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Group Decision-Making Model With Incomplete
Fuzzy Preference Relations Based on

Additive Consistency
Enrique Herrera-Viedma, Francisco Chiclana, Francisco Herrera, and Sergio Alonso

Abstract—In decision-making problems there may be cases in
which experts do not have an in-depth knowledge of the problem to
be solved. In such cases, experts may not put their opinion forward
about certain aspects of the problem, and as a result they may
present incomplete preferences, i.e., some preference values may
not be given or may be missing. In this paper, we present a new
model for group decision making in which experts’ preferences
can be expressed as incomplete fuzzy preference relations. As
part of this decision model, we propose an iterative procedure to
estimate the missing information in an expert’s incomplete fuzzy
preference relation. This procedure is guided by the additive-
consistency (AC) property and only uses the preference values the
expert provides. The AC property is also used to measure the level
of consistency of the information provided by the experts and also
to propose a new induced ordered weighted averaging (IOWA)
operator, the AC-IOWA operator, which permits the aggregation
of the experts’ preferences in such a way that more importance
is given to the most consistent ones. Finally, the selection of the
solution set of alternatives according to the fuzzy majority of
the experts is based on two quantifier-guided choice degrees: the
dominance and the nondominance degree.

Index Terms—Additive consistency (AC), aggregation, choice
degree, group decision making (GDM), incomplete preference
relations, induced ordered weighted averaging (IOWA) operator.

I. INTRODUCTION

G ROUP decision making (GDM) consists of multiple in-
dividuals interacting to reach a decision. Each decision

maker (expert) may have unique motivations or goals and may
approach the decision process from a different angle, but have
a common interest in reaching eventual agreement on selecting
the “best” option(s) [8], [25]. To do this, experts have to express
their preferences by means of a set of evaluations over a set
of alternatives. It has been a common practice in research to
model GDM problems in which all the experts express their
preferences using the same preference representation format.
However, in real practice, this is not always possible because
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each expert has their unique characteristics with regard to
knowledge, skills, experience, and personality, which implies
that different experts may express their evaluations by means
of different preference representation formats. In fact, this
is an issue that recently has attracted the attention of many
researchers in the area of GDM, and as a result, different
approaches to integrating different preference representation
formats have been proposed [1]–[3], [9], [15], [16], [44], [45].
In these research papers, many reasons are provided for fuzzy
preference relations to be chosen as the base element of that
integration. Among these reasons, it is worth noting that they
are a useful tool in the aggregation of experts’ preferences into
group preferences (see also [5], [10], [17], [20], [31], and [32]).

As aforementioned, each expert has his/her own experience
concerning the problem being studied, which also may imply
a major drawback, that of an expert not having a perfect
knowledge of the problem to be solved [21]–[23], [28], [33].
Indeed, there may be cases where an expert would not be able
to efficiently express any kind of preference degree between
two or more of the available options. This may be due to an
expert not possessing a precise or sufficient level of knowledge
of part of the problem, or because that expert is unable to
discriminate the degree to which some options are better than
others. Therefore, it would be of great importance to provide
the experts with tools that allow them to express this lack of
knowledge in their opinions. In this paper, we present and use
the concept of an incomplete fuzzy preference relation, i.e., a
fuzzy preference relation with some of its values missing or
unknown, as the tool for modeling situations with incomplete
information.

Another important issue to bear in mind when information is
provided by experts is that of “consistency” [3], [4], [17]. Due
to the complexity of most decision-making problems, experts’
preferences may not satisfy formal properties that fuzzy prefer-
ence relations are required to verify. Consistency is one of them,
and it is associated with the transitivity property.

Many properties have been suggested to model transitivity of
fuzzy preference relations and, consequently, consistency may
be measured according to which of these different properties is
required to be satisfied. One of these properties is the “additive
transitivity,” which, as shown in [17], can be seen as the parallel
concept of Saaty’s consistency property in the case of the
multiplicative preference relation.

It is obvious that consistent information, i.e., informa-
tion which does not imply any kind of contradiction, is more
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relevant or important than the information containing some con-
tradictions. The general procedure for the inclusion of impor-
tance degrees in GDM problems involves the transformation of
the preference values under the importance degrees to generate
new values [11], [38]. This activity is carried out by means of
a transformation function. Examples of such a function used
in these cases include the minimum operator [11], [38], the
exponential function [35], or generally a t-norm operator [46].
An alternative way of implementing these importance degrees
in the resolution process of a GDM problem is by using them
to induce the ordering of the preference values prior to their
aggregation, which is in the definition of an induced ordered
weighted averaging (IOWA) operator [40], [42]. In the case
of quantifier-guided IOWA operators, the importance degrees
can also be used to calculate their corresponding weighting
vector [6], [12].

The aim of this paper is to present a new decision model to
deal with GDM problems with the incomplete fuzzy preference
relations based on the additive-consistency (AC) property. This
new model is composed of two steps: the estimation of missing
preference values and the selection of alternatives. To do this,
we define a new AC measure for fuzzy preference relations,
which is based on the additive transitivity property [31]. We
use this AC measure to propose a new IOWA operator, which
we call the AC-IOWA operator. For the first step, we propose
an iterative procedure based on AC to estimate the missing
values of the incomplete fuzzy preference relation. We will
show that under certain conditions the incomplete fuzzy pref-
erence relation can be completed, i.e., all its missing values
can be successfully estimated. The main difference between the
approach we propose and those already proposed [22], [23] is
that the completion of a particular expert’s incomplete fuzzy
preference relation is carried out using only the information
he/she provides and no other expert’s information is needed.
It is important to point out that because no information from
external sources is used, the estimated information is consistent
with the original expert’s opinions. Finally, following the choice
scheme proposed in [10], i.e., aggregation followed by exploita-
tion, we will design a selection process for GDM problems with
the incomplete fuzzy preference relations based on the concept
of fuzzy majority and the AC-IOWA operator. The aggregation
step of a GDM problem consists in combining the experts’
individual preferences into a group collective one in such a
way that it summarizes or reflects the properties contained in
all the individual preferences. This aggregation is carried out
by applying the proposed AC-IOWA operator. The exploitation
phase transforms the global information about the alternatives
into a global ranking of them. This can be done in different
ways, the most common one being the use of a ranking method
to obtain a score function. To do this, two quantifier-guided
choice degrees of alternatives are used: the dominance and the
nondominance degree.

The rest of the paper is set out as follows. In Section II,
we present the GDM problem and its corresponding resolution
process when working with the incomplete fuzzy preference
relations. In Section III, AC measures for both complete and the
incomplete fuzzy preference relations are defined. Section IV
presents the iterative procedure to estimate the missing values

of the incomplete fuzzy preference relations and the sufficient
conditions to successfully estimate all the missing values. The
AC-IOWA operator and a detailed description of the selection
process used to solve GDM problems with the incomplete fuzzy
preference relations are presented in Section V. Finally, an
example as to how to apply the new decision-making model
presented in this paper is given in Section VI and our conclud-
ing remarks will be pointed out in Section VII. The Appendix
presents in greater detail the concept of fuzzy quantifiers to
model the concept of fuzzy majority in the decision process.

