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Abstract In the classification framework there are prob-

lems in which the number of examples per class is not

equitably distributed, formerly known as imbalanced data

sets. This situation is a handicap when trying to identify the

minority classes, as the learning algorithms are not usually

adapted to such characteristics. An usual approach to deal

with the problem of imbalanced data sets is the use of a

preprocessing step. In this paper we analyze the usefulness

of the data complexity measures in order to evaluate the

behavior of undersampling and oversampling methods.

Two classical learning methods, C4.5 and PART, are

considered over a wide range of imbalanced data sets built

from real data. Specifically, oversampling techniques and

an evolutionary undersampling one have been selected for

the study. We extract behavior patterns from the results in

the data complexity space defined by the measures, coding

them as intervals. Then, we derive rules from the intervals

that describe both good or bad behaviors of C4.5 and

PART for the different preprocessing approaches, thus

obtaining a complete characterization of the data sets and

the differences between the oversampling and undersam-

pling results.

Keywords Classification � Evolutionary algorithms �
Data complexity � Imbalanced data sets � Oversampling �
Undersampling � C4.5 � PART

1 Introduction

The problem of imbalanced classes is one of the problems

that emerged when Machine Learning (ML) reached

maturity, being a widely used technology in the world of

business, industry, and scientific research. Its importance

grew as researchers realized that the analyzed data sets

contained many more instances or examples from a class or

classes with respect to the remaining ones (Chawla et al.

2004), and the obtained classification models performed

below the desired threshold in the minority classes. Cur-

rently it is considered as a challenge by the Data Mining

Community (Yang and Wu 2006).

The main handicap of this type of problem is that

standard learning algorithms minimize a global measure of

error, and this supposes a bias towards the majority class

(Sun et al. 2009). Hence, to tackle this issue, the use of

preprocessing techniques is a good solution in order to

balance the training set before the learning process (Batista

et al. 2004; Estabrooks et al. 2004; He and Garcia 2009).

On the other hand, it is well known that the prediction

capabilities of the classifiers are also dependent on the

problem’s characteristics as well. An emergent field, that

uses a set of complexity measures applied to the problem to

describe its difficulty, has recently arisen. These measures

try to capture different aspects or sources of complexity

which are considered complicated to the classification task

(Basu and Ho 2006). Studies of data complexity metrics

applied to particular classification’s algorithms can be

found (Basu and Ho 2006; Bernadó-Mansilla and Ho 2005;
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Baumgartner and Somorjai 2006; Sánchez et al. 2007;

Garcı́a et al. 2009c).

Our objective is to show that the data complexity

measures are adequate to analyze the effect of the pre-

processing in imbalanced data for classification. We will

consider two main preprocessing approaches: oversam-

pling and undersampling of the data. We will identify the

regions in the data complexity space in which the prepro-

cessing works well, and the bad performance regions as

well. In a related approach (Garcı́a et al. 2008) the rela-

tionship between the Imbalance Ratio (IR) (Orriols-Puig

and Bernadó-Mansilla 2008) and the overlapping of the

class labels with respect to the performance of several

learning methods was studied. However, no preprocessing

approach was analyzed in this study.

In order to analyze the oversampling and undersampling

by means of the data complexity measures, we will use the

‘‘Synthetic Minority Over-sampling Technique’’ (SMOTE)

and its variant with the Wilson’s Edited Nearest Neighbor

Rule (ENN) as representative oversampling preprocesing

methods. SMOTE is a classical oversampling method,

whereas SMOTE-ENN was shown in Batista et al. (2004)

to achieve a very good behavior with the C4.5 decision

tree. The Evolutionary Undersampling with CHC (EUS-

CHC) method proposed by Garcı́a and Herrera (2009a) will

be included as a representative evolutionary undersampling

approach. It has been proved to be very competitive with

respect to SMOTE and SMOTE-ENN, and to be the best

among other representative techniques from the family of

undersampling as shown in their study.

The effect of these three preprocessing techniques will

be analyzed with respect to two well-known learning

methods. The first one is the C4.5 decision tree (Quinlan

1993), which has been used in many recent analyses of

imbalanced data (Su and Hsiao 2007; Garcı́a et al. 2009b;

Drown et al. 2009). The second one is the PART algorithm

(Frank and Witten 1998) also used by Garcı́a et al. (2009b)

in the imbalanced data framework.

Following the methodology proposed by Luengo and

Herrera (2010), three of the data complexity measures

proposed by Ho and Basu (2002) are informative in order

to create intervals of their values over the data sets in

which C4.5 and PART perform well or bad on average

after applying each preprocessing technique. We will use a

large collection of data sets with different degrees of

imbalance from the UCI repository (Asuncion and New-

man 2007) in order to sample the data complexity space.

Then we will formulate rules for such intervals, comparing

the support (number of data sets included in the interval)

and average learning method’s performance for the three

preprocessing techniques. Therefore, we can evaluate the

performance of C4.5 and PART when using the oversam-

pling and undersampling approaches by means of

observing differences in the covered data sets by the

obtained rules. These differences will provide information

about the behavior of the three considered preprocessing

approaches for C4.5 and PART.

This paper is organized as follows: first, Sect. 2 pre-

sents the problem of imbalanced data sets, describing its

features, the preprocessing methods used, and the metric

we have employed in this context. Next, Sect. 3 intro-

duces the data complexity metrics we have used along

with recent studies in the topic. In Sect. 4 the background

on the use of data complexity for imbalanced data and the

experimental framework used in this study are presented.

In Sect. 5 the analyses of the methodology used and the

experimental results are performed. Section 6 summarizes

and concludes the work. Appendix 1 contains the figures

with the intervals extracted in the study. Appendix 2

depicts the tables with the average results obtained for

each data set in the study.

2 Imbalanced data sets in classification

In this section, the problem of imbalanced data sets in

Sect. 2.1 is introduced first. The SMOTE and SMOTE-

ENN are described in Sect. 2.2. The EUSCHC method is

described in Sect. 2.3. Finally, Sect. 2.4 presents the

evaluation metrics for this kind of classification problems.

2.1 The problem of imbalanced data sets

In the classification problem field, the scenario of imbal-

anced data sets appears when the number of examples that

represent the different classes are very different among

them (Chawla et al. 2004). We focus on the binary-class

imbalanced data sets, where there is only one positive

(minority) and one negative (majority) class. In this work

we consider the IR (Orriols-Puig and Bernadó-Mansilla

2008), defined as the number of negative class instances

divided by the number of positive class instances. The IR

can be used to organize the different data sets according to

their degree of imbalance.

Most of the learning algorithms aim to obtain a model

with a high prediction accuracy and a good generalization

capability. However, this inductive bias towards such a

model supposes a serious challenge with the classification

of imbalanced data (Sun et al. 2009). First, if the search

process is guided by the standard accuracy rate, it benefits

the covering of the majority examples; second, classifica-

tion rules that predict the positive class are often highly

specialized and thus their coverage is very low; hence they

are discarded in favor of more general rules, i.e., those that

predict the negative class. Furthermore, it is not easy to

distinguish between noise examples and minority class
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examples and they can be completely ignored by the

classifier.

In recent years regarding real world domains the

importance of the imbalance learning problem grows since

it is a recurring problem in many applications, such as

remote-sensing (Williams et al. 2009), pollution detection

(Lu and Wang 2008) and especially medical diagnosis

(Kilic et al. 2007; Mazurowki et al. 2008; Celebi et al.

2007; Peng and King 2008).

