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D. Martı́na, J. Alcalá-Fdezb,∗, A. Rosetea, F. Herrerab

a Dept. Artificial Intelligence and Infrastructure of Informatic Systems, Higher Polytechnic Institute José Antonio Echeverrı́a, Cujae, 19390 La
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Abstract

Evolutionary algorithms are normally applied to mine association rules on quantitative data but most of them obtain
enough similar rules due to that the usual behavior of these algorithms is to converge on the best solution of the
problem. To overthrow this issue, in this paper we present NICGAR, a new Niching Genetic Algorithm to obtain a
reduce set of different positive and negative quantitative association rules with a low runtime. To do that, we extract
the rules based on the existence of a pool of external solutions that contains the best rule of each niche found in
the search process according to several quality measures, we penalize similar rules by means of a process based on
fitness sharing, and we restart the algorithm leading to a diverse population. Moreover, the user can tune the trade-off

between the quality and diversity of the mined rules making use of two thresholds. Finally, a new measure have
also been presented to assess the similarity between rules based on involved attributes and covered examples by the
rules. The quality of our proposal is analyzed using statistical analysis and comparing with classical, mono-objective
evolutionary, and multi-objective evolutionary approaches for mining association rules.

Keywords: Data Mining, Positive and Negative Quantitative Association Rules, Niching Genetic Algorithms

1. Introduction

In recent times, the amount of data collected from different application areas has continuously increased. This
growth has led to a situation in which the extraction of interesting knowledge from large datasets is a very attractive
and challenging task. Data Mining (DM) techniques [19] are used to build efficient predictive or descriptive models
from a large amount of data that not only best fits or explains it, but is also able to generalize to new data. Discovering
association rules is one of the DM techniques described in the literature, the aim of which is to detect and to represent
interesting relationships between the different items of a dataset [49]. These are represented as X → Y , where X
and Y are item sets and X ∩ Y = �. Many studies have been used to extract association rules from datasets with
quantitative data [12, 42], but most of them only mine positive quantitative association rules (QARs) without paying
particular attention to negative QARs. Recently, different studies have been proposed to mine positive and negative
QARs (PNQARs) from datasets according to negative rules, such as X → ¬Y , which may also be interesting as they
relate the presence of certain items to the absence of others [2, 31, 44].

Over the last few years, many researchers have proposed Evolutionary Algorithms (EAs) [13] to mine QARs
from datasets [2, 4, 21, 29, 31, 32, 33, 46]. EAs, and particularly Genetic Algorithms (GAs) [17], are one of the
most successful search and optimization techniques for complex problems. These algorithms optimize a population
of solutions in order to obtain the best quality solutions for the problem. However, the natural tendency of GAs is
always to converge on the best solution and as a consequence they usually present a poor diversity in the final set of
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solutions. Thus, finding and maintaining multiple solutions in the population is a challenge for the use of GAs with
multi-modal problems, i.e., problems with several global optimals.

The extraction of association rules is a highly multi-modal problem in which all the best quality rules (the optimal
solutions of the problem) should be recovered due to the fact that they provide the most interesting and diverse
knowledge of the dataset. Niching Genetic Algorithms (NGAs) [10, 34] have proved to be an interesting method with
which to approach highly multi-modal problems, as these algorithms allow us to locate and to maintain multiple global
optimals, avoiding the convergence on only one solution. For this reason, the use of NGAs to mine association rules
could be an interesting way of working, in which the seed of each niche obtained represents an interesting association
rule that provides different knowledge to that of the rest of the rules.

In this paper, we propose a new NGA for mining with a low runtime a diverse and reduced set of PNQARs that
are easy to understand, interesting and which provide a good coverage of the dataset, called NICGAR. To do that, we
extract the rules based on the existence of an external population (EP) that contains the best rule of each niche found
in the search process according to several quality measures, we penalize similar rules by means of a process based
on fitness sharing [18], and we restart the algorithm leading to a diverse population. Moreover, the user can tune the
trade-off between the quality and diversity of the mined rules making use of two thresholds. Finally, a new measure
have also been presented to assess the similarity between rules based on involved attributes and covered examples by
the rules.

In order to evaluate the performance of NICGAR, an experimental study has been performed using 27 real world
datasets, in which the number of examples is within the interval [40, 100,968] and the number of attributes is within
the interval [4, 91]. We have firstly studied the influence of two parameters on NICGAR that allow the user to
adjust the trade-off between quality, diversity of rules and coverage of the datasets. Second, we have compared the
performance of our proposal with two NGAs (Clearing [36, 35] and ASCGA [25]), which were extended to extract
PNQARs. Third, the performance of NICGAR has been compared with four mono-objective evolutionary approaches
(EARMGA [46], GAR [21], GENAR [33] and the approach proposed by Alatas et al. in [2], which in this paper
will be called Alatasetal) and two Multi-Objective Evolutionary Algorithms (MOEAs) (QAR-CIP-NSGA-II [32] and
MOPNAR [31]), in which Alatasetal and MOPNAR mine PNQARs and the rest of the algorithms mine positive QARs.
Fourth, we have compared two other classical algorithms (Eclat [48] and Apriori [42]) that mine positive association
rules with our approach. In all these studies, we have made use of some nonparametric statistical tests for the pairwise
and multiple comparison [15] of the performance of these methods over the 27 real-world datasets. Fifth, we study
the diversity of the set of rules obtained by some evolutionary approaches. Finally, we have analyzed the complexity
and scalability of our proposal. Moreover, a web page associated with this paper (i.e., http://sci2s.ugr.es/NICGAR/)
contains material complementary to this study.

This paper is arranged as follows. Section 2 provides a brief study of the existing NGAs, some basic descriptions of
PNQARs and some quality measures. Section 3 presents our proposal to obtain a diverse set of interesting PNQARs.
Section 4 analyzes and discusses the obtained results over 27 real-world datasets. Finally, Section 5 presents some
concluding remarks.

2. PRELIMINARIES

In this section, we first show a brief study of NGAs. Then we present the basic descriptions of PNQARs and some
quality measures.

2.1. Niching Genetic Algorithms

EAs [13] simultaneously deal with a set of possible solutions which enables them to find several optimal solutions
in a single run of the algorithm. However, finding and maintaining of multiple solutions in the population is a challenge
for the use of GAs with multi-modal problems, i.e., problems with several global optimals, because of the above
mentioned natural tendency of GAs to always converge on the best solution. In order to deal with this, the NGAs
extend the GA to locate and maintain multiple optimal solutions in the population for this type of problem [10, 34].

One of the first studies of the preservation of diversity was Cavicchio’s dissertation in 1970 [8]. In this study,
different preselection schemes for replacing an offspring with one of its parents were proposed. Later, De Jong gen-
eralized the preselection schemes with the crowding method [11]. The use of these methods in multimodal functions
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may not be successful because they can preserve several representatives of the same optimum due to substitution
errors [30]. To overcome this problem many versions of the crowding method were developed, with one of the most
representative being the Deterministic Crowding method [30].

