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Abstract

Within the frame of decision aid literature, decision making problems with multiple sources of information have

drawn the attention of researchers from a wide spectrum of disciplines. In decision situations with multiple individuals,

each one has his own knowledge on the alternatives of the decision problem. The use of information assessed in different

domains is not a seldom situation. This non-homogeneous information can be represented as values belonging to

domains with different nature as linguistic, numerical and interval valued or can be values assessed in label sets with

different granularity, multi-granular linguistic information.

Decision processes for solving these problems are composed by two phases: aggregation and exploitation. The main

problem to deal with non-homogeneous contexts is how to aggregate the information assessed in these contexts? In this

paper, taking as base the 2-tuple fuzzy linguistic representation model we shall develop an aggregation process for dealing

with non-homogeneous contexts. In first place, we shall develop an aggregation process for combining numerical, interval

valued and linguistic information, afterwards we shall propose different extensions of this process to deal with contexts in

which can appear other type of information as intuitionistic fuzzy sets or multi-granular linguistic information.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In decision making problems with multiple experts as group decision making (GDM) problems, each
expert expresses his/her preferences depending on the nature of the alternatives and on his/her own

knowledge over them:
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• When the alternatives are measurable by their quantitative nature then they are assessed by means of

precise numerical values.

• However, when the alternatives are related to qualitative aspects it may be difficult to qualify them using

precise values. Usually, this knowledge is not precise and presents uncertainty. Early this uncertainty was

expressed in the preference values by means of real values assessed in a predefined range [15,32], soon

other approaches based on interval valued [18,30] and on the linguistic approach [8,33] were proposed.

Therefore, the use of non-homogeneous information in decision problems with multiple experts is not an
unusual situation (see [4,7,31] with proposals combining numerical preference representations, fuzzy

preference relations, multiplicative preference relations, utility preferences, interval numerical prefer-

ences, . . .). However, most of the proposals for solving decision making problems with multiple experts

[8,15] are focused on cases where all the experts express their preferences by means of values from the same

type, either real values, or interval values or linguistic labels in the same linguistic term set.

The solution for a GDM problem is derived either from the individual preference relations, without

constructing a social preference relation, or by computing first a social fuzzy preference relation and then

using it to find a solution [15]. In any of the above approaches, called direct and indirect approaches
respectively, the process for reaching a solution of the GDM problems is composed by two steps [27]:

1. Aggregation phase that combines the expert preferences.

2. Exploitation one that obtains a solution set of alternatives for the decision problem.

The main difficulty for managing GDM problems defined in non-homogeneous contexts is the aggre-

gation phase: how to aggregate this type of information?, because there don’t exist standard operators for

combining any type of non-homogeneous information.
In this paper, we propose a method for managing non-homogeneous information in GDM problems.

This method unifies the input information in an unique domain. In this case, a linguistic one called basic

linguistic term set (BLTS), expressing the unified information by means of fuzzy sets over the BLTS.

We must point out that the two classical models for dealing with linguistic information are

• the semantic model [5] that uses the linguistic terms just as labels for fuzzy numbers, while the compu-

tation process acts directly over those fuzzy numbers by means of the Principle of Extension; and

• the second one is the symbolic model, an ordinal scale is assumed on which linguistic assessments are to
be done [6].

In this paper, we are proposing the use of an extension of the last one, a new approach, the called

linguistic 2-tuple representation model [10], where the scale is no longer purely ordinal, but still processing

of linguistic information is done directly on labels. It has shown itself as a good choice to manage non-

homogeneous information [11,13]. However, the method proposed does not unify the non-homogeneous

information into linguistic labels directly, but into fuzzy sets over a BLTS as we have mentioned.

Our proposal for combining non-homogeneous information follows the scheme composed by three
phases introduced in [11] unification, aggregation and transformation into 2-tuples.

To develop the above method, we shall define different transformation functions and operators, that

allow us to unify the non-homogeneous information and also to transform fuzzy sets over the BLTS into

linguistic 2-tuples. Our proposal is presented over a context with preference relations expressed by means of

numerical, interval valued and linguistic values belonging to an unique linguistic term set. Later on, we

show how this process can be used in contexts that also present preference relations expressed by means of

intuitionistic fuzzy sets or with linguistic preference relations assessed in different linguistic term sets with

different granularity or semantics (multi-granular linguistic information).
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In order to do so, this paper is structured as follows: In Section 2 we review the scheme of a GDM
problem and the different approaches to express the preferences; in Section 3 we propose an aggregation

process for combining contexts with information of different nature (numerical, interval valued and lin-

guistic); in Section 4 we solve a GDM problem defined in a non-homogeneous context; in Section 5 we

propose different extensions of the aggregation process for dealing with multi-granular linguistic infor-

mation and intuitionistic fuzzy sets. Finally, some concluding remarks are pointed out.
2. Preliminaries

In GDM problems the experts express their preferences depending on their knowledge over the alterna-

tives by means of preference relations. In this section we shall review different approaches that we can find in

the literature to express those preferences. Finally, we shall review the 2-tuple linguistic representation model.