II. GDM WITH INCOMPLETE FUZZY

PREFERENCE RELATIONS

The problem we deal with is that of choosing the best
alternative(s) among a finite set, X = {x1, . . . , xn}, (n ≥ 2).
The alternatives will be classified from best to worst, using
the information known according to a set of experts, i.e.,
E = {e1, . . . , em}, (m ≥ 2). Each expert ek ∈ E, will provide
his/her preferences by means of a fuzzy preference relation:

Definition 1 [20], [29]: A fuzzy preference relation P on
a set of alternatives X is a fuzzy set on the product set
X ×X , i.e., it is characterized by a membership function µP :
X ×X −→ [0, 1].

When cardinality of X is small, the preference relation may
be conveniently represented by the n× n matrix P = (pij),
being pij = µP (xi, xj)(∀i, j ∈ {1, . . . , n}) interpreted as the
preference degree or intensity of the alternative xi over xj :
pij = 1/2 indicates indifference between xi and xj(xi ∼ xj),
pij = 1 indicates that xi is absolutely preferred to xj ,
and pij > 1/2 indicates that xi is preferred to xj(xi 
 xj).
Based on this interpretation, we have that pii = 1/2 ∀i ∈
{1, . . . , n} (xi ∼ xi).

As we have already mentioned, missing information is a
problem that we have to deal with because usual decision-
making procedures assume that experts are able to provide
preference degrees between any pair of possible alternatives,
which is not always possible. We note that a missing value
in a fuzzy preference relation is not equivalent to a lack of
preference of one alternative over another. A missing value can
be the result of the incapacity of an expert to quantify the degree
of preference of one alternative over another, in which case
he/she may decide not to “guess” to maintain the consistency
of the values already provided. It must be clear then that when
an expert is not able to express the particular value pij , because
he/she does not have a clear idea of how better alternative xi is
over alternative xj , this does not automatically mean that he/she
prefers both options with the same intensity.

In order to model these situations, in the following defini-
tions, we express the concept of the incomplete fuzzy prefer-
ence relation:

Definition 2: A function f : X −→ Y is partial when not
every element in the set X necessarily maps onto an element
in the set Y . When every element from the set X maps onto
one element of the set Y , then we have a total function.

Definition 3: The incomplete fuzzy preference relation P on
a set of alternatives X is a fuzzy set on the product set X ×X
that is characterized by a partial membership function.
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Fig. 1. Resolution process of a GDM with the incomplete fuzzy preference
relations.

As per this definition, we call a fuzzy preference relation
complete when its membership function is a total one. Clearly,
Definition 1 includes both definitions of complete and the
incomplete fuzzy preference relations. However, as there is no
risk of confusion between a complete and the incomplete fuzzy
preference relation, in this paper, we refer to the first type as
simply fuzzy preference relation.

In this context, to obtain a set of solution alternatives
Xsol ⊂ X , the first step of a resolution process of GDM
problems with the incomplete fuzzy preference relations might
be the application of some kind of mechanism to infer or
estimate the missing values. Therefore, the resolution process
presents the scheme given in Fig. 1. Once the experts provide
their (incomplete) preference relations, two main steps are
applied.

1) Estimation of missing information. In this step, the in-
complete fuzzy preference relations are completed. To do
this, an iterative procedure to estimate the missing values
of the incomplete fuzzy preference relation is presented
in Section IV.

2) Application of a selection process, which is carried out in
two sequential phases.
a) Aggregation phase. A collective fuzzy preference

relation is obtained by aggregating all completed
individual fuzzy preference relations. This aggrega-
tion is carried out by applying a special type of
IOWA operator [40]–[42], the AC-IOWA operator
(Section V-A2), which is based on the concept of
AC [31] (Section III) and that is guided by a lin-
guistic quantifier representing the concept of fuzzy
majority (of experts) desired to be implemented in the
resolution process.

b) Exploitation phase. Using again the concept of fuzzy
majority (of alternatives), two choice degrees of al-
ternatives are used: the quantifier-guided dominance
degree (QGDD) and the quantifier-guided nondom-
inance degree (QGNDD) [1]. These choice degrees
will act over the collective preference relation result-
ing in a global ranking of the alternatives, from which
the set of solution alternatives will be obtained.

The next section presents a new consistency measure for
fuzzy preference relations based on the concept of AC. An ex-
tended measure for incomplete fuzzy preference is also given.

III. AC MEASURE

The previous Definition 1 of a fuzzy preference relation does
not imply any kind of consistency property. In fact, preference
values of a fuzzy preference relation can be contradictory. To
make a rational choice, properties to be satisfied by such fuzzy
preference relations have been suggested, among which we can
cite [17]: triangle condition, weak transitivity, max–min tran-
sitivity, max–max transitivity, restricted max–min transitivity,
restricted max–max transitivity, and additive transitivity.

As shown in [17], additive transitivity for fuzzy preference
relations can be seen as the parallel concept of Saaty’s consis-
tency property for multiplicative preference relations [30]. The
mathematical formulation of the additive transitivity was given
by Tanino in [31]

(pij − 0.5) + (pjk − 0.5)
= (pik − 0.5), ∀i, j, k ∈ {1, . . . , n}. (1)

This kind of transitivity has the following interpretation: sup-
pose we want to establish a ranking between three alternatives
xi, xj , and xk, and that the information available about these
alternatives suggests that we are in an indifference situation,
i.e., xi ∼ xj ∼ xk. When giving preferences, this situation
would be represented by pij = pjk = pik = 0.5. Suppose now
that we have a piece of information that says xi ≺ xj , i.e.,
pij < 0.5. This means that pjk or pik have to change; otherwise
there would be a contradiction, because we would have xi ≺
xj ∼ xk ∼ xi. If we suppose that pjk = 0.5, then we have the
situation: xj is preferred to xi and there is no difference in
preferring xj to xk. We must then conclude that xk has to be
preferred to xi. Furthermore, as xj ∼ xk then pij = pik, and
so (pij − 0.5) + (pjk − 0.5) = (pij − 0.5) = (pik − 0.5). We
have the same conclusion if pik = 0.5. In the case of pjk < 0.5,
then we have that xk is preferred to xj and this to xi, so xk

should be preferred to xi. On the other hand, the value pik has
to be equal to or lower than pij , being equal only in the case
of pjk = 0.5, as we have already shown. Interpreting the value
pji − 0.5 as the intensity of preference of alternative xj over xi,
then it seems reasonable to suppose that the intensity of prefer-
ence of xi over xk should be equal to the sum of the intensities
of preferences when using an intermediate alternative xj , that
is, pik − 0.5 = (pij − 0.5) + (pjk − 0.5). The same reasoning
can be applied in the case of pjk > 0.5.

Additive transitivity implies additive reciprocity. Indeed, be-
cause pii = 0.5 ∀i, if we make k = i in (1), then we have: pij +
pji = 1 ∀i, j ∈ {1, . . . , n}. Therefore, the additive transitivity
is the only property that we will assume throughout this paper.

Expression (1) can be rewritten as

pik = pij + pjk − 0.5, ∀i, j, k ∈ {1, . . . , n}. (2)

We will consider a fuzzy preference relation to be “addi-
tive consistent” when for every three options in the problem
xi, xj , xk ∈ X their associated preference degrees pij , pjk, pik
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fulfil (2). An additive consistent fuzzy preference relation will
be referred as consistent throughout the paper, as this is the only
transitivity property we are considering.

Expression (2) can be used to calculate the value of a
preference degree using other preference degrees in a fuzzy
preference relation. Indeed, the preference value pik(i = k)
can be estimated using an intermediate alternative xj in three
different ways.

