

solutions can be avoided through the individuals’ ability to move away (enabled by a

stochastic element in the algorithm) from current best solutions to discover new, poten-

tially better, solutions. The primary disadvantage with this approach, also shared by PSO,

is that it is difficult to develop, since the goal is the emergent behaviour of the group rather

than the individual agent characteristics. This approach works well in combinatorial

problems, such as network routing (Di Caro and Dorigo 1998).

PSO (Kennedy and Eberhart 1995, Kennedy et al. 2001) shares some of the charac-

teristics of ACS, except they do not disseminate information via pheromone trails. Rather,
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the individuals communicate their best solution, and the members of the group follow a

combination of the group’s previous best and their own previous best, with an additional

stochastic element to assist exploration. PSO also shares several properties with GAs (their

interacting populations, for example), and Angeline (1998a) compares the two techniques.

Some of Angeline’s observations have since been rendered obsolete by more recent

developments of PSO, and hold only for the early formulations. For example Eberhart’s

inertia weight allows the effect of velocity memory to be dynamically reduced thereby

allowing targeted exploitation. The research does indicate, however, that PSO finds

solutions near optima faster than the GA, although the subsequent exploitation is weaker.

Whilst PSO is more efficient, it is also more prone to premature convergence than EAs

(Angeline 1998a) because of the possibility of an overwhelming, sub-optimal group best

influence early in the search.

3 PSO: from animation to optimization

The notion of employing many autonomous agents (particles) that act together in simple

ways to produce seemingly complex emergent behaviour was initially considered to solve

the problem of rendering images in computer animations that attempt to resemble natural

phenomena. Reeves (1983), one of the early pioneers, as part of his work at Lucasfilm,

implemented a particle system that used many individuals working together to form what

appeared to be a fuzzy object (such as a cloud or an explosion). A particle system

stochastically generates a series of moving points, these typically being initialised to

predefined locations. Each particle is assigned an initial velocity vector. In graphical

simulations, these points may also have additional characteristics such as, for example,

colour, texture and limited lifetime. Iteratively, velocity vectors are adjusted by some

random factor. Each particle is then moved by taking its velocity vector from its current

position and adjusting where necessary by a constrained angle to make the movement

appear realistic. Such systems are widely deployed in the generation of special effects and

realistic interactive graphical environments.

For some animations it is necessary to render group behaviour with higher level

dynamics than simple particles (such as a flock of birds). Scripting of individual behaviour

is possible, but tedious, and it is difficult to generate responses that look natural. Reynolds

(1987) used Reeves’ particle system as the basis for his higher order (in terms of the

objects being modelled) flocking algorithm. He took the particle movement and added

orientation and inter-object communication. These additional behaviours allowed indi-

vidual Boids (Bird-oid objects) to follow some simple flocking rules: Boids should avoid

colliding with fellow Boids; they should attempt to match each others velocity vector; and

the should try to stay close to each other. Development of this underlying model,

increasing the intelligence of the individuals, removed the requirement for individual

trajectories to be established. The increased level of autonomy raised several further

questions such as conflict resolution. Reynolds used a deterministic approach, prioritised

ordering, to resolve such issues but points out that decisions could be made non-

deterministically.

Inter-Boid perception is an issue that not only affects animation realism but also its

efficiency. A naı̈ve implementation might adopt a system where each Boid is aware of

what all other flock members were doing; rendering the algorithm unfeasibly complex with

larger flocks. To avoid this, Reynolds recommended implementing a neighbourhood sys-

tem, which is how flocking appears to work in nature due to the limited vision of flock
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members, although later research indicated that this changes the emergent behaviour of the

flock (Kennedy and Mendes 2002).

Kennedy and Eberhart (1995) sought to extend Reynolds’ model to reflect social

behaviours. More importantly, they replaced the simple roost goal developed by Heppner

and Grenander (1990), who had developed an alternative flocking algorithm, with a more

realistic goal: that of searching for food. It was this goal that led the researchers to use non-

trivial mathematical problems as a fitness function for flock members (now called agents