2.1. Group decision making problems

GDM problems, considered in this paper, consist of a decision situation in which two or more indi-
viduals express their preferences over some set of alternatives to derive a solution (an alternative or set of

alternatives). It is supposed there is a finite set of alternatives:
X ¼ fx1; . . . ; xng; nP 2;
as well as a finite set of experts:
E ¼ fe1; . . . ; emg; mP 2:
Depending either on the nature of the alternatives or on the knowledge over the alternatives of the experts,

they can express their preferences using different approaches.

In fuzzy contexts, the departure point is a set of fuzzy preference relations where each expert ek provides
his/her preferences on X [15], i.e.,
Pek ¼
pk11 � � � pk1n
..
.

� � � ..
.

pkn1 � � � pknn

0
B@

1
CA;
where pkij is the degree of preference of alternative xi over xj expressed by the expert k 2 f1; . . . ;mg. Let us
suppose that pkij 2 ½0; 1�, then

1. pij ¼ 1 indicates the maximum degree of preference of xi over xj;
2. 0:56 pij 6 1 indicates a definitive preference of xi over xj;
3. pij ¼ 0:5 indicates the indifference between xi and xj.

The fuzzy preference relations may satisfy some of the following properties:

• reciprocity: pij þ pji ¼ 1 8i; j;
• completeness: pij þ pji P 1 8i; j;
• max–min transitivity: pik P minðpij; pjkÞ 8i; j; k;
• max–max transitivity: pik P maxðpij; pjkÞ 8i; j; k;
• restricted max–min transitivity: pij P 0:5; pik P 0:5 ) pik P minðpij; pjkÞ 8i; j; k;
• restricted max–max transitivity: pij P 0:5; pik P 0:5 ) pik P maxðpij; pjkÞ 8i; j; k;
• additive transitivity: pij þ pjk 
 0:5 ¼ pik 8i; j; k.

The equivalent properties for linguistic preference relations can be found in [9].
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Fuzzy preference relations can represent different types of preference:

1. Weak preference relation. Every pairwise comparison value denotes the extent to which an alternative is

‘‘at least as good as the other’’.

2. Strict preference relation. Implies ‘‘if x is at least as good as y, then y is not as good as x’’, for all the
alternatives.

3. Indifference relation. Represent that ‘‘x is as good as y and y as good as x’’.
4. Incomparability relation. Means that ‘‘neither is x at least as good as y, not is y as good as x’’.

However, we can find a lot of ways of defining strict preference, indifference and incomparability relations

[24].

In this paper, we do not assume by default any property for the preference relations.
2.2. Approaches for modelling preference relations

2.2.1. Fuzzy binary preference relations

A valued (fuzzy) binary relation R on X is defined as a fuzzy subset of the direct product X � X , i.e.,
R : X � X ! ½0; 1�. The value, Rðxi; xjÞ ¼ pij, of a valued relation R denotes the degree to which xiRxj, i.e.,
the degree to which elements xi and xj are in relation R for all xi; xj 2 X . Particularly, in preference analysis,
pij, denotes the degree to which an alternative xi is preferred to alternative xj.
Pek ¼
0:5 � � � 0:7
..
.

� � � ..
.

0:3 � � � 0:5

0
@

1
A:
These were the first type of fuzzy preference relations used in decision making [15] to deal with uncertainty,

but soon appeared other approaches to express the uncertainty in the preference relations that will be

reviewed in the following subsections.
2.2.2. Interval-valued preference relations

A first approach to add some flexibility to the uncertainty representation problem was by means of
interval-valued relations:
R : X � X ! }ð½0; 1�Þ;

where Rðxi; xjÞ ¼ pij denotes the interval-valued preference degree of the alternative xi over xj. In these

approaches [18,30], the preferences provided by the experts consist of interval values assessed in }ð½0; 1�Þ,
where the preference is expressed as ½a; a�ij, with a6 a.
Pek ¼
½0:5; 0:5� � � � ½0:7; 0:9�

..

.
� � � ..

.

½0:1; 0:3� � � � ½0:5; 0:5�

0
B@

1
CA:
2.2.3. Fuzzy linguistic relations

A linguistic preference relation is defined as
R : X � X ! S;
with S being a set of labels.
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There are situations in which a better approach to qualify aspects of many activities may be to use
linguistic assessments instead of numerical values. The fuzzy linguistic approach represents the information

as linguistic values by means of linguistic variables [34]. This approach is adequate when attempting to

qualify phenomena related to human perception; we are often led to use words in natural language. This

may arise for different reasons. There are some situations where the information may be unquantifiable due

to its nature, and thus, it may be stated only in linguistic terms (e.g., when evaluating the ’’comfort’’ or

‘‘design’’ of a car, terms like ‘‘bad’’, ‘‘poor’’, ‘‘tolerable’’, ‘‘average’’, ‘‘good’’ can be used [19]). In other

cases, according to [35] there is a tolerance for imprecision which can be exploited to achieve tractability,

robustness, low solution cost, and better rapport with reality (e.g., when evaluating the speed of a car,
linguistic terms like ‘‘fast’’, ‘‘very fast’’, ‘‘slow’’ are used instead of numerical values).