For this reason, a large number of approaches have been

previously proposed to deal with the class imbalance

problem. These approaches can be categorized into two

groups: the internal approaches that create new algorithms

or modify existing ones to take the class imbalance prob-

lem into consideration (Barandela et al. 2003; Diamantini

an Potena 2009) and external approaches that preprocess

the data in order to diminish the effect cause by their class

imbalance (Fernández et al. 2008; Drown et al. 2009; Tang

et al. 2009). Furthermore, cost-sensitive learning solutions

incorporating both the data and algorithmic level approa-

ches assume higher misclassification costs with samples in

the minority class and seek to minimize the high cost errors

(Domingos 1999; Sun et al. 2007; Zhou and Liu 2006).

The great advantage of the external approaches is that

they are more versatile, since their use is independent of

the classifier selected. Furthermore, we may preprocess all

data sets before-hand in order to use them to train different

classifiers. In this manner, the computation time needed to

prepare the data is only used once.

2.2 Oversampling approaches: the SMOTE

and SMOTE-ENN algorithms

As mentioned before, applying a preprocessing step in

order to balance the class distribution is a positive solution

to the imbalance data set problem (Batista et al. 2004).

Specifically, in this work we have chosen an over-sampling

method which is a reference in this area: the SMOTE

algorithm (Chawla et al. 2002), and a variant called

SMOTE-ENN (Batista et al. 2004).

In SMOTE the minority class is over-sampled by taking

each minority class sample and introducing synthetic

examples along the line segments joining any/all of the k

minority class nearest neighbors. Depending upon the

amount of oversampling required, neighbors from the k-

nearest neighbors are randomly chosen. This process is

illustrated in Fig. 1, where xi is the selected point, xi1 to xi4

are some selected nearest neighbors and r1 to r4 the synthetic

data points created by the randomized interpolation. The

implementation employed in this work uses the euclidean

distance, and balances both classes to the 50% distribution.

Synthetic samples are generated in the following way:

take the difference between the feature vector (sample)

under consideration and its nearest neighbor. Multiply this

difference by a random number between 0 and 1, and add it

to the feature vector under consideration. This causes the

selection of a random point along the line segment between

two specific features. This approach effectively forces the

decision region of the minority class to become more

general. An example is detailed in Fig. 2.

In short, its main idea is to form new minority class

examples by interpolating between several minority class

examples that lie together. Thus, the overfitting problem is

avoided and causes the decision boundaries for the minority

class to spread further into the majority class space.

On the other hand, class clusters could not be well

defined since some minority class examples might be

invading the majority class space. This situation can occur

when interpolating minority class examples can expand the

minority class clusters, introducing artificial minority class

examples too deeply in the majority class space. Inducing a

classifier under such a situation can lead to overfitting.

Batista et al. proposed to apply ENN to the over-sampled

training set as a data cleaning method. ENN removes any

example whose class label differs from the class of at least

two of its three nearest neighbors. Thus, any example that is

misclassified by its three nearest neighbors is removed from

the training set. We refer to this technique as SMOTE-ENN.

2.3 Undersampling approach: the EUSCHC algorithm

Instead of creating new examples of the minority class, the

undersampling approach selects a subset of the examples

which represents the initial problem better, and avoids the

r4

r2
r1

r3

xi3

xi1

xi2

xi4

x i

r

Fig. 1 An illustration on how to create the synthetic data points in the

SMOTE algorithm

Fig. 2 Example of the SMOTE application
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bias to the minority class by removing redundant examples.

This approach has also the advantage of creating a reduced

set of examples to the induction process, making it less

costly.

The search for the optimal subset of examples which

affect the learning method’s performance the less can be

considered as a search problem in which evolutionary

algorithms can be applied. In this work the EUSCHC

technique (Garcı́a and Herrera 2009a) is considered.

EUSCHC is an evolutionary undersampling technique,

which removes redundant noisy and redundant examples.

EUSCHC uses the well-known CHC evolutionary

algorithm (Eshelman 1991) as a base for the selection of

the subset of the examples, considering a binary codifica-

tion for the subset membership. EUSCHC can also use any

performance measure as fitness, weighting positively the

correctly classified examples which are outside the selected

subset.

2.4 Evaluation in imbalanced domains

The measures of the quality of classification are built from

a confusion matrix (shown in Table 1) which records

correctly and incorrectly recognized examples for each

class. The most used empirical measure, accuracy (1), does

not distinguish between the number of correct labels of

different classes, which in the framework of imbalanced

problems may lead to erroneous conclusions. As a classical

example, if the ratio of imbalance presented in the data is

10:100, i.e., there is ten positive instance versus ninety

negatives, then a classifier that obtains an accuracy rate of

90% is not truly accurate if it does not correctly cover the

single minority class instance

Acc ¼ TPþ TN

TPþ FPþ TNþ FN
ð1Þ

One appropriate metric that could be used to measure

the performance of classification over imbalanced data sets

is the Receiver Operating Characteristic (ROC) graphics

(Bradley 1997). In these graphics the tradeoff between the

benefits and costs can be visualized. They show that any

classifier cannot increase the number of true positives

without also increasing the false positives. The Area Under

the ROC Curve (AUC) (Huang and Ling 2005)

corresponds to the probability of correctly identifying

which of the two stimuli is noise and which is signal plus

noise. AUC provides a single-number summary for the

performance of learning algorithms.

The way to build the ROC space is to plot on a two-

dimensional chart the true positive rate (Y axis) against the

false positive rate (X axis) as shown in Fig. 3. The points

(0, 0) and (1, 1) are trivial classifiers in which the output

class is always predicted as negative and positive, respec-

tively, while the point (0, 1) represents perfect classifica-

tion. To compute the AUC we just need to obtain the area

of the graphic as

AUC ¼ 1þ TPrate � FPrate

2
; ð2Þ

where TPrate and FPrate are the percentage of correctly and

wrongly classified cases belonging to the positive class,

respectively.

3 Data complexity

In this section we first present a short review on recent

studies in data complexity in Sect. 3.1. The data com-

plexity measures considered in this paper are described in

Sect. 3.2.

3.1 Recent studies on data complexity measures

One direct approach to deal with data complexity is to

obtain indicators about it by means of some measures. In

particular, Ho and Basu (2002) proposed some complexity

measures for binary classification problems, gathering

metrics of three types: overlaps in feature values from

different classes; separability of classes and measures of

geometry, topology, and density of manifolds. Shortly

after, Singh (2003) offered a review of data complexity

measures of different nature [from Bayes error-based to

nonparametric methods of Ho and Basu (2002)] and pro-

posed two new ones.

Table 1 Confusion matrix for a two-class problem

Positive prediction Negative prediction

Positive class True positive (TP) False negative (FN)

Negative class False positive (FP) True negative (TN)
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80%

100%

0% 20% 40% 60% 80% 100%
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False Positive Rate
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Fig. 3 Example of a ROC plot. Two classifiers are represented: the

solid line is a good performing classifier whereas the dashed line
represents a random classifier
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These two studies, especially (Ho and Basu 2002), have

been widely used afterwards. In the field of classification,

we can find recent works using the measures of Ho and

Basu. Bernadó-Mansilla and Ho (2005) investigated the

domain of competence of XCS by means of a methodology

that characterizes the complexity of a classification prob-

lem by a set of geometrical descriptors. Li et al. (2005)

analyzed some omnivariate decision trees using the mea-

sure of complexity based in data density. Baumgartner and

Somorjai (2006) defined specific measures for regularized

linear classifiers. Sánchez et al. (2007) analyzed the effect

of the data complexity in the nearest neighbors classifier,

while Garcı́a et al. (2009c) studied the relationship of the

Fisher’s discriminant ratio with respect to an evolutionary

instance selection method in the classification task.

Focusing on how some data complexity measures affect

the practical accuracy of these classification algorithms,

they show which data complexity measures appear to better

describe the behavior of the classifiers. More recently,

Luengo and Herrera (2010) analyzed the domains of

competence of a Fuzzy Rule-Based Classification System

with respect to eight data complexity measures from Ho

and Basu (2002). In the latter work, descriptive rules of

good and bad behaviors of the method were defined based

on the characteristics of the data sets characterized by the

data complexity measures.

