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1 Introduction

There are many classification problems involving multiple classes. Multi-
category classification in Machine Learning has been widely studied, some
learning algorithms are designed to tackle both binary and multicategory
problems, but there are other learning techniques, which extension to multi-
classification problems is not easy (such as SVMs). One way or another,
the binary case where only two classes are considered is the simplest clas-
sification problem (from the point of view of the number of classes), just
as more classes are considered, the difficulty of the problem is increased,
this is why decomposition strategies came up. An easy way to undertake
a multi-class problem is to use binarization techniques, where the original
problem is decomposed in several easier binary problems.

Binary decomposition techniques (ensembles) consist in two different
steps. The first one is the decomposition strategy, the most common strate-
gies are the One-vs-One (OVO) and the One-vs-All (OVA) decompositions
(other approaches such as, Error Correcting Output Code (ECOC) and hier-
archical strategies are not so common in practical approaches). The second
one consists in making the final class prediction from the outputs of the
binary classifiers, a correct combination of classifiers outputs is crucial to
make the correct prediction.

In this document, we focus our attention on the second step, the aggre-
gation of the outputs of the binary classifiers. For this purpose, we consider
separately the OVO strategies where the binarization produce m(m− 1)/2
binary problems from an m class problem, considering all the possible two-
class combinations. And the OVA decomposition, where the binarization is
made by constructing a binary classifier to discriminate each class from all
other classes.

The extended descriptions of the aggregation methods follow in the next
Sections. Please refers to the reference papers to obtain the full citations
and references which come along such descriptions.

2 One-vs-One Decomposition Based Methods

OVO decomposition scheme divide an m class problem into m(m − 1)/2
binary problems. Each problem is face up by a binary classifier which is
responsible of distinguishing between the pair of classes. The training of the
classifiers is done using as training data only the instances from the original
data-set which output class is one of both classes, instances with different
output classes are ignored.

In validation phase, a pattern is presented to each one of the binary
classifiers. The output of a classifier given by rij ∈ [0, 1] is the confidence of
the binary classifier discriminating classes i and j in favor of the former class.
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The confidence of the classifier for the latter is computed by rji = 1− rij if
the classifier do not provide it (the class with the largest confidence is the
output class of a classifier). These outputs are represented by a score matrix
R:

R =


− r12 · · · r1m
r21 − · · · r2m
...

...
rm1 rm2 · · · −

 (1)

The final output of the system is derived from the score matrix by dif-
ferent aggregation models, we summarize the state-of-the-art of the combi-
nations to obtain the final output in the following subsections.

2.1 Voting strategy (VOTE)

This is the most simple method to compute the output from OVO classifiers,
it is also called Max-Wins rule [1]. Each binary classifier gives a vote for
the predicted class. Then, the votes received by each class are counted and
the class with the largest number of votes is selected as the final output.
Formally, the decision rule can be written as:

Class = arg max
i=1,...,m

∑
1≤j ̸=i≤m

sij (2)

where sij is 1 if rij > rji and 0 otherwise.

2.2 Weighted voting strategy (WV)

In the Weighted voting strategy each binary classifier votes for both classes.
The weight for the vote is given by the confidence of the classifier predicting
the class. The class with the largest sum value is the final output class.
Hence, the decision rule is:

Class = arg max
i=1,...,m

∑
1≤j ̸=i≤m

rij (3)

2.3 Classification by Pairwise Coupling (PC)

The classification by Pairwise Coupling [2] tries to improve the voting strat-
egy when the outputs of the classifiers are estimated class probabilities.
In that cases, this method estimates the joint probability for all classes
from the pairwise class probabilities of the binary classifiers. Hence, when
rij =Prob(Classi | Classi or Classj), having nij number of instances in the
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training set used to estimate the conditional probability, the method tries to
find the class posterior probabilities pi = Prob(Classi) (where

∑m
i=1 pi = 1)

which are compatible with the classifiers outputs. Usually, there is not a
solution satisfying this constraints and therefore, the method finds the best
approximation p̂ = (p̂1, . . . , p̂m) according to the classifiers outputs. To do
so, the Kullback-Leibler (KL) distance between rij and µij is minimized:

l(p) =
∑

1≤j ̸=i≤m

nijrijlog
rij
µij

=
∑
i<j

nij

(
rijlog

rij
µij

+ (1− rij)log
1− rij
1− µij

)
(4)

where µij = pi/(pi + pj), rji = 1 − rij and nij is the number of training
data in the ith and jth classes. They proposed an algorithm to compute the
probability estimates by minimizing eq. (4):