In 1987, Goldberg and Richardson proposed the sharing method in which the fitness of individuals decreases in
accordance with the number of similar individuals in the population [18]. This method enables genetic algorithms to
simultaneously work on multiple relative optima in multimodal optimization problems. However, later studies have
shown it to contain certain limitations owing to the sharing parameter and the high computational complexity [38].
In the following years, many algorithms were designed in order to resolve both drawbacks. Most of them focus on
a preliminary distribution of individuals in niches by the clustering algorithm or calculate shared fitness from fixed
samples of the population [9, 26, 38, 47].

Later, Petrowski presented the clearing procedure [36, 35] based on the same concept as the sharing method.
However, unlike the sharing method, only the best individuals of each niche survive, the fitness of the rest of them is
reset to zero. This process is applied after the evaluation process and before the selection. Following this idea, several
methods have been presented which also modify the quality of the solutions according to distance [22, 23].

Recently, Li has presented a different niching approach, called species conservation [24]. This proposal divides
the population into several species according to their similarity and each of these species is built around a dominating
individual, commonly referred to as a species seed. This technique has been proved to be effective to obtain multiple
solutions of multimodal problems.

A study of the different NGAs that have been proposed in the literature can be found in [10, 34].

2.2. Positive and Negative Quantitative Association Rules

QARs are association rules extracted from datasets with quantitative values whereby each item is usually repre-
sented by a pair attribute-interval [42]. These rules may include positive or negative items in their representation. For
instance, the rule Age ∈ [10, 200] → Weight ∈ [25, 200] involves only positive items, indicating that when the Age
is equal to or higher than 10 then the Weight is between 25 and 200; the rule Age ∈ [0, 5] → Weight ∈ ¬[25, 200]
involves positive and negative items indicating that when the Age is between 0 and 5 then the Weight is lower than
25. The use of negative items in the extraction of QARs is very useful since a single negative item can represent
knowledge that would require several positive items to represent it.

To be able to mine PNQARs from datasets with quantitative values, many algorithms need to make an a priori
partition of the attribute’s domains, but the given intervals may determine the final set of rules. Because of this, a
number of studies have been proposed to also include a learning or tuning of the partitions of the attribute’s domains
when we mine QARs [2, 21, 33, 46].

The most common measures to evaluate association rules are support and confidence. These measures are based
on the support of an itemset I, which will be called S UP(I). The S UP(I) is calculated by dividing the number of
covered examples between the whole number of examples. These measures can be defined for a rule A → B as
follows:

support(A→ B) = S UP(AB) (1)

con f idence(A→ B) =
S UP(AB)
S UP(A)

(2)

Many proposals have used these measures to extract QARs, however it has been pointed out that they present
several problems [6, 7]. On the one hand, if the consequent support of the rule is very high any antecedent can seem
to be a good predictor. On the other hand, negative dependence is not detected by the confidence measure due to the
fact that it does not consider the consequent support. For this reason, several authors have proposed other measures to
overcome these problems and to select and rank examples on the basis of their potential interest to the user [16]. Table
1 shows a brief description of some of these measures, which allows us to find out independence, positive dependence
and negative dependence. Notice that the range of the conviction and lift measures is not bounded above.
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Table 1: Summary of some interestingness measures
Measures Equation Description Domain

conviction(A→ B)[7]
S UP(A)S UP(¬B)

S UP(A¬B)

Dependence between A and ¬B

[0,∞)Value < 1: negative dependence
Value = 1: independence
Value > 1: positive dependence

li f t(A→ B) [37]
S UP(AB)

S UP(A)S UP(B)

Ratio between the confidence and the expected confidence of the rule

[0,∞)Value < 1: negative dependence
Value = 1: independence
Value > 1: positive dependence

netcon f (A→ B)[1]
S UP(AB) − S UP(A)S UP(B)

S UP(A)(1 − S UP(A))

Estimate the strength of the rules.

[-1,1]Value < 0: negative dependence
Value = 0: independence
Value > 0: positive dependence

yule′sQ(A→ B)[43]
S UP(AB)S UP(¬A¬B) − S UP(A¬B)S UP(¬AB)
S UP(AB)S UP(¬A¬B) + S UP(A¬B)S UP(¬AB)

Correlation between two possibly related dichotomous events

[-1,1]Value < 0: negative dependence
Value = 0: independence
Value > 0: positive dependence

Certain Factor
CF (A→ B)[41]

if confidence(A→ B) > SUP(B): Variation of the probability that B is in a example considering
only those where A is present.

[-1,1]
con f idence(A→ B) − S UP(B)

1 − S UP(B)
if confidence(A→ B) < SUP(B): Value < 0: negative dependence

Value > 0: positive dependence
Value = 0: independence

con f idence(A→ B) − S UP(B)
S UP(B)

Otherwise is 0

3. A new NGA for mining positive and negative quantitative association rules: NICGAR

In what follows, we will present our proposal to obtain a diverse set of PNQARs while ensuring a good balance
between the quality and variety of the knowledge obtained. This proposal performs an evolutionary learning of the
rules, combining an EP, a punishment mechanism and a restarting process to preserve multiple optimal solutions in
the population and to introduce diversity into the search process. All their characteristics are presented in detail in the
following subsections.

3.1. Niche management within NICGAR

We consider the use of an NGA to learn the association rules, which extend the GAs to locate and maintain multiple
optimal solutions in the population and to avoid the convergence on only one solution. In order to manage the niches
and to ensure diversity in the population, we have introduced an EP, a punishment mechanism and a restarting process
in the search process. The following sections provide detailed descriptions of the three components to manage the
niches and the process of identifying whether two solutions belong to the same niche in NICGAR. Notice that these
components are complementary and cannot be used separately without affecting the evolutionary process.

3.1.1. External Population
The EP allows us to avoid the loss of global solutions, keeping the best solution of each niche found in the search

process independently of the number of niches in the problem. Notice that our proposal follows a dataset independent
approach and the size of the EP is not bounded, which results in a greater number of rules regardless of the population’s
size, and allows us to reduce the size of the population and to use a fixed size. The EP is initially empty and it will be
updated when the current population percentage of new solutions is less than α% of solutions of the population, i.e,
when the evolution has achieved a stable quality in the population in order to avoid the addition of low quality rules.