1) From pik = pij + pjk − 0.5, we obtain the estimate

cp j1
ik = pij + pjk − 0.5. (3)

2) From pjk = pji + pik − 0.5, we obtain the estimate

cp j2
ik = pjk − pji + 0.5. (4)

3) From pij = pik + pkj − 0.5, we obtain the estimate

cp j3
ik = pij − pkj + 0.5. (5)

The values

εp1
ik =

n∑
j=1

j �=i,k

∣∣∣cp j1
ik − pik

∣∣∣
n− 2 (6)

εp2
ik =

n∑
j=1

j �=i,k

∣∣∣cp j2
ik − pik

∣∣∣
n− 2 (7)

εp3
ik =

n∑
j=1

j �=i,k

∣∣∣cp j3
ik − pik

∣∣∣
n− 2 (8)

represent average deviations of all n− 2 possible estimates
cp jl

ik(l ∈ {1, 2, 3}) with respect to the actual value pik. When
the information provided in a fuzzy preference relation is
completely consistent then all cp jl

ik ∈ [0, 1](l ∈ {1, 2, 3}; ∀j ∈
{1, . . . , n}) coincide with pik. However, because experts are
not always fully consistent, the information given by an expert
may not verify (2) and some of the estimated preference degree
values cp jl

ik may not belong to the unit interval [0, 1]. We note,
from (3)–(5), what the maximum value of any of the prefer-
ence degrees cp jl

ik(l ∈ {1, 2, 3}) is 1.5 while the minimum one
is −0.5, and therefore as pik ∈ [0, 1], |cp jl

ik − pik| ∈ [0, 1.5].
The value

εpik =
2
3
· εp

1
ik + εp2

ik + εp3
ik

3
(9)

can be used to measure the error in [0, 1] expressed in a
preference degree between two alternatives. Thus, it can be
used to define the consistency level between the preference
degree pik and the rest of the preference values of the fuzzy
preference relation.

Definition 4: The consistency level associated with a prefer-
ence value pik is defined as

CLik = 1− εpik. (10)

When CLik = 1 then εpik = 0 and there is no inconsistency
at all. The lower the value of CLik, the higher the value of
εpik and the more inconsistent is pik with respect to the rest
of information.

In the following, we define the consistency level of the whole
fuzzy preference relation.

Definition 5: The consistency level of a fuzzy preference
relation P is defined as follows:

CLP =

n∑
i,k=1
i�=k

CLik

n2 − n
(11)

with CLP ∈ [0, 1]. When CLP = 1, the preference relation
P is fully consistent; otherwise, the lower CLP the more
inconsistent P .

When working with the incomplete fuzzy preference rela-
tion, (6)–(11) cannot be used to estimate its consistency level,
and therefore the above definitions of CLik and CLP have to
be extended. To do this, the following sets are introduced:

A = {(i, j) | i, j ∈ {1, . . . , n} ∧ i = j}
MV = {(i, j) ∈ A | pij is unknown}
EV =A \MV. (12)

MV is the set of pairs of alternatives for which the preference
degree of the first alternative over the second one is unknown
or missing; EV is the set of pairs of alternatives for which the
expert provides preference values. We do not take into account
the preference value of one alternative over itself as this is
always assumed to be equal to 0.5.

The following sets are also needed:

H1
ik = {j = i, k | (i, j), (j, k) ∈ EV} (13)

H2
ik = {j = i, k | (j, i), (j, k) ∈ EV} (14)

H3
ik = {j = i, k | (i, j), (k, j) ∈ EV} . (15)

H1
ik, H2

ik, H3
ik are the sets of intermediate alternative xj(j =

i, k) that can be used to estimate the preference value
pik(i = k) using (3)–(5), respectively.

For a particular preference degree pik((i, k) ∈ EV), (6)–(9)
can be redefined as

εp1
ik =




∑
j∈Hl

ik

|cpjl
ik

−pik|
#Hl

ik

, if
(
#H l

ik = 0) ; l ∈ {1, 2, 3}
0, otherwise

(16)
and

εpik =
2
3
· εp

1
ik + εp2

ik + εp3
ik

K (17)

with

K =



3, if

(
#H1

ik = 0) ∧ (#H2
ik = 0) ∧ (#H3

ik = 0)
2, if (#Ht

ik = 0) ∧ ((#Hv
ik = 0) ∧ (#Hw

ik = 0))
t, v, w ∈ {1, 2, 3}, t = v = w

1, otherwise.
(18)
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In decision-making situations with incomplete information,
the notion of completeness is also an important factor to
take into account when analyzing the consistency. Clearly, the
higher the number of preference values provided by an expert
the higher the chance of inconsistency. Therefore, a degree of
completeness associated with the number of preference values
provided should also be taken into account to produce a fairer
measure of consistency of the incomplete fuzzy preference
relation.

Given the incomplete fuzzy preference relation, we can
easily characterize two completeness levels, the completeness
level of a relation, and the completeness level of an alternative.
For the incomplete fuzzy preference relation P , its complete-
ness level CPP can be defined as the ratio of the number of
preference values known #EV to the total possible number of
preference values n2 − n

CPP =
#EV
n2 − n

. (19)

For an alternative xi, we can define its completeness level
CPi as the ratio between the actual number of preference
values known for xi,#EVi(EVi ⊆ EV), and the total number
of possible preference values in which xi is involved with a
different alternative 2(n− 1)

CPi =
#EVi

2(n− 1) . (20)

The consistency level CLik, associated with a preference
value pik, (i, k) ∈ EV, is defined as a linear combination of
its associated error εpik and the average of the completeness
values associated to the two alternatives involved in that pref-
erence degree CPi and CPk using a parameter αik ∈ [0, 1] to
control the influence of completeness in the evaluation of the
consistency levels. This parameter αik should decrease with
respect to the number of preference values known, in such a
way that it takes the value of 0 when all the preference values
in which xi and xk are involved are known, in which case the
completeness concept lacks any meaning and, therefore, should
not be taken into account; and it takes the value of 1 when no
values are known.

The total number of different preference values involving
the alternatives xi and xk is equal to 4(n− 1)− 2: the total
number of possible preference values involving xi(2(n− 1))
plus the total number of possible preference values involving
xk(2(n− 1))minus the common preference value involving xi

and xk, pik and pki. The number of different preference values
known for xi and xk is #EVi +#EVk −#(EVi ∩ EVk).
Thus, we claim that αik = f(#EVi +#EVk −#(EVi ∩
EVk)), being f a decreasing function with f(0) = 1 and
f(4(n− 1)− 2) = 0. This is summarized in the following
definition.

Definition 6: The consistency level CLik, associated with
a preference value pik, (i, k) ∈ EV, is defined as a linear
combination of its associated error εpik and the average of the

completeness values associated to the two alternatives involved
in that preference degree CPi and CPk

CLik=(1−αik) · (1−εpik)+αik · CPi+CPk

2
,

αik ∈ [0, 1] (21)

with αik = f(#EVi +#EVk −#(EVi ∩ EVk)), being f a
decreasing function with f(0) = 1 and f(4(n− 1)− 2) = 0.

In the above definition, the simple linear solution could be
used to obtain the parameter αik

αik = 1− #EVi +#EVk −#(EVi ∩ EVk)
4(n− 1)− 2 . (22)

In the following, we define the consistency level of the
incomplete fuzzy preference relation.

