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a b s t r a c t

Classification with imbalanced data-sets has become one of the most challenging problems in Data
Mining. Being one class much more represented than the other produces undesirable effects in both the
learning and classification processes, mainly regarding the minority class. Such a problem needs accurate
tools to be undertaken; lately, ensembles of classifiers have emerged as a possible solution. Among
ensemble proposals, the combination of Bagging and Boosting with preprocessing techniques has proved
its ability to enhance the classification of the minority class.

In this paper, we develop a new ensemble construction algorithm (EUSBoost) based on RUSBoost, one
of the simplest and most accurate ensemble, which combines random undersampling with Boosting
algorithm. Our methodology aims to improve the existing proposals enhancing the performance of the
base classifiers by the usage of the evolutionary undersampling approach. Besides, we promote diversity
favoring the usage of different subsets of majority class instances to train each base classifier. Centered on
two-class highly imbalanced problems, we will prove, supported by the proper statistical analysis, that
EUSBoost is able to outperform the state-of-the-art methods based on ensembles. We will also analyze
its advantages using kappa-error diagrams, which we adapt to the imbalanced scenario.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Skewed class distributions hinder the classifier learning task,
since the generalization capabilities of the classifiers are compro-
mised [24,53,29]. Class imbalance [50,25] has been appointed as
one of the most challenging problems in Data Mining [57]; it refers
to data-sets having a very different number of instances from
each one of the two classes (focusing on binary problems), that is,
their presence is not balanced in the data-set as expected by the
classifier. Even though the uneven class distribution need not be a
problem itself, this situation usually produces overlapping or small
disjuncts, added to the frequently small sample size of the
minority class [50,25]. Besides these problems, another important
point is that the evaluation criterion used to guide the learning
process and evaluate the classifiers can lead to misunderstandings.
The minority (positive) class can be ignored and treated as noise,
losing the generalization ability of the classifiers in favor of the
majority (negative) class. The great attention that this problem
has attracted in the literature is understandable due to the large
ll rights reserved.

34 948168924.
lar),
amount of real-world classification problems suffering from these
conditions, such as anomaly detection [30], image annotation [59]
or facial age estimation [9], among many others.

Having such a large number of potential applications, many
techniques have been developed aiming to address the problem.
These techniques can be categorized into three groups plus other
one which makes use of the methods from the former groups
to construct ensembles of classifiers. The first group addresses
the modification of existing algorithms [55]. A different approach
considering preprocessing techniques [5,11] aims to balance the
skewed class distribution of the examples prior to the training
task. In third place, cost-sensitive approaches [10,17] combine the
mentioned techniques in such a way that they incorporate
different misclassification costs for the instances in the learning
algorithm. Finally, ensemble solutions [12,49,47] try to combine one
of the previous approaches with an ensemble learning algorithm to
form ensembles of accurate1 and diverse base classifiers. These
solutions have been proved to be more accurate than previous non-
ensemble approaches [19].
1 The accuracy of the base classifiers in the imbalance framework is measured
by the proper performance measures, we refer to accurate and accuracy of the base
classifiers in the sense of accurate classifiers that must correctly distinguish both
classes (see Section 2.2).
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Ensembles of classifiers [46] attempt to increase the accuracy of
individual classifiers by their combination. In the specialized
literature, there are several practical and theoretical reasons for
the usage of ensemble approaches instead of non-ensemble ones
(in depth discussions can be found in [33,41,46]). Among the
different types of ensembles, class imbalance has been mainly
overcome by the combination of minor variants of the same
classifier, which are built changing the class distribution of the
instances. The way in which these distributions are altered is the
key factor to construct diverse ensembles obtaining higher accura-
cies than those obtained by their individual base classifiers [33].
The most common approaches to construct ensembles by data-
variation are AdaBoost [18] and Bagging [7]. Nevertheless, on their
own, ensembles are not able to deal with imbalanced problems,
since they are inherently designed to maximize accuracy measure.
For this reason, they are combined with techniques to address the
problem of uneven class distributions; among these proposals, those
combining preprocessing algorithms and ensembles [12,4,47]
are the most common. In particular, the simplest combinations
have stood out with respect to more complex proposals. Any
combination between random undersampling or SMOTE [11] with
AdaBoost (RUSBoost [47], SMOTEBoost [12]) or Bagging (Under-
Bagging [4], SMOTEBagging [51]) excels in comparison with more
elaborated methods [19]. In the empirical study carried out in [19],
RUSBoost was the ensemble with the best trade-off, being one of
the best performers, but also the least complex; it is simple and
fast, besides it was found to be equivalent to SMOTEBagging in
terms of performance.

Analyzing these results, it is interesting to observe that ensem-
bles based on random sampling techniques are highly competitive
despite its randomness (due to their good accuracy-diversity
relation); however, in the imbalance framework, we believe that
such a randomness might be improved enhancing the accuracy of
the base classifiers in a supervised manner.

To do so, instead of random undersampling, our proposal
considers the usage of Evolutionary Undersampling (EUS) [23],
in which we also stress the diversity between classifiers favoring
the most diverse chromosomes in comparison to the previously
used ones. This diversity mechanism is a key component in
our model, because we mainly aim at increasing the accuracy of
the base classifiers but not being at the expense of losing much
diversity with respect to that of RUSBoost. We will show that the
proposed EUSBoost ensemble outperforms RUSBoost and the
other best state-of-the-art ensembles in highly imbalanced data-
sets, where this strategy can be exploited. In addition, we explain
the behavior of our proposal adapting the kappa-error diagrams
[38] to the imbalance framework.

In order to carry out the empirical comparison, we establish a
similar experimental framework to that in [19]; we test 33 two-
class highly imbalanced real-word data-sets from KEEL data-set
repository [1,2]. We consider C4.5 [43] as base classifier for our
experiments since it has been the most commonly used in imbal-
anced domains [5,14,19] and the Area Under the ROC Curve (AUC)
[6,28] as evaluation criterion. The results obtained in the compar-
isons are contrasted by the proper non-parametric statistical tests,
as suggested in the literature [13,21,22].

The main contributions of this paper can be summarized as
follows:
�

Table 1
Confusion matrix for a two-class problem.
We present a novel ensemble method based on Boosting in
combination with EUS (instead of random undersampling [47]
or SMOTE [12]).
Positive prediction Negative prediction
�

Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)
This combination allows us to introduce a modification in the
fitness function of EUS to promote diversity of the undersampled
data-sets, which is translated into more accurate ensembles
when dealing with highly imbalanced data-sets [52].
�
 We introduce kappa-AUC error diagrams to explain the beha-
vior of EUSBoost in the imbalance framework.

The rest of this paper is organized as follows: In Section 2, we
recall the problem of imbalanced data-sets, discussing the evalua-
tion metrics and describing the best state-of-the-art ensemble
techniques. In Section 3, we put forward our proposal. Next, in
Section 4, we introduce the experimental framework used in the
experiments. In Section 5, we carry out the comparison of our
proposal with the state-of-the-art methods, whereas in Section 6,
we explain the reason of the better behavior of EUSBoost using
kappa-AUC error diagrams. Finally, in Section 7, we make our
concluding remarks.
2. The problem of skewed class distributions in classification

In this section, we first recall the problems that may arise due
to the imbalanced class distribution of the instances. Then, we
show the evaluation criteria that are commonly used in imbal-
anced scenarios. Finally, we review the best ensemble approaches
found in [19] that will be the base for the comparison.