To update the EP, first it is necessary to identify the niches from the current population. To do this, the algorithm
proposed by Li [24] is applied to determine the seed of each niche. For this, the current population is arranged in
decreasing order of fitness (see subsection 3.4), with the first individual the seed of the first identified niche. From
here onwards the process becomes iterative, the next individual in the arrangement is taken and if it does not belong
to the same niche as any previously identified seeds this individual will be considered as the seed of a new niche
(see subsection 3.1.4 for more information on when two solutions belong to the same niche). Then, the rest of the
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individuals of the population are classified into the different identified niches. The EP will be updated with the best
solution of each niche found in the population that has a fitness higher than a threshold value, called EvMin%, which
represents a percentage of the average fitness of the individuals from the EP (in our case, it has been fixed to 85%, i.e.,
0.85). Notice that the EvMin threshold allows the expert to remove low quality solutions, which correspond to local
optimas of the problem. To avoid the redundant rules in the EP, we check if there are rules in the EP that belong to
the same niche, in which case we keep only the best rule of the niche.

3.1.2. Punishment mechanism
The punishment mechanism based on the fitness sharing method [18] is applied to promote the search for different

optimal solutions from those that are in the EP. This mechanism will penalize the individuals that belong to the same
niche of any of the solutions of the EP and that have a fitness value lower than the corresponding rule of the EP.
Thereby, we encourage the development of niches in other areas of the search space in which optimal solutions have
not been found. The fitness value of a solution that is penalized is modified as follows:

f itness′(C) = f itness(C) − ((1 − distOC(C, S olEP)) ∗ ( f itness(C) ∗ χ%)) (3)

where f itness(C) is the fitness value of the solution (see subsection 3.4), S olEP is the corresponding solution of the
EP and distOC is the distance value between the solution and the corresponding solution of the EP (see equation 7 in
subsection 3.1.4). This function penalizes the fitness value of a solution with a maximum value of χ% of its fitness
value. In our case, χ has been fixed to 20%, i.e, 0.2.

3.1.3. Restarting Process
The restarting process is applied to move away from local optima and to restart the search in other areas of the

search space, allowing us to find niches in other areas in which we have not found beforehand. The population will
be restarted when the current population percentage of new solutions is under α% of solutions of the population. In
this case, the EP is updated and the process of initialization is again applied from uncovered examples by the rules of
the EP (see subsection 3.2). Finally, the punishment mechanism is applied to the new individuals of the population.

3.1.4. Identifying niches and a new similarity measure
In order to identify whether two solutions belong to the same niche, two properties of the rules are analyzed: the

overlap ratio of the common attributes and the ratio of examples covered by the two rules. The overlap ratio represents
the average overlap of the common attributes of the rules. If this ratio is higher than the threshold value NichMin, then
these rules would appear to provide us with similar information of the search space. However, this information could
be provided from different examples depending on the rest of the attributes of the rules. Because of this, the covered
examples ratio is also calculated, which represents the maximum percentage of covered examples by the two rules
regarding the examples covered for each rule. If this ratio is also higher than the threshold NichMin, the rules will be
grouped in the same niche. Notice that the NichMin threshold allows the expert to determine the degree of diversity of
the generated rules.

The overlap of two intervals of the same attribute, AI1 and AI2, is defined as the highest value obtained from
dividing the length of the common part of the two intervals between the length of each interval. If any interval
involved is negative then the overlap is calculated considering its positive equivalent interval. Thus, the overlap of
two attributes AI1 and AI2 is defined as:

overlap (AI1, AI2) = Max
(

Lenghtoverlap

LenghtAI1

,
Lenghtoverlap

LenghtAI2

)
(4)

where values close to 0 reveal that the intervals are very different and values close to 1 that the intervals are very
similar. Notice that the overlap for categorical attributes will be 1 if the value of the attributes is the same, and 0 if
otherwise. Thus, the overlap ratio of the rules R1 and R2 is defined as:

ratiooverlap(R1,R2) =

∑
overlap(AiR1

, AiR2
)

| CA |
(5)

5



Table 2: Six examples in this example
ID X1 X2 X3

ID1 20 1.5 7
ID2 19.5 1 6
ID3 20 2.1 6
ID4 22 4.3 7
ID5 30 8.4 13
ID6 20 2.4 2

where CA are the common attributes of the two rules and | CA | is the number of common attributes of the two
rules. Notice that the overlap ratio will be 0 if all the attributes of the rules are different since they provide different
information about the problem.

The ratio of examples covered takes values in the range [0,1], where values close to 0 show that the rules cover
few common examples and values close to 1 that the rules cover almost the same examples. This is defined as:

ratiocover(R1,R2) = Max
(

cov(R1R2)
cov(R1)

,
cov(R1R2)

cov(R2)

)
(6)

where cov(R1R2) represents the number of common examples covered by both rules R1 and R2, and cov(R1) and
cov(R2) represent the number of examples covered by R1 and R2, respectively. Notice that, for rules that are special-
izations of other rules, this measure will obtain its maximum value.

For instance, let us consider a simple dataset with three attributes X1, X2 and X3, 6 training examples and NichMin =

0.5. Table 2 shows the values of the 6 examples of the dataset. Let us suppose that we have the rules: R1: X1 ∈ [20, 20]
and X2 ∈ [1.5, 3.5]→ X3 ∈ [1, 8]; and R2: X1 ∈ [18, 25]→ X3 ∈ [5, 14]. To determine whether these two rules belong
to the same niche, we first calculate the overlap ratio between the rules as follows:

overlap
(
X1R1

, X1R2

)
= 1

overlap
(
X3R1

, X3R2

)
= Max

(
3
7
,

3
9

)
= 0.42

ratiooverlap(R1,R2) =
1 + 0.42

2
= 0.71

As the ratio of overlap of the common attributes is higher than NichMin, we also calculate the ratio of examples
covered by the two rules. Table 2 shows how R1 covers the examples ID1, ID3 and ID6, and R2 covers ID1, ID2,
ID3 and ID4, with the common examples being: ID1 and ID3. Take into account that in this situation, the ratio of
examples covered is calculated as follows:

ratiocover(R1,R2) = Max
(

2
3
,

2
4

)
= 0.66

Since the ratio of examples covered is also higher than the NichMin threshold, the rules R1 and R2 will be grouped
in the same niche.

Based on these two properties we have also proposed a new similarity measure between rules that allows us to
measure how peculiar the rules are [16]. This measure takes values in the interval [0,1], where values close to 0
represent similar rules and values close to 1 represent different rules, and is defined as:

distOC(R1,R2) = 1 −
ratiooverlap(R1,R2) + ratiocover(R1,R2)

2
(7)

6



3.2. Coding scheme and initial gene pool

In this paper, each chromosome is a vector of genes that represent the attributes and intervals of the rule. We
have used a positional encoding, where the i-th attribute is encoded in the i-th gene used. To combine a condition
selection with the learning of the intervals, each gene consists of four parts: t indicates the utility of the gene, if it is
part of the antecedent (0), consequent (1) or is not involved in the rule (-1); s indicates the sign of an interval, i.e.,
whether it is positive (1) or negative (0); l and u represents the lower and upper bound of the interval of the attribute
respectively. Notice that l and u are equal when we represent the values of a nominal attribute. So, a chromosome C
has the following form:

C = G1G2 . . .Gn

Gi = (ti, si, li, ui), i = 1, . . . , n

where n is the number of attributes. We have defined Amplitude to limit increasing the intervals until they span the
total domain. So that the positive intervals cannot have a size greater than Amplitude and the negative intervals cannot
be smaller than Amplitude.