(see Minsky 1986) since they had become more generalised than bird models). Once the

goal of locating the target was achieved the variables that were found to be redundant were

removed, providing a simple and more efficient model. The resultant algorithm for cal-

culating the next particle position (x) was:

vtþ1 ¼ vi þ u1b1 pi � xið Þ þ u2b2 pg � xi

� �
ð1Þ

xtþ1 ¼ xt þ vtþ1 ð2Þ

where constants u1 and u2 determine the balance between the influence of the individual’s

knowledge (u1) and that of the group (u2) (both set initially to 2), b1 and b2 are uniformly

distributed random numbers defined by some upper limit, bmax, that is a parameter of the

algorithm, pi and pg are the individual’s previous best position and the group’s previous

best position, and xi is the current position in the dimension considered. Note the sign in the

brackets results in an acceleration of the particles towards the previously known best points

in the space. This balance between accelerations toward local or global best, i.e. between

exploration and exploitation, could be considered as broadly equivalent to selection

pressure in a GA, although control is more complex in a GA, with other critical parameters

such as population size and mutation rate. For an n-dimensional space the particle velocity

is calculated for each dimension, i = 1,2... n, then resolved into a final vector for updating

the particle’s position. The technique was applied to a number of applications and

benchmark problems, which indicated robust performance. Thus, the conceptual step was

made, rather serendipitously, from animation of natural phenomena and social groupings to

optimization of complex functions to which it has since been extensively applied. As noted

by Monson and Seppi (2005a), although subject to refinement, the basic formulation of the

PSO equations has remained remarkably unchanged.

4 Algorithm refinement

At a fundamental level, one might argue that the key difference between PSO and evolving

populations is the way in which new samples are generated. In GAs, new samples are

produced by some recombination of selected ‘parent’ solutions, which may then go on to

replace members of the population. In PSO, new samples are generated by perturbation of

existing solutions. The latter approach can lead to issues of stability. To reduce the pos-

sibility of particles flying out of the problem space, Eberhart et al. (1996) put forward a

clamping scheme that limited the speed of each particle to a range [�vmax, vmax] with vmax

usually being somewhere between 0.1 and 1.0 times the maximum position of the particle.

Whilst experimenting with the standard algorithm, Shi and Eberhart (1998) noted that

without the velocity memory—the first part of Eq. (1)—the swarm would simply contract

to the global best solution found within the initial swarm boundary (providing a local

search). Conversely, with the velocity memory, the swarm will behave in the opposite
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sense, expanding to provide a global search. To assist with the balance between exploration

and exploitation a modified PSO, incorporating an inertia weight, x, was introduced thus:

vtþ1 ¼ xvt þ u1b1 pi � xið Þ þ u2b2 pg � xi

� �
ð3Þ

At the time, experiments were only conducted on a single test function, but the weight

has been applied many times since, and is generally considered useful (Carlisle and Dozier

2000; Trelea 2003). The initial experiments suggested that a value between 0.8 and 1.2

provided good results, although in later work (Eberhart and Shi 2000) they indicate that the

value is typically set to 0.9 (reducing the stepwise movement of each particle, allowing

greater initial exploration) reducing linearly to 0.4 (speeding convergence to the global

optimum) during an optimization run.

Constriction is an alternative method for controlling the behaviour of particles in the

swarm. Rather than applying inertia to the velocity memory, Clerc and Kennedy (devel-

oped 1999, published 2002) applied a constriction factor, v, to the new velocity (see also

Carlisle and Dozier (2001)):

vtþ1 ¼ v vt þ u1b1 pi � xið Þ þ u2b2 pg � xi

� �� �
ð4Þ

v ¼ 2

2� u�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4u

p���
���

where u ¼ u1 þ u2;u > 4 ð5Þ

With this formulation, the velocity limit, vmax, is no longer necessary. A choice need not

be made between constriction and inertia; Eberhart and Shi (2000) showed that with

judicious parameter settings (x set to v and u1 + u 2 > 4) the two approaches were

algebraically equivalent and improved performance could be achieved across a wide range

of problems.

Kennedy (2000) extended the social metaphor by experimenting with a model of social

stereotyping, using cluster analysis of the particles best performances. Several versions of

the algorithm were produced, each replacing the previous best aspects of the constricted

algorithm. The results were predictable; replacing the individual best with the local cluster

centre showed the most promising results, since the cluster centres are likely to be more fit.

Cluster analysis does come at a high computational cost and Kennedy only performed

simplistic analyses in an attempt to minimize the effect. Even so, the technique still

generally took longer in real time.

