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Abstract

Feature selection and feature weighting are useful techniques for improving the classification accuracy of K-nearest-neighbor (K-NN)
rule. The term feature selection refers to algorithms that select the best subset of the input feature set. In feature weighting, each feature is
multiplied by a weight value proportional to the ability of the feature to distinguish pattern classes. In this paper, a novel hybrid
approach is proposed for simultaneous feature selection and feature weighting of K-NN rule based on Tabu Search (TS) heuristic.
The proposed TS heuristic in combination with K-NN classifier is compared with several classifiers on various available data sets.
The results have indicated a significant improvement in the performance in classification accuracy. The proposed TS heuristic is also
compared with various feature selection algorithms. Experiments performed revealed that the proposed hybrid TS heuristic is superior
to both simple TS and sequential search algorithms. We also present results for the classification of prostate cancer using multispectral
images, an important problem in biomedicine.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The K-nearest-neighbor (K-NN) classifier has long been
used in pattern recognition, exploratory data analysis, and
data mining problems. Typically, the K-nearest neighbors
of an unknown sample are selected from the training set
in order to predict the class label as the most frequent
one occurring in the K-neighbors. The K-NN classifier is
well explored in the literature and has been proved to have
good classification performance on a wide range of real-
world data sets (Cover and Hart, 1967; Domeniconi
et al., 2002; Michie et al., 1994).

Both feature selection and feature weighting techniques
are useful for improving the classification accuracy of the
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K-NN rule (Raymer et al., 2000; Paredes and Vidal,
2000; Wettschereck et al., 1997). The term feature selection
refers to algorithms that select the best subset of the input
feature set. These algorithms are used in the design of pat-
tern classifiers that have three goals (Jain et al., 2000; Kudo
and Sklansky, 2000):

(1) to reduce the cost of extracting features,
(2) to improve the classification accuracy,
(3) to improve the reliability of the estimation of

performance.

Feature selection leads to savings in measuring features
(since some of the features are discarded) and the selected
features retain their original physical interpretation (Jain
et al., 2000). However, the feature selection is NP-hard
problem (Cover and Hart, 1967). Feature weighting is a
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more general method in which the original set of features is
multiplied by a weight value proportional to the ability of
the feature to distinguish pattern classes (Raymer et al.,
2000; Paredes and Vidal, 2000). A good review of feature
weighting algorithms was carried out by Wettschereck
et al. (1997). These algorithms can be divided into two
groups: one which searches a set of weights through an iter-
ative algorithm and uses the performance of the classifier as
a feedback to select a new set of weights (Raymer et al.,
2000; Puch et al., 1993; Lowe, 1995); and the other com-
putes the weights using pre-existing model’s bias, e.g. con-
ditional probabilities, class projection, and mutual
information (Domeniconi et al., 2002; Paredes and Vidal,
2000; Guverenir and Akkus, 1997). Feature weighting is
more appropriate for problems where the features vary in
their relevance. Feature selection algorithms perform best
when the features used to describe instances are either
highly correlated with the class label or completely irrele-
vant (Wettschereck et al., 1997).

The feature selection problem is NP-hard problem.
Therefore, the optimal solution cannot be guaranteed to
be acquired except when performing an exhaustive search
in the solution space (Cover and Van Campenhout,
1997). However, exhaustive search is feasible only for small
number of features n. Different algorithms have been pro-
posed for feature selection to obtain near-optimal solutions
(Jain et al., 2000; Kudo and Sklansky, 2000; Zhang and
Sun, 2002; Siedlecki and Sklansy, 1989; Pudil et al.,
1994). The choice of an algorithm for selecting the features
from an initial set depends on n. The feature selection prob-
lem is of small scale, medium scale, or large scale if n