1. Initializations:

p̂i =
2

m

∑
1≤j ̸=i≤m

rij

(m− 1)
for all i = 1, . . . ,m (5)

µ̂ij =
p̂i

p̂i + p̂j
for all i, j = 1, . . . ,m (6)

2. Repeat until convergence:

(a) Compute p̂:

p̂i = p̂i

∑
1≤j ̸=i≤m

nijrij∑
1≤j ̸=i≤m

nijµ̂ij
for all i = 1, . . . ,m. (7)

(b) Normalize p̂:

p̂i =
p̂i
m∑
i=1

p̂i

for all i = 1, . . . ,m (8)

(c) Recompute µ̂ij :

µ̂ij =
p̂i

p̂i + p̂j
for all i, j = 1, . . . ,m (9)

The convergence of the algorithm is proved and the obtained probabilities
are consistent. The class with the largest probability estimate is the chosen
output class:

Class = arg max
i=1,...,m

p̂i (10)
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2.4 Decision Directed Acyclic Graph (DDAG)

The Decision Directed Acyclic Graph [3] constructs a rooted binary acyclic
graph where each node is associated to a list of classes and a binary classifier.
The root node considers all classes in the list and one classifier distinguishing
between two of the classes (generally, the first and the last). According
to the prediction of the classifier, the class which has not been predicted
by the classifier is removed from the list and a new node is reached (the
node associated to the new list, which also has another binary classifier
discriminating between the first and the last classes from the new list). The
last class remaining on the list is the final output class. Figure 1 illustrates
the concept of a DDAG for a four class problem.

Figure 1: DDAG example for a four class problem[3]

2.5 Learning Valued Preference for Classification (LVPC)

Learning Valued Preference for Classification [4, 5] derives some new values
from the initial confidence obtained from the binary classifiers. In this case,
it is not required that the confidence in each class within a classifier to be
normalized (rji = 1− rij), also if it is normalized, this method is a weighted
voting penalizing the classifiers which have not got a certain confidence in
their decision. They use a decomposition based in fuzzy preference modeling
to decompose the outputs of the classifiers (weak preferences) in three values,
the strict preference, the conflict (indifference in fuzzy preference modeling)
and the ignorance (indistinguishablity):

Pij = rij −min{rij , rji}
Pji = rji −min{rij , rji}
Cij = min{rij , rji}
Iij = 1−max{rij , rji}

(11)

Cij is the degree of conflict (the degree to which both classes are sup-
ported), Iij is the degree of ignorance (the degree to which none of the classes
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is supported) and finally, Pij and Pji are respectively the strict preference
for i and j. Note that at least one of these two degrees is zero, and that
Pij + Pji + Cij + Iij = 1 and that both conflict and ignorance are symmet-
ric. Computing this values for each classifier produce three fuzzy preference
relations, in [5] the authors propose the following decision rule based on a
voting strategy to obtain the output class from them:

Class = arg max
i=1,...,m

∑
1≤j ̸=i≤m

Pij +
1

2
Cij +

Ni

Ni +Nj
Iij (12)

where Ni is the number of examples from class i in the training data (and
hence, an unbiased estimate of the class probability).

2.6 Preference Relations Solved by Non-Dominance Crite-
rion (ND)

The Non-Dominance Criterion was originally defined for decision making
with fuzzy preference relations [6], in [7] the same criterion is applied in
an OVO classification systems. In this case, a fuzzy preference relation is
created from the outputs of the classifiers. If this relation is not normalized
(rji = 1 − rij), then is a weak fuzzy preference relation, so it has to be
normalized:

r̄ij =
rij

rij + rji
(13)

From the normalized preference relation, the maximal non-dominated
elements are calculated with the following operations:

1. Compute the fuzzy strict preference relation whose elements are r′ij :

r′ij =

{
r̄ij − r̄ji, when r̄ij > r̄ji

0, otherwise.
(14)

2. Compute the non-dominance degree of each class NDi:

NDi = 1− sup
j∈C

[r′ji] (15)

This value represents the degree to which the class i is dominated by
no one of the remaining classes. C stands for the set of total classes
in the data-set.