Since the PSO algorithm was developed from the original flocking system, various

components have been added (such as inertia, constriction) and removed (such as velocity

matching, collision avoidance). Kennedy (2003) revisited the constricted PSO and

examined whether the added components were necessary, and whether any further com-

ponents could be removed. Various experiments were performed with a view to paring the

process for further efficiency gains. To achieve this, a Gaussian PSO was developed. In this

implementation the entire velocity vector is replaced by a random number generated

around the mean (pid + pgd)/2 with a Gaussian distribution of |pid�pgd| in each dimension

(d). This effectively means that the particles no longer ‘fly’ but are ‘teleported’. Kennedy

justified this departure on the grounds that it is the social aspect of the swarm that is more

important to its effectiveness. This was empirically backed up with the Gaussian influenced

swarms performing competitively.

Kennedy was not alone in believing that the social metaphor is the prime mover and that

the mechanism for particle motion may be radically modified. Monson and Seppi (2004)
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showed that particle motion could be further improved through changing the mechanism to

a system influenced by Kalman filtering in which the motion is entirely described by

predictions produced by the filter. Once again, the justification for such a radical change to

particle movement is the maintenance of the social aspect of PSO, which is achieved

through the Kalman filter’s sensor model. The approach, whilst providing very accurate

optimization, is computationally expensive compared with the canonical PSO. Further

research has been conducted (Monson and Seppi 2005b) and the filter modified to match its

application. This had the effect of returning optimization speed to canonical PSO levels

whilst maintaining the accuracy benefits achieved by filtering.

Using different social networks has been a popular area of research in PSO since its

inception (see Kennedy (1999) for an analysis). Parsopoulos and Vrahatis (2004) modified

the constricted algorithm to harness the explorative behaviour of global search and

exploitative nature of a local neighbourhood scheme. To combine the two, two velocity

updates are initially calculated:

Gtþ1 ¼ v vt þ u1b1 pi � xið Þ þ u2b2 pg � xi

� �� �
ð6Þ

Ltþ1 ¼ v vt þ u1b
0
1 pi � xið Þ þ u2b

0
2 pgl � xi

� �� �
ð7Þ

where G and L are the global and local velocity updates respectively, pg is the global best

particle position and pgl is the particle’s local neighbourhood best particle position. These

two updates are then combined to form a unified velocity update (U), which is then applied

to the current position:

Utþ1 ¼ ð1� uÞLtþ1 þ uGtþ1 u 2 ½0; 1� ð8Þ
xtþ1 ¼ xt þ Utþ1 ð9Þ

where u is a unification factor that balances the global and local aspects of the search and

suggestions are given to add mutation style influences to each in turn. Experimentation was

promising and further work has been carried out since for dynamic environments

(Parsopoulos and Vrahatis 2005a, 2005b).

Recently, a more realistic model of particle perception was introduced to PSO

(Kaewkamnerdpong and Bentley 2005), with the aim of making it a viable option for

applications that might otherwise suffer from imperfect communication, such as robotics.

In the natural world, a social animal will often suffer imperfect perception of the other

animals in its sociometric neighbourhood and must rely on information it receives via

limited perceptive acuity. To model this, the particles were not allowed to communicate

directly but only to observe particles within their pre-set perceptive range (replicating the

stigmergic behaviour of some species, such as dancing honeybees); this is also realistic in

that the information is regarded as more reliable where its source is closer. Each particle is

also allowed to observe the local area (i.e. sample the local solution space). If there is a

better solution nearby it uses that as its individual best position. The position update

algorithm for this method is dependent on the current state of the particle and can be

summarised as follows:

• If there is an observed position pobserved � pi then set pi to pobserved.

• If no neighbouring particles are perceived then do not use a social component; i.e. use

Kennedy’s (1997) cognition only model.

• If multiple particles are perceived use their average current position as the group best (pg).

• If a single particle is perceived then use its position as the group best (pg).
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Experimentation showed the perceptive swarm to be competitive in terms of accuracy

but had higher computational overheads. This was justified on the grounds of the potential

fields of application.

5 Discrete PSO

Although the main body of PSO development work has concentrated on optimization in

continuous search spaces, research has also been conducted into the application of

the algorithm to discrete problems. Kennedy and Eberhart (1997) developed the first

discrete version of PSO for binary problems. They solved the problem of moving the

particle through the problem space by changing the velocity in each vector to the proba-

bility of each bit being in one state or the other. For example, in any given dimension, d, if

vid represents the probability of the value xid, being a 1 and vid = 0.4 there is a 40% chance

that xid will be 1. Note that the calculation of the velocity still used equation (1), so to

constrain the probability a sigmoid transformation was applied. Later, Al-kazemi and

Mohan (2002) compared this with an alternative velocity update technique called Multi-

phase Discrete PSO (M-DiPSO). This employed 3 coefficients (cv, cx and cg) whose values

were set to either 1 or �1 depending on the phase of the optimization. The M-DiPSO

employed a hill climbing strategy where only fitter solutions were accepted, and, therefore,

the individual best was replaced by the previous position in the velocity update equation,

which for each component of the particle was now given by:

vðtþ1Þ ¼ cv � vðtÞ þ cx � xðtÞ þ cg � gðtÞ ð10Þ

where x and g are the particle’s previous position and the swarm best position respectively.