Definition 7: The consistency level of the incomplete fuzzy
preference relation P is defined as follows:

CLP =

∑
(i,k)∈EV

CLik

#EV
. (23)

Clearly, this redefinition of CLP is an extension of (11),
because when P is complete both EV and A coincide and
thus: #EV = n2 − n, #H1

ik = #H2
ik = #H3

ik = n− 2, and
αik = 0 ∀i, k.

IV. ESTIMATING MISSING VALUES IN INCOMPLETE

FUZZY PREFERENCE RELATIONS USING AC

As we have already mentioned, missing information is a
problem that has to be addressed because experts are not always
able to provide preference degrees between every pair of possi-
ble alternatives. Nevertheless, in this section, we will show that
these values can be estimated from the existing information.

Usual procedures for GDM problems correct this lack of
knowledge of a particular expert using the information provided
by the rest of experts together with aggregation procedures [23].
These kind of approaches have several disadvantages. Among
them, we can cite the requirement of multiple experts in order
to estimate the missing value of a particular expert. Another
drawback is that these procedures do not usually take into
account the differences between experts’ preferences, which
could lead to the estimation of a missing value that would not
naturally be compatible with the rest of the preference values
given by that expert. Finally, some of these missing information
retrieval procedures are interactive, that is, they need experts
to collaborate in “real time,” an option which is not always
possible.

Our proposal is quite different to the above approaches. We
put forward a procedure that estimates missing information in
an expert’s incomplete fuzzy preference relation using only
the rest of the preference values provided by that particular
expert. By doing this, we assure that the reconstruction of the
incomplete fuzzy preference relation is compatible with the rest
of the information provided by the expert.

Next, we present the iterative procedure to estimate miss-
ing values of the incomplete fuzzy preference relations and
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sufficient conditions to guarantee the successful estimation of
all the missing values.

A. Iterative Procedure to Estimate Missing Values

In order to develop the iterative procedure to estimate
missing values, the following two different tasks have to be
carried out.

1) Establish the elements that can be estimated in each step
of the procedure.

2) Produce the particular expression that will be used to
estimate a particular missing value.

1) Elements to Be Estimated in Step h: The subset of miss-
ing valuesMV that can be estimated in step h of our procedure
is denoted by EMVh (estimated missing values) and defined as
follows:

EMVh =

{
(i, k) ∈ MV \

h−1⋃
l=0

EMVl |

i = k ∧ ∃j ∈ {Hh1
ik ∪Hh2

ik ∪Hh3
ik

}}
(24)

with

Hh1
ik =

{
j | (i, j), (j, k) ∈

{
EV

h−1⋃
l=0

EMVl

}}
(25)

Hh2
ik =

{
j | (j, i), (j, k) ∈

{
EV

h−1⋃
l=0

EMVl

}}
(26)

Hh3
ik =

{
j | (i, j), (k, j) ∈

{
EV

h−1⋃
l=0

EMVl

}}
(27)

and EMV0 = ∅ (by definition). When EMVmaxIter = ∅ with
maxIter > 0 the procedure will stop as there will not be
any more missing values to be estimated. Moreover, if⋃maxIter

l=0 EMVl = MV then all missing values are estimated,
and consequently, the procedure is said to be successful in the
completion of the incomplete fuzzy preference relation.

2) Expression to Estimate a Particular Value pik in Step h:
In order to estimate a particular value pik with (i, k) ∈ EMVh,
we propose the application of the following function:

function estimate_p(i, k)
1) cp1

ik = 0, cp
2
ik = 0, cp

3
ik = 0.

2) cp1
ik = ((

∑
j∈Hh1

ik
cp j1

ik )/#Hh1
ik ) if#Hh1

ik = 0.
3) cp2

ik = ((
∑

j∈Hh2
ik

cp j2
ik )/#Hh2

ik ) if#Hh2
ik = 0.

4) cp3
ik = ((

∑
j∈Hh3

ik
cp j3

ik )/#Hh3
ik ) if#Hh3

ik = 0.
5) Calculate cpik = (1/K)(cp1

ik + cp2
ik + cp3

ik).

end function.

The function estimate_p(i, k) computes the final estimated
value of the missing value cpik as the average of all estimated
values that can be calculated using all the possible intermediate
alternatives xj and using the three possible expressions (3)–(5).

We should point out that some estimated values of the in-
complete fuzzy preference relation could lie outside the unit in-
terval, i.e., for some (i, k), we may have cpik < 0 or cpik > 1.
In order to normalize the expression domains in the decision
model, the following function is used

f(y) =

{ 0, if y < 0
1, if y > 1
y, otherwise.

We also point out that the consistency level CLik of an
estimated preference value cpik, if necessary, may be defined as
the average of the consistency levels of all the preference values
used to estimate it and computed easily inside the function
estimate_p(i, k).

The iterative estimation procedure pseudocode is as follows:

ITERATIVE ESTIMATION PROCEDURE
0. EMV0 = ∅
1. h = 1

2. while EMVh = ∅ {
3. for every (i, k) ∈ EMVh {
4. estimate_p(i, k)

5. }
6. h + +

7. }

B. Sufficient Conditions to Estimate All Missing Values

It is very important to establish conditions that guarantee
that all the missing values of the incomplete fuzzy preference
relation can be estimated. We assume that experts provide their
judgements freely by means of the incomplete fuzzy preference
relations with preferences degrees pik ∈ [0, 1] and pii = 0.5,
without any other restriction, as for example, that of imposing
the additive reciprocity property.

In the following, we provide sufficient conditions that guar-
antee the success of the above iterative estimation procedure.

1) If for all pik ∈ MV(i = k) there exists at least a j ∈
{H1

ik ∪H2
ik ∪H3

ik}, then all missing preference values
can be estimated in the first iteration of the procedure
(EMV1 = MV).

2) Under the assumption of AC property, a different suffi-
cient condition was given in [17]. This condition states
that any incomplete fuzzy preference relation can be
completed when the set of n− 1 preference values
{p12, p23, . . . , p(n−1)n} is known.

3) A more general condition than the previous one, which in-
cludes that when a complete row or column of preference
values is known, is given in the following proposition.

Proposition 1: The incomplete fuzzy preference relation can
be completed if a set of n− 1 nonleading diagonal preference
values, where each one of the alternatives is compared at least
once, is known.

Proof: Proof by induction on the number of alternatives
will be used.

1) Basis: For n = 3, we suppose that two preference degrees
involving the three alternatives are known. These degrees
can be provided in three different ways.
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a) pij and pjk(i = j = k) are given: In this first case, all
the possible combinations of the two preference val-
ues are: {p12, p23}, {p13, p32}, {p21, p13}, {p23, p31},
{p31, p12}, and {p32, p21}. In any of these cases,
we can find the remaining preference degrees of the
relation {pik, pkj , pji, pki} as follows:

pik = pij + pjk − 0.5 pkj = pik − pij + 0.5

pji = pjk − pik + 0.5 pki = pkj − pij + 0.5.

b) pji and pjk(i = j = k) are given: In this second case,
all the possible combinations of the two preference
values are: {p21, p23}, {p31, p32}, and {p12, p13}. In
any of these cases, we can find the remaining pref-
erence degrees of the relation {pik, pki, pkj , pij} as
follows:

pik = pjk − pji + 0.5 pki = pji − pjk + 0.5

pkj = pki − pji + 0.5 pij = pkj − pki + 0.5.

c) pij and pkj(i = j = k) are given: In this third case, all
the possible combinations of the two preference values
are: {p12, p32}, {p13, p23} and {p21, p31}. In any of
these cases, we can find the remaining preference
degrees of the relation {pik, pki, pji, pjk} as follows:

pik = pij − pkj + 0.5 pki = pkj − pij + 0.5

pji = pki − pkj + 0.5 pjk = pik − pij + 0.5.

