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a b s t r a c t

The performance of Nearest Neighbor (NN) classifier is known to be sensitive to the dis-
tance (or similarity) function used in classifying a test instance. Another major disadvan-
tage of NN is that it uses all training instances in the generalization phase. This can
cause slow execution speed and high storage requirement when dealing with large data-
sets. In the past research, many solutions have been proposed to handle one or both of
the above problems. In the scheme proposed in this paper, we tackle both of these prob-
lems by assigning a weight to each training instance. The weight of a training instance is
used in the generalization phase to calculate the distance (or similarity) of a query pattern
to that instance. The basic NN classifier can be viewed as a special case of this scheme that
treats all instances equally (by assigning equal weight to all training instances). Using this
form of weighted similarity measure, we propose a learning algorithm that attempts to
maximize the leave-one-out (LV1) classification rate of the NN rule by adjusting the
weights of the training instances. At the same time, the algorithm reduces the size of the
training set and can be viewed as a powerful instance reduction technique. An instance
having zero weight is not used in the generalization phase and can be virtually removed
from the training set. We show that our scheme has comparable or better performance
than some recent methods proposed in the literature for the task of learning the distance
function and/or prototype reduction.

� 2009 Published by Elsevier Inc.
1. Introduction

The NN rule is one of the oldest and simplest methods of non-parametric pattern classification. The basic rationale for
the NN rule is both simple and intuitive: patterns close in feature space are likely to belong to the same class. The NN
classifier can be represented by the following simple rule: to classify an unknown pattern, choose the class of the near-
est stored training instance. A common extension is to choose the most common class among the K Nearest Neighbors
(KNN).

Despite its simplicity, the NN classifier has many advantages over other methods. For example, it can learn from a small
set of examples, it can incrementally add new examples as they become available, and it can give competitive performance
with other methods such as decision trees or neural nets. However, it suffers from the following problems:
y Elsevier Inc.
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1. The performance of the NN rule depends crucially on the distance metric used to find the NN of a query pattern.
2. The basic NN classifier stores all of the training instances to use during the generalization phase. To classify an input test

pattern, its distance to all stored instances must be calculated. This can cause slow execution speed when dealing with
large datasets.

To tackle the first problem, many methods have been developed to locally adapt the distance metric. Examples of these
include the flexible metric method proposed by Friedman [6], the discriminate adaptive method by Hasti and Tibshirani [7],
and the adaptive metric method by Domeniconi et al. [4]. The common idea underlying the above methods is that they esti-
mate feature relevance locally at each query pattern. This leads to a weighted metric for computing the similarity between
the query pattern and training data. For example, in [16], an adaptive KNN classification algorithm is proposed that is based
on the concept of statistical confidence from hypotheses testing.

In [15], a locally adaptive distance measure is used that is based on assigning a weight to each training instance. However,
the parameters of the distance measure (i.e., the weights of the training instances) are specified by a simple heuristic. This
scheme is shown to be effective in improving the performance of the basic NN.

In [12], a scheme is proposed to learn weighted metrics to improve generalization accuracy of the basic NN. The weights
(i.e., the parameters of the distance measure) may be specified for each class, feature, or individual instance. The learning
algorithms uses gradient descent to minimize a performance index that is an approximation to LV1 classification error-rate
of the given training set.

Another work in this field is the scheme presented in [5] to learn the distance function for NN rule. The distance function is
learned based on maximizing the clustering of objects belonging to the same class. Objects belonging to a dataset are clus-
tered with respect to a given distance function and the local class density information of each cluster is then used by a weight
adjustment heuristic to modify the distance function so that the class density is increased in the attribute space.

Adaptation of the distance measure has been the subject of research in other distance-based classifiers. For example, in
[20,21] schemes are proposed to adapt the distance measure by assigning a weight to each fuzzy rule.

By allowing all the input features to contribute to the distance metric equally, irrelevant, redundant, or noisy features can
degrade classification accuracy of the nearest neighbor classifier. Various feature selection/weighting methods proposed in
the literature [1,8,14] can be used to tackle this problem.