We have to choose the appropriate linguistic descriptors for the term set and their semantics. One

possibility of generating the linguistic term set consists in directly supplying the term set by considering all

terms distributed on a scale on which a total order is defined [33]. For example, a set of seven terms S, could
be given as follows:
S ¼ fs0 ¼ none; s1 ¼ very low; s2 ¼ low; s3 ¼ medium; s4 ¼ high; s5 ¼ very high; s6 ¼ perfectg:

In these cases, it is usually required that there exist

1. A negation operator NegðsiÞ ¼ sj such that j ¼ g 
 i (g þ 1 is the cardinality of the term set);

2. A maximization operator maxðsi; sjÞ ¼ si if si P sj;
3. A minimization operator minðsi; sjÞ ¼ si if si 6 sj.

The semantics of the terms is given by fuzzy numbers defined in the ½0; 1� interval. A way to characterize a

fuzzy number is to use a representation based on parameters of its membership function [3]. For example,
we may assign the following semantics to the set of seven terms via triangular fuzzy numbers:
P ¼ perfect ¼ ð:83; 1; 1Þ; VH ¼ very high ¼ ð:67; :83; 1Þ; H ¼ high ¼ ð:5; :67; :83Þ;
M ¼ medium ¼ ð:33; :5; :67Þ; L ¼ low ¼ ð:17; :33; :5Þ; VL ¼ very low ¼ ð0; :17; :33Þ;
N ¼ none ¼ ð0; 0; :17Þ;
which is graphically shown in Fig. 1.

Therefore a linguistic preference relation Rðxi; xjÞ with xi; xj 2 S denotes the linguistic preference degree
of the alternative xi over xj. Using the linguistic term set shown in Fig. 1, a linguistic preference relation

could be
Pek ¼
M � � � VH

..

.
� � � ..

.

VL � � � M

0
@

1
A:
N VL  L M H VH P

0 0.17 0.33 0.5 0.67 0.83 1

Fig. 1. A set of seven terms with their semantics.
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2.3. The 2-tuple fuzzy linguistic representation model

This model has been presented in [10]. Different advantages of this representation to manage linguistic

information over semantic and symbolic models were shown in [12]:

1. The linguistic domain can be treated as continuous, while in the symbolic model is treated as discrete.

2. The linguistic computational model based on linguistic 2-tuples carries out processes of computing with

words easily and without loss of information.

Due to these advantages, we shall use this linguistic representation model to accomplish our aim, to

build an aggregation process for non-homogeneous information.

This linguistic model takes as a basis the symbolic aggregation model [6] and in addition defines the

concept of Symbolic Translation and uses it to represent the linguistic information by means of a pair of

values called linguistic 2-tuple, ðs; aÞ, where s is a linguistic term and a is a numeric value representing the
symbolic translation.

Definition 1. Let b be the result of an aggregation of the indexes of a set of labels assessed in a linguistic

term set S ¼ fs0; . . . ; sgg, i.e., the result of a symbolic aggregation operation. b 2 ½0; g�, being g þ 1 the

cardinality of S. Let i ¼ roundðbÞ and a ¼ b 
 i be two values, such that, i 2 ½0; g� and a 2 ½
:5; :5Þ then a is
called a symbolic translation.

Graphically, it is represented in Fig. 2.

From this concept in [10] was developed a linguistic representation model which represents the linguistic

information by means of 2-tuples ðsi; aiÞ, si 2 S and ai 2 ½
:5; :5Þ.
This model defines a set of transformation functions between linguistic terms and 2-tuples, and between

numeric values and 2-tuples.

Definition 2 [10]. Let S ¼ fs0; . . . ; sgg be a linguistic term set and b 2 ½0; g� a value supporting the result of a
symbolic aggregation operation, then the 2-tuple that expresses the equivalent information to b is obtained
with the following function:
D : ½0; g� ! S � ½
0:5; 0:5Þ;

DðbÞ ¼ si; i ¼ roundðbÞ;
a ¼ b 
 i; a 2 ½
:5; :5Þ;

�

where ‘‘round’’ is the usual round operation, si has the closest index label to ‘‘b’’ and ‘‘a’’ is the value of the
symbolic translation.

Proposition 1 [10]. Let S ¼ fs0; . . . ; sgg be a linguistic term set and ðsi; aÞ be a 2-tuple. There is a D
1

function, such that, from a 2-tuple it returns its equivalent numerical value b 2 ½0; g� � R.
0                1              2               3              4              5               6 2.8

-0.2

Fig. 2. Example of a symbolic translation.
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Proof. It is trivial, we consider the following function:
D
1 : S � ½
:5; :5Þ ! ½0; g�;

D
1ðsi; aÞ ¼ iþ a ¼ b: �
Remark 1. From Definitions 1 and 2 and from Proposition 1, it is obvious that the conversion of a lin-

guistic term into a linguistic 2-tuple consist of adding a value 0 as symbolic translation:
si 2 S ) ðsi; 0Þ:
Together with the fuzzy linguistic 2-tuple representation model a wide range of 2-tuple aggregation operators

were developed [10], such as, the extended LOWA, the extended weighted average, the extended OWA, . . .
The exploitation phase of the decision process ranks the alternatives to obtain the best one(s). The process

of comparison between linguistic 2-tuples is carried out according to an ordinary lexicographic order.