This new approach was found to be competitive across several problems, requiring fewer

objective function evaluations to converge, and was able to operate using small swarm sizes.

Using these techniques a wide range of bounded problems may be solved through the

encoding of potential solutions into binary patterns. Where the solution space is not spe-

cifically bounded, other techniques can be applied. Laskari et al. (2002) presented an

implementation of PSO that initially operated in continuous space but truncated the real

number values to integers. In experimentation that compared both a simple truncation and

a progressive truncation with a conventional branch and bound technique, the approach

was found to be effective across a range of integer programming problems.

More recently, Afshinmanesh et al. (2005) have developed a hybrid approach, com-

bining PSO and Artificial Immune Systems (AIS), for the optimization of binary problems.

The process begins with the production of a potential velocity update vector for each

particle through the combination, using various Boolean operators, of the various PSO

influences described earlier. Then the AIS aspect is applied; its purpose is to ensure the

hamming distance of the update vector is not too distant from the particle’s present po-

sition. If it is too distant, the vector is limited by randomly clearing excessive ‘1’s. The

update vector is then applied to the original particle position. Limited experimentation

presented in the work indicates that the technique could be effective and very efficient.

6 Swarm analyses

Kennedy (1997) conducted one of the first and, possibly, most useful analyses of the PSO

algorithm. Its purpose was to establish the benefit of social interaction in attaining the
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swarm’s goal. This was achieved by comparing the standard algorithm with three new

models, all in a basic neighbourhood configuration. The new models were: cognition-only,

where there is no influence from other individuals; social-only, where the best of all

neighbourhood members is used; and the selfless model, where the individual is excluded

from the neighbourhood best competition. The two new social models performed best, but

the author did not suggest replacing the standard algorithm, probably because the objective

function was overly simple and in more complex situations, without the individual influ-

ence, the swarm could easily converge to an early sub-optimal solution.

A more theoretical approach was taken by Ozcan and Mohan (1998 and 1999), in which

they observe that rather than ‘flying’ through the problem space, particles actually ‘surf’ on

sine waves. More importantly they give an insight into the role of u, which affects the

amplitude and frequency of the sine wave being followed, and show that an adaptive

inertia value could help a particle stuck in a poor region move away by hopping onto a

more productive wave. This work made several simplifications, the most significant being

the removal of the stochastic element of the algorithm. Clerc and Kennedy (2002) in a

thorough treatment of the underlying dynamics, reintroduced this, and showed that far

from enjoying perfect surf, unrestricted stochastic particles engaged in a ‘drunken walk’

toward infinity (explosion). The work does not refute the surfing behaviour though; it

supported it for a restricted particle when time was treated discretely, however, when time

was treated continuously the particle would spiral toward its goal. From this analysis the

constriction factor, described earlier, was developed, preventing swarm explosion through

the control of the stochastic elements b1 and b2.

It is not just particle trajectory that is important to swarm behaviour; the method by which

pg is calculated affects how particles are allowed to explore areas away from the current

swarm best. Through investigations into the impact of a variety of social networks, Kennedy

(1999) focussed on four basic topologies: circles, wheels, stars and random edges; socio-

metric network shortcuts for each were also tested. The research concluded that the topology

does affect the swarm’s performance but that the optimal configuration is objective function

dependent; the shortcuts were found to have very unpredictable effects. An inferred finding

from the work was that networks that slow down communication could help prevent pre-

mature convergence in multimodal landscapes. Kennedy and Mendes (2002) supported this

after extensive experimentation and concluded that the best, on average, configuration is a

von Neumann topology. This makes sense since it has connectivity somewhere between that

of a circle (using the local neighbourhood best, which is slow and better in multimodal

landscapes) and totally connected (using whole group best), which is fast and suited to simple

landscapes). See also, the further work in Mendes et al. (2003).