Amplitudei = (Maximumi − Minimumi)/ρ (8)

where ρ is defined by the user, denoting the trade-off between the specificity and generalization of the rules, and
Maximumi and Minimumi represent the maximum and minimum value of the attribute i, respectively.

The population is consisted initially of a rule set in which the consequent only have one item (although this coding
scheme allows many items to be handled in the consequent). Moreover, these rules will present a good coverage
of the dataset to obtain information from the whole dataset. To accomplish this, first the attributes involved in the
consequent and antecedent of the rule and whether their intervals will be positives or negatives are selected at random.
Then an example from the dataset is randomly selected in order to generate the intervals of each attribute of the rule.
To create an interval, the bounds of the intervals are generated with the value of the example selected fixed at the
center of the interval. This interval will have a length equal to the Amplitudei / 2. Notice that if the lower or upper
bound of the interval outdoes the domain of the attribute it will be replaced by the bound of the domain. Then, we
mark the examples from the dataset that have been covered by this rule in order to generate the following rules based
on unmarked examples. In this manner we assure the obtaining of an initial population with a good coverage of the
dataset. We iteratively apply this mechanism in order to completely generate the initial pool of individuals. Moreover,
if all the examples are marked and we are not completed the initial population, then we unmark all the examples and
apply the process again until the initial population is complete.

3.3. Genetic Operators

The crossover operator interchanges genes from a pair of parents at random in order to generate two new solutions.
Moreover, the Parent Centric BLX-α (PCBLX-α) operator [28] (an operator that is based on BLX-α) is applied to the
boundaries of the intervals of the quantitative attributes. This operator is based on the concept of neighborhood that
allows the offspring boundaries to be generated around the boundaries of one parent (see Fig. 1).

Let us assume that X = [lx,ux] and Y = [ly,uy], where lx ,ly, ux, uy ∈ [ai,bi] ⊂ <, are two intervals of the quantitative
attribute i which are going to be crossed. The offspring boundaries [Ol

1, Ou
1] and [Ol

2, Ou
2], are generated as follows:

• Ol
1 is a randomly (uniformly) chosen value from the interval [Ol

1min
,Ol

1max
], with Ol

1min
= max{ai, lx − Il ·α}, Ol

1max

= min{bi, lx + Il ·α}, and Il = | lx − ly |. In our case, α has been fixed to 0.5.

• Ol
2 is a randomly (uniformly) chosen value from the interval [Ol

2min
,Ol

2max
], with Ol

2min
= max{ai, ly − Il ·α}, Ol

2max

= min{bi, ly + Il ·α}.

• Ou
1 is a randomly (uniformly) chosen value from the interval [Ou

1min
,Ou

1max
], with Ou

1min
= max{ai, ux − Iu ·α}, Ou

1max

= min{bi, ux + Iu ·α}, and Iu = | ux − uy |.

• Ou
2 is a randomly (uniformly) chosen value from the interval [Ou

2min
,Ou

2max
], with Ou

2min
= max{ai, uy − Iu ·α}, Ou

2max

= min{bi, uy + Iu ·α}.
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Figure 1: Scheme of the performance of BLX and PCBLX operators based on environments
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Figure 2: An example of the crossover operator

A simple example of the crossover operator is shown in Fig. 2.The mutation operator modifies the components of
a randomly selected gene. Firstly, the values of t and s are randomly modified. Later, a boundary is selected at random
and its value is increased or decreased randomly, considering the same constraints as the initialization process.

The rules that present problems after applying the crossover and mutation operators are fixed by means of the
repairing operator. One attribute is selected at random from the attributes not involved if the rule doesn’t have any
attribute in the part of the antecedent or consequent. If the consequent of a rule consists of more than one attribute,
one attribute is randomly selected as consequent and the rest of the attributes

The rules that present problems after applying the crossover and mutation operators are fixed by means of the
repairing operator. If the rule doesn’t have an antecedent and/or consequent, these are selected at random from the
attributes not involved in the rule. If the consequent of a rule consists of more than one attribute, one attribute is
randomly selected as consequent and the rest of the attributes are moved to the antecedent.

Finally, in order to obtain simpler rules the size of the positive intervals is decreased while the covered examples
are the same as those covered by the original intervals. For negative intervals, the size is increased, reducing the
domain that each one covers.

3.4. Chromosome Evaluation
In order to evaluate a chromosome, the fitness function jointly maximizes three complementary metrics of the

rules. This measure takes values between -1 and 2.5, and is defined as:

Fitness(C) = metric1 + metric2 + metric3 (9)

The first metric combines the classical measure support and the interestingness measure lift (see subsection 2.2) to
measure the coverage of the rules while penalizing those rules of low interest. This metric provides interesting rules
with a good trade-off between the specific and global. This metric takes values in the range [0,1] and is defined as:

metric1 =

(
1 −

1
210∗support(A→B)

)
∗

(
1 −

1
li f t(A→ B)

)
(10)

This expression ensures that there are no large differences between the obtained values for this metric when rules
reach significant values for measures of support and lift. Notice that, the lift measure is not bounded above (where
values higher than 3 are very significant for this measure) and we have used this arithmetic expression for the support
measure (tuned empirically) in order to obtain a good balance between both measures (see subsection 2.2).

The second one measures how interesting the rule is for the user. To accomplish this, we use the interestingness
measure netconf (see Table 1), which can distinguish between positive dependencies, negative dependencies or inde-
pendence between items, and takes values in the range [-1,1].

metric2 = netcon f =
S UP(AB) − S UP(A)S UP(B)

S UP(A)(1 − S UP(A))
(11)
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Finally, the third one measures the number of items that contains the rule. The greater the number of items,
the less comprehensible and useful will the rule be to the user. Their values range from 0 to 1, and are defined as
follows, where AttrA→B represents how many attributes are involved in A since we only take into account rules with
one attribute in B.

metric3 =
1

AttrA→B ∗ 2
(12)

For instance, let us consider the simple dataset with three attributes X1, X2 and X3, and 6 training examples (see Table
2) and the rule R2 (X1 ∈ [18, 25] → X3 ∈ [5, 14]) considered in subsection 3.1.4. The fitness of the rule R2 will be
calculated as follows:

metric1 =

(
1 −

1
210∗support(A→B)

)
∗

(
1 −

1
li f t(A→ B)

)
=

(
1 −

1

210∗ 5
6

)
∗

(
1 −

1
0.96

)
= 0.04

metric2 =
S UP(AB) − S UP(A)S UP(B)

S UP(A)(1 − S UP(A))
=

4
6 −

5
6

5
6

5
6 (1 − 5

6 )
= 0.25

metric3 =
1

AttrA→B ∗ 2
= 0.5

f itness(R2) = 0.04 + 0.25 + 0.5 = 0.79

The rule R2 has a high support in this dataset (higher than 80%) and few involved attributes. However, this rule
obtains a low value for fitness because its values for the measures lift (0.96 represents negative dependence) and
netconf are poor.