Let ðsk; a1Þ and ðsl; a2Þ be two 2-tuples, with each one representing a linguistic assessment:

• If k < l then ðsk; a1Þ is smaller than ðsl; a2Þ.
• If k ¼ l then

1. if a1 ¼ a2 then ðsk; a1Þ, ðsl; a2Þ represents the same information;
2. if a1 < a2 then ðsk; a1Þ is smaller than ðsl; a2Þ;
3. if a1 > a2 then ðsk; a1Þ is bigger than ðsl; a2Þ.
3. Aggregation process for non-homogeneous information

Here, we propose a process to carry out the aggregation step of a decision process in a GDM problem

defined using non-homogeneous information, composed by numerical, interval valued and linguistic values.

Our proposal for combining the above information is developed according to the following process
composed by three steps (see Fig. 3):

1. Making the information uniform. The non-homogeneous information will be unified into a specific lin-

guistic domain, called BLTS, ST . Each numerical, interval-valued and linguistic preference value is ex-
pressed by means of a fuzzy set on the BLTS, F ðST Þ. The process is carried out in the following order:
(a) transforming numerical values in ½0; 1� into F ðST Þ,
(b) transforming linguistic terms into F ðST Þ,
(c) transforming interval valued into F ðST Þ.
F(S  )
T

F(S  )
T

F(S  )
T

F(S  )
T ( s,    )α

Heterogeneous
Information

Making the Information Uniform

[0,1]

S

Interval

Aggregation Transformation

Collective
Values

Fig. 3. Aggregation process for heterogeneous information.
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2. Aggregating individual preference values. For each pair of alternatives, a collective preference value is ob-

tained aggregating the above fuzzy sets on the BLTS that represents the individual preference values as-

signed by the experts according to his/her preference. Therefore, each collective preference value is a

fuzzy set on the specific linguistic domain, the BLTS.

It is clear that the information has been unified into fuzzy sets to be manageable in the aggregation

phase. However, in a decision process during the exploitation phase the collective preferences will be rank

to obtain the best solution. To facilitate this ranking process we shall transforms these collective fuzzy sets

into linguistic 2-tuples [11].
3. Transforming into 2-tuple. Then the collective preference values (fuzzy sets on the BLTS) are transformed

into linguistic 2-tuples in the BLTS and a collective 2-tuple preference relation is obtained.

In Sections 3.1–3.3 we shall show in depth each step of the different phases of the aggregation process.

Afterwards, in Section 4 we shall present an example of a GDM problem defined in a non-homogeneous

context.

3.1. Making the information uniform

First of all, the non-homogeneous information is unified in an unique expression domain. In this case, we

shall use fuzzy sets over a BLTS, denoted as F ðST Þ.
Before to transform the input information into fuzzy sets over a BLTS, we have to decide how to choose

the BLTS, ST .

3.1.1. Choosing the BLTS

To choose the BLTS, we shall study the linguistic term set S that belong to the definition context of the
GDM problem:

IF

1. S is a fuzzy partition [28], and

2. the membership functions of its terms are triangular, i.e., si ¼ ðai; bi; ciÞ
THEN

we select S as the BLTS, due to the fact that, these conditions are necessary and sufficient for the trans-
formation between values in ½0; 1� and 2-tuples, being them carried out without loss of information
[11].

ELSE

We shall choose as BLTS a term set with a larger number of terms than the number of terms that a

person is able to discriminate (normally 11 or 13, see [21]) and satisfies the above conditions. We

choose the BLTS with 15 terms symmetrically distributed whose semantics are (graphically, Fig. 4):
 s0  s1  s2  s3  s4  s5  s6  s7  s8  s9  s10  s11  s12  s13  s14 

Fig. 4. A BLTS with 15 terms symmetrically distributed.



s0 (0, 0, 0.07) s1 (0, 0.07, 0.14) s2 (0.07, 0.14, 0.21) s3 (0.14, 0.21, 0.28)
s4 (0.21, 0.28, 0.35) s5 (0.28, 0.35, 0.42) s6 (0.35, 0.42, 0.5) s7 (0.42, 0.5, 0.58)

s8 (0.5, 0.58, 0.65) s9 (0.58, 0.65, 0.72) s10 (0.65, 0.72, 0.79) s11 (0.72, 0.79, 0.86)

s12 (0.79, 0.86, 0.93) s13 (0.86, 0.93, 1) s14 (0.93, 1, 1)
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Once we have chosen the BLTS we shall define the transformation functions that we shall need to unify
the non-homogeneous information.

The process of unifying the information involves the comparison between fuzzy sets. These comparisons

are usually carried out by means of a measure of comparison. We focus in measures of comparison which

evaluate the resemblance or likeness of two objects (fuzzy sets in our case) [25]. For simplicity, in this paper

we shall choose a measure based on a possibility function SðA;BÞ ¼ maxx minðlAðxÞ; lBðxÞÞ, where lA and

lB are the membership function of the fuzzy sets A and B, respectively.

3.1.2. Transforming the input information into F(ST)
3.1.2.1. Transforming numerical values in [0; 1] into F(ST). Let F ðST Þ be the set of fuzzy sets in

ST ¼ fs0; . . . ; sgg, we shall transform a numerical value # 2 ½0; 1� into a fuzzy set in F ðST Þ computing the
membership value of # in the fuzzy number associated with the linguistic terms of ST .