2) Induction hypothesis: Let us assume that the proposition
is true for n = q − 1.

3) Induction step: Let us suppose that the expert provides
only q − 1 preference degrees where each one of the q
alternatives is compared at least once.

In this case, we can select a set of q − 2 prefer-
ence degrees where q − 1 different alternatives are in-
volved. Without loss of generality, we can assume that
these q − 1 alternatives are x1, x2, . . . , xq−1, and there-
fore the remaining preference degree involving the al-
ternative xq could be pqi(i ∈ {1, . . . , q − 1}) or piq(i ∈
{1, . . . , q − 1}).

By the induction hypothesis, we can estimate all the
preference values of the fuzzy preference relation of order
(q − 1)× (q − 1) associated with the set of alternatives
{x1, x2, . . . , xq−1}. Therefore, we have estimates for the
following set of preference degrees:

{pij , i, j = 1, . . . , q − 1, i = j}.

If the value we know is pqi, i ∈ {1, . . . , q − 1}, then we
can estimate {pqj , j = 1, . . . , q − 1, i = j} and {pjq, j =
1, . . . , q − 1} using pqj = pqi + pij − 0.5,∀j and pjq =
pji − pqi + 0.5,∀j, respectively. If the value we know is
piq, i ∈ {1, . . . , q − 1} then {pqj , j = 1, . . . , q − 1} and
{pjq, j = 1, . . . , q − 1, i = j}, are estimated by means of
pqj = pij − piq + 0.5,∀j and pjq = pji + piq − 0.5,∀j,
respectively. �

V. SELECTION PROCESS

The selection process we present consists of two phases:
1) aggregation and 2) exploitation. The aggregation phase de-
fines a collective fuzzy preference relation, which indicates the
global preference between every ordered pair of alternatives,
while the exploitation phase transforms the global information
about the alternatives into a global ranking of them, from which
a selection set of alternatives is derived.

A. Aggregation: The Collective Fuzzy Preference Relation

Once we have estimated all the missing values in every
incomplete fuzzy preference relation, we have a set of m
individual fuzzy preference relations {P 1, . . . , Pm}. From this
set, a collective fuzzy preference relation P c = (pc

ik) must be
derived by means of an aggregation procedure. In our case, each
value pc

ik ∈ [0, 1] will represent the preference of alternative
xi over alternative xk according to the majority of the most
consistent experts’ opinions.

Clearly, a rational assumption in the resolution process of
a GDM is that of associating more importance to the experts
who provide the most consistent information. This assumption
implies that GDM problems should be viewed as heteroge-
neous. Indeed, in any GDM problem with the incomplete fuzzy
preference relations, each expert eh can have an importance
degree associated with him/her, which, for example, can be
his/her own consistency level of the relation CLP h or consis-
tency levels of the preference values CLh

ik in each preference
value pik.

Usually, procedures for the inclusion of these importance
values in the aggregation process involve the transformation
of the preference values ph

ik under the importance degree Ih,
to generate a new value, ph

ik [11], [14]. This activity is carried
out by means of a transformation function g, ph

ik = g(ph
ik, I

h).
Examples of functions g used in these cases include the mini-
mum operator [14], the exponential function g(x, y) = xy [35],
or generally any t-norm operator. In our case, we apply an
alternative approach that consists of using importance degrees
or consistency levels as the order inducing values of the IOWA
operator [41] to be applied in the aggregation stage of the
selection process. In the next sections, we explain how this
is done.

1) Ordered Weighted Averaging (OWA) and IOWA Opera-
tors: Yager in [37] introduced the OWA operator, which
is commutative, idempotent, continuous, monotonic, neutral,
compensative, and stable for positive linear transformations. A
fundamental aspect of the OWA operator is the reordering of
the arguments to be aggregated, based upon the magnitude of
their respective values.

Definition 8 [37]: An OWA operator of dimension n is a
function φ : Rn → R, which has a set of weights cor weighting
vector associated with it, W = (w1, . . . , wn), with wi ∈ [0, 1],∑n

i=1 wi = 1, and it is defined to aggregate a list of values
{p1, . . . , pn} according to the following expression:

φW (p1, . . . , pn) =
n∑

i=1

wi · pσ(i) (28)
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being σ : {1, . . . , n} → {1, . . . , n} a permutation such that
pσ(i) ≥ pσ(i+1), ∀i = 1, . . . , n− 1, i.e., pσ(i) is the i highest
value in the set {p1, . . . , pn}.

A natural question in the definition of the OWA operator is
how to obtain the associated weighting vector. In [37], Yager
proposed two ways to obtain it. The first approach is to use
some kind of learning mechanism using some sample data;
while the second one tries to give some semantics or meaning
to the weights. The latter possibility has allowed multiple
applications in the area we are interested in, quantifier-guided
aggregation [36].

In the process of quantifier-guided aggregation, given a
collection of n criteria represented as fuzzy subsets of the
alternatives X , the OWA operator is used to implement the
concept of fuzzy majority in the aggregation phase by means of
a fuzzy linguistic quantifier [43], which indicates the proportion
of satisfied criteria “necessary for a good solution” [39] (see
the Appendix for more details). This implementation is done
by using the quantifier to calculate the OWA weights. In the
case of a regular increasing monotone (RIM) quantifier Q, the
procedure to evaluate the overall satisfaction of Q criteria (or
experts) (ek) by the alternative xj is carried out calculating the
OWA weights as follows:

wi = Q(i/n)−Q ((i− 1)/n) , i = 1, . . . , n. (29)

When a fuzzy quantifier Q is used to compute the weights of
the OWA operator φ, then it is symbolized by φQ. We make note
that this type of aggregation “is very strongly dependent upon
the weighting vector used” [39], and consequently also upon
the function expression used to represent the fuzzy linguistic
quantifier.

In [39], Yager also proposed a procedure to evaluate the over-
all satisfaction of Q important (uk) criteria (or experts) (ek)
by the alternative xj . In this procedure, once the satisfaction
values to be aggregated have been ordered, the weighting vector
associated with an OWA operator using a linguistic quantifier Q
are calculated following the expression

wi = Q

(∑i
k=1 uσ(k)

T

)
−Q

(∑i−1
k=1 uσ(k)

T

)
(30)

being T =
∑n

k=1 uk the total sum of importance, and σ the
permutation used to produce the ordering of the values to
be aggregated. This approach for the inclusion of importance
degrees associates a zero weight to those experts with a zero
importance degree. In our case, the consistency levels of the
fuzzy preference relations are used to derive the “importance”
values associated with the experts.

Inspired by the work of Mitchell and Estrakh [26], Yager and
Filev in [41] defined the IOWA operator as an extension of the
OWA operator to allow a different reordering of the values to
be aggregated.