2.1. The class imbalance problem

A data-set is said to be imbalanced whenever the number
of instances from the different classes is not nearly the same. Focusing
on a two-class imbalanced scenario, the problem is that one class is
under-represented in the data-set. Moreover, from the point of view of
the learning task, it is usually the class of interest [25].

In an imbalanced scenario, standard classifier learning algo-
rithms usually fail due to their accuracy-oriented design. They are
biased toward the majority class, because it is easier to learn. The
correct classification of negative instances favors accuracy metric
more than the correct prediction of the minority class instances.
Hence, positive instances might be ignored (treated as noise),
because general rules predicting the negative class produce better
accuracy rates. Although the mere fact that the data-set is
imbalanced need not mean an added difficulty to the learning
task [50,25] (since the classes could be perfectly separable), in
real-world problems it usually brings along a series of difficulties
that hinder the classifier learning: such as small sample size [29],
overlapping [24] or small disjuncts [53].

In this paper, in order to organize the different data-sets in
some way, we consider the Imbalance Ratio (IR) defined as
nthe number of negative class examples divided by the number
of positive class examples. Using the IR, we refer to a data-set as
highly imbalanced if its IR is greater than 9 [23].

2.2. Performance evaluation in imbalanced domains

How to evaluate a classifier is of great importance to properly
assess its classification performance and guide its modeling.
Focusing on two-class problems, the results of the correctly and
incorrectly recognized examples of each class can be recorded in a
confusion matrix (Table 1).
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From this matrix, different measures can be deduced to per-
form the evaluation in the imbalance framework:
�
 True positive rate, TPrate ¼ TP=ðTPþ FNÞ.

�
 True negative rate, TNrate ¼ TN=ðFPþ TNÞ.

�
 False positive rate, FPrate ¼ FP=ðFPþ TNÞ.

�
 False negative rate, FNrate ¼ FN=ðTPþ FNÞ.
The quality of the results obtained by a classification algorithm
should be assessed by its performance on both classes at the same
time, hence, these measures on their own are still inadequate.
Receiver Operating Characteristic (ROC) graphic [6] combines these
measures to produce a valid evaluation criterion. ROC graphics allow
one to visualize the trade-off between TPrate (benefits) and FPrate
(costs), evidencing that increasing the number of true positives
without also increasing the number of false positives is not possible
for any classifier. Area Under the ROC Curve (AUC) [28] corresponds
to the probability that the classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative instance.
AUC provides a scalar measure of the performance of a classifier and
it has been widely used in imbalanced domains [24,23,48]. AUC
measure is computed as the area of the ROC curve:

AUC¼ 1þ TPrate−FPrate
2

ð1Þ
2.3. Solutions for the class imbalance problem

As mentioned in the Introduction, the approaches to deal with
class imbalance were initially divided into three groups depending on
how they overcome the problem: algorithm level modifications [3],
data-level treatments [5,16] and cost-sensitive approaches [10,17].
However, in recent years, techniques based on ensembles of classifiers
have come up showing their usefulness [19].

Ensemble techniques for the class imbalance problem can be
categorized into two main classes: cost-sensitive approaches and
ensemble learning algorithms with embedded data preprocessing
techniques. Cost-sensitive approaches [49] have the same disadvan-
tage as non-ensemble cost-sensitive methods: the costs must be
defined, and these costs are not usually found in standard classifica-
tion data-sets; besides, it can be difficult to set them appropriately,
even subjective. Otherwise, methods combining ensemble learning
algorithms with data-level techniques are more general, and have
attracted more attention. They can also be divided into three
subclasses: Bagging-, Boosting-, and Hybrid-based ensembles, depend-
ing on the ensemble learning algorithm in which they are based. An
extensive empirical analysis of ensemble solutions for class imbalance
was carried out in [19], where both Boosting [18] and Bagging [7] in
combination with preprocessing techniques achieved the best results.
Hereafter, we recall these ensemble learning algorithms:
�
 Bagging [7]. It consists of training different classifiers with
bootstrapped replicas of the original training data-set. Hence,
diversity is obtained by resampling different data subsets.
�
 Boosting [18]. It uses the whole data-set to train each classifier
serially, but after each round, it gives more focus to difficult
instances, with the goal of correctly classifying in the following
iteration those examples that were incorrectly classified during
the current one. In this work, we use AdaBoost.M2 [18], which
has been widely employed in imbalanced domains in combina-
tion with data level techniques. The main advantage of Ada-
Boost.M2 with respect to other Boosting approaches is that it
considers the confidences given by the base classifiers in the
weight update, taking advantage of these estimations.
Different preprocessing techniques have been embedded in these
ensemble methods. Among these combinations, those considering
the random undersampling method and the Synthetic Minority
Oversampling Technique (SMOTE) [11] have been the most successful
ones [19]. Afterwards, we briefly recall the operating procedure of
these data-level methods:
�
 Random Undersampling. It balances the class distribution by
randomly eliminating majority class examples. Its major draw-
back is that potentially useful data can be discarded.
�
 Synthetic Minority Oversampling Technique (SMOTE) [11]. It is an
oversampling method that creates minority class examples by
interpolating several minority class instances that lie together
(the k Nearest Neighbors, k NN, are considered).

After recalling both base techniques, we briefly survey the best
state-of-the-art ensembles for class imbalance problem, the first
two algorithms are Bagging-based, the next two are Boosting-
based ensembles, whereas the last one is a hybrid approach:
�
 UnderBagging [4] randomly undersamples the data-set in each
Bagging iteration (all minority class instances are kept in every
iteration).
�
 SMOTEBagging [51] uses SMOTE in each iteration. The new data-
set contains two times the number of majority class instances.
The first half is a bootstrapped replica of the majority class
instances, whereas the second half is obtained via SMOTE and
random oversampling depending on a resampling rate.
�
 RUSBoost [47] removes instances from the majority class in
each iteration of AdaBoost.M2 using the random undersam-
pling technique. The weights of the instances in the new under-
sampled data-set are normalized to form a distribution.
�
 SMOTEBoost [12] introduces synthetic minority class instances
using SMOTE algorithm. Since new instances are created, new
weights must be assigned, which are proportional to the total
number of instances in the new data-set. The weights of the
instances from the original data-set are normalized to form a
distribution with the new instances.
�
 EasyEnsemble [37] performs similarly to UnderBagging, but in
spite of training a classifier for each new bag, they train each bag
using AdaBoost. Hence, the final classifier looks like an ensemble
of ensembles, despite it is a single ensemble.

3. EUSBoost: evolutionary undersampling guided boosting

In this section, we explain our proposal to overcome the class
imbalance problem with ensembles of classifiers. As we have
explained, our aim is to improve the performance of previous
approaches, and more specifically that of RUSBoost, enhancing the
accuracy of the base classifiers while maintaining their diversity.
Whereas the original EUS aims to increase the accuracy, its
modification to account for diversity is a very important component
of our model, since it allows us to improve the global performance.