Definition 3 [11]. The function sNST transforms a numerical value into a fuzzy set in ST :
sNST : ½0; 1� ! F ðST Þ;

sNST ð#Þ ¼ fðs0; c0Þ; . . . ; ðsg; cgÞg; si 2 ST and ci 2 ½0; 1�;

ci ¼ lsið#Þ ¼

0 if # 62 support ðlsiðxÞÞ;
#
ai
bi
ai

if ai 6#6 bi;

1 if bi 6#6 di;
ci
#
ci
di

if di 6#6 ci:

8>>><
>>>:
Remark 2. We consider membership functions, lsið�Þ, for linguistic labels, si 2 ST , represented by a para-
metric function ðai; bi; di; ciÞ. A particular case are the linguistic assessments whose membership functions a

triangular, i.e., bi ¼ di.

Example 1. Let # ¼ 0:78 be a numerical value to be transformed into a fuzzy set in S ¼ fs0; . . . ; s4g. The
semantic of this term set is
s0 ¼ ð0; 0; 0:25Þ; s1 ¼ ð0; 0:25; 0:5Þ; s2 ¼ ð0:25; 0:5; 0:75Þ; s3 ¼ ð0:5; 0:75; 1Þ; s4 ¼ ð0:75; 1; 1Þ:
Therefore, the fuzzy set obtained is (see Fig. 5)
sNST ð0:78Þ ¼ fðs0; 0Þ; ðs1; 0Þ; ðs2; 0Þ; ðs3; 0:88Þ; ðs4; 0:12Þg:
3.1.2.2. Transforming linguistic terms in S into F(ST).

Definition 4. Let S ¼ fl0; . . . ; lpg and ST ¼ fs0; . . . ; sgg be two linguistic term sets, such that, gP p: Then, a
linguistic transformation function, sSST , is defined as
sSST : S ! F ðST Þ;



0.78

Fig. 5. Transforming a numerical value into a fuzzy set in S.
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sSST ðliÞ ¼ fðsk; cikÞ=k 2 f0; . . . ; ggg 8li 2 S;

cik ¼ max
y

minflliðyÞ; lsk ðyÞg;
where F ðST Þ is the set of fuzzy sets defined in ST , and llið�Þ and lsk ð�Þ are the membership functions of the
fuzzy sets associated with the terms li and sk, respectively.

Therefore, the result of sSST for any linguistic value of S is a fuzzy set defined in the BLTS, ST .

Remark 3. In the case that the linguistic term set, S, of the non-homogeneous contexts let be chosen as

BLTS, then the fuzzy set that represents a linguistic term will be all 0 except the value correspondent to the

ordinal of the linguistic label that will be 1.

Example 2. Let S ¼ fl0; l1; . . . ; l4g and ST ¼ fs0; s1; . . . ; s6g be two term set, with 5 and 7 labels, respec-

tively, and with the following semantics associated:

The fuzzy set obtained after applying sSST for l1 is (see Fig. 6)

l0 ¼ ð0; 0; 0:25Þ s0 ¼ ð0; 0; 0:16Þ
l1 ¼ ð0; 0:25; 0:5Þ s1 ¼ ð0; 0:16; 0:34Þ
l2 ¼ ð0:25; 0:5; 0:75Þ s2 ¼ ð0:16; 0:34; 0:5Þ
l3 ¼ ð0:5; 0:75; 1Þ s3 ¼ ð0:34; 0:5; 0:66Þ
l4 ¼ ð0:75; 1; 1Þ s4 ¼ ð0:5; 0:66; 0:84Þ

s5 ¼ ð0:66; 0:84; 1Þ
s6 ¼ ð0:84; 1; 1Þ
sSST ðl1Þ ¼ fðs0; 0:39Þ; ðs1; 0:85Þ; ðs2; 0:85Þ; ðs3; 0:39Þ; ðs4; 0Þ; ðs5; 0Þ; ðs6; 0Þg:
3.1.2.3. Transforming interval valued into F(ST). Let I ¼ ½i; i� be an interval valued in ½0; 1�, to carry out this
transformation we assume that the interval valued has a representation, inspired in the membership
function of fuzzy sets [17], as follows:
lIð#Þ ¼
0 if # < i;

1 if i6#6 i;

0 if i < #;

8><
>:
where # is a value in ½0; 1�: In Fig. 7 can be observed the graphical representation of an interval.



S

S
T

Fig. 6. Transforming l1 2 S into a fuzzy set in ST .

i i

1

0 1

Fig. 7. Membership function of I ¼ ½i; i�.
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Definition 5. Let ST ¼ fs0; . . . ; sgg be a BLTS. Then, the function sIST transforms a interval valued I in ½0; 1�
into a fuzzy set in ST .
sIST : I ! F ðST Þ;

sIST ðIÞ ¼ fðsk; cikÞ=k 2 f0; . . . ; ggg;

cik ¼ max
y

minflIðyÞ; lsk ðyÞg;
where F ðST Þ is the set of fuzzy sets defined in ST , and lIð�Þ and lsk ð�Þ are the membership functions

associated with the interval valued I and terms sk, respectively.