Particle swarms, in common with many population based algorithms, have an unin-

tentional bias to perform better in problems that have optimal solutions toward the certain

areas of the swarm’s initialised position, for example the centre of the solution space or the

absolute origin. Monson and Seppi (2005b) analysed this effect and showed that Ange-

line’s (1998b) use of Gelhaar and Fogel’s (1996) ‘‘Regional Scaling’’ method was insuf-

ficient to fully detect the problem. They proposed an alternative technique called ‘‘Centre

Offset’’. To illustrate this they used Clerc’s TRIBES (2003), a PSO tool that does not

require sociometric or swarm size parameter tuning (thus allowing for more consistent

analyses of particle motion), to apply PSO to several common problems. Whilst the re-

gional scaling was successful in detecting bias in functions with optima at the centre of the

initialised swarm, the centre offset was successful in highlighting bias toward the absolute

origin. The authors conclude that neither technique is sufficient on its own and, where such

analysis is required, both should be used.
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7 Swarm stagnation

Rapid swarm convergence is one of the main advantages of PSO, but this can also be

problematic since, if an early solution is sub-optimal, the swarm can easily stagnate around

it without any pressure to continue exploration. To avoid this, van den Bergh and Enge-

lbrecht (2002) introduced the Guaranteed Convergence PSO (GCPSO), which uses a

different velocity update equation for the pg particle. This equation causes the particle to

perform a random search around pg within a radius defined by a scaling factor that adapts

to the success of the particle in not stalling at pg. In unimodal problems the GCPSO easily

outperforms the modified PSO but produces similar results when used in multimodal

environments. The main drawback is that a priori knowledge may be required to optimize

the adaptation of the scaling factor. Its real strength is that its ability to operate with small

swarm sizes makes it an enabling technique for parallel niching solutions.

A collision avoidance system was introduced by Krink et al. (2002), in which particles

attempting to cluster about a potential solution bounce away from the particle already in

the potentially sub-optimal position. Three bouncing strategies were tested: a random

direction changer, a realistic bounce and a random velocity changer. The first was found to

provide little benefit, probably because it more or less became a random search. Con-

versely, the latter two provided significant improvement, especially in highly multimodal

landscapes, because the particles were never allowed to cluster and stagnate.

Low levels of particle diversity can be a good indicator of swarm stagnation. Riget and

Vesterstrøm (2002) implemented a measure of diversity to control the alternating attraction

and repulsion of the particles to and from the swarm best position. Initially the particles

attracted each other until a minimum diversity level was met, the swarm then entered

repulsion mode where the particles repelled each other until a maximum diversity level

was reached. The attraction phase was achieved through the normal application of the

canonical PSO velocity update formula; repulsion inverted the velocity update. The ap-

proach was compared with the canonical PSO and GA, and it performed better in all

multimodal problems; indeed, when the dimensionality of the problems was increased, the

magnitude of increased performance grew.

In the natural world, animals are often dispersed from a good location, such as a water

hole, by predatory activity. Silva et al. (2002) introduced a predatory particle that was

attracted to the swarm best particle but repulsed the rest of the swarm, forcing them to

disperse and explore other areas of the search space. This approach was tested using four

common high-dimensional problems and improved on the performance of PSO with a

variety of parameter settings.

Xie et al. (2002) turned to thermodynamics to resolve the issue. The enhanced system,

termed Dissipative PSO (DPSO), introduced negative entropy into the swarm to maintain a

far-from-equilibrium state. These fluctuations are justified, with reference to Kennedy’s

social model, as an implementation of human creativity, introducing new ideas that, when

seen to provide system improvement, are adopted by the other swarm members. Experi-

mentation indicated that the DPSO performed similarly as standard PSO in the early stages

and improved performance at higher iterations (when the standard system had stagnated).

Slowing down particle movement toward the early group best positions can also reduce

the risk of stagnation. Veeramachaneni et al. (2003) achieved this with their Fitness-

Distance-Ratio-PSO (FDR-PSO), which slows convergence through adding the influence

of the fittest near neighbour to the existing individual and swarm best influences. Several

algorithm variants were tested against the modified PSO using six benchmark functions
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with the best variant easily outperforming the modified PSO in terms of optimization

quality. This inevitably comes at a price, and convergence is shown to take approximately

twice as many iterations, and hence an expensive approach for less complex objective

functions where the modified PSO could achieve acceptable results.