On the other hand, there exist proposals which do not

use the measures of Ho and Basu with respect to a clas-

sification method directly, but taking into account a pre-

processing technique. Dong and Kothari (2003) proposed a

feature selection algorithm based on a complexity measure

defined by Ho and Basu. Mollineda et al. (2005) extend

some of Ho and Basu’s measure definitions for problems

with more than two classes. They analyzed these general-

ized measures in two classic Prototype Selection algo-

rithms and remarked that Fisher’s discriminant ratio is the

most effective for Prototype Selection. Considering the

opposite case, Kim and Oommen (2009) analyzed how to

use prototype selection in order to decrease the computa-

tion time of several data complexity measures, without

severely affecting the outcome with respect to the complete

data set.

3.2 Data complexity measures

As we have mentioned, data complexity measures are a set

of metrics that quantify characteristics which imply some

difficulty to the classification task. In our analysis we will

initially consider the 12 measures used in Ho and Basu

(2002) for standard classification in the imbalanced

framework used in this paper. The 12 measures are sum-

marized in Table 2.

In our analysis, only F1, N4, and L3 measures of the 12

presented in Table 2 proved to be informative following

the methodology described in Sect. 5.1 and observed in the

experimental results in Sect. 5.2. The description of these

three measures is included next.

F1: maximum Fisher’s discriminant ratio. Fisher’s dis-

criminant ratio for one feature dimension is defined as

f ¼ ðl1 � l2Þ
2

r2
1 þ r2

2

where l1, l2, r2
1, r2

2 are the means and variances of the two

classes, respectively, in that feature dimension. We com-

pute f for each feature and take the maximum as measure

F1. For a multidimensional problem, not all features have

to contribute to class discrimination. The problem is easy

as long as there exists one discriminating feature. There-

fore, we can just take the maximum f over all feature

dimensions in discussing class separability.

L3: nonlinearity of linear classifier by LP. Hoekstra and

Duin (1996) proposed a measure for the nonlinearity of a

Table 2 Data complexity measures names and acronyms proposed by Ho and Basu

Type Id. Description

Measures of overlaps in feature

values from different classes

F1 Maximum Fisher’s discriminant ratio

F2 Error rate of linear classifier by linear programming

F3 Maximum (individual) feature efficiency

Measures of separability of classes L1 Minimized sum of error distance by linear programming

L2 Error rate of linear classifier by linear programming

N1 Fraction of points on class boundary

N2 Ratio of average intra/inter class NN distance Ms Cercanos intra/inter-clases

N3 Error rate of 1NN classifier

Measures of geometry, topology

and density of manifolds

L3 Nonlinearity of linear classifier by linear programming

N4 Non-linearity of 1NN classifier

T1 Fraction of points with associated adherence subsets retained

T2 Average number of points per dimension
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classifier with respect to a given data set. Given a training

set, the method first creates a test set by linear interpolation

(with random coefficients) between randomly drawn pairs

of points from the same class. Then the error rate of the

classifier (trained by the given training set) on this test set

is measured. Here, we use such a nonlinearity measure for

the linear classifier defined for L1. In particular, we con-

sider a Support Vector Machine with a linear Kernel, which

acts as a linear discriminant in this case. This measure is

sensitive to the smoothness of the classifier’s decision

boundary as well as the overlap of the convex hulls of the

classes. For linear classifiers and linearly separable prob-

lems, it measures the alignment of the decision surface

with the class boundary. It carries the effects of the training

procedure in addition to those of the class separation.

N4: nonlinearity of 1NN classifier. This measure follows

the same procedure described for L3. In the case of N4,

error is calculated for a nearest neighbor classifier. This

measure is for the alignment of the nearest-neighbor

boundary with the shape of the gap or overlap between the

convex hulls of the classes.

4 On the use of data complexity measures

for imbalanced data

In this section we first present the imbalanced data con-

sidered in this study and the configuration used for the

calculation of the data complexity measures in Sect. 4.1,

then reasons which motivates their use are introduced in

Sect. 4.2.

4.1 Data sets and configuration of the methods

In order to analyze the preprocessing of the SMOTE,

SMOTE-ENN and EUSCHC methods, we have selected 44

data sets from UCI repository (Asuncion and Newman

2007). The data are summarized in Table 3, showing the

number of examples (#Ex.), attributes (#Atts.), name of

each class (minority and majority), class attribute distri-

bution, IR and F1, N4, and L3 data complexity values

associated.

For every binary data set generated, we computed the 12

data complexity measures of Ho and Basu (2002) over the

complete data set before preprocessing and splitting the

data. Table 3 contains the F1, N4, and L3 measures’ values

for each original data set, as they proved to be the infor-

mative ones in our study. This will provide us information

about the nature of the complete data set before prepro-

cessing and applying the validation scheme.

The calculation of the data complexity measures supports

some variants. The particular details of the computation of

the measures that we have followed are detailed next.

• The instances with missing values are discarded

previously to the measures calculation.

• The measures calculation over the data sets is per-

formed with the original values, without any kind of

normalization.

• The distance function used for continuous values is the

normalized Euclidean distance function, i.e., the dis-

tance of each attribute is normalized by its range.

• The distance function used for nominal values is the

overlap distance function. That is, if two nominal

attributes are equal, the distance between them is 0.

Otherwise the distance is 1.

It is essential to maintain this configuration for all the

data sets, as any change in it has proven to produce changes

in the estimated complexity obtained. Therefore, altera-

tions in the distance functions used, for example, can dis-

turb the analysis done and the conclusions obtained from it.

In order to carry out the different experiments we consider

a 5-folder cross-validation model, i.e., 5 random partitions of

data with a 20%, and the combination of 4 of them (80%) as

training and the remaining one as test. For each data set we

consider the average results of the five partitions.

Then, in order to reduce the effect of imbalance, we will

employ the SMOTE and SMOTE-ENN preprocessing

method for all our experiments balancing both classes to

the 50% distribution in the training partition (Batista et al.

2004). EUSCHC aims at reducing the data in the training

partition as much as possible while the performance in

AUC is not decreased.

The C4.5 and PART algorithms were run using KEEL1

software (Alcalá-Fdez et al. 2009) following the recom-

mended parameter values given in this platform, which

must also correspond to the ones given by the authors in the

original papers:

• For C4.5 the minimum number of item-sets per leaf

was set to 2, and a pruning step is applied for the final

tree with a confidence level of 0.25.

• For PART the minimum number of item-sets per leaf

was also set to 2, and a pruning step is applied for the

final tree with a confidence level of 0.25 as well.

In Table 4 we have summarized the global average for

training and test AUC and the corresponding standard

deviation obtained by C4.5 with SMOTE, SMOTE-ENN

and EUSCHC preprocessing. These two tables are mean to

be used for further reference in the analysis of the behavior

of the preprocessing techniques in the following sections.

As a general comment, SMOTE and SMOTE-ENN pro-

duce C4.5 and PART have a better training adjustment,

while EUSCHC allows C4.5 and PART to generalize

1 http://keel.es.
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Table 3 Summary description for imbalanced data sets

Data set #Ex. #Atts. Class (min., maj.) %Class

(min.; maj.)