Similar to [15], the weighted metric we use in this paper is based on assigning a weight to each instance in the training
set. However, the weights of the training instances are specified by the learning algorithm that we propose for this purpose
(i.e., instead of the heuristic method used in [15]). Our proposed learning algorithm attempts to specify the weights of train-
ing instances such that LV1 classification error-rate of the given training set is minimized. We denote our method as
Weighted Distance Nearest Neighbor (WDNN) in this paper.

To tackle the second problem mentioned above (i.e., improving the generalization speed and storage requirements of the
basic NN classifier), instance reduction techniques [9,18] aim at reducing the size of training set. One other reason to reduce
the original dataset is to improve the prediction accuracy of the basic NN classifier by removing noisy instances from the
training set. The intuition behind these algorithms is that internal instances do not affect the decision boundary as much
as border instances and therefore they can be removed to find a significantly reduced subset. Wilson and Martinez in
[17] have provided a survey of the algorithms developed for this purpose. They have also proposed five instance reduction
algorithms (DROP1-5) in [17,18].

In [19], the authors use the concept of clustering to reduce a dataset by a compact set of representatives. They propose a
supervised clustering algorithm to find a set of representatives for a given classification task. In their scheme denoted as
Supervised Clustering Editing/Nearest Representative (SCE/NR), a test instance is classified by finding its nearest represen-
tative (instead of using the full training set).

In [11], a prototype reduction algorithm is proposed that simultaneously searches for a reduced subset of prototypes and
a suitable local metric for these prototypes. This algorithm starts with an initial subset of prototypes selected in random, and
then iteratively adjusts both the position and the corresponding local-metric weights. The resulting prototypes/metric com-
bination minimizes a suitable estimation of the classification error probability.

In [10], a method of prototype selection is proposed that assign a weight to each selected prototype. However, to specify
the weight of a prototype, it uses a naı̈ve weight assignment approach by simply searching through a set of predefined
weight values.

In [13], genetic algorithm is used to simultaneously search for a reduced subset of instances and features. In facing prob-
lems with many irrelevant features, the scheme is shown to be quite effective in improving the performance of the basic
nearest neighbor.

The proposed method prescribed in this paper (i.e., WDNN) tackles both problems of the NN classifier (mentioned earlier
in this section). That is, it simultaneously searches for a reduced subset of prototypes and a suitable local metric for these
prototypes. In this respect, it has the same goal as [11]. However, in our method, the prototypes are selected from the actual
dataset examples while the method presented in [11] constructs artificial prototypes. Algorithms that use actual dataset
examples as prototype are more applicable when data is represented by nominal attributes.

The rest of this paper is organized as follows. In Section 2, NN classification with weighted training instances is discussed
to introduce the notation. In Section 3, our weight-learning methods (i.e., WDNN and MWDNN) are presented. In Section 4,
simulation results are given. Section 5 concludes the paper.
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2. Nearest neighbor classification with weighted instances

We briefly describe the NN rule to introduce the notation. For an M-class problem, assume that a set of training examples
of the form {(Xi, Ci) j i = 1,. . .,n} is given. Where, Xi = [xi1,xi2, . . . ,xid]T is a d-dimensional vector of attributes and Ci = [1,2, . . . ,M]
defines the corresponding class label. To identify the NN of a query pattern, a distance function d(Xi, Xj) should be defined to
find the NN of a query pattern. A variety of distance functions have been proposed for this purpose [18].