belongs to [0,19], [20,49], or [50,1], respectively (Kudo
and Sklansky, 2000; Zhang and Sun, 2002). Sequential
algorithms such as Sequential Forward Floating Search
(SFFS) and Sequential Backward Floating Search (SBFS)
are efficient and usually find fairly good solutions for small
and medium scale problems (Pudil et al., 1994). But they
suffer from the problem of trapping into local optimal solu-
tions for large scale problems (Kudo and Sklansky, 2000;
Zhang and Sun, 2002). Modern iterative heuristics such
as Tabu Search and genetic algorithms have been found
effective in tackling this category of problems which have
an exponential and noisy search space with numerous local
optima (Zhang and Sun, 2002; Siedlecki and Sklansy, 1989;
Sait and Youssef, 1999).
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Fig. 1. Training phase of proposed hybrid TS/K-NN classi
Tabu Search (TS) has been applied to the problem of
feature selection by Zhang and Sun (2002). In their work,
the Tabu Search performs the feature selection in combina-
tion with Mahalanobis distance as an objective function.
This objective function is used to evaluate the classification
performance of each subset of the features selected by the
TS. Feature selection vector in TS is represented by a 0/1
bit string where 0 indicates the feature is not included in
the solution while 1 indicates the feature is included. Their
experimental results on synthetic data have shown that the
Tabu Search not only has a high possibility to obtain the
optimal or near-optimal solution, but also requires less
computational effort than the other suboptimal and genetic
algorithm based methods. Later, Tabu Search has been
successfully applied in other feature selection problems
(Tahir et al., 2004a; Tahir et al., 2004b; Korycinski et al.,
2003).

In this paper, a Hybrid Tabu Search/K-NN algorithm is
proposed to perform both feature selection and feature
weighting simultaneously with the objective of improving
the classification accuracy. This approach uses both a fea-
ture weight vector and a feature binary vector on the
encoding solution of Tabu Search. The feature weight vec-
tor consists of real values while feature binary vector con-
sisting of either 0 or 1. A K-NN classifier is used to evaluate
each weight set evolved by TS. In addition to feature
weight and binary vectors, the value of K used in K-NN
classifier is also stored in the encoding solution of TS.
Neighbors are calculated using an squared Euclidean dis-
tance defined as:

Dðx; yÞ ¼
Xm

i¼1

ðxi � yiÞ
2 ð1Þ

where x and y are two input vectors and m is the number of
features.

In the weighted K-NN classifier, the feature values of the
training patterns and the unknown pattern are multiplied
by the corresponding weight values prior to classification.
In the proposed approach, the weight value can be 0 for
some features. Thus, the feature space is expanded in the
dimensions associated with highly weighted features, and
compressed in the dimensions associated with less highly
weighted features. This allows the K-NN classifier to distin-
guish more accurately among patterns along the dimensions
re
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Fig. 2. Testing phase.
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associated with highly-weighted features (Raymer et al.,
2000).

The classification accuracy obtained from TS/K-NN
classifier is then compared and assessed with published
results of several commonly-employed pattern classifica-
tion algorithms. Fig. 1 shows the training phase of pro-
posed hybrid model of TS/K-NN classifier. The feedback
from the K-NN classifier allows the Tabu Search to itera-
tively search for a feature vector that improves the classifi-
cation accuracy. In the testing phase, only K-NN classifier
is used as shown in Fig. 2.

This paper is organized as follows. Section 2 gives an
overview about Tabu Search followed by the proposed
algorithm for simultaneous feature selection and weighting
using hybrid TS/K-NN classifier in Section 3. Section 4 dis-
cusses experiments carried out while Section 5 concludes
the paper.

2. Overview of Tabu Search

Tabu Search (TS) was introduced by Fred Glover (Glo-
ver, 1989; Glover, 1990) as a general iterative metaheuristic
for solving combinatorial optimization problems. Tabu
Search is conceptually simple and elegant. It is a form of
local neighborhood search. Each solution S 2 X has an
Fig. 3. Algorithmic description of Tabu Search (TS) (Sait and Youssef,
1999).
associated set of neighbors N(S) � X where X is the set
of feasible solutions. A solution S 0 2 N(S) can be reached
from S by an operation called a move to S 0. TS moves from
a solution to its best admissible neighbor, even if this
causes the objective function to deteriorate. To avoid
cycling, solutions that were recently explored are declared
forbidden or Tabu for a number of iterations. The Tabu
status of a solution is overridden when certain criteria
(aspiration criteria) are satisfied. The Tabu Search algo-
rithm is given in Fig. 3.