IR F1 N4 L3

Glass1 214 9 (build-win-non oat-proc; remainder) (35,51; 64,49) 1.82 0.1897 0.3084 0.5000

Ecoli0vs1 220 7 (im; cp) (35,00; 65,00) 1.86 9.7520 0.0136 0.1182

Wisconsin 683 9 (malignant; benign) (35,00; 65,00) 1.86 3.5680 0.0432 0.0066

Pima 768 8 (tested-positive; tested-negative) (34,84; 66,16) 1.90 0.5760 0.2754 0.5000

Iris0 150 4 (Iris-Setosa; remainder) (33,33; 66,67) 2.00 16.8200 0.0000 0.0000

Glass0 214 9 (build-win-oat-proc; remainder) (32,71; 67,29) 2.06 0.6492 0.2009 0.5000

Yeast1 1484 8 (nuc; remainder) (28,91; 71,09) 2.46 0.2422 0.3201 0.5000

Vehicle1 846 18 (Saab; remainder) (28,37; 71,63) 2.52 0.3805 0.1761 0.2311

Vehicle2 846 18 (Bus; remainder) (28,37; 71,63) 2.52 0.1691 0.3304 0.3682

Vehicle3 846 18 (Opel; remainder) (28,37; 71,63) 2.52 0.1855 0.3747 0.3511

Haberman 306 3 (Die; Survive) (27,42; 73,58) 2.68 0.1850 0.3431 0.4967

Glass0123vs456 214 9 (non-window glass; remainder) (23,83; 76,17) 3.19 3.3240 0.0561 0.3294

Vehicle0 846 18 (Van; remainder) (23,64; 76,36) 3.23 1.1240 0.1734 0.1219

Ecoli1 336 7 (im; remainder) (22,92; 77,08) 3.36 2.6500 0.1265 0.5000

New-thyroid2 215 5 (hypo; remainder) (16,89; 83,11) 4.92 3.5790 0.0233 0.2791

New-thyroid1 215 5 (hyper; remainder) (16,28; 83,72) 5.14 3.5790 0.0209 0.2721

Ecoli2 336 7 (pp; remainder) (15,48; 84,52) 5.46 1.8260 0.0685 0.5000

Segment0 2308 19 (brickface; remainder) (14,26; 85,74) 6.01 1.7980 0.0358 0.5000

Glass6 214 9 (headlamps; remainder) (13,55; 86,45) 6.38 2.3910 0.0537 0.5000

Yeast3 1484 8 (me3; remainder) (10,98; 89,02) 8.11 2.7510 0.1122 0.5000

Ecoli3 336 7 (imU; remainder) (10,88; 89,12) 8.19 1.5790 0.1652 0.5000

Page-blocks0 5472 10 (remainder; text) (10,23; 89,77) 8.77 0.5087 0.2069 0.3332

Yeast2vs4 514 8 (cyt; me2) (9,92; 90,08) 9.08 1.5790 0.1333 0.5000

Yeast05679vs4 528 8 (me2; mit, me3, exc, vac, erl) (9,66; 90,34) 9.35 1.0510 0.2509 0.5000

Vowel0 988 13 (hid; remainder) (9,01; 90,99) 10.10 2.4580 0.2034 0.5000

Glass016vs2 192 9 (ve-win-oat-proc; build-win-oat-proc,

build-win-non oat-proc,headlamps)

(8,89; 91,11) 10.29 0.2692 0.2891 0.5000

Glass2 214 9 (Ve-win-oat-proc; remainder) (8,78; 91,22) 10.39 0.3952 0.3364 0.5000

Ecoli4 336 7 (om; remainder) (6,74; 93,26) 13.84 3.2470 0.0506 0.5000

Yeast1vs7 459 8 (nuc; vac) (6,72; 93,28) 13.87 12.9700 0.0016 0.0019

Shuttle0vs4 1829 9 (Rad Flow; Bypass) (6,72; 93,28) 13.87 0.3534 0.3137 0.5000

Glass4 214 9 (containers; remainder) (6,07; 93,93) 15.47 1.4690 0.1285 0.5000

Page-blocks13vs2 472 10 (graphic; horiz.line, picture) (5,93; 94,07) 15.85 1.5470 0.0540 0.0678

Abalone9vs18 731 8 (18; 9) (5,65; 94,25) 16.68 0.6320 0.3324 0.5000

Glass016vs5 184 9 (tableware; build-win-oat-proc,

build-win-non oat-proc, headlamps)

(4,89; 95,11) 19.44 1.8510 0.0788 0.5000

Shuttle2vs4 129 9 (Fpv Open; Bypass) (4,65; 95,35) 20.50 12.1300 0.0155 0.0000

Yeast1458vs7 693 8 (vac; nuc, me2, me3, pox) (4,33; 95,67) 22.10 0.1757 0.3752 0.5000

Glass5 214 9 (tableware; remainder) (4,20; 95,80) 22.81 1.0190 0.0724 0.5000

Yeast2vs8 482 8 (pox; cyt) (4,15; 95,85) 23.10 1.1420 0.2261 0.5000

Yeast4 1484 8 (me2; remainder) (3,43; 96,57) 28.41 0.7412 0.2342 0.5000

Yeast1289vs7 947 8 (vac; nuc, cyt, pox, erl) (3,17; 96,83) 30.56 0.3660 0.3627 0.5000

Yeast5 1484 8 (me1; remainder) (2,96; 97,04) 32.78 4.1980 0.1216 0.5000

Ecoli0137vs26 281 7 (pp, imL; cp, im, imU, imS) (2,49; 97,51) 39.15 1.9670 0.1701 0.5000

Yeast6 1484 8 (exc; remainder) (2,49; 97,51) 39.15 2.3020 0.1157 0.5000

Abalone19 4174 8 (19; remainder) (0,77; 99,23) 128.87 0.5295 0.4534 0.5000
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better. In Table 5 we present the same AUC averages for

PART. The complete tables of results are shown in

Appendix 2.

4.2 Motivation of the use of complexity measures

In Sect. 2, the necessity of the use of instance prepro-

cessing in the framework of imbalanced data has been

shown. The IR measure has been also used in order to

classify the different imbalanced problems based on their

imbalanced degree. However, we have observed empiri-

cally that this measure has not a clear relationship with the

performance obtained with the preprocessing techniques.

In this sense, Fig. 4 depicts the results for C4.5 in the case

of preprocessing the 44 data sets with SMOTE and EUS-

CHC, sorting the data sets by their IR value. We can

observe that the good and bad results of both learning

methods with respect to the preprocessing are not related

with the IR value, nor the improvements achieved with

such preprocessing step.

Therefore, the use of the IR as a unique measure to

identify the improvement of the preprocessing appears to

be insufficient, and we need to consider other measures to

characterize the good or bad behavior of the preprocessing,

like the data complexity measures presented in Sect. 3.2.

To the best of our knowledge there is no analysis on the

relationship of the data complexity and the application of

preprocessing techniques for imbalanced data. Garcı́a et al.

(2008) built a bunch on synthetic data sets with a wide

range of overlapping present in the two classes. Using this

framework, the response of local and global learning

methods (the k-NN classifier and several others, C4.5

among them) is studied when varying the IR and the

overlapping between the class labels. Albeit they do not

explicitly used the data complexity measures of Ho and

Basu (2002), the class overlapping and IR can be consid-

ered as related to them. Results showed that the more

represented class in overlapped regions tends to be better

classified by methods based on global learning, while the

less class represented in such regions tends to be better

classified by local methods.

However, in Garcı́a et al.’s (2008) study no prepro-

cessing was performed. In this paper we will analyze the

mentioned the undersampling and oversampling prepro-

cessing approaches by means of the data complexity

measures.