First in Section 3.1, we recall EUS algorithm. Afterwards in
Section 3.2, we show our initial model which uses EUS inside
Boosting. Then, in Section 3.3, we present how we enhance the
diversity of the base classifiers with a modified fitness function in
EUS model. Finally, we discuss the computational complexity of
EUSBoost in Section 3.4.

3.1. Evolutionary undersampling

EUS [23] arises from the application of evolutionary prototype
selection algorithms to imbalanced domains, where some of their
features can be better fitted, e.g., the fitness function. Prototype
selection [20] is a sampling process which, instead of aiming to



M. Galar et al. / Pattern Recognition 46 (2013) 3460–3471 3463
balance the class distributions (as the ones shown in Section 2.3),
reduces the reference set for the nearest neighbor (1NN) classifier
in order to improve its accuracy and reduce the storage necessity.
Within the imbalance framework these objectives change, since
the balance of the data distribution (aiming to prevent bad
behaviors in the classification process) gains importance. There-
fore, EUS attempts to obtain a useful subset of the original data-
set. In order to do so, it starts randomly undersampling several
data subsets, which are evolved until the currently best under-
sampled data-set cannot be further improved (in terms of the
fitness function). EUS has shown its usefulness in real-world
applications [14].

In every evolutionary method, the representation of the solu-
tion is a key issue, that is, how is a chromosome that codifies the
real solution modeled. In EUS, each chromosome is a binary vector
representing the presence or absence of instances in the data-set.
Even though the whole data-set can be codified within the chromo-
some, we reduce the search space by only considering the majority
class instances; hence, all the minority class instances are always
introduced in the new data-set. Accordingly, a chromosome in EUS is
represented as

V ¼ ðvx1 ; vx2 ; vx3 ; vx4 ;…; vxn− Þ; ð2Þ

where vxi takes the values 0 or 1, indicating whether instance xi is
included or not in the data-set (n− stands for the number of majority
class instances).

In order to rank the chromosomes, we use a fitness function that
considers the balancing between the minority class and majority
class instances aside from taking into account the expected perfor-
mance of the selected data subset [23]. The performance is estimated
by hold-one-out technique using 1NN classifier, and is measured by
the geometric mean (GM) [3] (Eq. (3)), which allows one to maximize
the accuracy of both classes at the same time,

GM¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPrate � TNrate

p
: ð3Þ

The fitness function of EUS is as follows:

fitnessEUS ¼
GM−j1−n

þ

N− � Pj if N−40

GM−P ifN− ¼ 0;

8<
: ð4Þ

where nþ is the number of minority (positive) class instances, N− is
the number of majority (negative) class instances selected and P is
the penalization factor accounting for the importance given to the
balance between both classes. The recommended value for P is
0.2, providing a good trade-off between accuracy and balancing.
Notice that the AUC (Eq. (1)) could also be used as a performance
measure, but in our case, following the empirical analysis carried
out in [23], we use the GM since it has less over-fitting problems
and performs better in EUS (even though AUC is then used as
evaluation criterion).

EUS makes use of the well-known CHC algorithm [15], holding a
good balance between exploration and exploitation, to evolve the
initially random population. Recall that CHC is an elitist genetic
algorithm that uses the heterogeneous uniform cross-over (HUX) to
combine two chromosomes, which interchanges exactly half of their
different genes. The recombination strategy is only carried out if the
Hamming distance between two chromosomes is greater than the
threshold (initially L/4, being L the length of the chromosome); if no
parents are recombined the threshold is reduced by one (incest
prevention mechanism). Besides, no mutation is applied, instead,
when there is no more progress (recombined chromosomes do not
improve their parents and the threshold is zero), the chromosomes
are reinitialized. To do so, the best chromosome is used as a template
and the chromosomes are generated by randomly changing the 35%
of the genes. Then, the evolution is resumed.
In the case of EUS, the HUX of the original CHC algorithm is
modified, decreasing the probability of including instances in the
data-set, so that a good reduction rate is obtained. In this manner,
each time HUX switches a gene on, the gene is switched off with a
certain probability (which recommended value is 0.25).

3.2. Combining boosting and evolutionary undersampling

Random techniques are powerful to construct ensembles, since
they provide much diversity, which combined with accurate base
classifiers is translated into high performance ensembles [33].
However, from our point of view, such an uncontrolled random-
ness could be better managed when dealing with highly imbal-
anced data-sets, leading to an improved performance. Even
though random undersampling is often an appropriate technique
assessing good results, it could discard potentially useful instances
of the majority class, which might be important for the learning
process. Besides, as the IR of the data-set increases, so does the
probability of ignoring useful majority class examples. For this
reason, we focus on highly imbalanced data-sets aiming to under-
take this problem by the usage of EUS, which has proved its
validity in this framework [23].

Due to the initial randomness of the solutions of EUS, the
resulting data subset usually differs from one execution to another
(evolutionary algorithms are stochastic search procedures). We
benefit from this instability, since it helps maintaining the diver-
sity (classifiers trained with identical data-sets are not useful to
construct ensembles); in addition, we seek for diversity modifying
the evolutionary process (as we will explain in Section 3.3).

The inclusion of EUS within Boosting algorithm is simple and
easy to implement, yet effective. We follow the idea of RUSBoost
and other Boosting-based algorithms [19] introducing the under-
sampling process inside the loop of AdaBoost.M2. In this case, EUS
is used instead of random undersampling or SMOTE, and then,
only the weights of the instances in the undersampled data-set
are used in the induction process (as in RUSBoost). The whole
procedure of EUSBoost is outlined in Algorithm 1. The new steps
introduced in our proposal are the 7th and 8th, while the 9th is
modified:
�
 Step 7—EUS is introduced, which returns a new data-set (S′)
considering all the minority class instances and the majority
class instances selected.
�
 Step 8—The new weight distribution is computed.

�
 Step 9—The classifier is trained, in this step the original data-

set is maintained, but the instances that are not in the under-
sampled data-set have no weight, and hence, they are ignored.