Instead of working with the distance function, we can equivalently work with the following similarity measure, which
normalizes the similarity value l of any two instances (i.e., Xi and Xj) to a number in the interval [0,1].
lðXi;XjÞ ¼ 1� ðdðXi;XjÞ=dmaxÞ ð1Þ
where, dmax is the maximum possible distance between two instances in the feature space, which is calculated by consider-
ing two virtual instances having maximum difference in each attribute value. That is:
dmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd

i¼1

ðDiÞ2
vuut ð2Þ
where, Di represents the difference between maximum and minimum values of the attribute i.
Using (1), the most similar pattern Xp to a query pattern Q can be formally stated as:
p ¼ arg max
16j6n
flðQ ;XjÞg ð3Þ
In this paper, we assign a weight wk to each stored instance Xk. The weights of the stored instances are used in the test phase
to find the most similar pattern Xw to a query pattern Q.
w ¼ arg max
16j6n
fwj � lðQ ;XjÞg ð4Þ
3. Learning the weights of training instances

In this section, we present the WDNN algorithm that attempts to maximize the LV1 classification rate of the nearest
neighbor classifier by assigning a weight (in the interval [0,1]) to each training instance. In fact, this algorithm is the mod-
ified version of the algorithm that was proposed in [21] to construct the rule-base of a fuzzy classification system.

For an M-class problem, assume that a training set Tr = {Xi j i = 1,. . .,n} consisting of n labeled patterns from different clas-
ses are available. Initially, the weights of all training instances are set to one {i.e., wi = 1, i = 1,. . .,n}.

In its basic form, the proposed WDNN algorithm is a hill-climbing search method. The algorithm starts with an initial
solution to the problem (i.e., {wi = 1, i = 1,. . .,n}) and sequentially improves the solution by finding a ‘‘neighbor solution” that
is better than the current one. The WDNN considers a solution as ‘‘neighbor” if it is different in the weight of just one in-
stance with respect to the current solution. In order to find a neighbor solution that is better than the current one, the WDNN
algorithm specifies the best weight wk (i.e., resulting in maximum LV1 classification rate) of a typical instance Xk assuming
that, the weights of other instances are given and fixed. In this way, the WDNN algorithm improves the current solution by
visiting each instance and specifying its best weight. Obviously, when the weights of other instances change during the exe-
cution of the WDNN algorithm, the specified weight wk is not optimal anymore. That is why the second and subsequent
passes over the data can further improve the LV1 classification accuracy. In our implementation, we terminate the search
after a fixed number of passes over the entire training set (i.e., the loop at line 9 of the WDNN algorithm).

The WDNN algorithm presented in Table 1 start by finding the associates of each training instance (the loop at line 5).
Associates of a training instance X (denoted as A(X)) are those training instances that have X as their nearest neighbor in
LV1 test. The WDNN algorithm keeps the associate list and the nearest neighbor of each training instance in memory and
updates them as the weights of instances change during the execution of the algorithm.

The WDNN algorithm specifies the weight wk of a typical instance Xk 2 ClassT as follows (the loop at line 10). In the first
step, Xk is removed from the attribute space by setting its weight to zero (at line 11). This forces each of its associates to use a
new nearest neighbor in LV1 test. Update of associate lists is performed by removing each associate of Xk from A(Xk) and
adding it to its new neighbor‘s list of associates. To specify the best weight of Xk, the WDNN algorithm needs to identify those
training instances that their correct/incorrect LV1 classification depends on the value of wk. To identify these instances, the
WDNN algorithm marks two groups of instances that their correct/incorrect LV1 classification does not depend on the value
of wk. These are:

(1) Instances of ClassT that are classified correctly even if Xk is removed from the training set. These instances are classified
correctly regardless of the value of wk.

(2) Instances of NOT-ClassT that are misclassified even if Xk is removed from the training set. These instances are misclas-
sified regardless of the value of wk.

At this stage, correct/incorrect LV1 classification of unmarked instances depends on the value of wk.



Table 1
The WDNN algorithm for finding the weights of training instances.