We emphasize that this study does not attempt to

establish the best preprocessing method for a given

Table 4 Global average Training and Test AUC for C4.5

Global %

AUC Training

Global % AUC

Test

C4.5 with SMOTE

preprocessing

0.9546 ± 0.0551 0.8217 ± 0.1375

C4.5 with SMOTE-ENN

preprocessing

0.9438 ± 0.0635 0.8362 ± 0.1309

C4.5 with EUSCHC

preprocessing

0.9241 ± 0.0859 0.8914 ± 0.1035

Table 5 Global average Training and Test AUC for PART

Global %

AUC Training

Global %

AUC Test

PART with SMOTE

preprocessing

0.9440 ± 0.0727 0.8298 ± 0.1368

PART with SMOTE-ENN

preprocessing

0.9353 ± 0.0727 0.8372 ± 0.1313

PART with EUSCHC

preprocessing

0.9172 ± 0.0796 0.8900 ± 0.0899
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1,00
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C45-SMOTE Training C45-SMOTE Test

C45-EUSCHC Training C45-EUSCHC Test

Fig. 4 C4.5 AUC in Training/

Test sorted by IR
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problem. This estimation problem has been already for-

malized as a new learning problem in the Meta-Learning

approach (MetaL) (Brazdil et al. 2009). The MetaL

approach faces two important drawbacks:

• How to represent an ML problem instance was tackled

using diverse descriptors, e.g., number of examples,

number of attributes, percentage of missing values, and

landmarkers (Pfahringer et al. 2000). The difficulty is

due to the fact the descriptors must take into account

the example distribution, which is not easily achieved

in most cases.

• A second difficulty concerns the selection of the ML

problem instances. Kalousis (2002) indicates that the

representativity of the problems and the perturbation

induce strong biases in the Metal classifier.

Due to the several difficulties already studied in the

specialized literature, the attempt to indicate the best pre-

processing method is out of the scope of this paper.

5 Analysis of the influence of preprocessing

in imbalanced data

In this study, our aim is to analyze the suitability of the use

of data complexity measures to evaluate the behavior of

SMOTE, SMOTE-ENN, and EUSCHC using C4.5 and

PART in the scenario of imbalanced data sets.

Fig. 5 C4.5 AUC with SMOTE

in Training/Test sorted by F2

Fig. 6 C4.5 AUC with SMOTE

in Training/Test sorted by F1

Table 6 Significant intervals for C4.5 and PART

With SMOTE and

SMOTE-ENN Interval

With EUSCHC

Interval

Behavior

C4.5

F1 C 1.469 F1 C 0.6492 Good

N4 B 0.2069 N4 B 0.2509 Good

L3 B 0.3332 L3 B 0.3332 Good

F1 B 0.366 F1 B 0.3534 Bad

N4 C 0.2261 N4 C 0.2754 Bad

PART

F1 C 1.469 F1 C 0.632 Good

N4 B 0.2069 N4 B 0.2509 Good

L3 B 0.3332 L3 B 0.3332 Good

F1 B 0.366 F1 B 0.3534 Bad

N4 C 0.2261 N4 C 0.2754 Bad
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In the remaining of this section, we will first show the

methodology followed in this study in Sect. 5.1. Next the

empirical study for both C4.5 and PART in imbalanced

data sets with data complexity measures is shown in

Sect. 5.2. Finally, in Sect. 5.3 the collective evaluation of

the set of rules for both learning models is carried out.

5.1 Methodology

In order to characterize the results of C4.5 and PART when

using undersampling and oversampling preprocessing in

imbalanced data, we will follow the methodology proposed

in (Luengo and Herrera 2010) for characterizing the per-

formance of a learning method in standard classification,

which is briefly described next.

We consider intervals of data complexity measures’

values in which C4.5 and PART perform good or bad,

calculated for every data set of Sect. 4.1.

• We understand for good behavior an average high test

AUC in the interval (at least 0.8 approximately), as well

as the absence of over-fitting (less than a 0.1 difference

in Training and Test AUC approximately).

• By bad behavior we refer to the presence of over-fitting

and/or average low test AUC in the interval.

Table 7 Rules with one metric obtained from the intervals for C4.5

Id. Rule Preprocess Support Avg. AUC Train Train diff. Avg. AUC Test Test diff.

R1? If F1 C 1.469 then good behavior SMOTE 52.27 0.9826 0.028 0.9103 0.0886

SMOTE-ENN 0.9785 0.0347 0.9234 0.0872

If F1 C 0.6482 then good behavior EUSCHC 65.91 0.9687 0.0515 0.9450 0.1632

R2? If L3 B 0.3332 then good behavior SMOTE 27.27 0.9929 0.0383 0.9641 0.1424

SMOTE-ENN 0.9876 0.0438 0.9610 0.1248

EUSCHC 0.9877 0.0636 0.9688 0.0774

R3? If N4 B 0.2069 then good behavior SMOTE 63.63 0.9823 0.0277 0.9077 0.086

SMOTE-ENN 0.9756 0.0318 0.9196 0.0834

If N4 B 0.2509 then good behavior EUSCHC 70.45 0.9692 0.0451 0.9460 0.0546

R1– If F1 B 0.366 then bad behavior SMOTE 20.45 0.9021 –0.0525 0.6748 –0.1469

SMOTE-ENN 0.8613 –0.0825 0.6762 –0.1600

If F1 B 0.3534 then bad behavior EUSCHC 18.18 0.8186 –0.1055 0.7519 –0.1395

R2– If N4 C 0.2261 then bad behavior SMOTE 36.36 0.9062 –0.0484 0.6712 –0.1505

SMOTE-ENN 0.8881 –0.0557 0.6903 –0.1459

If N4 C 0.2754 then bad behavior EUSCHC 29.55 0.8166 –0.1075 0.7613 –0.1301

Table 8 Rules with one metric obtained from the intervals for PART

Id. Rule Preprocess Support Avg. AUC Train Train diff. Avg. AUC Test Test diff.

R1? If F1 C 1.469 then good behavior SMOTE 52.27 0.9817 0.0377 0.9194 0.0896

SMOTE-ENN 0.9764 0.0411 0.9259 0.0887

If F1 C 0.632 then good behavior EUSCHC 68.18 0.9538 0.0366 0.9322 0.0422

R2? If L3 B 0.3332 then good behavior SMOTE 27.27 0.9932 0.0492 0.9646 0.1348

SMOTE-ENN 0.9857 0.0504 0.9687 0.1315

EUSCHC 0.9716 0.0544 0.9514 0.0614

R3? If N4 B 0.2069 then good behavior SMOTE 63.63 0.9805 0.0365 0.9162 0.0864

SMOTE-ENN 0.9736 0.0383 0.9203 0.0831

If N4 B 0.2509 then good behavior EUSCHC 70.45 0.9564 0.0392 0.9349 0.0449

R1– If F1 B 0.366 then bad behavior SMOTE 20.45 0.8637 –0.0803 0.6687 –0.1611

SMOTE-ENN 0.8364 –0.0989 0.6618 –0.1754

If F1 B 0.3534 then bad behavior EUSCHC 18.18 0.7914 –0.1258 0.7459 –0.1441

R2– If N4 C 0.2261 then bad behavior SMOTE 36.36 0.8801 –0.0639 0.6788 –0.1510

SMOTE-ENN 0.8684 –0.0669 0.6917 –0.1455

If N4 C 0.2754 then bad behavior EUSCHC 29.55 0.8236 –0.0936 0.7831 –0.1069
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The intervals are extracted by means of a particular

graphic representation of the AUC results for C4.5 or PART

considering the three preprocessing methods. The AUC

results for the preprocessed data sets are arranged equidis-

tantly in an ordered series, sorting them by one of the data

complexity measures computed over the original data sets.

Therefore, the X axis contains the data sets with a constant

separation (and not related with the values of the considered

data complexity), and the Y axis depicts the AUC obtained

both in Training and Test for the particular data set. The

reason to use this constant separation is to give each data set

the same space in the graphic representation.

For those measures where we can find different ad-hoc

intervals which present good or bad behavior of C4.5 or

PART, we use a vertical line to delimit the interval of the

region of interest.