Algorithm 1. EUSBoost, EUS embedded in AdaBoost.M2.
Input: Training set S¼ fxi; yig; i¼ 1;…;N; and yi∈fc1; c2g; T:
Number of iterations; I: Weak learner

Output: Boosted classifier: HðxÞ ¼ arg max
y∈C

∑
T

t ¼ 1
ln 1

βt

� �
htðx; yÞ

where ht ; βt (with htðx; yÞ∈½0;1�) are the classifiers and their
assigned weights, respectively

1:
 D1ðiÞ←1=N for i¼ 1;…;N

2:
 w1

i;y←D1ðiÞ for i¼ 1;…;N; y≠yi

3:
 for t¼1 to T do

4:
 Wt

i← ∑
y≠yi

wt
i;y
5:

qtði; yÞ←

wt
i;y

Wt
i

for y≠yi
6:

DtðiÞ← Wt

i

∑N
i ¼ iW

t
i
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7:
 S′¼ EvolutionaryUndersamplingðSÞ;

8:
D′tðkÞ←
Wt

i

∑xi∈S′W
t
i

if xi∈S′

0 otherwise

8><
>:
9:
 ht←IðS;D′tÞ

10:
ϵt← 1
2 ∑

N

i ¼ 1
DtðiÞ 1−htðxi; yiÞ þ ∑

i;y≠yi
qtði; yÞhtðxi; yÞ

 !
11:
 βt ¼
ϵt

1−ϵt

12:
 wtþ1

i;y ¼wt
i;y � β

ð1=2Þð1þht ðxi ;yiÞ−ht ðxi ;yÞÞ
t for i¼ 1;…;N; y≠yi
13:
 end for
3.3. Promoting diversity: adjusting the fitness function of
evolutionary undersampling

Diversity in classifier ensembles, that is, being composed of
different classifiers giving different outputs, is crucial and has been
widely studied in the literature [8,52]. However, no direct relation
has been found between diversity and accuracy despite several
different measures have been tested [35]. However, dealing with
imbalanced data-sets, the importance of diversity is even clearer,
being usually easier to produce diverse classifiers by data-variation
due to the problems mentioned in Section 2.1. This fact is in
accordance with the findings in [52], where the authors show that
there exists a relation between diversity and single-class perfor-
mance measures in this scenario, having a positive impact on
the minority class classification, but also on global performance
measures such as AUC.

One of the problems of EUSBoost is that seeking for accurate
base classifiers causes a loss of diversity in the resulting ensemble.
Moreover, more accurate base classifiers need not produce a more
accurate ensemble. In this work, we aim to take advantage of
the class imbalance problem to boost the diversity of the base
classifiers in EUSBoost. On this account, we modify the objective
function used in the undersampling process in order to favor the
chromosomes in which we are more interested. In our case, these
chromosomes are those better combining diversity and perfor-
mance, in terms of the original fitness function. Nevertheless,
notice that we measure the diversity of the chromosomes instead
of the diversity of the outputs of the classifiers as it is usually done
[35], because we need to measure it a priori before learning the
classifier. Therefore, our assumption is that base classifiers learned
from data-sets with much more different instance sets are
more diverse (and we force it in a supervised manner, which is not
usually done). Moreover, in order to further increase diversity, we
change the weight of each factor (accounting for diversity/accuracy)
in each iteration. In order to introduce both ideas within EUSBoost,
we develop a new fitness function modifying the original evaluation
procedure of EUS (Eq. (4)). Afterwards, we explain this procedure
in detail.

There exist several measures to compute the diversity [35]. One
of the most common is the Q-statistic [58], which has been widely
applied in classifier ensembles [32,52]. In our case, we apply this
measure to compute the diversity between two solutions (Eq. (2)),
since each instance has an associated value indicating whether
it is included or not in the new data-set (1 and 0, respectively).
Therefore, having two binary vectors ðVi;VjÞ, the Q-statistic is
computed as follows:

Qi;j ¼
N11N00−N01N10

N11N00 þ N01N10 ; ð5Þ

where Nab stands for number of elements (instances) with value a
in the first vector and with value b in the second (if a¼b both data-
sets agree including or not the instance). The value of the statistic
ranges from −1 to 1. Lower values of Q indicate greater diversity
(Qi;j ¼ 0 means that both vectors are statistically independent).

The problem of the Q-statistic and other diversity measures is
that they are pairwise measures [35]. In order to evaluate each
possible solution, we need to compare it with all the previous
vectors used to construct the base classifiers, aggregating all the
pairwise diversity values. In this case, we propose to use the
maximum of all the pairwise diversities Qi;j, different from the
usual way where the arithmetic mean is used [35]. In this manner,
we promote the candidate instance subset that is the most dissim-
ilar with respect to all the previous data-sets considered. Therefore,
being Vj the candidate solution to be evaluated, and Vi; i¼ 1;…; t
(recall that t is the current iteration) all the previously used
solutions, we compute the global diversity Q as

Q ¼ max
i ¼ 1;…;t

Q i;j: ð6Þ

After defining the evaluation of the diversity, we carry out a
modification of the fitness function of EUS:

fitnessEUSQ ¼ fitnessEUS �
1:0
β

� 10:0
IR

−Q � β; ð7Þ

where fitnessEUS is the original fitness function (Eq. (2)), IR is the
imbalance ratio, Q is the global Q-statistic and β is a weight factor
changing in each iteration:

β¼ N−t−1
N

: ð8Þ

We should notice that in Eq. (7) the Q term is subtracted to
maximize the diversity. Moreover, in the first iteration of the
ensemble (t¼1), EUS is executed in its original form (using Eq. (4)),
since we have no vectors to compare with the actual candidate
solution.

Remark 1. In the new fitness function, as long as the iterations
progress, more importance is given to the precision (the original
EUS fitness function) and less to the diversity. This procedure is in
accordance with the philosophy of Boosting, since in later itera-
tions the correct classification of the most difficult instances gains
importance. Furthermore, the larger the IR is, the less importance
the original fitness has and the greater the influence of the
diversity is. When the IR is moderately high (around 10), it is
important to have accurate base classifiers. However, diversity
cannot be forced to the same extent, since having less instances
to decide upon (that is, less majority instances to be removed,
and more to be maintained in the data-set to balance the class
distribution), forcing the diversity could imply a severe decrease of
the performance. The contrary occurs when the IR increases (there
are more majority class instances to be left out to balance the data-
set). In case of data-sets with extreme imbalance, where it is easier
to reach high diversity, notice that all the importance is not given
to the diversity, since all the chromosomes will share the same
weight for the accuracy part, and hence, despite its absolute value
is low, this part will also be taken into account.

In order to understand how the fitness function works along
the iterations of EUSBoost, in Fig. 1, we provide an example of its
behavior in a data-set used in the experiments. It can be observed
that initially a high performance can be obtained with the greatest
diversity; as iterations progress, the performance needs to be
decreased in order to maintain diversity. Finally, at last iterations,
it is more difficult to maintain the diversity (there are more previous
subsets), but also the weight of the performance is increased, and
hence, a less diverse but more accurate subset is selected.

In addition to the Q-statistic, we have considered another way
to measure the diversity of the solutions, which is not usually used
to measure the diversity between the outputs of the classifiers.
We can simply consider that each solution is a code-word (i.e.,
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Fig. 1. An example of the behavior of both components of the fitness function in each iteration of EUSBoost (the values of the chromosome/subset selected are shown): (a)
fitness function of EUS (performance); and (b) global Q-statistic (diversity).
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a chromosome is a code-word), which codifies the instances to be
used in the training phase. Hence, we can measure how different
two code-words are by the well-known Hamming distance, that is,
the number of bits that differ between two code-words. In
this case, the global procedure is the same, but the fitness function
changes slightly, since our aim is to maximize the Hamming
distance between all solutions (the greater the distance is, the
most dissimilar the code-words are):

fitnessEUSH ¼ fitnessEUS �
1:0
β

� 10:0
IR

þ H � β; ð9Þ

where H is the minimum Hamming distance between the candi-
date chromosome and all the previous chromosomes used to
construct the existing classifiers. The Hamming distance in Eq. (9)
is normalized by dividing its result by the number of bits in the
code-word (genes in the chromosome, i.e., instances codified).