Input: training instances Tr = {Xi, i = 1,2,. . .,n}
Output: weight array w = {wi, i = 1,2,. . ..n}
1. WDNN(Training set Tr): Weight array w
2. For i = 1 to n
3. Let wi = 1
4. Let A(Xi) = {/}
5. For each instance Xk in Tr
6. Find the nearest neighbor of Xk {assume that Xl is the nearest neighbor of Xk}
7. NN(k) = l {NN(k) is used to denote the nearest neighbor of Xk}
8. Add Xk to A(Xl)
9. For i = 1 to no. of iterations
10. For each instance Xk in Tr {Assume that Xk 2 ClassT}
11. Let wk = 0 {i.e., remove the instance from the feature space}

{updating the associate lists}
12. For each instance Xp in A(Xk)
13. Find the new nearest neighbor of Xp {assume that Xl is the nearest neighbor of Xp}
14. Remove Xp from A(Xk)
15. Add Xp to A(Xl)
16. NN(p) = l
17. Mark instances in Tr that are from ClassT and classified correctly
18. Mark instances in Tr that are not from ClassT and misclassified
19. Use (5) to rank the unmarked instances in ascending order of their scores
20. current = no. of instances in unmarked list that are classified correctly
21. best = current
22. best-th = 0

{Assume that Xt, Xt+1 represent any two successive patterns in the ranked list}
23. For each different threshold th = (Score(Xt) + Score(Xt+1))/2
24. current = no. of instances that are classified correctly
25. If current > best then
26. best = current
27. best-th = th

{Assume that k is the score of the last pattern in the list and s is a very small positive number}
28. th = k + s
29. current = no. of instances in the list that are classified correctly
30. If current > best then
31. best = current
32. best_th = th
33. wk = best_th

{updating the associate lists}
34. For each instance Xp in Tr {assume that Xr is the current nearest neighbor of Xp}
35. If score(Xp) < wk

36. Add Xp to A(Xk)
37. Remove Xp from A(Xr)
38. NN(p) = k
39. Return w
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In the next step, the score S of any unmarked instance (i.e., Xt) is calculated using the following definition:
SðXtÞ ¼max
16j6n
fwj cdot lðXt;XjÞ; j – kg=lðXt;XkÞ ð5Þ
The interesting property of the score of an instance Xt (i.e., S(Xt)) is that for any value of wk > S(Xt), Xt will have Xk as its near-
est neighbor and thus classified as ClassT in LV1 test. This is because the following relation can be easily derived from (5).
wk � lðXt;XkÞ > max
16j6n
fwj cdot lðXt ;XjÞ; j – kg ð6Þ
To find the best value of wk, unmarked instances are ranked in ascending order of their scores. Assuming that L instances
{X1,X2 ,. . . ,XL} are in the list and S(X1) < S(X2) < . . .S(XL), L + 1 values of wk are examined to find its best value. The first and
last values examined are 0 and S(XL) + s, respectively (s is a very small positive number). The rest (i.e., L � 1 values) are cho-
sen in the middle of two successive scores in the list. The LV1 classification of instances in the list can be easily calculated for
any chosen value of wk as we know the true and predicted class of each instance. The best value of wk is the one that max-
imizes the LV1 classification rate for the instances in the list. Using the specified value of wk, the algorithm updates the asso-
ciate lists in the final loop of the algorithm (at line 34). The update is only required for those instances that their score is less
than the specified value of wk. This is done by removing the instance from its current nearest neighbor‘s list of associates and
then adding it to the list of associates of Xk.

In order to reduce the time complexity, the WDNN algorithm keeps the associate list, the nearest neighbor (and their dis-
tances/similarities) of each training instance in memory.The associate list and the nearest neighbor of each instance are
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updated as the weights of instances change during the execution of the WDNN algorithm For an instance having m associ-
ates, the WDNN algorithm needs O(mn) time to update the associate lists at line 12, where n is the number of training in-
stances. An O(klog(k)) time is required to sort the instances at line 19, where k (k < n) is the number of unmarked instances.
An O(k) time is required to find the best weight for the instance (i.e., time to test k different values of weight). Finally, an O(n)
time is required to update the associate lists at the final loop of the algorithm (at line 34). The overall complexity of the
WDNN algorithm for updating the weight of an instance is thus O(mn + klog(k) + k + n).