The size of Tabu list can be determined by experimental
runs, watching for the occurrence of cycling when the size
is too small, and the deterioration of solution quality when
the size is too large (Glover et al., 1993). Suggested values
of Tabu list include Y ;

ffiffiffiffi
Y
p

(where Y is related to problem
size, e.g. number of modules to be assigned in the quadratic
assignment problem (QAP), or the number of cities to be
visited in the travel salesman problem (TSP), and so on)
(Sait and Youssef, 1999).

3. Proposed Tabu Search technique for simultaneous feature

selection and extraction

3.1. Encoding solution

Unlike existing encoding solutions which consist of
using only 0/1 bit string, our proposed structure of the
TS encoding solution consists of three parts and illustrated
in Fig. 4. The first part, W1W2. . .. . .Wn consists of a real-
valued weight for each of the n features. The second part,
B1B2. . .. . .Bn, consists of 0/1 bit string for each of the n fea-
tures, and the third part, k, is the value of K of the K-NN
classifier. Thus, the value of k is stored in the encoding
solution and determined automatically along with feature
weights.

3.2. Objective function

Our objective in this work is to improve the classifica-
tion accuracy. Therefore, an objective function is to mini-
mize the total number of misclassified samples as shown
in Eq. (2).

Cost ¼
Xn

i¼1

Ci �MCSi ð2Þ

where n is the number of classes, Ci is the misclassification
cost for each sample in class i 1, and MCSi is the total num-
ber of misclassified samples for class i.
1 In some data sets, classification-cost penalties are available.
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Fig. 7. An example showing some possible neighbours obtained from the
previous best solution. V* = 7, M = 2, N = 2 and P = 3. K is assigned
randomly between 1 and 7 for different neighbours.
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Fig. 4. The structure of Encoding Scheme used in TS.
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3.3. Initial solution

All features are included in the initial solution by assign-
ing 1 to the corresponding features values as shown in
Fig. 5. All weights are assigned to 1.0, and k = 1 is used
for the initial solution.

3.4. Neighborhood solutions

For Tabu Search, it is important that there should be a
move from one solution to different neighbours. In our
approach, neighbours are generated from the first two
parts of the encoding solution. M · N different neighbours
are generated from the first part by assigning M random
weights to N different features. P different neighbours are
generated by randomly adding or deleting a feature from
the second part. Thus, the total number of neighbourhood
solutions (V*) for each iteration is M · N + P. Fig. 6 shows
an example showing different neighbours from the initial
solution. Each neighbour solution is a single move from
the initial/previous solution. Among the neighbours, the
one with the best cost (i.e. the solution which results in
the minimum value of Eq. (2) is selected and considered
as the new current solution for the next iteration. As an
example, let us assume that neighbour 2 from Fig. 6 is con-
sidered as new current solution for the next iteration. Fig. 7
1.0 1.0 1.0 1 1 11

Fig. 5. Initial solution.

W1 Wn B1 B2 Bn kW2

10.1 1.0 1.0 1 1 1 3

4.1 1.0 1.0 1 1 1 5

1.0 1.0 1 1 1 1

1.0 1.0 1 1 1 5

1.0 1.0 1.0 1 0 1 7

1.0 1.0 1.0 1 1 0 7

1.8

5.8

1.0 1.0 1.0 0 1 1 1

M=2,
N=2

P=3

Fig. 6. An example showing some possible neighbours from the initial
solution. V* = 7, M = 2, N = 2 and P = 3. K is assigned randomly
between 1 and 7 for different neighbours.
shows some possible neighbours from this new solution.
Among the new neighbours, the one with the best cost will
be considered as the next solution.

3.5. Tabu moves

A Tabu list is maintained to prevent returning to previ-
ously visited solutions. This list contains information that,
to some extent, forbids the search from returning to a pre-
viously visited solution (Sait and Youssef, 1999). In our
implementation, if a feature is added/deleted or weighted
at iteration i, then adding/deleting or weighting the same
feature (move) for next T iterations (Tabu list size) is Tabu.

3.6. Aspiration criterion

Aspiration criterion is a method used to override the
Tabu status of moves whenever appropriate. It temporarily
overrides the Tabu status if the move is sufficiently good. In
our approach, if a feature is added/deleted or weighted at
iteration i and this move results in a best cost for all previ-
ous iterations, then this feature is allowed to add/delete or
weighted even if it is in the Tabu list. The aspiration crite-
rion selected here will avoid missing good solutions and
thus will not lock the algorithm in the neighborhood of
some local minimum.
3.7. Termination rule

The most commonly used stopping criteria in TS are

• after a fixed number of iterations,
• after some number of iterations without an improve-

ment in the objective function value,
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• when the objective reaches a pre-specified objective
value.