It should be noted that we are concerned only with obtaining very strong rules [6], which indicates a positive
dependence between items and resolves the problem of the support measure. For this reason, we will assign the worst
fitness value to the rules that are not strong in order to remove them from the population.

3.5. Evolutionary model
The evolutionary model of our proposal is as follows. The initial gene pool is firstly obtained using the proposed

data covering procedure. Then an offspring population is generated from the current population by selection, crossover
and mutation. The punishment mechanism is applied to each new individual, penalizing the fitness value of an
individual if it belongs to a niche of the solutions of the EP and is not better than the corresponding solution of the
EP according to the fitness function. Then, the next population is constructed from the best individuals between the
current and offspring population. Finally, when the current population percentage of new solutions is under α% of
solutions of the population (where α is usually 5%), we update the EP and the initialization process is again employed.
To update the EP, first the seed of each niche in the current population is identified and then the rest of the individuals
are classified according to the different identified niches (see subsection 3.1.1). The EP will be updated with the best
solution of each niche, which should have a fitness value higher than EvMin% of the average fitness of the individuals
of the EP. Finally, we check if any of the solutions of the EP belong to the same niche, in which case we keep only
the best solution. This procedure is repeated until a stopping condition is fulfilled.

4. Experimental results

In order to evaluate the usefulness of the proposed approach, many experiments have been performed in this paper,
which are organized in this section as follows:

• In subsection 4.1, we describe the experimental setup and a brief description of the methods considered in this
study.

• In subsection 4.2, we analyze the influence of the NichMin threshold and EvMin threshold on NICGAR.
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Table 3: Datasets used for the experiments
Names Attributes(R/I/N) Examples Names Attributes(R/I/N) Examples
Balance Scale (ba) 5 (5/0/0) 625 Satimage (sa) 37 (0/37/0) 6,435
Basketball (bas) 5 (3/2/0) 96 Segment (se) 20 (19/1/0) 2,310
Bolts (bo) 8 (2/6/0) 40 Sonar (so) 61 (60/0/1) 208
Coil2000 (co) 86 (0/86/0) 9,822 Spambase (sp) 58 (57/1/0) 4,597
House 16H (hh) 17(10/7/0) 22,784 Spectfheart (spe) 45 (0/45/0) 267
Fars (fa) 29 (5/0/24) 100,968 Stock Price (st) 10 (10/0/0) 950
Ionosphere (io) 34 (32/1/1) 351 Stulong (stu) 5(5/0/0) 1,419
Letter (le) 16 (0/16/0) 20,000 Texture (te) 41 (40/1/0) 5,500
Magic (ma) 11(10/0/1) 19,020 Thyroid (th) 22 (6/16/0) 7,200
Movement Libras (mo) 91 (90/0/1) 360 Vehicle (ve) 19 (0/18/1) 846
Optdigits (op) 65 (0/65/0) 5,620 Wdbc (wd) 31 (30/0/1) 569
Penbased (pe) 16 (0/16/0) 10,992 Wine (wi) 14 (13/1/0) 178
Pollution (po) 16 (16/0/0) 60 Vowel (vo) 14 (10/4/0) 990
Quake (qu) 4 (3/1/0) 2,178

• In subsection 4.3, we compare the performance of our approach with two NGAs extended to extract PNQARs
(Clearing [36, 35] and ASCGA [25]).

• In subsection 4.4, the usefulness of NICGAR is compared with four mono-objective evolutionary approaches
(EARMGA [46], GAR [21], GENAR [33] and Alatasetal [2]), where Alatasetal mine PNQARs and the rest of
the algorithms mine positive QARs.

• In subsection 4.5, two classical algorithms (Apriori [42] and Eclat [48]) for extracting positive association rules
are compared with our proposal.

• In subsection 4.6, the performance of our approach is compared to two MOEAs: QAR-CIP-NSGA-II [32] for
mining positive QARs and MOPNAR [32] for mining PNQARs.

• In subsection 4.7, we study the diversity of the sets of rules obtained by our proposal.

• In subsection 4.8, we analyze the scalability of the proposed approach.

Moreover, in order to provide additional material to the paper’s content, we have developed an associated web
page that can be found at http://sci2s.ugr.es/NICGAR/. This web page includes a brief summary of the analyzed
algorithms, their set-up and the results they obtained in all datasets.

4.1. Experimental Set-Up

In the following, the main characteristics of the datasets used to analyze the proposed approach are shown. Then,
we provide a brief description of the analyzed algorithms and their configurations (determining all the parameters
used). And finally, we describe the statistical analysis that is used in this study.

4.1.1. Datasets
We evaluate the performance of our proposal considering 27 real-world datasets, in which the number of examples

is within the interval [40, 100,968] and the number of attributes is within the interval [4, 91]. Table 3 summarizes the
main characteristics of the 27 datasets, where “Attributes(R/I/N)” is the number of attributes (Real/Integer/Nominal)
in the data and “Examples” is the number of examples. The datasets are available in the repository KEEL-dataset
[3] where they can be downloaded (Available at http://sci2s.ugr.es/keel/datasets.php). To develop the
different experiments, we consider the average results of 5 runs for each dataset. The results shown in the tables
represent the average of the mean values of the measures obtained by the algorithms in all datasets.
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Table 4: Parameters considered for the comparison

Algorithms Parameters

Clearing PopSize = 100, Neval=100000, Pmut= 0.1, ρ=3, NichMin = 0.5

ASCGA PopSize = 100, Neval=100000, Pmut= 0.1, ρ=3

Alatasetal Neval=100000, nInitialRandomChromo=12, r = 3, TournamentSize = 10, Psel= 0.25, Pcro = 0.7, Pmut min = 0.05,
Pmut max = 0.9, Wsup = 5, Wcon f = 20, WamplRule = 0.05, WamplInterv = 0.02, Wcovered = 0.01

EARMGA PopSize = 100, Neval = 100000, k = 2, Psel = 0.75, Pcro = 0.7, Pmut = 0.1, α = 0.01

GAR PopSize = 100, nItemset = 100, Neval = 100000, Psel= 0.25, Pcro = 0.7, Pmut = 0.1, ω = 0.4, Ψ= 0.7, µ= 0.5, minSup =
0.1, minConf = 0.8