Our WDNN algorithm can be viewed as the extended version of the DROP2 algorithm [18], which is a popular instance
reduction technique proposed in the literature. In DROP2, the weight assigned to each instance is either 0 or 1. An instance is
removed from the training set (i.e., by setting its weight to zero) if it does not hurt the LV1 classification rate on the given
training set. On the other hand, the WDNN algorithm attempts to specify the weight of the instance under investigation in
such a way that the LV1 classification rate is improved by the maximum amount. An instance is removed from the training
set only if the WDNN algorithm is unable to find a weight for that instance that improves the LV1 classification rate.

3.1. Modification of the algorithm for prototype reduction

The WDNN algorithm discussed in the previous section assigns a non-zero weight to an instance if it can improve the LV1
classification of at least one more training instance. In the modified version of the WDNN algorithm (i.e., MWDNN), a non-
zero weight is assigned to an instance if it can improve the LV1 classification of at least G training instances. This is achieved
by replacing the instruction at lines 25 and 30 of the WDNN algorithm with the following instruction
If current P best þ G then
Obviously, the parameter G should be a function of the number of instances in the training set rather than using a fixed value
for all datasets. We used G = 0.03 � (no. of trainingdata/no. of classes) in the experiments reported in the next section. In fact,
the WDNN algorithm is a special case of the MWDNN algorithm that uses G = 1.

The parameter G controls the number of final prototypes (i.e., having non-zero weight). When dealing with noisy datasets,
it is expected that the MWDNN achieve better compression rates by preventing noisy instances from being included in the
reduced prototype set.

It must be noticed that the MWDNN algorithm is no longer a greedy algorithm since the algorithm sets the weight of an
instance to zero if it can not improve the LV1 classification of at least G training instances. Therefore, the LV1 accuracy may
fluctuate during the execution of the algorithm.

We use the following measure to compare Training Set Compression Rate (TSCR) of various schemes.
TSCR ¼ 1� ðr=nÞ ð7Þ
where, n and r represent the original and reduced number of examples, respectively. The basic NN uses all of the training
instances (i.e., r = n) and has a TSCR of zero.

4. Experimental results

The capabilities of the WDNN and MWDNN algorithms have been empirically assessed through two different types of
experiments. In the first one, the proposed algorithm was applied to a two-dimensional problem to show the decision bound-
aries created with the weighted instances. In the second, a number of tasks from the UCI/Statlog repositories were consid-
ered. The aim of these experiments was to show that the proposed technique is uniformly adequate for a variety of tasks
involving different data conditions: large/small training sets, continuous/discrete features, large/small dimensionalities, etc.

4.1. Artificial data

An artificial dataset was created in a two-dimensional real space bounded to the region of [0,1] in each dimension. It con-
tains only two output classes in order to make the graphing and visualization easier. Fig. 1 shows the distribution of the data
points for this problem. Application of the MWDNN algorithm to this problem reduced this dataset to two instances (i.e., two
instances having non-zero weight). These two instances are marked with rectangular boxes in Fig. 1. Using these weighted
instances, the resulting boundary between the two classes is also shown in this figure. It must be noted that using these
weighted prototypes only five instances are misclassified in LV1 test, while 11 instances are misclassified with the basic
nearest neighbor.

This example shows that a much more complex decision surface can be created with fewer instances if instance weights
are employed. Without instance weighting, many instances of the outer class (i.e., the class shown with ‘‘+”) must be stored
in order to contain the influence of the stored instances from the inner class.

4.2. Real world problems

We used 14 datasets chosen from UCI-Statlog repository to evaluate the performance of the WDNN and MWDNN algo-
rithms. Table 2 gives a short summary of the datasets used in the experiments.



Fig. 1. The result of applying the MWDNN algorithm on an artificial dataset showing the reduced dataset (i.e., the two instances marked with the
rectangular boxes) and the resulting decision boundary between the two classes.

Table 2
Statistics of the data sets used in the experiments.