In our algorithm, termination condition is a predefined
number of iterations.
4. Experiments

To evaluate the effectiveness of our method, extensive
experiments were carried out. Comparisons with several
methods were also performed as will be shown in the fol-
lowing section.
Table 1
Data sets description

Name Prototypes Features Classes

UCI Balance 625 4 3
UCI Iris 150 4 2
UCI Liver 345 6 2
Statlog Diabetes 768 8 2
UCI Glass 214 9 6
Statlog Heart 270 13 2
Statlog Australian 690 14 2
Statlog Vehicle 846 18 4
UCI Ionosphere 351 34 2
UCI Sonar 208 60 2

P = prototypes, F = features, C = classes.
4.1. Methods

In the following experiments we compare several classi-
fication approaches mentioned below:

• Locally Adaptive Metric Nearest-Neighbor (ADA-
MENN): This classifier estimates a flexible metric for
producing neighborhoods that are elongated along less
relevant feature dimensions and constricted along most
influential ones (Domeniconi et al., 2002).

• Discriminant Adaptive Nearest Neighbor (DANN):
This classifier uses local discrimination information to
estimate a subspace for global dimension reduction.
Local linear discriminant analysis is used to estimate
an effective metric for computing neighborhoods (Hastie
and Tibshirani, 1996).

• Class-Dependent Weighted Dissimilarity Measure for
Nearest Neighbor Classification Problems (CDW): This
method uses a weighted dissimilarity measure for NN
classification. The weights are obtained using minimiza-
tion of an criterion index through Fractional-Program-
ming (Paredes and Vidal, 2000).

• K-Nearest Neighbor (K-NN): In this classifier, the K

nearest neighbor of a unknown sample in the training
set is computed in order to predict the class label as
the most frequent one occurring in the K-neighbors
(Cover and Hart, 1967; Michie et al., 1994; Duda
et al., 2001).

• Decision Tree Method (C4.5): Decision tree is a classi-
fier in the form of a tree structure, where each node is
either a leaf node or a decision node (Quinlan, 1993;
Michie et al., 1994).

• Naive Bayes Algorithm (NBayes): The Naive Bayes
Classifier technique is based on Bayesian theorem.
Despite its simplicity, Naive Bayes can often outperform
numerous sophisticated classification methods (Michie
et al., 1994).

• Linear Discriminant Analysis (LDisc): The linear dis-
criminant analysis consists of searching some linear
combinations of features, which provide the best separa-
tion between classes. These different combinations are
called discriminant functions (Michie et al., 1994).
• Quadratic Discriminant Analysis (QDisc): The qua-
dratic discriminant function is most simply defined as
the logarithm of the appropriate probability density
function, so that one quadratic discriminant is calcu-
lated for each class (Michie et al., 1994).

In addition, we compare with several feature selection
algorithms mentioned below.

• Sequential Forward Search (SFS) (Whitney, 1971): SFS
is the simplest greedy search algorithm. It starts with an
empty feature subset and sequentially add features that
results in the highest objective criteria. The main disad-
vantage of SFS is that it is unable to remove features
that become irrelevant after the addition of other
features.

• Sequential Forward Floating Selection (SFFS) (Pudil
et al., 1994): SFFS improved the SFS method by intro-
ducing backward steps after each forward step as long as
the objective criteria increases.
4.2. Data sets

We have performed a number of experiments and com-
parisons on several benchmarks from the Statlog project
(Statlog Corpora. Dept) and UCI (Blake et al.) in order
to demonstrate the performance of the proposed classifica-
tion system. A short description of the used benchmarks is
mentioned in Table 1.