The output of the system is finally obtained as the class with the maximal
non-dominance value:

Class = arg max
i=1,...,m

{NDi} (16)
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2.7 Binary Tree of Classifiers (BTC)

Binary Tree of SVM (BTS) [8], easily can be extent to any type of binary
classifier. The idea behind this method is to reduce the number of classifiers
and increase the global accuracy using some of the binary classifiers which
discriminate between two classes to distinguish other classes at the same
time. The tree is constructed recursively and in similar way to DDAG
approach, each node has associated a binary classifier and a list of classes.
But in this case, the decision of the classifier can distinguish other classes
as well as the pair of classes used for training. So, in each node, when the
decision is done, more than one class can be removed from the list. In order
to avoid false assumptions, a probability is used when the examples from a
class are near the boundary so the class cannot be removed from the lists
in the following level. Figure 2(b) illustrates this concept applied on the six
class problem in Figure 2(a). The first node classifier discriminates classes
1 and 2. On the one hand, when class 1 is predicted classes 4 and 6 are
removed. On the other hand, when class 2 is predicted only class 1 is taken
out. Therefore, classes 3 and 5 are maintained in both next nodes, class
3 because it is near the decision function and class 5 because it cannot be
distinguished with the classifier in the root node.

(a) Six class problem (b) Constructed binary tree

Figure 2: Six class problem solved by a binary tree[8]. Classes 3 and 5 are
assigned to two leaf nodes, class 3 by reassignment and class 5 by the decision
function between class 1 and 2.

The algorithm to construct the binary tree use the following symbols
and data structures:

• Trained list: The list containing the trained binary classifiers.

• δ: The threshold to decide whether an example is near the separating
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decision function.

• rij and rji: The outputs of the classifier (normalized, rji = 1− rij).

• ∆Pij(xp): The reasonability of a sample xi in a node separating classes
i and j to belong to the node given by the classifier output. It is defined
as

∆Pij(xp) =

{
rij − 0.5 if rij > rji

rji − 0.5 otherwise
(17)

Finally, the tree is obtained with the following operations:

1. Initialization:

(a) All the classes are assigned to the root node.

(b) Trained list = ∅.
(c) K = 0.

2. Build the subtree of node K:

(a) Check if node K contains different classes, else subtree finished.

(b) Randomly select two classes i and j.

(c) Create two new child nodes 0 (for class i) and 1 (for class j).

(d) If there is not a binary classifier trained for this pair in the
Trained list then train it.

(e) Test the classifier with the training data from the rest of classes
in the node assigning them to one of both child nodes.

(f) Compute ∆Pij(xp) for each training data.

(g) For each class if all the patterns are assigned to the same child
node, but at least one of them satisfy that |∆Pij(xp)| < δ then
reassing the class to both child nodes.

(h) If all the classes are scattered into two child nodes, clear the new
nodes

i. Select another pair in node K and go to 2(c)

ii. If all pairs have been evaluated, then subtree finished (“worst
situation”)

(i) Else the pair is accepted and 2. is called recursively for both child
nodes.

We develop the centered version where the classes instead of being se-
lected randomly, are selected to create a more balanced tree. For this pur-
pose, the centers of all classes are computed, and then, the mean center is
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obtained. The nearest classes from the center are taken until an accepted
pair is obtained.

The classification in the binary tree consists in starting from the root
node, applying the classifier in the current node until a leaf node is reached.
If the leaf contains more than one class (“worst situation”) the output is
computed with the voting strategy.

2.8 Nesting One-vs-One (NEST)

Nesting One-vs-One algorithm [9, 10] is directly developed to tackle the
unclassifiable region produced in voting strategy (it is easy to see that in
a three class problem, if each binary classifier votes for a different class,
there is not a winner so, some tie-breaking technique has to be applied).
Nesting OVO uses the voting strategy, but when there exist examples within
the unclassifiable region, a new OVO system is constructed using only the
examples in the region in order to make them classifiable. This process is
made until no examples remain in the unclassifiable region of the nested
OVO. When there are only examples from one class in that region, there is
no need to construct a new OVO, so the region is assigned to this class. Also
when there are examples from two classes, a simple binary classifier which
discriminates the examples from this classes in the area is just enough. The
convergence of the algorithm is proved in [10], so there is no need to establish
a maximum number of nesting OVO systems. The algorithm to construct
the nested OVO system is the following:

1. Construct an OVO system with voting strategy.

2. Test the training examples in the OVO system.

3. Select the training examples within the unclassifiable region.

4. If there are examples from three or more classes

(a) Construct a new OVO system with these examples.