3.4. On the computational complexity of EUSBoost

We acknowledge that EUSBoost training phase is computation-
ally more expensive than that of the other methods. This is due to
EUS, which is executed in all iterations of Boosting. Focusing on
the comparison with RUSBoost, which simply needs to randomly
select the instances in each iteration, the training procedure
requires more computations. Note that in EUS, 1NN classifier is
executed using each chromosome as a reference set (being under-
sampled data-sets, the higher the IR is, the faster the method runs)
for the whole data-set.

In our algorithm there is an added cost with respect to
RUSBoost, since EUS is executed in each iteration of Boosting
(instead of random undersampling). The complexity of EUS comes
from the application of 1NN for the evaluation of each chromo-
some. 1NN complexity is linear with respect to the number of
examples and attributes, i.e., its complexity is of Oðnref �mÞ, where
nref is the number of examples on the reference set (in our case the
undersampled data-set) and m the number of attributes. In order
to estimate the hold-one out performance, 1NN needs to be
executed n times (being n the number of examples in the data-
set). Since EUS is executed T−1 times (being T the number of
Boosting iterations, 10 in our experiments), and maxeval is the
number of allowed evaluations for EUS (10 000 in our experiments),
the added complexity of our algorithm is of Oðn � nref �m� maxeval�
ðT−1ÞÞ. We should notice that in this case, nref is always near 2 � nþ

(two times the number of minority class examples), since the data-
sets evaluated are undersampled, and hence the complexity
decreases with greater IR.
Anyway, as well as in any other preprocessing technique, the
training time is just taken into account once per data-set, being
the testing time of EUSBoost equivalent to that of RUSBoost, since
the same number of classifiers and instances are considered.
Hence, its application in classification problems that do not require
on-line training might not be compromised.
4. Experimental framework

In this section, we present the set-up used to develop the
empirical comparison in Section 5. The configuration is the same
as the one used in [19] to carry out the empirical study of
the state-of-the-art ensemble methods, but in this case focusing
on highly imbalanced data-set for which EUSBoost has been
designed. First, we show the ensemble methods that were found
to be the best performers in [19], which are the base for the
comparison in Section 4.1. Afterwards, we provide details of the
real-world highly imbalanced problems that we have used to carry
out the comparison in Section 4.2. Finally, we recall the statistical
tests that we have applied to properly compare the classifiers
performance in Section 4.3.

4.1. Algorithms and parameters

First of all, we must set the baseline classifier used by all
the ensembles, which needs to be a weak learner [40]. We use
C4.5 decision tree generating algorithm [43] considering that the
previous approaches were proposed in combination with C4.5 [19]
(carrying out a fair comparison) and its usage in the imbalance
framework is common [5,52,19]. Moreover, it has been appointed as
one of the top-10 Data Mining algorithms [56] and it is considered
as a standard to build accurate ensembles [34,45,40].

Regarding ensemble learning algorithms, we compare our
approach with those that were proved to be the best performers
(explained in Section 2.3). Table 2 summarizes their operating
procedure grouped by families and shows the abbreviations that
we will use through the experimental study.

In our experiments, all the methods must have the same
opportunities to achieve their best performance, but constraining
the fine-tuning of their parameters depending on the data-set. In
classifier ensembles, usually the higher the number of classifiers in
the ensemble, the better the assessed performance is; however,
this need not occur in all methods (i.e., more non-diverse classi-
fiers could worsen the results or produce over-fitting problems). In
[19], it was shown that Boosting-based ensembles work better



Table 2
State-of-the-art ensembles considered.

Abbr. Method Short description

RUS RUSBoost [47] AdaBoost.M2 with random undersampling
SBO SMOTEBoost [12] AdaBoost.M2 with SMOTE
UB UnderBagging [4] Bagging with undersampling of the majority class
SBAB SMOTEBagging [51] Bagging where each bag's SMOTE quantity varies
EASY EasyEnsemble [37] Bagging with undersampling of the majority class and AdaBoost

Table 3
Parameters for C4.5 and the preprocessing algorithms.

Algorithm Parameters

C4.5 Prune¼True, Confidence level¼0.25
Minimum number of item-sets per leaf¼2
Confidence¼Laplace Smoothing [42]

SMOTE Number of Neighbors k¼5, Quantity¼Balance,
Distance¼Heterogeneous Value Difference Metric (HVDM)

EUS Population Size¼50, Number of Evaluations¼10 000,
Probability of inclusion HUX¼0.25,
Evaluation Measure¼GM, Selection Type¼Majority,
Distance Function¼Euclidean, Balancing¼True, P¼0.2

Table 4
Summary description of the imbalanced data-sets.

No. Data-sets #Ex. #Atts. (%min;%maj) IR

1 Glass04vs5 92 9 (9.78, 90.22) 9.22
2 Ecoli0346vs5 205 7 (9.76, 90.24) 9.25
3 Ecoli0347vs56 257 7 (9.73, 90.27) 9.28
4 Yeast05679vs4 528 8 (9.66, 90.34) 9.35
5 Ecoli067vs5 220 6 (9.09, 90.91) 10.00
6 Vowel0 988 13 (9.01, 90.99) 10.10
7 Glass016vs2 192 9 (8.89, 91.11) 10.29
8 Glass2 214 9 (8.78, 91.22) 10.39
9 Ecoli 336 7 (8.63, 91.37) 10.59

10 Led7digit 443 7 (8.35, 91.65) 10.97
11 Glass06vs5 108 9 (8.33, 91.67) 11.00
12 Ecoli01vs5 240 6 (8.33, 91.67) 11.00
13 Glass0146vs2 205 9 (8.29, 91.71) 11.06
14 Ecoli0147vs56 332 6 (7.53, 92.47) 12.28
15 Cleveland0vs4 177 13 (7.34, 92.66) 12.62
16 Ecoli0146vs5 280 6 (7.14, 92.86) 13.00
17 Ecoli4 336 7 (6.74, 93.26) 13.84
18 Yeast1vs7 459 8 (6.72, 93.28) 13.87
19 Shuttle0vs4 1829 9 (6.72, 93.28) 13.87
20 Glass4 214 9 (6.07, 93.93) 15.47
21 Page-blocks 472 10 (5.93, 94.07) 15.85
22 Abalone9vs18 731 8 (5.65, 94.25) 16.68
23 Glass016vs5 184 9 (4.89, 95.11) 19.44
24 Shuttle2vs4 129 9 (4.65, 95.35) 20.5
25 Yeast1458vs7 693 8 (4.33, 95.67) 22.10
26 Glass5 214 9 (4.20, 95.80) 22.81
27 Yeast2vs8 482 8 (4.15, 95.85) 23.10
28 Yeast4 1484 8 (3.43, 96.57) 28.41
29 Yeast1289vs7 947 8 (3.17, 96.83) 30.56
30 Yeast5 1484 8 (2.96, 97.04) 32.78
31 Ecoli0137vs26 281 7 (2.49, 97.51) 39.15
32 Yeast6 1484 8 (2.49, 97.51) 39.15
33 Abalone19 4174 8 (0.77, 99.23) 128.87
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with only 10 classifiers, whereas Bagging-based ones need 40 to
reach their maximum potential. For this reason, aiming to find the
best performer algorithm, we consider 10 classifiers for the former
ensembles and 40 for the latter and hybrid ones. Table 3 shows the
configuration parameters used to run C4.5 and the preprocessing
algorithms (SMOTE and EUS). All experiments have been devel-
oped under KEEL software [1,2]. We must stress that the imple-
mentations of the algorithms in Table 2 are publicly available in
KEEL source code, whereas the proposed method is available from
the authors upon request.