GENAR PopSize = 100, Neval = 100000, Psel= 0.25, Pcro = 0.7, Pmut = 0.1, nRules = 30, FP = 0.7, AF = 0.2

QAR-CIP-NSGA-II PopSize = 100, Neval=50000, Pmut= 0.1, δ=2, α = 5%

MOPNAR Neval=100000, H=13, m=3, PopSize=Nm−1
H+m−1, T=10, δ=0.9, ηr=2, γ=2, Pmut= 0.1, α = 5%

Apriori minSup = 0.1, minConf = 0.8

Eclat minSup = 0.1, minConf = 0.8

NICGAR PopSize = 100, Neval=100000, Pmut= 0.1, ρ=3, NichMin = 0.5, EvMin = 0.85, α = 5%

4.1.2. Algorithms and parameters considered for comparison
In these experiments, we compare the proposed approach with ten other algorithms: Clearing [36, 35] and AS-

CGA [25] are classical NGAs (see subsection 2.1), which we have extended to mine PNQARs considering the same
fitness function, initial gene pool, code scheme, genetic operators and the process to determine when two individuals
will belong to the same niche (see subsection 3.1) as in our proposal; EARMGA [46], GENAR [33] and Alatasetal
are mono-objective evolutionary algorithms, in which Alatasetal enables the obtention of PNQARs and the other two
algorithms mine positive QARs; GAR [21] searches frequent itemsets and it is necessary to run an additional pro-
cedure to generate positive QARs; Apriori [42] and Eclat [48] extract positive rules whose support and confidence
are greater than a minimum support (minSup) and minimum confidence (minConf) given by the user; and QAR-CIP-
NSGA-II [32] and MOPNAR [31] are MOEAs to mine positive QARs and PNQARs, respectively. Notice that all
of these algorithms are available from the KEEL software tool [5] and a brief description of them can be found at
http://sci2s.ugr.es/NICGAR/.

The parameters of the analyzed algorithms are presented in Table 4. We have selected values for our proposal that
work well for the majority of the datasets and for the remaining methods the parameters were selected following the
instructions of the authors of each approach. Notice that Apriori, Eclat and GAR need a minSup and a minConf to
extract association rules. In order to facilitate comparisons, we have selected 0.1 and 0.8 for minSup and minConf,
respectively, which are standard common values that work well in most cases, instead of searching for specific values
for each one.

4.1.3. Statistical Analysis
In order to compare the obtained results, we have used nonparametric tests for multiple comparison to find the

best approach (for a detailed description of these tests, see http://sci2s.ugr.es/sicidm/). We have applied statistical
tests [15, 40] to the average results that the analyzed algorithms obtained for the interestingness measures CF, netconf,
yulesQ and lift, and the diversity measure (these results can be found on the web page associated with the paper at
http://sci2s.ugr.es/NICGAR/). Since the algorithms reach infinity in the majority of the cases, the conviction metric
has been not considered in this study. The mean values of the interestingness metrics are computed as a MeanS
function as follows:

• For the measures CF, netconf and yulesQ:

MeanS =

{
(| meanValue | / 2) i f meanValue ≤ 0
(meanValue / 2) + 0.5 otherwise

• For the measure lift:

MeanS =

{
1 − (0.5 / meanValue) i f meanValue > 1
0.5 − (meanValue / 2) i f 0 ≤ meanValue ≤ 1
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Table 5: Analysis of the performance depending on NichMin threshold with EvMin = 0.85

NichMin #R AvS up(σ) AvCon f (σ) AvLi f t(σ) AvConv AvCF (σ) AvNetCon f (σ) AvYulesQ(σ) AvAmp(σ) AvDiv(σ) %Tran(σ)

0.4 18.37 0.22 (0.04) 0.93 (0.01) 8.76 (3.02) ∞ 0.89 (0.03) 0.84 (0.02) 0.98 (0.01) 2.08 (0.02) 0.86 (0.02) 92.91 (4.56)
0.5 19.79 0.22 (0.03) 0.93 (0.01) 8.81 (3.12) ∞ 0.89 (0.03) 0.84 (0.02) 0.98 (0.01) 2.09 (0.03) 0.85 (0.02) 95.57 (3.01)
0.6 20.81 0.23 (0.04) 0.93 (0.02) 7.56 (3.02) ∞ 0.88 (0.03) 0.83 (0.03) 0.97 (0.01) 2.09 (0.02) 0.83 (0.02) 95.87 (4.58)

Table 6: Analysis of the performance depending on EvMin threshold with NichMin = 0.5

EvMin #R AvS up(σ) AvCon f (σ) AvLi f t(σ) AvConv AvCF (σ) AvNetCon f (σ) AvYulesQ(σ) AvAmp(σ) AvDiv(σ) %Tran(σ)

0.8 22.24 0.22 (0.03) 0.93 (0.01) 9.01 (3.91) ∞ 0.87 (0.03) 0.82 (0.02) 0.97 (0.01) 2.11 (0.03) 0.84 (0.02) 96.57 (2.42)
0.85 19.79 0.22 (0.03) 0.93 (0.01) 8.81 (3.12) ∞ 0.89 (0.03) 0.84 (0.02) 0.98 (0.01) 2.09 (0.03) 0.85 (0.02) 95.57 (3.01)
0.9 16 0.22 (0.02) 0.94 (0.02) 7.98 (2.73) ∞ 0.9 (0.02) 0.85 (0.02) 0.98 (0.01) 2.08 (0.02) 0.85 (0.04) 89.64 (4.82)

where meanValue is the corresponding metric average. MeanS ensures well-defined differences on the used metrics
since it provides values in [0,1], where independence is represented by zero, positive dependences are represented by
values higher than 0.5, and negative dependences are represented by values less than or equal to 0.5. Notice that low
values of negative dependence are represented by low values of MeanS , close to the value for independence, as in the
case of the interestingness measures (see subsection 2.2).

To analyze the results obtained in the comparison with the NGAs we have used a Wilcoxon’s Signed-Ranks test
[45] with a level of significance of 0.05. To compare the obtained results with the four mono-objective evolutionary
algorithms and the two MOEAs to extract QARs we have used the Friedman [14] test in order to find out whether
significant differences exist among all the mean values. Once Friedman’s test rejects the null hypothesis, we can
proceed with a post-hoc test in order to find the concrete pairwise comparisons which produce differences. In the
comparison with the four mono-objective evolutionary algorithms we apply the Holm’s test [20] to compare the control
algorithm (the one that obtains the best ranking) with the remaining methods. Moreover, we apply the Shaffer’s test
[39] to perform all pairwise comparisons with the two MOEAs to extract QARs. We will compute the adjusted p-value
(APV) associated with each comparison, which represents the lowest level of significance of a hypothesis that results
in a rejection. This value differs from the standard p-value in the sense that it determines univocally whether the null
hypothesis of equality is rejected at a significant level. This facilitates the comparison of the algorithms, as it is no
longer necessary to contrast each one with the α/i value of a standard statistical results table. Finally, we have also
used Wilcoxon’s Signed-Ranks test to compare statistically the results obtained with the classical algorithms.