Following the process described, not every data com-

plexity measure can be used in order to select an interval of

good or bad behavior of the methods. Figure 5 depicts an

example in which no interval could be extracted for the F2

measure. Figure 6 shows an example in which both good

and bad behavior intervals could be extracted, indicated by

vertical lines for the F1 measure using the same prepro-

cessing technique.

As mentioned in Sect. 3.2, only F1, N4 and L3 data

complexity measures can be used to extract significative

intervals with enough support following this methodology.

Table 9 Data sets sorted by F1 covered by the R1? and R1– rules Table 10 Data sets sorted by N4 covered by the R3? and R2– rules

Table 11 Data sets sorted by L3 covered by the R2? rule
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Our objective is to analyze the data sets covered by a

good or bad behavior interval considering the different

preprocessing methods. These data sets will be char-

acterized as those which the preprocessing technique

used allows C4.5 and PART to obtain good or bad

results.

5.2 Single intervals extraction

As we have previously indicated, only the F1, N4

and L3 measures offered significant intervals follow-

ing the process described in Sect. 5.1. In Appendix 1,

Figs. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

Table 12 Disjunction Rules from all simple rules for C4.5

Id. Rule Preprocess Support

(%)

Avg. AUC

Train

Train

diff.

Avg. AUC

Test

Test

diff.

PRD-S If R1? or R2? R3? then good

behavior

SMOTE 63.63 0.9823 0.0277 0.9077 0.0861

PRD-S-ENN SMOTE-

ENN

0.9756 0.0318 0.9196 0.0834

PRD-EUS EUSCHC 70.45 0.9692 0.0451 0.9460 0.0546

NRD-S If R1– or R2– then bad behavior SMOTE 36.36 0.9062 –0.0484 0.6712 –0.1504

NRD-S-ENN SMOTE-

ENN

0.8881 –0.0557 0.6903 –0.1459

NRD^qPRD-

EUS

EUSCHC 29.55 0.8166 –0.1075 0.7613 –0.1301

Table 13 Disjunction Rules from all simple rules for PART

Id. Rule Preprocess Support

(%)

Avg. AUC

Train

Train

diff.

Avg. AUC

Test

Test

diff.

PRD-S If R1? or R2? R3? then good

behavior

SMOTE 63.63 0.9805 0.0365 0.9162 0.0864

PRD-S-ENN SMOTE-

ENN

0.9736 0.0383 0.9203 0.0831

PRD-EUS EUSCHC 72.73 0.9549 0.0377 0.9337 0.0437

NRD-S If R1– or R2– then bad behavior SMOTE 36.36 0.8801 –0.0639 0.6788 –0.1510

NRD-S-ENN SMOTE-

ENN

0.8684 –0.0669 0.6917 –0.1455

NRD^qPRD-

EUS

EUSCHC 27.27 0.8167 –0.1005 0.7736 –0.1164

Fig. 7 Three blocks

representation for C4.5 with

SMOTE
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26, 27, 28, 29, 30 depict the results for C4.5 and

PART considering these three data complexity

measures.

In Table 6 we have summarized the intervals found ad-

hoc from the aforementioned figures for C4.5 and PART.

The intervals are the same for C4.5 and PART. The

intervals obtained for SMOTE and SMOTE-ENN are also

always the same, therefore we will not find differences

between the two versions of SMOTE considered, except in

the average AUC, from now on.

All the extracted intervals can be translated into rules,

using them as the antecedents of the rules. In Table 7 we

have summarized the rules derived from the individual

intervals for C4.5 and in Table 8 we show the equivalent

rules for PART. Both tables are organized with the fol-

lowing columns:

• The first column corresponds to the identifier of the rule

for further references.

• The ‘‘Rule’’ column presents the rule itself.

• The third column shows the type of preprocessing

carried out.

• The fourth column ‘‘Support’’ presents the percentage

of data sets which verifies the antecedent of the rule.

• The column ‘‘% Training’’ shows the average AUC in

training of all the data sets covered by the rule.

• The column ‘‘Training diff.’’ contains the difference

between the training AUC of the rule and the global

training AUC across all 44 data sets showed in Tables 4

and 5 for the preprocessing case of the row (SMOTE,

SMOTE-ENN or EUSCHC).

• The column ‘‘% Test’’ shows the average AUC in test

of all the data sets covered by the rule.

Fig. 8 Three blocks

representation for PART with

SMOTE

Fig. 9 Three blocks

representation for C4.5 with

SMOTE-ENN
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Fig. 10 Three blocks

representation for PART with

SMOTE-ENN

Fig. 11 Three blocks

representation for C4.5 with

EUSCHC

Fig. 12 Three blocks

representation for PART with

EUSCHC
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• The column ‘‘Test diff.’’ contains the difference

between the test AUC of the rule and the global test

AUC across all 44 data sets showed in Tables 4 and 5

for the preprocessing case of the row (SMOTE,

SMOTE-ENN or EUSCHC).

The positive rules (denoted with a ‘‘?’’ symbol in their

identifier) always show a positive difference with the glo-

bal average, both in training and test AUC. The negative

ones (with a ‘‘–’’ symbol in their identifier) verify the

opposite case. The support of the rules shows us that we

can characterize a wide range of data sets and obtain sig-

nificant differences in AUC both inf with and without

preprocessing cases.

In Tables 9, 10 and 11 the specific data sets arranged by

the F1, N4, and L3 measures, respectively, are depicted.

The data sets covered by each rule is indicated by means of

the adjacent columns, considering the three different sup-

port cases obtained from the rules: SMOTE and SMOTE-

ENN for both C4.5 and PART; EUSCHC for C4.5, and

EUSCHC for PART.

If we compare the equivalent rules and the covered data

sets in the different cases of SMOTE, SMOTE-ENN and

EUSCHC preprocessing we can observe the following:

• With the use of EUSCHC the support of R1? and R3?

rules with this preprocessing method is wider than the

SMOTE–based approaches.

• The support of the R1– and R2– is also smaller for

EUSCHC, as less data sets can be identified as bad for

C4.5 or PART. These differences with respect to

SMOTE and SMOTE-ENN has been properly charac-

terized by the rules.

• The R2? rules is invariant with respect to the

preprocessing. It represents the good data sets for

Table 14 Data sets covered by the PRD and NRD rules

Fig. 13 C4.5 with SMOTE

AUC in Training/Test sorted by

F1
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C4.5 and PART considering any preprocessing

technique.

• SMOTE and SMOTE-ENN behave equal for C4.5 and

PART. The differences with respect to the global

training and test AUC are similar, and the support is

equal in every case.

• EUSCHC behaves equally for C4.5 and PART when

considering the N4 and L3 data complexity measures.

However, for the F1 measure, EUSCHC is slightly

better for PART, as the support of R1? for this learning

method is a 3% higher.

5.3 Combination of the single rules

The objective of this section is to analyze the effect of

combining the rules of good and behavior independently.

By means of merging the individual rules we can arrive at a

Fig. 14 PART with SMOTE

AUC in Training/Test sorted by

F1

Fig. 15 C4.5 with SMOTE

AUC in Training/Test sorted by

N4
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more general description, with a wider support, of the

preprocessing methods’ effect.

First, we have considered the disjunctive combination of

all the positive rules to obtain a single rule (Positive Rule

Disjunction -PRD-), that is, we use the or operator to

combine the individual positive rules. The same procedure

is done with all the negative ones so we obtain another rule

(Negative Rule Disjunction -NRD-). The new disjunctive

rules will be activated if any of the component rules’

antecedents are verified.