Data set # of instances # of features # of classes # of non-numeric features

Australian (A) 690 42 2 8
Balance (B) 625 4 3 0
Cancer (C) 685 9 2 0
Diabetes (D1) 768 8 2 0
DNA (D2) 3186 180 3 0
German (G1) 1000 24 2 13
Glass (G2) 214 9 6 0
Heart (H) 270 13 2 7
Letter (L1) 20,000 26 16 0
Liver (L2) 347 6 2 0
Satimage (S) 6435 36 6 0
Vehicle (V1) 846 18 4 0
Vote (V2) 435 16 2 16
Wine (W) 178 13 3 0
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For datasets having categorical attributes, each categorical attribute was replaced by P binary attributes. Where, P is the
number of different values that the attribute can assume. Five-fold cross validation (5-CV) was used to measure the perfor-
mance of various schemes. In 5-CV, the dataset is divided into five disjoint groups of approximately equal size. Using four
partitions (i.e., 80% of data) as training data, the proposed WDNN and MWDNN methods were used to specify the weights
of training instances (using three passes over the data). Using the weighted training instances, classification accuracy on the
test partition was measured. This process was repeated until all partitions were uses in the test phase. The 5-CV test was
repeated 100 times and average classification rate on test data was calculated. For each data set, we either used the raw
Euclidean or Class Dependent Mahalanobis (CDM) metric. The LV1 error-rate on the training data for each of these metrics
was used to choose the metric that outperforms the other on that dataset. With this, our experimental setting is the same as
the reported results in LPD [11] and PW [12], which enable us to compare our results with results reported in these papers.

In Fig. 2, we have plotted the LV1 error-rate of the classifier during the learning process. The diabetes dataset was used for
plotting this figure, which shows LV1 error-rate as the weight of each instance (in one fold of a 5-CV test) is calculated using
the WDNN algorithm. Starting with an initial LV1 error-rate of 27.97% (i.e., all instances having equal weight), the WDNN
algorithm reduces the error-rate to 10.57% by one pass over the data. It can also be seen that LV1 error-rate never increases
during the optimization process.

Fig. 3 shows the above plot when the MWDNN algorithm is used. As seen, the MWDNN algorithm reduces the error-rate
from 27.97% to 19.84% by one pass over the data. Fig. 3 also shows that MWDNN is not greedy and the error-rate fluctuates
during the learning process.

Fig. 4 shows the previous plots when our proposed algorithms are used for 10 iterations. As seen, the second and subse-
quent iterations can further reduce the LV1 error-rate. In addition, it can be seen that MWDNN is not as effective as WDNN in
reducing the error-rate. However, MWDNN is designed to achieve better compression rates especially when dealing with
noisy datasets.

Table 3 gives the average 5-CV generalization accuracy and compression rates of our proposed methods for the datasets
used in this paper. For comparison, the classification rate of the basic NN method is also reported in this table. Next to each
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Fig. 2. Leave one out classification error-rate during the first iteration of the WDNN algorithm on diabetes dataset.
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Fig. 3. Leave one out classification error-rate during the first iteration of the MWDNN algorithm on diabetes dataset.
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Fig. 4. Leave one out classification error-rate during 10 iterations of the WDNN and MWDNN algorithms on diabetes dataset.
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Table 3
The classification and compression rates of our proposed methods on various data sets.