Two further extensions were proposed by Ratnaweera et al. (2004) that used time-

varying acceleration coefficients (TVAC). The first of these being an EA mutation based

hybrid (MPSO-TVAC). In this approach, if the group best solution does not improve over a

given number of iterations, a random particle is moved (mutated) to another random

location in the search space. This was found to be competitive in comparisons with other

PSO variants for multimodal problems but suffered in unimodal landscapes due to the

movements away from the global optimum in situations where the swarm should have

located the global optimum quickly. The second, a self-organising hierarchy (HPSO-

TVAC), is a parameter automation strategy that varies the values of u1 and u2 over the

duration of the optimization run, with the aim of reducing group influence in the early

stages, thus preventing premature convergence. Experimentation indicated that, for optimal

results the cognitive component, u1, should reduce from 2.5 to 0.5 and the social com-

ponent, u2, should increase from 0.5 to 2.5. The TVAC modification alone was found to be

insufficient in preventing premature convergence in multimodal landscapes. HPSO-TVAC,

inspired by the investigation into the removal of particle momentum during the original

work of Kennedy and Eberhart (1995), modified the PSO still further by removing the

velocity memory of each particle. In the canonical PSO, if the velocity memory is removed

the swarm careers toward early local optima, at which point they stagnate. This problem is

resolved in this extension by reinitialising the velocity vector of a swarm particle each time

they stagnate. The swarm is then allowed to operate until a convergence criterion is met

(such as solution quality). During experimentation it was found that, provided the

re-initialisation of the velocity was time-variant, the method provided good performance

across a wide variety of unimodal and multimodal problems, including the real-

life application of tuning an internal combustion engine.

8 Configuration

Whilst it can be seen that the basic formulation of the particle system is straightforward,

configuration—parameter tuning—for optimal performance can be non-trivial. Carlisle and

Dozier (2001b) provide some guidance on achieving a working, if not optimal, solution

supported by evidence from six experiments. The advice is to start with a constricted

algorithm with a global neighbourhood of 30 particles that are updated asynchronously,

setting u1 = 2.8 and u2 = 1.3 and, where the objective function enforces xmax, setting the

velocity of particles at xmax to zero. There is, however, no guidance on how to improve an

optimizer from this initial configuration.

Parsopoulos and Vrahatis (2002) showed that further assistance can be provided to

improve the probability of a PSO algorithm achieving a valid solution, especially where

rapid convergence is sought. They seeded the initial swarm with particles whose locations

had been calculated using the Nonlinear Simplex Method (NSM) as developed by Nelder

and Mead (1965). Results showed that, whilst there was the overhead of the initial NSM

processing, the benefits of initialising some particles to good positions could be significant.

Trelea (2003) provides less prescriptive, but more qualitative, advice for the running of

parameter tuning experiments and what to try when performance is poor; this is also

supported by empirical evidence.
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More recently, Zhang et al. (2005) built on Carlisle and Dozier’s work by conducting

extensive experimentation across a wide range of test functions to provide further guidance

on the optimal parameter setting of the constricted PSO (Clerc and Kennedy, 2002). They

found that different test problems required different settings; in particular, unimodal and

multimodal problems required different settings of u and the reduction rate of vmax, and

higher dimensional problems require larger swarm sizes.

9 PSO in dynamic environments

Dynamic environments are defined by variations in objective function evaluation over

time, and are problematic when the optimum position (the goal) moves throughout the

problem space in steps larger than the group best particle can track naturally. Canonical

PSO is prevented from tracking the goal, since, unless the goal happens to move to a space

also occupied by another swarm member, the swarm will continue to move toward the

swarm’s previous best, set at the goal’s previous position. There are several options to

address this, such as re-initialising the swarm or using the old swarm but resetting the

previous best values.

Carlisle and Dozier (2000) proposed to solve this in a unimodal environment by occa-

sionally resetting each particle’s pi and pg to their current position causing them to ‘forget’

their previous experience and thus reduce the influence of previous good positions. Two

triggering mechanisms were considered: goal velocity (PSO can track small changes

without amending the algorithm) and time. Testing was performed using Kennedy’s (1997)

social models, where fitness was judged to be the geometric distance between particle and

goal; goal velocity was altered for each trial. The experiments performed were limited in

that the goal maintained a constant velocity and heading but did show that, by forgetting its

past, a particle stands more chance of tracking a moving goal, although a priori information

regarding the update rate of the environment is advantageous for setting an optimal memory

reset rate. Further work was conducted on the method (Carlisle and Dozier, 2001a and 2002)

in which ‘Sentries’ were added to the system to monitor the environment and initiate

memory resets at appropriate times. Whilst this improved the performance, it arguably

moves away from the agent-based nature of the paradigm. Perhaps more significantly, the

authors note that the inertia mechanism can be counter productive in dynamic systems

because it slows the particles down, making them less able to track moving optima.