Example 3. Let I ¼ ½0:6; 0:78� be an interval valued to be transformed into a fuzzy set in ST with five terms
symmetrically distributed. The fuzzy set obtained after applying sIST is (see Fig. 8)
sIST ð½0:6; 0:78�Þ ¼ fðs0; 0Þ; ðs1; 0Þ; ðs2; 0:6Þ; ðs3; 1Þ; ðs4; 0:2Þg:



Fig. 8. Transforming ½0:6; 0:78� into a fuzzy set in ST .
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3.2. Aggregating individual preference values

Using the above transformation functions the input information is expressed by means of fuzzy sets on
the BLTS, ST ¼ fs0; . . . ; sgg; i.e., the input information is homogeneous (information of the same nature).
Now we use an aggregation function for combining the fuzzy sets on the BLTS to obtain a collective

preference value for each pair of alternatives that will be a fuzzy set on the BLTS.

At this moment, the preference relations are expressed by means of fuzzy sets on the BLTS as follows:
Pek ¼
pk11 ¼ fðs0; c11k0 Þ; . . . ; ðsg; c

11
kg
Þg � � � pk1n ¼ fðs0; c1nk0 Þ; . . . ; ðsg; c

1n
kg
Þg

..

.
� � � ..

.

pkn1 ¼ fðs0; cn1k0 Þ; . . . ; ðsg; c
n1
kg
Þg � � � pknn ¼ fðs0; cnnk0 Þ; . . . ; ðsg; c

nn
kg
Þg

0
BB@

1
CCA;
where pkij is the preference degree of the alternative xi over xj provided by the expert ek.
We shall represent each fuzzy set, pkij, as r

k
ij ¼ ðcijk0 ; . . . ; c

ij
kgÞ being the values of r

k
ij, its respective mem-

bership degrees. Then, each preference value of the collective preference relation is obtained aggregating the

fuzzy sets provided by each expert frkij 8ekg. This collective preference value, denoted as rij; is a new fuzzy

set assessed in ST , i.e.,
rij ¼ ðcij0 ; . . . ; cijg Þ
characterized by the following membership function:
cijv ¼ f ðcij1v ; . . . ; c
ij
kvÞ;
where f is an ‘‘aggregation operator’’ and k is the number of experts.

3.3. Transforming into 2-tuple linguistic values

In this phase, we transform the fuzzy sets on the BLTS into linguistic 2-tuples over the BLTS, to

facilitate the rank process involved in the exploitation phase of the decision process. In [11] was presented a

function v that transforms a fuzzy set into a numerical value in the interval of granularity of ST , ½0; g�:
v : F ðST Þ ! ½0; g�;

vðF ðST ÞÞ ¼ vðfðsj; cjÞ; j ¼ 0; . . . ; ggÞ ¼
Pg

j¼0 jcjPg
j¼0 cj

¼ b;
where the fuzzy set, F ðST Þ could be obtained from sNST , sSST or sIST .
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Therefore, applying the (Definition 2) function D to b we shall obtain a collective preference relation
whose values are expressed by means of linguistic 2-tuples:
Table

Prefere

Pn
1 ¼
Dðvðsð#ÞÞÞ ¼ DðbÞ ¼ ðs; aÞ:
4. A GDM problem with non-homogeneous information

Let us suppose that a company wants to renew its cars. There exist four models of car available, {CAR1,

CAR2, CAR3, CAR4} and three experts provide his/her preference relations over the four cars (see Table

1). The first expert expresses his/her preference relation using numerical values in ½0; 1�, Pn
1 . The second one

expresses the preferences by means of linguistic values in a linguistic term set S (see Fig. 1), PS
2 . And the

third expert can express them using interval-valued preference values in ½0; 1�, P I
3 . The three experts attempt

to reach a collective decision.

We shall use a decision process to solve this problem with the two mentioned phases, aggregation and

exploitation.

4.1. Aggregation phase

We use the arithmetic mean for aggregating the preference values.

1. Making the information uniform

(a) Choose the BLTS. It will be S; due to the fact, it satisfies the conditions showed in Section 3.1.
(b) Transforming the input information into F ðST Þ. Applying the transformation functions from Defini-

tions 3–5, the following fuzzy sets over the BLTS can be obtained:
Pn
1 ¼


 ð0; 0; 0; 1; 0; 0; 0Þ ð0; 0; 0; 0; :19; :81; 0Þ ð0; 0; :59; :41; 0; 0; 0Þ
ð0; :19; :81; 0; 0; 0; 0Þ 
 ð0; 0; 0; 0; 0; :59; :41Þ ð0; :19; :81; 0; 0; 0; 0Þ
ð0; :19; :81; 0; 0; 0; 0Þ ð0; :81; :19; 0; 0; 0; 0Þ 
 ð0; 0; :59; :41; 0; 0; 0Þ
ð0; 0; 0; 0; 0; :59; :41Þ ð0; 0; 0; 0; :19; :81; 0Þ ð0; 0; 0; 1; 0; 0; 0Þ 


0
BB@

1
CCA;

PS
2 ¼


 ð0; 0; 0; 0; 1; 0; 0Þ ð0; 0; 0; 0; 0; 1; 0Þ ð0; 0; 0; 1; 0; 0; 0Þ
ð0; 0; 1; 0; 0; 0; 0Þ 
 ð0; 0; 0; 0; 1; 0; 0Þ ð0; 0; 0; 0; 0; 1; 0Þ
ð0; 1; 0; 0; 0; 0; 0Þ ð1; 0; 0; 0; 0; 0; 0Þ 
 ð0; 0; 0; 0; 0; 1; 0Þ
ð0; 0; 1; 0; 0; 0; 0Þ ð0; 1; 0; 0; 0; 0; 0Þ ð1; 0; 0; 0; 0; 0; 0Þ 