Data Sets Basic NN TSCR WDNN TSCR MWDNN TSCR

Australian (A) 81.36 ± 0.64 0.0 85.48 ± 0.52 (+) 86.37 85.01 ±0.71 (+) 97.34
Balance (B) 69.29 ± 0.73 0.0 89.14 ± 0.81 (+) 91.77 90.32 ±1.18 (+) 98.56
Cancer (C) 96.76 ± 0.45 0.0 97.52 ± 0.31 (+) 97.63 97.88 ±0.66 (+) 98.52
Diabetes (D1) 70.83 ± 0.52 0.0 75.96 ± 0.74 (+) 88.13 76.31 ±1.18 (+) 98.55
DNA (D2) 87.06 ± .074 0.0 96.15 ± 0.62 (+) 84.10 95.84 ±0.68 (+) 96.09
German (G1) 71.13 ± 0.39 0.0 75.84 ± 0.59 (+) 81.04 73.89 ±1.06 (+) 98.81
Glass (G2) 68.26 ± 0.46 0.0 71.34 ± 0.90 (+) 64.56 70.81 ±1.11 (+) 89.29
Heart (H) 76.34 ± 0.34 0.0 83.91 ± 0.26 (+) 84.43 84.91 ±0.33 (+) 96.65
Letter (L1) 94.35 ± 0.51 0.0 97.09 ± 0.63 (+) 89.18 96.81 ±0.58 (+) 97.27
Liver (L2) 64.78 ± 0.58 0.0 68.31 ± 1.15 (+) 71.17 65.39 ±1.29 (+) 96.92
Satimage (S) 88.29 ± 0.36 0.0 89.88 ± 0.45 (+) 91.84 89.01 ±0.51 99.31
Vehicle (V1) 70.43 ± 0.51 0.0 70.14 ± 0.83 70.38 69.15 ±0.97 (�) 97.65
Vote (V2) 92.86 ± 0.53 0.0 92.29 ± 1.09 92.65 91.37 ±1.65 (�) 98.15
Wine (W) 97.29 ± 0.82 0.0 96.61 ± 1.15 92.73 96.04 ±1.54 97.76

Average 80.65 ± 0.69 0.0 84.98 ± 0.91 (+) 84.71 84.48 ± 1.22 (+) 97.21
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average accuracy value reported in Table 3, the standard deviation (calculated based on 100 runs of 5-CV) is also given. Using
paired T-test (for significance level of 95%), we also report on statistical significance of each case compared to the basic 1-NN
method.

Prediction accuracy values that are significantly better or worse than basic NN are marked by (+) and (�) signs, respec-
tively. As seen, the proposed WDNN method improves the generalization accuracy of the basic NN method in 11 out of 14
data sets. Improvements were found to be statistically significant for all of these cases.. The MWDNN method could also im-
prove the generalization accuracy of the basic NN in 11 out of 14 datasets. Improvements were found to be statistically sig-
nificant for 10 of these cases. In case of vehicle and vote datasets, the performance of the MWDNN method is significantly
worse than 1-NN. In the last row of this table, average generalization accuracy of each method over all datasets is reported.

Table 4 gives the average 5-CV generalization accuracy of our proposed methods in comparison with other methods in the
literature that attempt to locally adapt the distance measure for the basic NN. The best accuracy result for each dataset is
shown in bold. The average accuracy of each method on the entire datasets is also reported in this table. The WDNN method
achieves the best average accuracy on the entire datasets.

In order to verify whether differences in accuracies on the entire set of classification tasks are statistically significant, a
one tailed Wilcoxon Signed Ranks test [2,3] was used to compare the WDNN and MWDNN algorithms with each of other
methods. The confidence level of a significance difference is shown in the last two rows of Table 4 for each of these methods.
Positive values indicate the confidence that the WDNN/MWDNN method is ‘‘better” than the other methods on these data-
sets, while negative values indicate the confidence that the WDNN/WDNN method is ‘‘worse”. Confidence values with a
magnitude of at least 90% can be considered significant differences.

As seen in the result of Table 4, both of our proposed methods are significantly better that the A-NN method. This proves
the effectiveness of our weight-learning algorithms compared with the heuristic method of [15]. In comparison with LPD
[11] and PW [12], both of our methods achieve higher average accuracy on the entire set of classification tasks. However,
Table 4
Classification rates of our proposed methods in comparison with other methods.