Eberhart and Shi (2001) used a standard PSO that had a randomly varying inertia value

with a mean of 0.75 and range of 0.5–1.0. They applied it successfully to a 10 dimensional

parabolic function, but the swarm was allowed 100 iterations between dynamic updates

and the swarm performance degraded dramatically as the movement severity increased.

The authors propose the re-introduction of a momentum parameter, removed during initial

development of the paradigm, but they were unsure of its value.

In a move away from the biological metaphor, Blackwell and Bentley (2002) utilised an

analogy of electrostatic energy to track a dynamic global optimum. In this work they

endowed the particles with identical charges that produce a repulsive force between them

(canonical PSO being considered as having neutral particles), replicating Coulomb’s

electrostatic inverse square law. It was found that a combination of neutral and positively

charged particles produced the best results because the neutral particles allowed exploi-

tation whilst the enforced separation of the charged particles maintained exploration. This

approach worked satisfactorily on the test functions because the goal movement was step-

wise and the spread of particles ensured fast convergence at each new optimum.
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Parrott and Li (2004) used a GA inspired speciation approach to track dynamic mul-

timodal peaks. Sub-species (groups of particles that share the same goal) are created by

artificially seeding the swarm with sub-species leaders that act as pg for particles within a

given radius. The sub-species are then reformed post iteration of the whole swarm with any

new pg particles replacing their previous sub-species leaders. To prevent crowding and

preserve diversity, sub-species size is limited; those particles insufficiently fit to be in a

sub-species are reset to random positions. The technique is less efficient than canonical

PSO algorithms due to its requirement to re-evaluate the fitness of every particle’s pi

position as well as that of their current position. However, this may be justified, since it

prevents the particle being drawn toward what could have become a worse location in the

search space. A further limitation is that the goal must be travelling slower than the

particle’s maximum velocity, or it can escape from the swarm.

It can be seen from these earlier approaches that particle memory is generally regarded

as the problem area in dynamic environments. To make particle memory more transient,

Cui et al. (2005) modified the technique for assessing best particle fitness from (10) to (11):

ptþ1 ¼
pt f ðxtþ1Þ� f ðxtÞ

xtþ1 f ðxtþ1Þ> f ðxtÞ

�
ð11Þ

ptþ1 ¼
pt � T f ðxtþ1Þ� pt � T

xtþ1 f ðxtþ1Þ> pt � T

�
ð12Þ

where T is a known as evaporation, having a value between 0 and 1. As its name suggests,

this decreases over time. The approach showed some success in tracking moving optima

but only where the target was moving slower than particle maximum velocity. Even so, this

was shown to be an improvement over canonical PSO and the authors suggest further work

that indicates that it may be possible to improve the scheme further.

10 Parallel implementation

Despite the agent-based nature of PSO naturally lending itself to parallel implementation,

the literature indicates that a relatively small amount of research has been conducted in this

area. The expected gains in parallel implementation are speed and robustness. In speed

terms, theoretically, a parallel swarm should be able to operate at n times the speed of a

serial equivalent, where n is the number of processing nodes. However, communication

overheads will reduce this speedup. Gies and Rahmat-Samii (2003) indicate that in their

10 node system the performance gain was 8 times that of the serial implementation. It

should be noted that this figure would be expected to vary with fitness function and

communication requirements. More processor intensive fitness functions and smaller

communication requirements, for example, would make parallel implementations more

efficient. Schutte et al. (2004) support these findings in their parallel solution to a large-

scale engineering optimization problem. Their approach differed from Gies and Rahmat-

Samii’s in that, rather than applying the same fitness function to all particles in parallel, it

was decomposed and distributed across several computational nodes with a single coor-

dinating node performing the PSO algorithm. This forced the implementation to become

synchronous and created the overhead that the swarm could only operate as fast as the

slowest element of the fitness function. Further, it rendered the system less robust since any

node failure effectively halted the optimization process.
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An asynchronous implementation by Venter and Sobieszczanski-Sobieski (2005)

overcame the problems created by the synchronous nature of Schutte et al.’s work through

the implementation where possible of data pools. The only conventional operator that

required updating at each complete swarm iteration was the inertia (the craziness operator

(Kennedy and Eberhart 1995) would also require identical treatment where used). When

tested using a non-trivial design problem the asynchronous system was found to produce

results that matched the numerical accuracy of the synchronous system but was far more

efficient, the improvement increasing with the number of processors.