0
BB@

1
CCA;

P I
3 ¼


 ð0; 0; 0; 0; :81; :81; 0Þ ð0; 0; 0; :12; 1; :19; 0Þ ð0; 0; 0; 0; :19; 1; :41Þ
ð0; :19; 1; :12; 0; 0; 0Þ 
 ð0; 0; 0; :41; 1; :19; 0Þ ð0; 0; 0; 0; :19; 1; :12Þ
ð0; :19; 1; :12; 0; 0; 0Þ ð0; :19; 1; :41; 0; 0; 0Þ 
 ð0; 0; 0; 0; :81; 1; :41Þ
ð:41; 1; :19; 0; 0; 0; 0Þ ð0; :81; 1; :41; 0; 0; 0Þ ð:41; 1; :81; 0; 0; 0; 0Þ 


0
BB@

1
CCA:
1

nce relations


 0:5 0:8 0:4

0:3 
 0:9 0:3

0:3 0:2 
 0:4

0:9 0:8 0:5 


0
BB@

1
CCA PS

2 ¼


 H VH M
L 
 H VH

VL N 
 VH

L VL N 


0
BB@

1
CCA P I

3 ¼


 ½0:7; 0:8� ½0:65; 0:7� ½0:8; 0:9�
½0:3; 0:35� 
 ½0:6; 0:7� ½0:8; 0:85�
½0:3; 0:35� ½0:3; 0:4� 
 ½0:7; 0:9�
½0:1; 0:2� ½0:2; 0:4� ½0:1; 0:3� 


0
BB@

1
CCA
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2. Aggregating individual preference values. When all information is expressed by means of fuzzy sets

defined in a BLTS we use an aggregation operator for combining it. In this example we shall use

as aggregation operator, f , the arithmetic mean obtaining the following collective preference rela-

tion:

P ¼


 ð0;0;0; :33; :6; :27;0Þ ð0;0;0; :04; :4; :19;0Þ ð0;0; :2; :47; :06; :33; :04Þ
ð0; :13; :94; :04;0;0;0Þ 
 ð0;0;0; :14; :67; :26; :14Þ ð0; :06; :27;0; :06; :67; :04Þ
ð0; :46; :6; :04;0;0;0Þ ð:33; :33; :4; :14;0;0;0Þ 
 ð0;0; :2; :14; :27; :67; :14Þ

ð:14; :33; :4;0;0; :20; :14Þ ð0; :6; :33; :14; :06; :27;0Þ ð:47; :33; :27; :33;0;0;0Þ 


0
BB@

1
CCA:

3. Transforming into 2-tuple. Now we transform the fuzzy sets, expressing the collective preferences, into

linguistic 2-tuples using the functions v and D. The result of this transformation is

P ¼


 ðH;
:04Þ ðH; :24Þ ðH;
:42Þ
ðL;
:08Þ 
 ðH; :33Þ ðH; :03Þ
ðL;
:38Þ ðVL; :29Þ 
 ðH; :29Þ
ðL; :45Þ ðL; :34Þ ðVL; :33Þ 


0
BB@

1
CCA:
4.2. Exploitation phase

The exploitation phase generates a solution set of alternatives (the best ones) for the decision problem.

To do so, this phase uses a choice function to obtain the solution set. Different choice functions have been

proposed in the choice theory literature [1,23,26].

In this paper, to obtain the solution set of alternatives we shall use a choice function that computes the

dominance degree for each alternative, xi, over the rest of alternatives. To do so, we shall use the following
function:
Table

Domin

CAR

ðH;
KðxiÞ ¼
1

n
 1

Xn

j¼0jj 6¼i

bij;
where n is the number of alternatives and bij ¼ D
1ðpijÞ being pij a linguistic 2-tuple representing the

collective value that expressed the preference of the alternative xi over xj according to the group of ex-

perts. Then, we shall choose as solution set of alternatives those with the highest value of dominance

degree.

Remark 4. The selection of the dominance degree as choice function is for simplicity in the computations,
but we can select any other choice function, based on strict dominance or non-dominance, to obtain a

solution set of alternatives.

In this phase we shall calculate the dominance degree for this preference relation (see Table 2).

Then, the dominance degree rank the alternatives and we choose the best alternatives as solution set of

GDM problem, in this example the solution set is {CAR1}.
2

ance degree of the alternatives

1 CAR2 CAR3 CAR4


0:08Þ (M, 0.43) (L, 0.4) (L, 0.04)
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5. Combining non-homogeneous information: Extensions

So far, we have presented an aggregation process for combining information of different nature com-

posed by numerical, interval valued and linguistic values. In this section, we explain how to apply the above

tools and process to deal with contexts that present linguistic information assessed in linguistic term sets

with different granularity of uncertainty or semantics, i.e., multi-granular linguistic information, and with

contexts in which the experts express their preferences using intuitionistic fuzzy sets.