In the case of PART with EUSCHC preprocessing,

overlapping between the data sets covered by PRD and

NRD appears. Following the same methodology pre-

sented by Luengo and Herrera (2010) the PRD rule is

kept as representative of the good behavior, and the set

difference between the NRD and PRD rules is

Fig. 16 PART with SMOTE

AUC in Training/Test sorted by

N4

Fig. 17 C4.5 with SMOTE

AUC in Training/Test sorted by

L3
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considered as representative of the bad behavior. This

difference will remove the data sets for which C4.5 and

PART presents good behavior from the NRD rule,

naming this new rule as NRD^qPRD.

In Table 12 we summarize the new rules obtained for

C4.5. In Table 13 the equivalent rules for PART are

depicted. In these two tables, we have added the

following suffixes to the rule identifier in order to dis-

tinguish them:

• In the case of SMOTE preprocessing, we add the ‘‘-S’’

suffix.

• In the case of SMOTE-ENN preprocessing, we add the

‘‘-S-ENN’’ suffix.

Fig. 18 PART with SMOTE

AUC in Training/Test sorted by

L3

Fig. 19 C4.5 with SMOTE-

ENN AUC in Training/Test

sorted by F1
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• In the case of EUSCHC preprocessing, we add the ‘‘-

EUS’’ suffix.

From the collective rules for both learning methods, it is

observed that the support has been increased from the

single rules for PRD, while NRD (and NRD^qPRD for

EUSCHC) obtains similar support. On the other hand, the

training and test AUC differences are similar to the single

rules from Tables 7 and 8 in both with and without pre-

processing situations.

With the PRD and NRD (NRD^qPRD-EUS for PART)

there is no uncovered data sets by the rules for C4.5 and

Fig. 20 PART with SMOTE-

ENN AUC in Training/Test

sorted by F1

Fig. 21 C4.5 with SMOTE-

ENN AUC in Training/Test

sorted by N4
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PART in combination with SMOTE, SMOTE-ENN, and

EUSCHC preprocessing methods. Therefore, we can con-

sider a two block representation of the data sets.

• The first block (the left-side one) will represent the data

sets covered by the correspondent PRD rule. They are

the data sets recognized as being those in which C4.5

and PART have good AUC when preprocessing.

• The second (the right-side one) will plot the data sets

for the correspondent NRD (NRD^qPRD-EUS for

PART) rule, which are bad data sets for C4.5 and

PART after preprocessing.

In Figs. 7, 9 and 11 we have depicted the two block

representation for C4.5 considering the three cases of

preprocessing. In Figs. 8, 10 and 12 we have depicted the

Fig. 22 PART with SMOTE-

ENN AUC in Training/Test

sorted by N4

Fig. 23 C4.5 with SMOTE-

ENN AUC in Training/Test

sorted by L3
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same representations for PART. The data sets have the

same order in the X axis in all the figures to facilitate the

comparisons.

Table 14 represents the data sets following the order of

the latter figures indicating those data sets which are cov-

ered by the PRD and NRD (NRD^qPRD-EUS for PART)

rules as indicate by the vertical lines in the two blocks

representation.

We can observe that the 100% of the analyzed data sets

are covered by the two considered rules for each prepro-

cessing method. Since SMOTE and SMOTE-ENN

obtained the same intervals in the previous subsection, the

Fig. 24 PART with SMOTE-

ENN AUC in Training/Test

sorted by L3

Fig. 25 C4.5 with EUSCHC

AUC in Training/Test sorted by

F1
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support of the PRD and NRD rules are the same, and they

cover the same data sets.

The EUSCHC approach obtains a wider support for

the PRD rule with respect to the SMOTE and SMOTE-

ENN approaches. This is due to the wider support of the

individual intervals which conform the PRD rule. This

difference indicates that the undersampling approach is

more beneficial for C4.5 and PART, since more data sets

are characterized as good for these two learning

methods.

From these results we can point out that the data com-

plexity measures are useful to evaluate the behavior of the

undersampling and oversampling approaches. Differences

in their results have been characterized, finding that

Fig. 26 PART with EUSCHC

AUC in Training/Test sorted by

F1

Fig. 27 C4.5 with EUSCHC

AUC in Training/Test sorted by

N4
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EUSCHC is more robust than SMOTE-based approaches

due to its wider region of good behavior.

There is a bunch of data sets for which both under-

sampling and oversampling techniques do not work well

(indicated in Table 14), as the data set covered by all NRD

and the NRD^qPRD-EUS rule. These data sets are there-

fore opened to improvements by means of these or other

techniques, but already identified by the rules.

6 Concluding remarks

In this work we have analyzed the preprocessing effect

in the framework of imbalanced data sets by means

of data complexity measures. We have considered

two oversampling methods: SMOTE and SMOTE-

ENN, and an evolutionary undersampling approach:

EUSCHC.

Fig. 28 PART with EUSCHC

AUC in Training/Test sorted by

N4

Fig. 29 C4.5 with EUSCHC

AUC in Training/Test sorted by

L3
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We have observed that the IR considered as a measure

of data complexity is not enough to predict when C4.5

and PART perform good or bad. As an alternative

approach, we have computed the data complexity mea-

sures over the imbalanced data sets in order to obtain

intervals of such metrics in which C4.5 and PART per-

formance is significantly good and bad when using the

three preprocessing methods. From these intervals we

have built descriptive rules, which have a wide support

and a significative difference with respect to the global

methods’ performance.

We have obtained two final rules from the initial ones,

which are simple and precise to describe both good and bad

performance of C4.5 and PART. These two rules are

capable of identifying all good and bad data sets for

SMOTE, SMOTE-ENN, and EUSCHC. An interesting

consequence of the characterization obtained by the rules is

that the evolutionary undersampling approach is capable of

preprocessing successfully more data sets for C4.5 and

PART.

As a final note, it is interesting to indicate that the

Fisher’s Discriminant Ratio (F1) was also found interesting

by the studies of Mollineda et al. (2005); Kim and Oom-

men (2009) considering prototype selection, and it is

informative for our analysis in the imbalance framework as

well.
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Appendix 1: Figures with the intervals of PART

and C4.5

In this appendix, the figures sorted by the F1, N4 and L3

data complexity measures are depicted. We have used a

two-column representation for the figures, so in each row

we present the results for C4.5 and PART for the same case

of type of preprocessing and data complexity measure

used.

• Figures from 13, 14, 15, 16, 17, 18 represents the

figures for the case of SMOTE preprocessing.

• Figures from 19, 20, 21, 22, 23, 24 represents the

figures for the case of SMOTE-ENN preprocessing.

• Figures from 25, 26, 27, 28, 29, 30 represents the

figures for the case of EUSCHC preprocessing.

Appendix 2: Tables of results

In this appendix we present the average AUC results for

C4.5 and PART in Tables 15 and 16 respectively.