Definition 9 [41]: An IOWA operator of dimension n is a
function ΦW : (R × R)n → R, to which a set of weights or
weighting vector is associated, W = (w1, . . . , wn), with wi ∈
[0, 1], Σiwi = 1, and it is defined to aggregate the set of second

arguments of a list of n two-tuples {〈u1, p1〉, . . . , 〈un, pn〉}
according to the following expression:

ΦW (〈u1, p1〉, . . . , 〈un, pn〉) =
n∑

i=1

wi · pσ(i) (31)

being σ a permutation of {1, . . . , n} such that uσ(i) ≥ uσ(i+1),
∀i = 1, . . . , n− 1, i.e., 〈uσ(i), pσ(i)〉 is the two-tuple with
uσ(i), the ith highest value in the set {u1, . . . , un}.

In the above definition, the reordering of the set of values
to be aggregated {p1, . . . , pn} is induced by the reordering of
the set of values {u1, . . . , un} associated with them, which
is based upon their magnitude. Due to this use of the set of
values {u1, . . . , un}, Yager and Filev called them the values of
an order inducing variable and {p1, . . . , pn} the values of the
argument variable [40]–[42].

Clearly, the aforementioned approaches to calculate the
weighting vector of an OWA operator can also be applied to the
case of IOWA operators. When a fuzzy linguistic quantifier Q
is used to compute the weights of the IOWA operator Φ, then it
is symbolized by ΦQ.

2) AC-Based IOWA Operator: Definition 9 allows the con-
struction of many different operators. Indeed, the set of consis-
tency levels of the relations, {CLP 1 , . . . ,CLP m}, or the set of
consistency levels of the preference values, {CL1

ik, . . . ,CL
m
ik},

may be used not just to associate “importance” values to the
experts E = {e1, . . . , em} but also to define an IOWA operator,
i.e., the ordering of the preference values to be aggregated
{p1

ik, . . . , p
m
ik} can be induced by ordering the experts from the

most to the least consistent one. In this case, we obtain an IOWA
operator that we call the AC-IOWA operator and denote it as
ΦAC

W . This new operator can be viewed as an extension of the
consistency IOWA (C-IOWA) operator defined in [4].

Definition 10: The AC-IOWA operator of dimension m,
ΦAC

W , is an IOWA operator whose set of order inducing values
is {CLP 1 , . . . ,CLP m} or {CL1

ik, . . . ,CL
m
ik}.

Because an expert may be consistent in some of his pref-
erences and inconsistent in others, our aggregation process is
carried out using an AC-IOWA operator guided by the set of
consistency levels of preference values, i.e., {CL1

ik, . . . ,CL
m
ik}.

Therefore, the collective fuzzy preference relation is obtained
as follows:

pc
ik = Φ

AC
Q

(〈
CL1

ik, p
1
ik

〉
, . . . , 〈CLm

ik, p
m
ik〉
)

(32)

where Q is the fuzzy quantifier used to implement the fuzzy
majority concept and, using (30), to compute the weighting
vector of the AC-IOWA operator ΦAC

Q .

B. Exploitation: Choosing the Alternative(s)

At this point, in order to select the alternative(s) “best” ac-
ceptable for the majority (Q) of the most consistent experts, we
propose two quantifier-guided choice degrees of alternatives, a
dominance, and a nondominance degree, which can be applied
according to different selection policies.

1) Choice Degrees of Alternatives:
QGDDi: The quantifier-guided dominance degree quan-
tifies the dominance that one alternative has over all
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the others in a fuzzy majority sense and is defined as
follows:

QGDDi = φQ

(
pc

i1, p
c
i2, . . . , p

c
i(i−1), p

c
i(i+1), . . . , p

c
in

)
. (33)

QGNDDi: The quantifier-guided nondominance degree
gives the degree in which each alternative is not domi-
nated by a fuzzy majority of the remaining alternatives.
Its expression being

QGNDDi = φQ

(
1− ps

1i, 1− ps
2i, . . . , 1− ps

(i−1)i,

1− ps
(i+1)i, . . . , 1− ps

ni

)
(34)

where ps
ji = max{pc

ji − pc
ij , 0} represents the degree

in which xi is strictly dominated by xj . When the
fuzzy quantifier represents the statement “all,” whose
algebraic aggregation corresponds to the conjunction
operator min, this nondominance degree coincides with
Orlovski’s nondominated alternative concept [29].

2) Selection Policies: The application of the above choice
degrees of alternatives over X may be carried out according to
two different policies.

— Sequential policy: One of the choice degrees is selected
and applied to X according to the preference of the
experts, obtaining a selection set of alternatives. If there
is more than one alternative in this selection set, then the
other choice degree is applied to select the alternative of
this set with the best second choice degree.

— Conjunctive policy: Both choice degrees are applied to
X , obtaining two selection sets of alternatives. The final
selection set of alternatives is obtained as the intersection
of these two selection sets of alternatives.

The latter conjunction selection process is more restrictive
than the former sequential selection process because it is possi-
ble to obtain an empty selection set. Therefore, in a complete
selection process the choice degrees can be applied in three
steps.

Step 1) The application of each choice degree of alternatives
over X to obtain the following sets of alternatives:

XQGDD=

{
xi ∈ X |QGDDi = sup

xj∈X
QGDDj

}
(35)

XQGNDD=

{
xi ∈ X |QGNDDi = sup

xj∈X
QGNDDj

}
(36)

whose elements are called maximum dominance
elements on the fuzzy majority of X quantified by
Q and maximal nondominated elements by the fuzzy
majority of X quantified by Q, respectively.

Step 2) The application of the conjunction selection policy,
obtaining the following set of alternatives:

XQGCP = XQGDD
⋂

XQGNDD. (37)

If XQGCP = ∅, then End. Otherwise, continue.

Step 3) The application of the one of the two sequential
selection policies, according to either a dominance
or nondominance criterion, i.e., the following.
a) Dominance-based sequential selection process

QG-DD-NDD. To apply the quantifier-guided
dominance degree over X , and obtain XQGDD.
If #(XQGDD) = 1, then End, and this is the
solution set. Otherwise, continue obtaining

XQG−DD−NDD=

{
xi∈XQGDD|QGNDDi

= sup
xj∈XQGDD

QGNDDj

}
. (38)

This is the selection set of alternatives.
b) Nondominance-based sequential selection pro-

cess QG-NDD-DD. To apply the quantifier-
guided nondominance degree over X , and
obtain XQGNDD. If #(XQGNDD) = 1, then
End, and this is the solution set. Otherwise, con-
tinue obtaining

XQG−NDD−DD=

{
xi∈XQGNDD|QGDDi

= sup
xj∈XQGNDD

|QGDDj

}
. (39)

This is the selection set of alternatives.

VI. ILLUSTRATIVE EXAMPLE

For the sake of simplicity, we will assume a low number
of experts and alternatives. Let us suppose that four different
experts {e1, e2, e3, e4} provide the following fuzzy preference
relations over a set of four alternatives X = {x1, x2, x3, x4}:

P 1 =




− 0.2 0.6 0.4
x − x x
x x − x
x x x −




P 2 =




− x 0.7 x
0.4 − x 0.6
0.3 x − x
x 0.4 x −




P 3 =




− 0.3 0.5 0.75
0.7 − 0.7 0.9
0.5 0.3 − 0.7
0.25 0.1 0.3 −




P 4 =




− x 0.6 0.3
0.4 − 0.4 0.3
0.4 0.6 − 0.3
0.7 0.7 0.7 −


 .