4.2. Analysis of the influence of the NichMin threshold and EvMin threshold on NICGAR

In this subsection, we have been carried out several experiments to analyze the performance of our proposal
depending on the NichMin threshold and EvMin threshold. In order to make this analysis easier to interpret, we have
used three different values for the NichMin threshold (0.4, 0.5 and 0.6) and EvMin threshold (0.8, 0.85 and 0.9). Table 5
and Table 6 show the average and the standard deviation (shown in parentheses) of the results obtained, where #R
represents the number of the association rules obtained, AvS up, AvCon f , AvConv, AvCF , AvNetCon f and AvYule′ sQ are,
respectively, the average value for the measures support, confidence, lift, CF, netconf, and yule’sQ of the set of rules
generated. AvAmp represents the average of the number of attributes involved in the rules, AvDiv is the average value of
the diversity measure of the rules obtained, and %Tran is the percentage of examples of the database that are covered
by the rules generated. The value for the diversity measure represents the average of the mean value of the distOC

measure (see equation 7) of each rule with the rest of the generated rules. Notice that the value ∞ stands for the
maximum value for some measures (see subsection 2.2).

Taking into account the results shown in Table 5 we can highlight how the number of rules decreases when the
NichMin threshold decreases because a higher number of rules can reach the NichMin threshold and are included in
the niches created. This fact complicates the formation of new niches and, consequently, reduces the number of rules
generated. The knowledge obtained from the dataset will be very different since the rules must be very different to
belong to different niches. However, the coverage of the dataset decreases due to the formation of niches in specific
areas of the search space being more difficult.

On the other hand, the results shown in Table 6 highlight how the mean values of the interestingness measures
increase when the value of the EvMin threshold increases because the rules must present a higher quality to be added
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Table 7: Results of the average value of the measures for all datasets in the comparison with mono-objective evolutionary approaches

Algorithm #R AvS up(σ) AvCon f (σ) AvLi f t(σ) AvConv AvCF (σ) AvNetCon f (σ) AvYulesQ(σ) AvAmp(σ) AvDiv(σ) %Tran(σ)

Clearing 25.92 0.17 (0.07) 0.91 (0.04) 25.57 (16.21) ∞ 0.83 (0.08) 0.80 (0.06) 0.90 (0.05) 2.1 (0.09) 0.83 (0.05) 92.72 (9.06)
ASCGA 15.93 0.22 (0.05) 0.82 (0.05) 7.27 (6.45) ∞ 0.69 (0.09) 0.62 (0.09) 0.82 (0.07) 2.36 (0.03) 0.74 (0.08) 85.60 (10.93)
NICGAR 19.79 0.22 (0.03) 0.93 (0.01) 8.81 (3.12) ∞ 0.83 (0.02) 0.84 (0.02) 0.97 (0.01) 2.09 (0.03) 0.85 (0.02) 95.57 (3.01)

Table 8: Wilcoxon’s test (α = 0.05) on the different measures for the NGAs

Measure Algorithms R+ R− Hypothesis p − value

CF NICGAR vs. Clearing 291 60 Rejected 0.00241
NICGAR vs. ASCGA 371.5 6.5 Rejected <0.001

netconf NICGAR vs. Clearing 251.5 99.5 Rejected 0.05
NICGAR vs. ASCGA 373.5 4.5 Rejected <0.001

yulesQ NICGAR vs. Clearing 342.5 35.5 Rejected <0.001
NICGAR vs. ASCGA 375.5 2.5 Rejected <0.001

lift NICGAR vs. Clearing 38 340 Rejected for Clearing <0.001
NICGAR vs. ASCGA 254 124 Not Rejected 0.12

diversity NICGAR vs. Clearing 244.5 133.5 Not Rejected 0.18
NICGAR vs. ASCGA 376 2 Rejected <0.001

to the EP. However, the coverage of the dataset usually decreases due to the fact that, often we cannot mine very high
quality knowledge from all of the search space.

Therefore, we will use 0.5 for the NichMin threshold and 0.85 for the EvMin threshold for the rest of our experiments
because these values allow us to maintain a good trade-off between the number of rules, quality and coverage of the
dataset.

4.3. Comparison with other NGAs: Clearing and ASCGA

This section compares the performance of our algorithm with two NGAs: Clearing [36, 35] and ASCGA [25]. In
order to use these two algorithms in this way we have extended them to mine PNQARs considering the same coding
scheme, initial gene pool, fitness function and genetic operators as in our proposal. Furthermore, we have used the
same process to determine when two individuals will belong to the same niche (see subsection 3.1). Table 7 shows
the obtained results by the analyzed algorithms (the description of this table can be found in subsection 4.2). To
statistically compare the obtained results of the interesting measures, we have used a Wilcoxon’s Signed-Ranks test
[45] with a level of significance of 0.05. Table 8 shows the results obtained by this test.

Table 7 shows that all the NGAs analyzed allow a diverse and reduced set of association rules to be obtained.
However, our proposal obtains rules with a higher average coverage of the datasets than the rest of the analyzed
algorithms (in almost all the datasets more than 90%, see the associated web page at http://sci2s.ugr.es/NICGAR/),
providing us with interesting knowledge of the whole of the datasets. Moreover, the results of the statistical test
show that the null hypothesis is rejected for all the interestingness measures except for the lift measure, because this
measure is not bounded above and the analyzed methods obtain very high values for lift in some datasets. Finally, the
null hypothesis for the diversity measure is rejected with ASCGA but not with Clearing, as Clearing is an NGA that
encourages a high diversity in the search process, where only the best individuals of each niche will survive, and as
we mentioned before, it uses the same process as our proposal to determine when two individuals belong to the same
niche. Even so, NICGAR achieves a better ranking for this measure than Clearing.

Fig. 3 and Fig. 4 show the boxplot graphics for the results of the interestingness measures CF and netconf for
the rules obtained by NICGAR, respectively. We can see how the obtained rules present values for the interestingness
measures near to each other, obtaining low values for standard deviation in these measures. Moreover, we can see how
only 25% of the rules were unable to achieve values higher than 0.6 for CF and netconf measures (except for stulong)
and how all of them obtained positive values for these measures, which represents positive dependence between the
items of the rules.
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Figure 3: Obtained boxplots on all datasets considering the CF mea-
sure.

Figure 4: Obtained boxplots on all datasets considering the netconf
measure.