Fig. 30 PART with EUSCHC

AUC in Training/Test sorted by

L3
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Table 15 Average AUC results for C4.5

Data sets SMOTE Training SMOTE Test SMOTE-ENN Training SMOTE-ENN Test EUSCHC Training EUSCHC Test

Ecoli0vs1 0.9927 0.9796 0.9870 0.9832 0.9909 0.9864

Haberman 0.7426 0.6309 0.6999 0.6003 0.7190 0.5914

Iris0 1.0000 0.9900 1.0000 0.9900 1.0000 0.9800

Pima 0.8411 0.7145 0.8089 0.7312 0.7966 0.6966

Vehicle2 0.9895 0.9492 0.9890 0.9611 0.9793 0.9586

Wisconsin 0.9832 0.9545 0.9784 0.9467 0.9802 0.9546

Yeast2 0.8049 0.7109 0.7744 0.6904 0.7411 0.7257

Glass0 0.9433 0.7856 0.8950 0.8143 0.9089 0.8085

Glass1 0.8978 0.7577 0.8563 0.7141 0.8633 0.7571

Vehicle1 0.9551 0.7030 0.8866 0.7335 0.7952 0.7258

Vehicle3 0.9493 0.7444 0.8844 0.7304 0.8035 0.7601

Ecoli1 0.9631 0.7755 0.9313 0.8979 0.9353 0.9019

Glass0123vs456 0.9908 0.9032 0.9721 0.9078 0.9720 0.9063

New-Thyroid1 0.9922 0.9802 0.9888 0.9433 0.9942 0.9767

New-Thyroid2 0.9957 0.9659 0.9895 0.9520 0.9965 0.9674

Page-Blocks0 0.9846 0.9485 0.9737 0.9421 0.9763 0.9644

Segment0 0.9985 0.9927 0.9985 0.9927 0.9859 0.9861

Vehicle0 0.9897 0.9118 0.9775 0.9192 0.9651 0.9433

Ecoli2 0.9517 0.9162 0.9610 0.9002 0.9673 0.9287

Yeast3 0.9565 0.8876 0.9500 0.9016 0.9513 0.9434

Ecoli3 0.9815 0.8921 0.9474 0.7980 0.9301 0.8928

Glass6 0.9959 0.8450 0.9825 0.9257 0.9836 0.9299

Abalone9-18 0.9531 0.6215 0.9539 0.6322 0.8167 0.7812

Abalone19 0.8544 0.5202 0.9245 0.5246 0.6751 0.6736

Ecoli4 0.9769 0.8310 0.9839 0.8544 0.9873 0.9643

Glass2 0.9571 0.5424 0.9139 0.7148 0.9124 0.8640

Yeast4 0.9101 0.7004 0.9484 0.7960 0.8770 0.8551

Vowel0 0.9967 0.9494 0.9965 0.9733 1.0000 0.9929

Yeast2vs8 0.9125 0.8066 0.9677 0.8078 0.9217 0.9149

Glass4 0.9844 0.8508 0.9844 0.8794 0.9883 0.9580

Glass5 0.9976 0.8829 0.9753 0.8732 0.9965 0.9907

Yeast5 0.9777 0.9233 0.9851 0.9635 0.9870 0.9798

Yeast6 0.9242 0.8280 0.9549 0.8647 0.9491 0.9380

Ecoli0137vs26 0.9678 0.8136 0.9660 0.8136 0.9813 0.9572

Shuttle0vs4 0.9999 0.9997 0.9999 0.9997 1.0000 0.9995

YeastB1vs7 0.9351 0.7003 0.9066 0.7278 0.8567 0.7996

Shuttle2vs4 0.9990 0.9917 1.0000 1.0000 1.0000 0.9923

Glass016vs2 0.9716 0.6062 0.9430 0.6840 0.9296 0.8806

Glass016vs5 0.9921 0.8129 0.9879 0.8686 0.9986 0.9784

Page-Blocks13vs4 0.9975 0.9955 0.9952 0.9865 0.9984 0.9957

Yeast05679vs4 0.9526 0.7602 0.9401 0.7527 0.8778 0.8429

Yeast1289vs7 0.9465 0.6832 0.9323 0.6955 0.8659 0.8659

Yeast1458vs7 0.9158 0.5367 0.8685 0.5102 0.8405 0.7750

Yeast2vs4 0.9814 0.8588 0.9659 0.8953 0.9664 0.9377

Global 0.9546 0.8217 0.9438 0.8362 0.9241 0.8914
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Table 16 Average AUC results for PART

Data sets SMOTE Training SMOTE Test SMOTE-ENN Training SMOTE-ENN Test EUSCHC Training EUSCHC Test

Ecoli0vs1 0.9958 0.9694 0.9870 0.9832 0.8625 0.8500

Haberman 0.6540 0.6086 0.6909 0.6183 0.7067 0.6305

Iris0 1.0000 0.9900 1.0000 0.9900 1.0000 0.9867

Pima 0.7769 0.7312 0.7836 0.7209 0.7900 0.7409

Vehicle2 0.9942 0.9628 0.9917 0.9642 0.9752 0.9574

Wisconsin 0.9848 0.9584 0.9800 0.9559 0.9802 0.9561

Yeast2 0.7468 0.7049 0.7288 0.6858 0.7350 0.7156

Glass0 0.9176 0.7250 0.8861 0.7720 0.9019 0.8503

Glass1 0.9151 0.6927 0.8485 0.6880 0.8750 0.7477

Vehicle1 0.8484 0.7377 0.8475 0.7153 0.7861 0.7518

Vehicle3 0.8757 0.7519 0.8314 0.7144 0.7949 0.7683

Ecoli1 0.9480 0.8923 0.9226 0.9151 0.9256 0.8810

Glass0123vs456 0.9939 0.9104 0.9695 0.9262 0.9825 0.9157

New-Thyroid1 0.9930 0.9659 0.9874 0.9690 0.9802 0.9674

New-Thyroid2 0.9915 0.9516 0.9845 0.9861 0.9663 0.9302

Page-Blocks0 0.9774 0.9439 0.9529 0.9322 0.9657 0.9556

Segment0 0.9987 0.9911 0.9978 0.9932 0.9880 0.9848

Vehicle0 0.9916 0.9382 0.9815 0.9328 0.9743 0.9456

Ecoli2 0.9681 0.8533 0.9521 0.9164 0.9427 0.9137

Yeast3 0.9377 0.8966 0.9277 0.9005 0.9456 0.9373

Ecoli3 0.9693 0.8611 0.9361 0.8359 0.8974 0.8779

Glass6 0.9905 0.9090 0.9939 0.9369 0.9802 0.9344

Abalone9-18 0.9581 0.7006 0.9559 0.6794 0.8567 0.8139

Abalone19 0.8831 0.5401 0.9362 0.5434 0.9066 0.8979

Ecoli4 0.9757 0.8639 0.9804 0.8544 0.9859 0.9524

Glass2 0.9571 0.5878 0.9218 0.7742 0.9497 0.9066

Yeast4 0.8936 0.7486 0.9228 0.8316 0.8738 0.8625

Vowel0 0.9950 0.9228 0.9967 0.9711 0.9868 0.9757

Yeast2vs8 0.9182 0.7599 0.9384 0.7915 0.9227 0.8901

Glass4 0.9901 0.8508 0.9832 0.8718 0.9872 0.9670

Glass5 0.9927 0.9354 0.9909 0.8707 0.9977 0.9907

Yeast5 0.9721 0.9132 0.9905 0.9403 0.9826 0.9771

Yeast6 0.9424 0.8008 0.9767 0.8115 0.9422 0.9340

Ecoli0137vs26 0.9678 0.8172 0.9474 0.8209 0.9208 0.8969

Shuttle0vs4 0.9999 0.9997 0.9999 0.9997 1.0000 0.9997

YeastB1vs7 0.8954 0.7576 0.9147 0.7207 0.8246 0.8061

Shuttle2vs4 0.9980 0.9917 0.9980 1.0000 1.0000 0.9840

Glass016vs2 0.9800 0.5479 0.9323 0.5921 0.8397 0.7969

Glass016vs5 0.9929 0.9686 0.9864 0.8714 1.0000 0.9784

Page-Blocks13vs4 0.9986 0.9932 0.9958 0.9854 0.9725 0.9681

Yeast05679vs4 0.9204 0.7748 0.9076 0.7704 0.8546 0.8221

Yeast1289vs7 0.9433 0.6815 0.8992 0.6427 0.8735 0.8543

Yeast1458vs7 0.9151 0.5351 0.8343 0.5783 0.7688 0.7503

Yeast2vs4 0.9765 0.8762 0.9642 0.8607 0.9548 0.9377

Global 0.9440 0.8298 0.9353 0.8372 0.9172 0.8900
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