4.2. Data-sets

We have considered the 33 most imbalanced binary data-sets
from KEEL data-set repository [1], which are publicly available on
the corresponding web-page.2 In order to obtain these two-class
imbalanced problems, original multi-class data-sets were modified
in such a way that the union of one or more classes was labeled as
the positive class and the same was done to obtain the negative
class. Table 4 summarizes the properties of the data-sets: for each
data-set, the number of examples (#Ex.), number of attributes
(#Atts.), the percentage of examples of each class and the IR. This
table is ordered according to the IR (last column).

We have obtained AUC metric estimates using a 5-fold strati-
fied cross-validation. This process was carried out three times with
different seeds. The data partitions used in this paper can be found
in KEEL-dataset repository [1], so that any interested researcher
can reproduce the experimental study.

4.3. Statistical tests

Statistical analysis needs to be carried out in order to compare
the different algorithms appropriately. We use non-parametric tests
as suggested in the literature [13,22,21]. The parametric statistical
analysis loses its credibility because the initial conditions guaran-
teeing its reliability may not be satisfied [13]. Any interested reader
can find additional information on the Website http://sci2s.ugr.es/
sicidm/. In this paper, we consider two different tests to perform
two types of comparisons:
2 http://www.keel.es/dataset.php.
�
 Pairwise comparisons. We use Wilcoxon paired signed-rank test
[54] to find out whether significant differences exist between a
pair of algorithms.
�
 Multiple comparisons. We first use Friedman aligned-ranks test
[26] to detect statistical differences among a set of algorithms.
Then, if significant differences are found, we check if the control
algorithm (the best one) is significantly better than the others
(that is, 1�n comparison) using Holm post hoc test [27].

Moreover, we show the p-value for each comparison, which
represents the lowest level of significance of a hypothesis resulting
in a rejection. In such a manner, we are able to know how different
two algorithms are.

As a complementary visualization tool, we consider the average
aligned-ranks of each algorithm (used in the Friedman aligned-
ranks test) in order to compare at first glance the behavior of each
algorithm with respect to the others. These rankings are obtained
computing the difference between the performance obtained by
the algorithm and the mean performance of all algorithms in the
corresponding data-set. These differences are ranked from 1 to k � n
(being k the number of data-sets and n the number of methods),
assigning the corresponding rank to the method from which the

http://sci2s.ugr.es/sicidm/
http://sci2s.ugr.es/sicidm/
http://www.keel.es/dataset.php
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difference has been computed. Hence, the lower the rank is, the
better the method is. At last, the average ranking of each algorithm
in all data-sets can be computed to show their global performance.
Fig. 2. Average aligned-ranks of EUSBoost ensembles.
5. Empirical comparison: EUSBoost vs. state-of-the-art

In this section, we will compare our proposal to address the
class imbalance problem using ensembles with the best perfor-
mers state-of-the-art techniques. First in Section 5.1, we will
investigate whether the modification of the fitness function to
promote diversity (Section 3.3) is worth it or not, and we will
check which of both modifications proposed works better. Then,
we will compare the best proposal against the previously pre-
sented state-of-the-art methods in Section 5.2.

Before going through both analyses, we show the test AUC
results of all the methods in each data-set in Table 5. In this table,
and in the following analysis, EUSB corresponds to EUSBoost
without diversity promotion, whereas EUSBQ and EUSBH stand
for EUSBoost with the diversity mechanism with Q-statistic and
the Hamming distance, respectively. Moreover, we append a “1” or
a “4” after each abbreviation whenever it uses 10 or 40 classifiers,
respectively.

5.1. Does promoting diversity help?

In this subsection, we analyze whether the factor accounting
for diversity helps improving the performance of the ensemble or
not. In addition, we analyze which of the proposed methods is the
one with the best behavior.
Table 5
Detailed test results table of the tested algorithms. The best result in each data-set is s

Data-set IR Boosting-based Baggin

RUS1 SBO1 UB4

Glass04vs5 9.22 0.9941 0.9858 0.9941
Ecoli0346vs5 9.25 0.9086 0.9005 0.9065
Ecoli0347vs56 9.28 0.8928 0.8784 0.8803
Yeast05679vs4 9.35 0.8032 0.7867 0.7949
Ecoli067vs5 10.00 0.8792 0.8658 0.8858
Vowel0 10.10 0.9509 0.9887 0.9470
Glass016vs2 10.29 0.6179 0.5820 0.7331
Glass2 10.39 0.6877 0.7501 0.7753
Ecoli0147vs2356 10.59 0.8628 0.8883 0.8472
Led7Digit02456789vs1 10.97 0.8763 0.7037 0.8880
Ecoli01vs5 11.00 0.8705 0.8727 0.8265
Glass06vs5 11.00 0.9916 0.9732 0.9139
Glass0146vs2 11.06 0.7197 0.6780 0.7707
Ecoli0147vs56 12.28 0.8642 0.8716 0.8565
Cleveland0vs4 12.62 0.8238 0.8073 0.7753
Ecoli0146vs5 13.00 0.9295 0.9045 0.8865
Ecoli4 13.84 0.9309 0.9107 0.8899
Shuttlec0vsc4 13.87 1.0000 1.0000 1.0000
Yeastbc1vsc7 13.87 0.7552 0.7210 0.7580
Glass4 15.47 0.8806 0.9192 0.8728
Pageblocks13vs4 15.85 0.9684 0.9877 0.9790
Abalone918 16.68 0.7276 0.7339 0.7302
Glass016vs5 19.44 0.9743 0.9181 0.9429
Shuttlec2vsc4 20.50 1.0000 1.0000 1.0000
Yeast1458vs7 22.10 0.6343 0.5637 0.6135
Glass5 22.81 0.9837 0.9789 0.9488
Yeast2vs8 23.10 0.7995 0.7750 0.7651
Yeast4 28.41 0.8377 0.7150 0.8478
Yeast1289vs7 30.56 0.6907 0.6448 0.7407
Yeast5 32.78 0.9492 0.9104 0.9546
Ecoli0137vs26 39.15 0.8254 0.8360 0.7451
Yeast6 39.15 0.8555 0.7966 0.8678
Abalone19 128.87 0.6629 0.5252 0.7081

Average 0.8530 0.8295 0.8499
In order to compare the three proposals, we use the Friedman
aligned-ranks test, which allow us to confront all the methods by
a unique test. Before carrying out the test, we show the average
aligned-ranks in Fig. 2.