Data sets WDNN MWDNN Basic NN A-NN [15] PW [12] LPD [11]

Australian (A) 85.48 85.01 81.36 75.91 83.50 86.10
Balance (B) 89.14 90.32 69.29 89.88 86.56 83.70
Cancer (C) 97.52 97.88 96.76 97.14 96.68 96.60
Diabetes (D1) 75.96 76.31 70.83 71.86 72.61 74.00
DNA (D2) 96.15 95.84 87.06 92.73 93.51 95.10
German (G1) 75.84 73.89 71.13 61.89 71.68 74.00
Glass (G2) 71.34 70.81 68.26 71.22 73.72 72.00
Heart (H) 83.91 84.91 76.34 67.45 81.06 81.40
Letter (L1) 97.09 96.81 94.35 95.87 95.40 96.50
Liver (L2) 68.31 65.39 64.78 65.12 63.78 66.70
Satimage (S) 89.88 89.01 88.29 90.49 91.20 89.40
Vehicle (V1) 70.14 69.15 70.43 66.28 70.69 72.60
Vote (V2) 92.29 91.37 92.86 93.31 94.49 96.30
Wine (W) 96.61 96.04 97.29 84.82 98.65 95.00
Average 84.98 84.48 80.65 80.28 83.82 84.24
Wilcoxon (WDNN) n/a +84.2 +99.6 +98.90 +91.6 +82.3
Wilcoxon (MWDNN) �84.2 n/a +98.1 +98.10 +56.7 +13.5



Table 5
Average accuracies and compression rates of our proposed methods in comparison with the basic NN method in presence of noisy data.

Algorithm Clean TSCR Noisy TSCR (%)

Basic NN 80.65 0.0 74.45 0.0
WDNN 84.98 84.71 80.42 81.64
MWDNN 84.48 97.21 81.00 96.52

Fig. 5. Compression rates of our proposed methods in comparison with the LPD [11] method.
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the differences in accuracies are not statistically significant (except for the WDNN method that is significantly better than
the PW method).

In Fig. 5, the compression rates of our proposed method and the LPD [11] method are shown for various datasets used in
this paper. It must be noted that the A-NN [15] and PW [12] methods do not reduce the size of the training set.

In the LPD method, the user should specify the required number of prototypes as input to the algorithm. The results of
Fig. 5 correspond to the case that 5% of data is selected (as prototypes) by the LPD algorithm. As seen, The MWDNN algorithm
achieves the best compression rates on all datasets except for the glass dataset. Overall, the results of Table 5 and Fig. 5 con-
firm that the MWDNN algorithm can achieve better compression rates (and comparable/better accuracy) when compared
with the LPD method.

4.3. Effect of noise

The aim of this experiment is to evaluate the performance of the proposed methods in the presence of noise. For this pur-
pose, the same experiments were repeated with 20% uniform class noise artificially added to each dataset. This was done by
randomly changing the output class of 20% of the instances in the training set to an incorrect value (with equal probability
for each of the incorrect classes). The output class of the instances in the test set are not noisy. So the result indicate how well
each model is able to predict the correct output even some of its training data is mislabeled.

Table 5 shows the average accuracy and compression rates of each method (including the basic NN method) over all 14
datasets used in this paper.

In presence of noise, the average accuracy of the basic NN dropped 6.2% while the average accuracy of the WDNN and
MWDNN methods dropped 4.56% and 3.48%, respectively. Both of these methods achieved accuracy higher than the basic
NN method. The WDNN algorithm had the highest accuracy among different methods.

In the presence of noise, the compression rate of the WDDN method dropped 3.07% while the drop in compression rate was
only 0.66% for the MWDNN method. The WDNN algorithm achieved the best compression rate among different methods.

Overall, in presence of noisy data, the WDNN algorithm achieves the best compression rate and accuracy among different
methods.

5. Conclusions

In this paper, we introduced a new technique for adapting the distance function in NN classification method. This was
achieved by assigning a weight to each training instance. We proposed a greedy algorithm for learning the weights of
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training instances. The learning algorithm attempts to maximize LV1 classification rate, which is the true estimate of the
generalization ability of the classifier. Simulation results proved that the scheme could improve the generalization ability
of basic NN rule.

We also proposed the MWDNN method as a powerful prototype selection algorithm. In comparison with other prototype
selection algorithms proposed in the literature, we showed that the MWDNN method achieves better compression rates and
comparable/better accuracy results. We also showed that the MWDNN performs quite well in the presence of noisy data.
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