Data sets with greater than 300 samples are randomly
divided into the training and testing data. The training
set consists of 70% of the patterns while the test set consists
of 30% of patterns. We have run 5 trials for each data set
and the final classification accuracy is the average of these
trials. Five-fold cross validation is used for training. For
the data sets with less than 300 samples, a leave-one-out
cross validation technique has been used. For leave-one-
out cross validation, a classifier is designed using (n � 1)
samples and evaluated on the one remaining sample; this
is repeated n times, with different training sets of size



Table 2
Average classification error rate (unit %)

A C4.5 C D K L N Q TS/K-NN (std)

Australian – 15.6 15.2 – 16.7 14.1 20.8 20.7 10.2

Balance – 22.6 9.17 – 15.6 – 9.5 – 10.9
Diabetes – 26.3 24.8 – 29.7 22.5 23.5 26.2 22.3

Glass 24.8 31.8 – 26.6 28.0 40.7 – – 19.6

Heart – 78.1 19.4a – 47.8 39.3 37.4 42.2 37.4

12.2a

Ionosphere 7.1 11.3 – – 14.3 13.1 19.1 – 6.2

Iris 3.0 8.0 – 6.0 5.33 2.0 – – 3.33
Liver 30.7 36.3 – – 37.1 38.6 42.7 – 26.2

Sonar 9.1 23.1 7.7 – 12.5 25.0 – – 5.80

Vehicle – 29.1 28.5 – 31.6 23.0 55.7 15.0 26.3

A = Adamenn, C = CDW, D = Dann, K = K-NN, L = LDics, N = NBayes, Q = Qdisc. std = Standard deviation.
a Means without considering cost matrix.
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(n � 1). Furthermore, for data sets with more than two
classes, Fuzzy K-NN classifier is used to avoid ties (Keller
et al., 1985).

4.3. Results and discussion

Table 2 shows the comparison of classification error rate
(in %) between TS and other classifiers for different data
sets. The combination of feature selection (FS) and feature
weighting (FW) technique using TS/K-NN has achieved
higher accuracy to all data sets except Balance, Vehicle,
and Iris. Even for Balance, Vehicle, and Iris data sets,
TS/K-NN is better than many well-known classifiers. Thus,
in 7 out of 10 data sets, TS/K-NN has achieved the best
performance. For vehicle, TS/K-NN has best performance
after discriminant classifiers. In Iris, and Balance data sets,
TS/K-NN has not achieved the best performance. These
two data sets unable to combine the benefits of FS and
FW as only four features are available. Only FW using
TS is used and FS technique is ineffective because of the
limited number of features.
Fig. 8. Classification error rate and standard deviation (error
Fig. 8 shows the classification error rate with error bars
denoting the standard deviation obtained over the five dif-
ferent splits of each data set for the different algorithms.
From the graph, it is clear that the proposed classifier
has superior results both in terms of error rate and stan-
dard deviation.

Table 3 shows a comparison of feature selection algo-
rithms (SFS and SFFS) with TS. TS algorithm is tested
with feature selection only (i.e. weights are disabled), TS
with feature weighting only (features are disabled) and
TS with both feature selection and feature weighting. From
the table, it is clear that feature selection using TS has iden-
tical error rate when compared with SFS and SFFS in all
data sets except Ionosphere and Sonar. TS has outper-
formed both SFS and SFFS with feature vector of size
>30 i.e. Ionosphere and Sonar. In Ionosphere, with 9 fea-
tures out of 34, the minimum classification error rate is
6.6% using TS as compared to the error rate of 8.5% and
7.5% using SFS and SFFS, respectively. Similarly, in
Sonar, with only 24 features out of 60, the minimum clas-
sification error rate is 3.4% using TS as compared to the
bars) for four different algorithms on various data sets.



Table 3
Comparison of feature selection algorithms with TS

Method Dataset E F K Dataset E F K

SFS Balance 15.6 4 9 Iris 4.6 4 5
SFFS 15.6 4 9 4.6 4 5
TS (FS) 15.6 4 9 4.6 4 5
TS (FW) 10.6 4 9 3.3 4 9
TS (FS + FW) 10.6 4 9 3.3 4 9

SFS Liver 29.6 4 1 Diabetes 23.7 4 7
SFFS 29.6 4 1 23.7 4 7
TS (FS) 29.6 4 1 23.7 4 7
TS (FW) 25.0 6 3 22.3 8 7
TS (FS + FW) 24.0 4 3 20.1 4 5