We observe that the average aligned-ranks of EUSB1Q are lower
than the ranks of the others, which means that it is the best
performer method. In this case, the promotion of the diversity
seems to work as expected; however, the Hamming distance does
not show the same behavior, performing similar to the original
EUSBoost. The differences in terms of average aligned-ranks are
contrasted by the corresponding Friedman aligned-ranks test, which
outputs a p-value of 0.000003, and therefore the null hypothesis of
equivalence is rejected. Thereby, we proceed with the Holm post hoc
test to compare the control method ðEUSB1Q Þ with the other two
methods (the results are shown in Table 6).

The Holm test verifies that EUSB1Q is significantly better than
EUSB1 and EUSB1H , which is supported by the low p-values obtained.
Hence, we continue in the following subsection with EUSBoost using
the diversity mechanism considering the Q-statistic. We can conclude
tressed in bold-face.

g-based Hybrid EUSBoost-based

SBAG4 EASY EUB1 EUB1Q EUB1H

0.9817 0.9941 0.9941 0.9941 0.9941
0.9275 0.8678 0.8955 0.9047 0.9065
0.8738 0.8659 0.8791 0.8902 0.8649
0.8144 0.7702 0.7964 0.8067 0.7901
0.8450 0.8567 0.8842 0.8825 0.8900
0.9876 0.9449 0.9644 0.9537 0.9616
0.6700 0.6595 0.6807 0.7488 0.7267
0.8045 0.7247 0.7068 0.7138 0.6949
0.8895 0.8622 0.8943 0.8902 0.8749
0.8830 0.8734 0.8573 0.8552 0.8753
0.8523 0.8910 0.8788 0.8932 0.9235
0.9800 0.8470 0.9932 0.9950 0.9915
0.7501 0.7533 0.7603 0.7736 0.7589
0.8407 0.8411 0.8546 0.8858 0.8924
0.7929 0.8022 0.8164 0.8280 0.7842
0.9147 0.8282 0.8891 0.8923 0.8872
0.9232 0.8782 0.8751 0.9273 0.9017
0.9998 1.0000 1.0000 1.0000 1.0000
0.6896 0.7167 0.7669 0.7651 0.7771
0.8862 0.8813 0.8700 0.9073 0.9042
0.9884 0.9711 0.9869 0.9906 0.9810
0.7294 0.7223 0.7107 0.7424 0.6993
0.8800 0.9524 0.9876 0.9886 0.9681
1.0000 0.9905 1.0000 1.0000 1.0000
0.6243 0.5800 0.6200 0.6282 0.5950
0.8915 0.9520 0.9870 0.9878 0.9878
0.8019 0.7320 0.7727 0.7614 0.7637
0.7730 0.8317 0.8255 0.8311 0.8489
0.6432 0.6798 0.7491 0.7132 0.7144
0.9661 0.9502 0.9539 0.9382 0.9554
0.8306 0.7281 0.8099 0.8230 0.8039
0.8387 0.8573 0.8601 0.8661 0.8623
0.5602 0.6980 0.6730 0.6878 0.6663

0.8434 0.8334 0.8544 0.8626 0.8559



Table 6
Holm test results for the comparison among EUSBoost-based methods.

Control method: EUSBQ (38.20)

i Algorithm (Rank) Z p-Value Holm Hypothesis ðα¼ 0:05Þ

2 EUSB1 (56.70) 2.616295 0.008889 0.05 Rejected for EUSBQ

1 EUSB1H (55.11) 2.391307 0.016789 0.025 Rejected for EUSBQ

Fig. 3. Average aligned-ranks of the comparison between EUSBoost and the state-
of-the-art ensemble methods.

Table 7
Holm test results for the comparison between EUSB1Q and the state-of-the-art
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from these tests that promoting diversity can enhance the results
of the ensemble when the appropriate diversity measure is used,
otherwise, the methodology might not be so effective.
ensemble methods.

Control method: EUSBQ (64.11)

i Algorithm (Rank) Z p-Value Holm Hypothesis ðα¼ 0:05Þ

5 EASY (132.26) 4.83113 0.00000 0.01 Rejected for EUSBQ

4 SBO1 (117.64) 3.79466 0.00015 0.0125 Rejected for EUSBQ

3 SBAG4 (102.30) 2.70771 0.00678 0.01667 Rejected for EUSBQ

2 UB4 (98.53) 2.44027 0.01468 0.025 Rejected for EUSBQ

1 RUS1 (82.17) 1.28028 0.20045 0.05 Not rejected

Table 8
Wilcoxon tests to compare our proposal EUSB1Q with RUS1. Rþ corresponds to
EUSB1Q and R− to RUS1.

Comparison Rþ R− Hypothesis ðα¼ 0:05Þ p-Value

EUSB1Q vs. RUS1 399.0 162.0 Rejected for EUSB1Q 0.03327

Fig. 4. Scatterplot for the comparison of the results of EUSB1Q and the other
methods.
5.2. EUSBoost vs. state-of-the-art

Hereafter, once we have shown and selected our best proposal,
we analyze whether the proposed methodology provides more
accurate ensembles than previous approaches, and more specifically,
if the usage of a supervised approach (EUS) is able to outperform
more random approaches based on random undersampling. To do so,
we start showing the average aligned-ranks computed for Friedman
aligned-ranks test in Fig. 3.

Looking at Fig. 3, we can observe that EUSB1Q excels, followed
by the combinations of random undersampling with Boosting and
Bagging, respectively. The worst performers are those approaches
using SMOTE, which are not so accurate in highly imbalanced
data-sets as well as the hybrid-based ensemble (EASY). In spite of
the ranks, we must contrast these statements with the proper
statistical test. The Friedman aligned-ranks test outputs a p-value
of 0.000028, which indicates that the hypothesis of equivalence
can be rejected with high confidence (significant differences exist).
Hence, we continue with the Holm post hoc test (Table 7).

The Holm test brings out the good performance of EUSB1Q with
highly imbalanced data-sets. EUSB1Q is able to statistically out-
perform all except RUS1 method, despite the low p-value obtained.
For this reason, we get them into a pairwise comparison using the
Wilcoxon test; in such a way, we can obtain a better insight of
their performance when compared one versus the other (Table 8).
Following its result, we can state that EU1BQ outstands in this
framework; the test rejects the hypothesis of equivalence with a
low p-value, and hence, being the ranks in favor of EUSB1Q , its
superiority is demonstrated. Therefore, the application of both the
guided undersampling process (EUS) instead of random under-
sampling and the promotion of the diversity allows EUSBoost to
statistically outperform the previous approaches in the framework
of highly imbalanced data-sets.

In order to graphically show the advantage of EUSB1Q with
respect to the others, we present in Fig. 4 a scatter plot where each
point compares EUSB1Q with one of the other algorithms in a
data-set. The x-axis position of the point is the AUC measure of
EUSB1Q , whereas the y-axis position is that of the other algorithm.
Therefore, points that appear below the y¼x line correspond to
data-sets where EUSB1Q performs better.