A. Estimation of Missing Values

Three given preference relations are incomplete {P 1, P 2,
P 4}. For P 1, there are just three known values; because they



HERRERA-VIEDMA et al.: GROUP DECISION-MAKING MODEL WITH INCOMPLETE FUZZY PREFERENCE RELATIONS 185

involve all four alternatives, then all the missing values can be
successfully estimated:

Step 1) The set of elements that can be estimated are

EMV1 = {(2, 3), (2, 4), (3, 2), (3, 4), (4, 2), (4, 3)}} .

After these elements have been estimated, we
have

P 1 =




− 0.2 0.6 0.4
x − 0.9 0.7
x 0.1 − 0.3
x 0.3 0.7 −


 .

As an example, to estimate p43, the procedure is
as follows:

H11
43 = ∅ ⇒ cp1

43 = 0

H12
43 = {1} ⇒ cp2

43 = cp12
43 = p13 − p14 + 0.5 = 0.7

H23
43 = ∅ ⇒ cp3

43 = 0

K =1 ⇒ cp43 =
0 + 0.7 + 0

1
= 0.7.

Step 2) The set of elements that can be estimated are

EMV1 = {(2, 1), (3, 1), (4, 1)}} .

After these elements have been estimated, we
have the following completed fuzzy preference
relation:

P 1 =




− 0.2 0.6 0.4
0.8 − 0.9 0.7
0.4 0.1 − 0.3
0.6 0.3 0.7 −


 .

As an example, to estimate p41, the procedure is
as follows:

H21
41 = ∅ ⇒ cp1

41 = 0

H22
41 = ∅ ⇒ cp2

41 = 0

H23
41 = {2, 3} ⇒ cp23

41 = cp33
41 = 0.6⇒ cp3

41 = 0.6

K =1 ⇒ cp41 =
0 + 0 + 0.6

1
= 0.6.

The corresponding consistency level matrix asso-
ciated with the incomplete fuzzy preference relation
P 1 is calculated as follows:

EV1 = {(1, 2), (1, 3), (1, 4)}; EV2 = {(1, 2)}
EV3 = {(1, 3)}; EV4 = {(1, 4)}
CP1 =3/6; CP2 = CP3 = CP4 = 1/6

α12 =α13 = α12 = α12 = 1− 3 + 1− 1
10

= 0.7.

For p12, we have that there is no intermedi-
ate alternative to calculate an estimated value and,
consequently, we have

εp12=0⇒ CL1
12=(1− 0.7) · (1− 0) + 0.7 ·

3
6 +

1
6

2
≈ 0.53.

The same result is obtained for p13 and p14, i.e.,
CL1

13 = CL
1
14 ≈ 0.53. This means that the consis-

tency level for each one of the estimated values
is also 0.53, as they are calculated as the average
of the consistency values used to estimate them.
Consequently, we have

CL1 =




− 0.53 0.53 0.53
0.53 − 0.53 0.53
0.53 0.53 − 0.53
0.53 0.53 0.53 −


 .

For P 2, P 3, and P 4, we get

P 2 =




− 0.6 0.7 0.7
0.4 − 0.6 0.6
0.3 0.4 − 0.5
0.3 0.4 0.5 −




CL2 =




− 0.62 0.59 0.67
0.75 − 0.64 0.59
0.59 0.67 − 0.62
0.64 0.59 0.62 −




P 3 =




− 0.3 0.5 0.75
0.7 − 0.7 0.9
0.5 0.3 − 0.7
0.25 0.1 0.3 −




CL3 =




− 0.98 0.98 0.97
0.98 − 1.0 0.98
0.98 1.0 − 0.98
0.97 0.98 0.98 −




P 4 =




− 0.6 0.6 0.3
0.4 − 0.4 0.3
0.4 0.6 − 0.3
0.7 0.7 0.7 −




CL4 =




− 0.93 0.93 0.93
0.92 − 0.93 0.93
0.93 0.93 − 0.93
0.93 0.93 0.93 −


 .

As an example of how the iterative estimation pro-
cedure has worked over P 4, we show the estimate
for p12, the only missing value in this preference
relation

H11
12 = {3, 4} ⇒ cp31

12 = 0.7 cp41
12 = 0.5⇒ cp1

12 = 0.6

H12
12 = {3, 4} ⇒ cp32

12 = 0.7 cp42
12 = 0.5⇒ cp2

12 = 0.6

H13
12 = {3, 4} ⇒ cp33

12 = 0.7 cp43
12 = 0.5⇒ cp3

12 = 0.6

cp12 =
0.6 + 0.6 + 0.6

3
= 0.6.
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The following calculations are needed to obtain the consis-
tency level CL21.

1) Computation of εp21

H11
21 = {3, 4} ⇒ cp31

21 = 0.3 cp41
21 = 0.5⇒ εp1

21 = 0.1

H12
21 = {3, 4} ⇒ cp32

21 = 0.3 cp42
21 = 0.5⇒ εp1

21 = 0.1

H13
21 = {3, 4} ⇒ cp33

21 = 0.3 cp43
21 = 0.5⇒ εp1

21 = 0.1

εp12 =
2
3
· 0.1 + 0.1 + 0.1

3
=
0.2
3

.

2) Computation of CP1, CP2, and α21

EV1 = {(1, 3), (1, 4), (2, 1), (3, 1), (4, 1)} ⇒ P1 =
5
6

EV2 = {(2, 1), (2, 3), (2, 4), (3, 2), (4, 2)} ⇒ CP2 =
5
6

EV1 ∩ EV2 = {(2, 1)} ⇒ α21 = 1− 5 + 5− 1
10

=
1
10

.

3) Computation of CL21

CL21 =
(
1− 1

10

)
·
(
1− 0.2

3

)
+
1
10

·
5
6 +

5
6

2
≈ 0.92.

We should point out that because the third and fourth ex-
perts have been very consistent when expressing their pref-
erences and have provided an almost complete preference
relation, the consistency levels for their preference values are
very high.

B. Aggregation Phase

Once the fuzzy preference relations are completed, we ag-
gregate them by means of the AC-IOWA operator and using
the consistency level of the preference values as the order-
inducing variable. We make use of the linguistic quantifier
“most of,” represented by the RIM quantifier Q(r) = r1/2

(see the Appendix), which applying (30) generates a weight-
ing vector of four values to obtain each collective preference
value pc

ik.
As an example, the collective preference value pc

12 with two
decimal places is obtained as follows:

CL1
12 = 0.53 CL2

12 = 0.62 CL3
12 = 0.98 CL4

12 = 0.93

p1
12 = 0.2 p2

12 = 0.6 p3
12 = 0.3 p4

12 = 0.6
σ(1) = 3 σ(2) = 4 σ(3) = 2 σ(4) = 1

T = CL1
12 +CL

2
12 +CL

3
12 +CL

4
12

Q(0) = 0 Q

(
CL4

12

T

)
= 0.57

Q

(
CL4

12+CL
3
12

T

)
= 0.79 Q

(
CL4

12+CL
3
12+CL

2
12

T

)
= 0.91

Q

(
CL4

12 +CL
3
12 +CL

2
12 +CL

1
12

T

)
= Q(1) = 1

w1 = 0.57 w2 = 0.22 w3 = 0.12 w4 = 0.09

pc
12 = w1 · p3

12 + w2 · p4
12 + w3 · p2

12 + w4 · p1
12

= 0.57 · 0.3 + 0.22 · 0.6 + 0.12 · 0.6 + 0.09 · 0.2
= 0.39.