SFS Glass 25.7 7 1 Heart 43.0 5 9
SFFS 25.7 7 1 43.0 5 9
TS (FS) 25.7 7 1 43.0 5 9
TS (FW) 20.1 9 1 45.9 13 7
TS (FS + FW) 19.6 6 1 37.4 8 7

SFS Australian 11.6 6 7 Vehicle 28.1 15 7
SFFS 11.3 5 9 28.1 15 7
TS (FS) 11.3 5 9 26.6 10 1
TS (FW) 9.1 14 7 28.9 18 3
TS (FS + FW) 7.7 9 3 25.4 13 3

SFS Ionosphere 8.5 11 3 Sonar 7.2 35 1
SFFS 7.5 9 3 4.8 33 1
TS (FS) 6.6 9 3 3.4 24 1
TS (FW) 8.5 34 1 6.7 60 1
TS (FS + FW) 5.7 15 3 5.8 17 1

E = error rate, F = number of features, K = value of K in K-NN classifier,
FS = feature selection, FW = feature weighting.

Table 4
Tabu search run time parameters and computation time for training and
testing

V* = (M*N + P) T Training Testing
(min) (ms)

Australian 10*2 + 4 = 24 4 140.0 2.30
Balance 10*2 + 2 = 22 2 16.3 1.99
Diabetes 10*2 + 3 = 23 3 169.3 2.44
Glass 10*2 + 3 = 23 3 13.1 0.366
Heart 10*2 + 4 = 24 4 25.5 1.04
Ionosphere 10*2 + 6 = 26 6 23.34 2.06
Iris 10*2 + 2 = 22 2 4.5 0.313
Liver 10*2 + 3 = 23 3 15.24 0.596
Sonar 10*2 + 9 = 29 9 24.45 0.678
Vehicle 10*2 + 5 = 25 5 153.38 3.05

V* = Number of neighborhood solutions, T = Tabu List Size,
M*N = neighbors for first part of encoding scheme, P = neighbors for
second part of encoding scheme.
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error rate of 7.2% and 4.8% using SFS and SFFS
respectively.

Furthermore, it is also clear from Table 3 that simulta-
neous feature selection (FS) and feature weighting (FW)
using hybrid TS/K-NN classifier has superior classification
accuracy in all data sets except Sonar. In sonar data set, TS
with feature selection only has the highest classification
accuracy. It should be noted that TS using FS is the special
case of our proposed algorithm in which weights are dis-
abled. Also, in 4 data sets i.e. Liver, Diabetes, Glass, and
Sonar, the number of features is less than feature selection
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algorithms i.e. SFS, SFFS, and TS with FS. Thus, the TS
with simultaneous feature selection and weighting not only
has the ability to find weights for K-NN classifier that
result in higher classification accuracy but also has the abil-
ity to reduce the size of the feature vector.

Fig. 9 shows the classification error rate vs number of
iterations for Glass and Sonar data sets during the solution
search space using Tabu Search. The figure clearly shows
that Tabu Search focuses a good solution space. The pro-
posed TS algorithm progressively zooms towards a better
solution subspace as time elapses; a desirable characteris-
tics of approximation iterative heuristics.
4.4. Run time parameters

Table 4 shows the Tabu run time parameters chosen
after the preliminary experimentation was completed. The
number of iterations is 500 for all data sets. Odd values
of K = 1–9 is used for K-NN classifier in data sets with
two classes while values of K = 1–10 are used for fuzzy
K-NN classier in data sets with more than three classes:
Balance, Glass, and Vehicle. The best value of K is
searched by a hybrid TS/K-NN classifier as it is encoded
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Table 5
Classification error by using feature selection through TS/1NN

Classified as BPH PCa PIN STR Error (%)

BPH 101 1 0 4 4.71
PCa 1 174 2 0 1.69
PIN 0 2 140 2 2.77
STR 2 2 0 161 2.42
Overall 2.90

Table 6
Classification error by using feature selection followed by feature
weighting through TS/1NN

Classified as BPH PCa PIN STR Error (%)

BPH 103 3 0 0 2.91
PCa 2 174 1 0 1.69
PIN 0 3 141 0 2.08
STR 0 0 1 164 0.61
Overall 1.82
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in the encoding solution of the Tabu Search as described in
Section 3.1. One of the parameters of TS is the size of Tabu
list. As discussed in Section 2, Tabu list size is related to the
problem size. The Tabu list size is determined using:

T ¼ ceilð
ffiffiffiffi
F
p
Þ ð3Þ

where T is the Tabu List Size and F is the number of fea-
tures. Other parameters used in our proposed algorithm
are M, N, and P. M random weights are assigned to N fea-
tures in each iteration. The values of M and N used for all
data sets are 10 and 2, respectively, and these parameters
are chosen after a preliminary experimentation. Along with
N weighted features, P features are also added/deleted in
each iteration. The value of P is determined using Eq.
(3). Table 4 also shows the computation time for training
and testing using various data sets. The training of the pro-
posed hybrid TS/K-NN classifier is an off-line procedure
which is used to find the best weights of features while
keeping the classification error rate low. Once the TS finds
the best weights for features, a K-NN classifier is used to
determine the class of the new sample.

4.5. Case study: prostate cancer classification

The most extensive application of our proposed tech-
nique is the classification of prostate cancer using multi-
spectral images. Prostate cancer has become the second
most commonly diagnosed cancer in the male population
after lung cancer, with approximately 22,800 new cases
diagnosed every year in the UK alone. Currently, prostate
needle biopsy remains the only conclusive way to make an
accurate diagnosis of prostate cancer (Eble and Bostwick,
1996). Recently Roula et al. described a novel approach
in which additional spectral data is used for the classifica-
tion of prostate needle biopsies (Roula, 2002). The aim of
the approach is to help pathologists reduce the diagnosis
error rate. Instead of analyzing conventional grey scale or
RGB colour images, spectral bands have been used in the
analysis. This result in a feature vector of size greater than
100. The goal is to classify the following four groups

• Stroma: STR (muscular normal tissue).
• Benign Prostatic Hyperplasia: BPH (a benign

condition).
Fig. 10. Images showing representative samples of the fo
• Prostatic Intraepithelial Neoplasia: PIN (a precursor
state for cancer).

• Prostatic Carcinoma: PCa (abnormal tissue develop-
ment corresponding to cancer).

Fig. 10 shows samples of the four classes.
The data set consists of 592 textured multispectral

images with each image taken at 16 spectral channels
(Roula, 2002). For each sample, the total number of fea-
tures is 128. For such a high dimensionality problem, pat-
tern recognition techniques suffer from the well-known
curse-of-dimensionality problem (Jain et al., 2000). A novel
feature selection technique based on intermediate-memory
Tabu Search /1NN classifier is proposed in (Tahir et al.,
2004a; Tahir, 2005) to solve this curse-of-dimensionality
problem. Table 5 shows the overall classification error with
data reduction by using Tabu Search and classification
using leave-one-out 1NN classifier. Classification error rate
has been reduced to 2.90% as compared to 5.70% reported
in Roula (2002). By applying our proposed Feature weight-
ing after Feature selection using TS/K-NN classifier, the
classification error has been further improved from 2.90%
to 1.80% as shown in Table 6. Fig. 11 shows the classifica-
tion error rate versus the number of iterations during
the solution search space using Tabu Search. For the
ur classes. (a) Stroma (b) BPH (c) PIN (d) Cancer.
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Fig. 11. Error rate vs iterations for prostate cancer dataset.
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first few iterations (<50), there is an expected increase in
classification error rate because random weights are
applied to features that can cause sudden change in behav-
iour but after few iterations, the proposed hybrid TS/K-
NN algorithm progressively zooms towards a better solu-
tion subspace as weights have stabilized.

5. Conclusion

In this paper, a Tabu Search method is proposed for
simultaneous feature selection and feature weighting using
K-NN rule. The technique has proved effective for improv-
ing classification accuracy and has been compared with dif-
ferent classifiers on various data sets. The results have
indicated that simultaneous feature selection and extrac-
tion not only have the ability to find weights for K-NN
classifier that result in higher classification accuracy but
also have the ability to reduce the size of feature vector.
Furthermore, the proposed Tabu Search progressively
zoomed towards a better solution subspace as time elapsed,
a desirable characteristics of approximation iterative heu-
ristics. The proposed technique is also used to improve
the classification accuracy of prostate cancer using multi-
spectral images, an important problem in biomedicine.
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