(b) Go to (2)

5. Else if there are examples from two classes, then construct a new
binary classifier which discriminates between the examples from this
classes in the unclassifiable region.

6. Else if there are examples from one class only, then assign the unclas-
sifiable region to this class.

7. When the unclassifiable region dissappear the algorithm is finished.
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2.9 Wu, Lin and Weng Probability Estimates by Pairwise
Coupling approach (PE)

. Probability Estimates by Pairwise Coupling [12] is similar to PC, it esti-
mates the posterior probabilities (p) of each class starting from the pairwise
probabilities. In this case, while the decision rule is equivalent (predict-
ing the class with the largest probability), the optimization formulation is
different. PE optimizes the following problem:

min
p

m∑
i=1

∑
1≤j ̸=i≤m

(rjipi − rijpj)
2 subject to

k∑
i=1

pi = 1, pi ≥ 0,∀i. (18)

This problem is equivalent to:

min
p

m∑
i=1

∑
1≤j ̸=i≤m

(rjipi − rijpj)
2 subject to

k∑
i=1

pi = 1. (19)

It can be rewritten as

min
p

2pTQp ≡ min
p

1

2
pTQp (20)

where

Qij =

{∑
1≤s ̸=i≤m r2si if i = j,

−rjirij if i ̸= j.
(21)

With the assumption of rij > 0,∀i ̸= j, a simple iterative method for
solving the minimization is proposed in [12]:

1. Start with some initial pi ≥ 0,∀i and
∑k

i=1 pi = 1.

2. Repeat (t = 1, . . . , k, 1, . . .)

pt ←
1

Qtt
[−

∑
1≤j ̸=t≤m

Qtjpj + pTQp] (22)

normalize p (23)

until ||Qp− pTQpe||1 = max
t
|(Qp)t − pTQp| < 0.005/m.

There also exists some implementation notes in the Appendix D of [12]
to reduce the computational cost.
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3 One-vs-All Decomposition Based Methods

One-vs-All (OVA) decomposition divide an m class problem into m binary
problems. Each problem is face up by a binary classifier which is responsible
of distinguishing one of the classes from all other classes. The training of
the classifiers is done using the whole training data, considering the patterns
from the single class as positives and all other examples as negative (this
can cause imbalanced training data).

In testing phase, a pattern is presented to each one of the binary clas-
sifiers and then, the classifier which gives a positive output indicates the
output class. In many cases, the positive output is not unique and some tie-
breaking technique has to be applied, the most common approach use the
confidence of the classifiers to decide the final output. In the following sub-
sections we summarize the state-of-the-art of OVA approach, even though
OVA methods have not got the same attention in the literature like OVO
ones. Instead of having a score matrix, when dealing with the outputs of
OVA classifiers (where ri ∈ [0, 1] is the confidence for class i) a score vector
is used:

R = (r1, r2, . . . , ri, . . . , rm) (24)

3.1 Maximum confidence strategy (MAX)

The Maximum confidence strategy is the most common and simple OVA
method. It is similar to the weighted voting strategy from OVO systems.
m classifiers are trained to distinguish each class from all others. A test
example is submitted to each classifier and then, the output class is taken
from the classifier with the largest positive answer:

Class = arg max
i=1,...,m

ri (25)

3.2 Dinamically Ordered One-vs-All Classifiers (DOO)

The Dinamically Ordered One-vs-All[11] does not base its decision in the
confidence of the OVA classifiers. OVA classifiers are trained in the same
way as in the voting strategy, but in this method a Näıve Bayes classifier
is also trained (using samples from all classes). This new classifier establish
the order in which the OVA classifiers are executed, the OVA classifiers are
executed in this order until a positive answer is obtained, which indicates
the final output class. This is done dynamically for each testing example:

1. The example is submitted to the Näıve Bayes classifier.
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2. OVA classifiers list is ordered with the Näıve Bayes output probabili-
ties in descending order.

3. The example is submitted to the OVA classifiers in the list order.

4. The discriminating class from the first classifier giving a positive an-
swer is predicted.

With this method, ties are avoided a priori by the Näıve Bayes classifier
instead of relying in the degree of confidence given by the outputs of the
classifiers.
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