Introduction to Evolution Strategies

1. Evolution Strategies

Evolution Strategies (ESs) [1, 2] were initially developed by Rechenberg
and Schwefel in 1964 with a strong focus on building systems capable of
solving difficult real-valued parameter optimization problems. The natural
representation was a vector or real-valued genes that were manipulated pri-
marily by mutation operators designed to perturb the real-valued parameters
in useful ways.

There are different kinds of ESs. Next we shall introduce the two of them
most known.

1.1. The (1+ 1)-Evolution Strategy

The first ES algorithm, the so-called (1+1)-ES, was based on only two
individuals per generation, one parent and one descendent. The parent string
is evolved by applying a mutation operator to each one of its components.
The mutation strength is determined by a value o, a standard deviation of
a normally distributed random variable. This parameter is associated to the
parent and it is evolved in each process step as well. If the evolution has
been performed successfully, then the descendent substitutes the parent in
the next generation. The process is iterated until a certain finishing condition
is satisfied.

The mutation operator mut has two components. The first one, mu,,
evolves the value of the standard deviation o using Rechenberg’s 1/5-success
rule:

. 1

%, ifp> ¢

o'=mu,(0) =3 o, ifp<i
o, ifp:é

2 The (u, \)-Evolution Strategy 2

where p is the relative frequency of succesful mutations and ¢ is a constant
determining the updating amount of o.

The second one, mu,, mutates each component in the real coded string
by adding normally distributed variations with standard deviation o' (z; ~
N;(0,0™)) to it:

z' = mum(x) = (*:Ul +21,...,2n +Zn)

2. The (u, \)-Evolution Strategy

This second kind of ES is based on performing evolution on a population
of i possible n-dimensional solutions, obtaining A offspring and selecting the
best p from them to form the new population.The offspring are obtained
by first recombining a single or some parents in a single n-dimensional vec-
tor of object variables, and then creating a new one from this by applying
mutations with identical or different standard deviations to each object vari-
able. The main quality of the algorithm is its ability to incorporate the most
important parameters from the strategy (standard deviations and correla-
tion coefficients of normally distributed mutations) into the search process,
such that adaption also takes place in the strategy parameters according
to the current local topology of the search space. This property is called
self-adaptation [1].

Therefore, each population individual consists of three vectors, @ = (¥, 7, &),
representing, respectively, the object variable, the standard deviation and the
rotation angle values. The vector Z has n dimensions, equal to the number
of problem variables. The n, dimensions of a vector & can be up to n (in
this case, each object variable x;, ¢ = 1,...,n, has associated a different step
size 0;), and n, can be up to % The set of strategy parameters
consisting of standard deviations and rotation angles provides a complete de-
scription of the generalized n-dimensional distribution with an expectation
value vector 0. Anyway, n, may be set to zero, indicating that the rotation
angles are not considered. The more usual values for n, and n, are the
following [1]: (7, na) = {(1,0), (1,0), (n, “%=1) (2,n — 1)}

The following algorithm generically describes the behavior of the (u, A)-
ES. The parameter ¢ stands for the number of the current generation and
P(t) for the population in it:

2 The (u, \)-Evolution Strategy 3

1. Initialize and evaluate P(0). Initialize t < 0

2. Recombine ¢ of the p individuals of P(t) A times, by using one of
the following gene recombination mechanisms, r € {0,1,2,3}, i =
1,....n+n, +ny:

asi; S ~U({L,...,(}) equal Vi r = 0, no recombination

¢
' Z%“ r = 1, global intermediary

u-as;+(1—u)-ar;; S, T~U{L,...,¢}) r=2,local intermediary
asi; S~ U({1,...,(}) r =3, discrete

This operation generates A individuals forming P'(t).

3. Mutate P'(t) by adapting the \ individuals to obtain \ offspring form-
ing P”(t) in the way:

3.1. Mutate the values of ¢’ to obtain the array &”:

" = (o7 - exp(z1 + 20), . .., 0, - exp(2n, + 2%0)

where z; ~ N(0, +2), i=1,...,n, and zg ~ N(0, L2)-

3.2. Mutate the values of & to obtain the vector &":

=1 ! !
a'=(ay tz,..., 0 + 2n,)

where z; ~ N(0,0.0873%), i =1,..., n,.
3.3. Mutate the values of &’ to obtain the vector Z”:
it i St =1 =l

7' = (2} + cor (6", d"), ...,z + cor,(3”,d"))

where cor(5”,a") is a normally distributed random vector of cor-
related values.

4. Evaluate P"(t) and select the best p individuals to form P(t + 1).
5. Set the counter of generations t <+ ¢+ 1
6. If not (termination condition), then go to 2, else Stop.

For more information about (p, A\)-ES refer to [1].

REFERENCES 4

References

[1] T. Béck, Evolutionary alghorithms in theory and practice, Oxford Uni-
versity Press, 1996.

[2] H. P. Schwefel, Evolution and optimum seeking.Sizth-Generation Com-
puter Technology Series, John Wiley and Sons, 1995.