In Fig. 4, we can observe that when EUSB1Q performs better,
it is usually much better than the other methods (besides, most
of the points lie under the y¼x line), whereas when it performs
worse, its loss is not large. Moreover, the greatest advantage seems
to occur when the other algorithm in the comparison obtains a low
AUC performance, which usually happens when the IR is higher.
In these cases, focusing on obtaining more accurate base classifiers
yet diverse makes a difference with respect to random techniques.
6. Kappa-AUC error diagrams: analyzing the behavior of
EUSBoost

Kappa-error diagrams were suggested by Margineantu and
Dietterich [38] to visualize the relation existing between the
accuracy and diversity of the base classifiers of an ensembles.
The error term is estimated using the accuracy rate, but dealing
with imbalanced data-sets, accuracy is no longer meaningful and
neither is the error ð1−AccÞ. For this reason, we adapt kappa-error
diagrams to the imbalance framework, which has not been
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previously done, neither previous approaches have been analyzed
with these diagrams [12,47,51].

These plots have been employed to analyze the behavior of
different ensemble approaches (which assume balanced data distribu-
tions) to explain the differences in their performance [34,39,44]. A
kappa-error diagram is a scatter plot where a point is plotted for each
pair of base classifiers in the ensemble. The relation is studied in a
pairwise manner since pairwise diversity measures are clear and
intuitive, whereas their extension is not easy to establish [33,35].
An ensemble is depicted as a cloud of points in the scatter plot.
The x-axis of the plot represents the kappa ðκÞ pairwise diversity
measure, whereas the y-axis represents the mean error of both
classifiers. In a similar way to that of the Q-statistic, κ can be easily
computed for two classes; having two binary vectors ðVi;VjÞ
representing the outputs of the classifiers (0 or 1) for each
instance, κ is computed as follows:

κi;j ¼
2ðN00N11−N01N10Þ

ðN00 þ N01ÞðN00 þ N10Þ þ ðN01 þ N11ÞðN10 þ N11Þ
ð10Þ

κ ranges from −1 to 1. Low values of κ mean high disagreement
(diversity). Classifiers outputting the same class labels produce
κ¼ 1, whereas statistically independent classifiers obtain κ¼ 0.
Negative values accounts for negative correlation, which can be
even better than independence for ensembles [36].

In other respects, the estimation of the pairwise error is
computed as the mean error of both classifiers. However, dealing
with imbalanced data-sets we have considered AUC measure. In
order to maintain the similarity with kappa-error diagrams we
have designed kappa-AUC error diagrams, where the AUC error
is computed by 1−AUC, in such a way that we do not change the
meaning of the diagrams, but only the measure used. Hence, the
pairwise AUC error is computed as

AUC errorij ¼ 1−
AUCi þ AUCj

2
ð11Þ

where AUCi and AUCj are the individual AUC values of the classifiers.
Ideally, points in the kappa-error diagram should reside in the
bottom left, i.e., accurate (low error) and also diverse (low kappa
value) pairs of classifiers. However, very accurate classifiers cannot be
very diverse [31].

We have obtained the values for kappa-AUC error diagrams from
the three runs of 5-fold cross-validation used in the experiments;
hence, each ensemble cloud consists of 675 points (5 executions
repeated 3 times and 45 pairs of classifiers in each one). Hereafter, we
compare our proposed method EUSB1Q against RUSBoost to
−0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Kappa

A
U

C
 e

rr
or

glass2

Fig. 5. Kappa-AUC error diagrams f
understand its better behavior. Fig. 5 shows the kappa-AUC error
diagrams for two of the 33 data-sets used in the experimental analysis.

In these specific data-sets, we can observe that EUSBoost is
achieving what we have asked for; in both cases, the mean AUC
error of the classifiers has decreased, while the diversity has been
slightly reduced (the gravity centers of the clouds can be used as
a global view). Nevertheless, only showing two diagrams might
not be representative enough to reach meaningful conclusions.
For this reason, we have also considered kappa-error movement
and relative movement diagrams [39,44], once again using the
AUC error, which serve as a summarization of all kappa-AUC error
diagrams, since all the data-sets are presented in a unique plot.

The kappa-AUC error movement diagram in Fig. 6(a) is
obtained by plotting the centers of all data-sets for each one of
both methods; then, an arrow is depicted to connect the center
points of both methods in the same data-set (in this case, from
RUSB1 to EUSB1Q ). This way, the behavior of the new ensemble
method with respect to the other can be analyzed, showing how
the base classifiers have been displaced in the diagram. An arrow
going to the left indicates that the new method creates more
diverse base classifiers, in the same manner as an arrow going
down means that the AUC error decreases. The number near the
head of each arrow refers to the data-set which produces it, in the
numbering shown in Table 4.

In addition, kappa-AUC error relative movement diagram
(Fig. 6(b)) depicts the same arrows as Fig. 6(a), but in this case,
the initial points of the arrows have been moved to the origin, and
the head of the arrows correspond to the difference between the
centers of kappa-AUC error diagrams. This way, even though the
arrows have the same meaning, its analysis is easier, since the results
in all data-sets become comparable. The diagram shows that, in the
majority of the data-sets, EUSBoost obtains an advantage on AUC in
exchange for losing some diversity (bottom right direction), but in
some cases, diversity is also boosted (bottom left direction). Hence,
EUS is doing the work as expected, although there are few exceptions
where neither diversity nor AUC have been improved (the undesired
top right direction). Nonetheless, as we have shown in Section 5,
EUSBoost is able to statistically outperform RUSBoost.
7. Concluding remarks

We have presented a novel approach to enhance ensembles of
classifiers, mainly those based on Boosting techniques, when dealing
with highly imbalanced data-sets. AUC improvement comes from the
application of EUS instead of random undersampling. In such a way,
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RUSBoost (the origin of the arrows) and EUSB1Q (the head of the arrows):
(a) Kappa-AUC error movement diagram; and (b) Kappa-AUC error relative move-
ment diagram.
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we can obtain more accurate base classifiers than those obtained by
RUSBoost. Moreover, the individual AUC gain is not sufficient itself,
since diversity plays an important role in classifier ensembles. For this
reason, we have proposed a mechanism embedded in EUS to promote
diversity. We have shown that this mechanism using the appropriate
diversity measure (e.g., the Q-statistic) is able to outperform the base
EUSBoost (without enhancing diversity) and the state-of-the-art
ensemble methods specifically designed for the class imbalance
problem. For this reason, in future works we aim to test this approach
with different diversity measures, including non-pairwise ones.

Finally, we have adapted kappa-error diagrams to the imbalance
framework changing the computation of the error. This fact was not
addressed yet, even though works on ensembles generally use these
diagrams. In such a way, we have been able to analyze the advant-
ages and disadvantages of EUSBoost in comparison to RUSBoost.
The diagrams have shown, in accordance with previous studies [31],
that the importance of the individual accuracy in ensembles might be
greater than the influence of diversity, since EUSBoost has been able to
outperform RUSBoost mainly exchanging not much diversity for
accuracy, assessing more accurate ensembles.
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