5.1. Non-homogeneous contexts with linguistic multi-granular information

Several experts of a GDM problem can express their preference relations in a linguistic way but, using

linguistic terms assessed in different linguistic term sets, Sl, with different granularity of uncertainty or

semantics: PSl
ek

: X � X ! Sl, where PSl
ek
ðxi; xjÞ ¼ pkij denotes the preference degree of the alternative xi over xj

linguistically expressed, in the term set Sl, provided by the expert ek.
In these contexts we can use the aggregation process presented in Section 3. But, to deal with multi-

granular information, the aggregation process presents one difference: How to choose the BLTS? We show
it subsequently.

We consider that ST must be a linguistic term set which allows us to maintain the uncertainty

degree associated to each expert and the ability of discrimination to express the preference values. With this

goal in mind, we look for a BLTS with the maximum granularity. We take into consideration two possi-

bilities:

• When there is only one term set with the maximum granularity, then, it is chosen as ST (see Remark 3).
• If we have two or more linguistic term sets with maximum granularity then, ST is chosen depending on
the semantics of these linguistic term sets, finding two possible situations to establish ST :
1. All the linguistic term sets have the same semantics, then ST is any one of them.
2. There are some linguistic term sets with different semantics. Then, ST is a basic linguistic term set with

a larger number of terms than the number of terms that a person is able to discriminate (normally 11

or 13, see [21]). We define a BLTS with 15 terms and with the semantics (see Fig. 4).

Therefore, to make the information uniform, we shall use the function presented in Definition 4 to

transform linguistic labels into fuzzy sets in the BLTS. But in this case the initial term set depends on the
linguistic term set, Sl, used by each expert:
sSlST : Sl ! F ðST Þ;

sSlST ðliÞ ¼ fðsk; ai
kÞ=k 2 f0; . . . ; ggg 8li 2 Sl;

ai
k ¼ max

y
minflliðyÞ; lsk ðyÞg:
Once the multi-granular linguistic information has been unified into fuzzy sets in ST the remaining of the
aggregation process is similar to the process presented in Section 3.
5.2. Non-homogeneous contexts with intuitionistic fuzzy sets

Also an expert of a GDM problem can express his/her preferences by means of intuitionistic fuzzy sets

(IFS) [20,29].

The IFS [2,22] are a tool based on fuzzy sets used to represent uncertainty.



Table 3

Interval-valued preference relation equivalent to intuitionistic fuzzy set preference relation

P IFS ¼


 ð0:4; 0:3Þ ð0:3; 0:5Þ ð0:2; 0:6Þ
ð0:6; 0:2Þ 
 ð0:5; 0:4Þ ð0:25; 0:6Þ
ð0:65; 0:3Þ ð0:6; 0:3Þ 
 ð0:3; 0:6Þ
ð0:8; 0:1Þ ð0:8; 0:15Þ ð0:7; 0:1Þ 


0
BB@

1
CCA � P I ¼


 ½0:4; 0:7� ½0:3; 0:5� ½0:2; 0:4�
½0:6; 0:8� 
 ½0:4; 0:6� ½0:25; 0:4�
½0:65; 0:7� ½0:6; 0:7� 
 ½0:3; 0:4�
½0:8; 0:9� ½0:8; 0:85� ½0:7; 0:9� 


0
BB@

1
CCA
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Definition 6 [2]. An IFS A in E is defined as an object of the following form:
A ¼ fhx; lAðxÞ; mAðxÞi=x 2 Eg;
where the function
lAðxÞ : E ! ½0; 1�
and
mAðxÞ : E ! ½0; 1�
define the degree of membership and the degree of non-membership to A of the element x 2 E, respectively.
And for every x 2 E,
06 lAðxÞ þ mAðxÞ6 1:
Definition 7 [2]. The value of
pAðxÞ ¼ 1
 lAðxÞ 
 mAðxÞ
is called the degree of non-determinacy (or uncertainty) of the element x 2 E to the IFS A.

In [16] is shown that an IFS, instead of describing a truth value as a single number l, describes it by a
pair of values ðl; mÞ, where l is the degree to which we believe in a given statement, and m is a degree to
which we believe in its negation. The pair ðl; mÞ must satisfy the condition l þ m6 1. Therefore, instead of

using the pair ðl; mÞ, we can describe the same truth values by two numbers l and m0 ¼ 1
 m which satisfy
the condition l6 m0. This condition is exactly the condition under which two real numbers form an interval.

Therefore, to deal with GDM problems that present preferences expressed by means of IFS, we shall

transform them into interval-valued preferences (see Table 3), and afterwards, we can apply any of the

aggregation processes just presented, depending on the context in which is defined the GDM problem.
6. Concluding remarks

We have presented an aggregation process for managing non-homogeneous information, with contexts

composed by numerical, interval valued, and linguistic values, in GDM problems. This aggregation process

is based on the unification of the information by means of fuzzy sets on a linguistic term set and afterwards

they are transformed into linguistic 2-tuples to facilitate the exploitation phase of the decision model.

Finally, we have shown how this aggregation process can be easily extended to deal with non-homogeneous

contexts in which appears multi-granular linguistic information and/or intuitionistic fuzzy sets.

In the future we shall study the possibility of extending the process for managing other type of infor-

mation representation as can be type 2 fuzzy sets [14] or fuzzy selected subsets [36].
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