The collective fuzzy preference relation is

P c =




− 0.39 0.55 0.61
0.6 − 0.64 0.71
0.45 0.36 − 0.55
0.39 0.29 0.45 −


 .

C. Exploitation Phase

Using again the same fuzzy quantifier “most of,” and (29),
we obtain the weighting vector W = (w1, w2, w3)

w1 =Q

(
1
3

)
−Q(0) = 0.58− 0 = 0.58

w2 =Q

(
2
3

)
−Q

(
1
3

)
= 0.82− 0.58 = 0.24

w3 =Q(1)−Q

(
2
3

)
= 1− 0.82 = 0.18

and the following quantifier-guided dominance and nondomi-
nance degrees of all the alternatives:

x1 x2 x3 x4

QGDDi 0.57 0.67 0.49 0.41
QGNDDi 0.96 1.00 0.93 0.81.

Clearly, the maximal sets are

XQGDD = {x2} XQGNDD = {x2}.

Finally, applying the conjunction selection policy, we obtain

XQGCP = XQGDD ∩XQGNDD = {x2}

which means that alternative x2 is the best alternative according
to “most of” the most consistent experts.

VII. CONCLUSION

We have looked at the issue of GDM problems with the
incomplete fuzzy preference relations, and we have presented
a new GDM model based on the AC property to deal with
such situations. This new model is composed of two phases,
the estimation of missing preference values and the selection of
the best alternatives, both guided by the concept of AC.

To model the estimation phase, we have proposed an iterative
procedure to estimate missing preference values. We have
given sufficient conditions to guarantee the direct application
of our procedure. Our proposal attempts to estimate the missing
information in an expert’s incomplete fuzzy preference relation
using only the preference values provided by that particular
expert. By doing this, we assure that the reconstruction of
the incomplete fuzzy preference relation is compatible with
the rest of the information provided by that expert. Because
an important objective in the design of our procedure was to
maintain experts’ consistency levels, the procedure is guided
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by the expert’s AC, and this is measured taking into account
only the available preference values.

Based also on the AC, we have presented a selection process
to solve GDM problems with the incomplete fuzzy preference
relations. To model the selection phase, we have defined a new
IOWA operator guided by the AC, the AC-IOWA operator. This
operator permits the aggregation of experts’ preferences in a
collective fuzzy preference relation and the exploitation of such
collective relation to achieve the solution set of alternatives ac-
cording to the “fuzzy” majority of the most consistent experts’
opinions.

In the future, we will address the extension of the manage-
ment procedure of incomplete information to the case of lin-
guistic preference relations [13], [18], [34] and its application
to model users’ preferences or desires in different problems
like Internet business [27], technology selection [7], learning
evaluation [24], and Web quality evaluation [19].

APPENDIX

FUZZY QUANTIFIERS AND THEIR USE

TO MODEL FUZZY MAJORITY

The majority is traditionally defined as a threshold number
of individuals. Fuzzy majority is a soft majority concept ex-
pressed by a fuzzy quantifier, which is manipulated via a fuzzy
logic-based calculus of linguistically quantified propositions.
Therefore, using fuzzy-majority-guided aggregation operators,
we can incorporate the concept of majority into the computation
of the solution.

Quantifiers can be used to represent the amount of items
satisfying a given predicate. Classic logic is restricted to the use
of the two quantifiers, there exists and for all, which are closely
related, respectively, to the OR and AND connectives. Human
discourse is much richer and more diverse in its quantifiers,
e.g., about five, almost all, a few, many, most of, as many as
possible, nearly half, at least half. In an attempt to bridge the
gap between formal systems and natural discourse and, in turn,
provide a more flexible knowledge representation tool, Zadeh
introduced the concept of fuzzy quantifiers [43].

Zadeh suggested that the semantics of a fuzzy quantifier can
be captured by using fuzzy subsets for its representation. He
distinguished between two types of fuzzy quantifiers: absolute
and relative. Absolute quantifiers are used to represent amounts
that are absolute in nature such as about two or more than
five. These absolute linguistic quantifiers are closely related
to the concept of the count or number of elements. He de-
fined these quantifiers as fuzzy subsets of the nonnegative real
numbers, R

+. In this approach, an absolute quantifier can be
represented by a fuzzy subset Q, such that for any r ∈ R

+

the membership degree of r in Q, Q(r), indicates the de-
gree in which the amount r is compatible with the quantifier
represented by Q. Relative quantifiers, such as most, at least
half, can be represented by fuzzy subsets of the unit interval
[0, 1]. For any r ∈ [0, 1], Q(r) indicates the degree in which
the proportion r is compatible with the meaning of the quan-
tifier it represents. Any quantifier of natural language can be
represented as a relative quantifier or, given the cardinality of
the elements considered, as an absolute quantifier.

Fig. 2. Examples of relative fuzzy linguistic quantifiers.

A relative quantifier, Q : [0, 1]→ [0, 1], satisfies

Q(0) = 0 ∃r ∈ [0, 1] such that Q(r) = 1.

Yager in [39] distinguishes two categories of these relative
quantifiers: RIM quantifiers such as all, most, many, at least
α; and regular decreasing monotone (RDM) quantifiers such as
at most one, few, at most α.

A RIM quantifier satisfies

∀a, b if a > b then Q(a) ≥ Q(b).

A widely used membership function for RIM quantifiers is [20]

Q(r) =



0, if r < a
r−a
b−a , if a ≤ r < b

1, if r ≥ b

(40)

with a, b, r ∈ [0, 1]. Some examples of relative quantifiers are
shown in Fig. 2, where the parameters, (a, b) are (0.3, 0.8),
(0, 0.5), and (0.5, 1), respectively.

The particular RIM function with parameters (0.3, 0.8) used
to represent the fuzzy linguistic quantifier “most of” when ap-
plied with an OWA or IOWA operator associates a low weight-
ing value to the most important/consistent experts because it
assigns a value of 0 to the first 30% of experts. To overcome
this problem, a different RIM function to represent the fuzzy
linguistic quantifier “most of” should be used. To guarantee that
all the important/consistent experts have associated a nonzero
weighting value, and therefore all of them contribute to the final
aggregated value, a strictly increasing RIM function should
be used. On the other hand, in order to associate a high
weighting value to those values with a high consistency level,
a RIM function with a rate of increase in the unit interval
inversely proportional to the value of the variable r seems to
be adequate.

Yager in [39] considers the parameterized family of RIM
quantifiers

Q(r) = ra, a ≥ 0
and the particular function with a = 2 to represent fuzzy lin-
guistic quantifier “most of.” This function is strictly increasing
but, when used with an OWA or IOWA operators, associates
high weighting values to low consistent values. In order to
overcome this drawback, either of the following two approaches
could be adopted.

1) The values are ordered using the opposite criteria, i.e., the
first one being the one with lowest consistency degree.

2) A RIM function with a < 1 is used.
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Fig. 3. Relative fuzzy linguistic quantifier “most of.”

We have opted for the second one, and in particular in this
paper, we use RIM function Q(r) = r1/2 given in Fig. 3 to
represent fuzzy linguistic quantifier “most of.”
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