Chang et al. (2005) presented a parallel PSO in which each particle evaluated the fitness

function independently, and demonstrated that the efficiency of the algorithm is dependent

on the strategy for communicating pg, and that each strategy they investigated had its own

merits that could be exploited where the correlation of the solution parameters was known

a priori. Selecting an incorrect strategy was found to be very sub-optimal, so where the

correlation was unknown, a hybrid strategy was found to be effective.

11 Conclusions

Part I of this review has considered the background and history of Particle Swarm Opti-

mization and its place within the broader Natural Computing paradigm. The review then

moved on to consider various refinements to the original formulation of PSO in both

continuous and discrete problem spaces, analyses of swarm behaviour, and measures in-

cluded to address stagnation. Finally, the review considered research relating to algorithm

configuration, adaptations for dynamic environments and parallel implementation.

PSO offers rapid optimization of complex multidimensional search spaces, and is a

popular contemporary algorithm for a wide range of search and optimization problems.

However, this review has identified two significant areas of challenge for future devel-

opment: swarm stagnation and dynamic environments. From the earliest presentation of the

algorithm it has been acknowledged that the technique’s major weakness is its propensity

to converge prematurely on early, possibly suboptimal, group best solutions. The challenge

to potential users is to avoid this by ensuring that particles keep moving. Several tech-

niques for this have been proposed, but, akin to other optimization paradigms operating in

multimodal landscapes, the problem lies in knowing when an optimal solution has been

found. To ensure maximal exploration, several mechanisms were proposed to restrict the

velocity of the particles; slower particles complete more fitness function evaluations while

moving toward the final solution, increasing the likelihood that the global optimum will

be found. Hybrids with other natural computing paradigms have also been utilised in

further attempts to resolve PSO’s inherent challenges. The main aims of these are to re-

locate stagnant particles (akin to mutation in genetic algorithms) or to slow them down (for

example, through the use of subpopulations).

Considering the challenge of deploying PSO in dynamic environments, the major hin-

drance to successful optimization of such problems is the possibility of the optimum po-

sition having higher than particle velocity, and thus escaping the swarm. In dynamic

problems, a balance has to be sought between velocity restriction and the need to keep track

of optima. Slow moving optima can be tracked naturally because the particles continue to

move about in an area dictated by the velocity of the particles. Problems arise when the

movements of optima are larger than can be achieved by the particles. The underlying

principle in all the reviewed dynamic systems has been to maintain a diverse swarm, thus

increasing the likelihood that the optimum will move into an area that has coverage.
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Swarm stagnation and dynamic environments remain current research topics. Part II of

this review considers other research trends, covering recent work in hybridisation, multi-

criteria and constrained optimization, as well as reviewing briefly a range of indicative

application areas for PSO based systems.

References

Afshinmanesh F, Marandi A, Rahimi-Kian A (2005) A novel binary particle swarm optimization method
using artificial immune system. EuroCon 2005 – The international conference on computer as a tool,
Serbia & Montenegro, Belgrade

Al-kazemi B, Mohan CK (2002) Multi-phase Discrete Particle Swarm Optimization. Proceedings of fourth
international workshop on frontiers in evolutionary algorithms (FEA 2002)

Angeline PJ (1998a) Evolutionary optimization versus particle swarm optimization: philosophy and per-
formance differences. 7th Annual conf evolutionary programming

Angeline PJ (1998b) Using Selection to Improve Particle Swarm Optimization. Proceedings of IEEE
congress on evolutionary computation, Anchorage, Alaska

Blackwell TM, Bentley PJ (2002) Dynamic search with charged swarms. Proceedings of the genetic and
evolutionary computation conference 2002 (GECCO 2002), New York, NY, USA, pp 19–26

Bremermann HJ (1958) The evolution of intelligence. The Nervous System as a Model of its Environment.
Technical report, no 1, contract no 477(17), Dept Mathematics, Univ Washington, Seattle, July, 1958

Calude CS, Paun G, Tataram M (2001) A Glimpse into natural computing. CDMTCS Tech Rep 117, Univ of
Auckland, 2000 and J Multi-Valuate Logic 7:1–28
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