Table 9: Results of the average value of the measures for all datasets in the comparison with mono-objective evolutionary approaches

Algorithm #R AvS up(σ) AvCon f (σ) AvLi f t(σ) AvConv AvCF (σ) AvNetCon f (σ) AvYulesQ(σ) AvAmp(σ) AvDiv(σ) %Tran(σ)

EARMGA 94.97 0.35 (0.1) 1 (0) 1.02 (0.03) ∞ 0.05 (0.06) 0.01 (0.01) 0.03 (0.03) 2.01 (0.02) 0.58 (0.06) 99.31 (1.55)
GAR 59.51 0.58 (0.03) 0.88 (0.01) 1.4 (0.12) ∞ 0.4 (0.03) 0.33 (0.03) 0.57 (0.04) 2.03 (0.03) 0.23 (0.05) 84.32 (3.58)

GENAR 29.3 0.24 (0) 0.84 (0.01) 3.38 (0.07) ∞ 0.59 (0.01) 0.4 (0.01) 0.68 (0.01) 28.93 (0) 0.33 (0.01) 64.25 (1.3)
Alatasetal 24.95 0.27 (0.09) 0.63 (0) 10.85 (17.37) ∞ 0.33 (0.09) 0.14 (0.1) 0.24 (0.12) 3.66 (0.61) 0.15 (0.05) 47.36 (9.89)
NICGAR 19.79 0.22 (0.03) 0.93 (0.01) 8.81 (3.12) ∞ 0.89 (0.03) 0.84 (0.02) 0.98 (0.01) 2.09 (0.03) 0.85 (0.02) 95.57 (3.01)

Table 10: Friedman’s test (α = 0.05) on the different measures for the mono-objective evolutionary algorithms

CF netcon f yulesQ li f t diversity

Critical Value 11.07 11.07 11.07 11.07 11.07
Statistic (X2

F ) 56.57 80.21 82.10 54.30 82.46
p value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

4.4. Comparison with mono-objective evolutionary approaches for mining association rules

We have carried out several experiments to analyzes the usefulness of the proposed approach together with the
mono-objective evolutionary algorithms: EARMGA [46], GAR [21], GENAR [33] and Alatasetal [2], where Alatase-
tal mines PNQARs and the rest of the algorithms mine positive QARs. Table 9 shows the obtained results by the
analyzed algorithms (the description of this table can be found in subsection 4.2). The results presented in this table
show that our proposal obtains reduced sets of short rules (almost 20 rules on average) with a good average support,
presenting a good trade-off between specific and general rules, and avoiding the extraction of redundant rules that
provide us with similar information to the dataset. Moreover, these rules allow us to have information of the whole
search space, presenting a high coverage of the dataset. Notice that only EARMGA obtains a better average coverage
than our proposal but this method should be the worst when we compare the results obtained in the interestingness
measures.

Table 10 shows the Friedman statistics, and it relates them to the corresponding critical values for each distribution
by using the level of significance α = 0.05. The p-value obtained is also reported for this test. Given that the level of
significance is clearly greater than their associated critical values, there are significant differences among the observed
results with a level of significance α ≤ 0.05.

Table 11 shows the rankings (which are computed with the use of a Friedman test) of the different methods that
are considered in this study and the adjusted p-value obtained by the Holm’s post-hoc procedure. Notice that our
algorithm obtains the best ranking for all the measures. Moreover, we found very low adjusted p-values, pointing out
that significant difference can be detected between our proposal and the rest of the algorithms. Hence, NICGAR is the
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Table 11: Average Friedman rankings and adjusted p-values using Holm’s test, with NICGAR as the control algorithm

Measure Algorithms Friedman ranking Ad justed p − value

CF

EARMGA 4.42 0
Alatasetal 3.62 0.000001

GAR 3.05 0.000256
GENAR 2.48 0.012563
NICGAR 1.40 -

netconf

EARMGA 4.55 0
Alatasetal 4.03 0

GAR 2.68 0.000362
GENAR 2.64 0.000362
NICGAR 1.07 -

yule’sQ

EARMGA 4.59 0
Alatasetal 4.12 0

GAR 2.79 0.00043
GENAR 2.27 0.012563
NICGAR 1.20 -

lift

EARMGA 4.48 0
Alatasetal 3.46 0.000019

GAR 3.16 0.000256
GENAR 2.37 0.047757
NICGAR 1.51 -

diversity

Alatasetal 4.35 0
GAR 4.01 0

GENAR 3.40 0
EARMGA 2.22 0.004509
NICGAR 1 -

Figure 5: Obtained boxplots by the mono-objective evolutionary al-
gorithms on the dataset stock considering the CF measure

Figure 6: Obtained boxplots by the mono-objective evolutionary al-
gorithms on the dataset stock considering the netconf measure

best performing method in all the measures when compared with the remaining methods analyzed in this study. Notice
that NICGAR presents significant differences with Alatasetal for the measure lift even though Alatasetal obtains a be-
tter average value than NICGAR (see table 9) because, as we mentioned before, this measure is not bounded above
and Alatasetal obtains very high values for this measure in some datasets (obtaining high values for the standard
deviation).

The results of the interestingness measures CF and netconf for the obtained rules by the analyzed algorithms on
the dataset stock are presented in the boxplot graphics shown in Fig. 5 and Fig. 6, respectively. These boxplots show
that NICGAR obtains values of CF and netconf higher than the rest of the algorithms, and most of the values of the
rules are close to the best that this measure can achieve. Moreover, some of the rules obtained by EARMGA and
Alatasetal denote negative dependence or independence between the items considering these measures.
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Table 12: Results of the average value of the measures for all datasets in the comparison with classical algorithms

Algorithm #R AvS up(σ) AvCon f (σ) AvLi f t(σ) AvConv AvCF (σ) AvNetCon f (σ) AvYulesQ(σ) AvAmp(σ) AvDiv(σ) %Tran(σ)

Apriori 8345221.46 0.16 (0) 0.93 (0) 4.09 (0) ∞ 0.81 (0) 0.64 (0) 0.84 (0) 5.13 (0) 0.51 (0) 90.43 (0)
Eclat 8345221.46 0.16 (0) 0.93 (0) 4.09 (0) ∞ 0.81 (0) 0.64 (0) 0.84 (0) 5.13 (0) 0.51 (0) 90.43 (0)

NICGAR 19.79 0.22 (0.03) 0.93 (0.01) 8.81 (3.12) ∞ 0.89 (0.03) 0.84 (0.02) 0.98 (0.01) 2.09 (0.03) 0.85 (0.02) 95.57 (3.01)

Table 13: Wilcoxon’s test (α = 0.05) on the different measures for the classical algorithms

Measure Algorithms R+ R− Hypothesis p − value

CF NICGAR vs. Apriori 86 19 Rejected 0.003
NICGAR vs. Eclat 86 19 Rejected 0.003

netconf NICGAR vs. Apriori 100.5 19.5 Rejected 0.019
NICGAR vs. Eclat 100.5 19.5 Rejected 0.019

yule’sQ NICGAR vs. Apriori 95 25 Rejected 0.04
NICGAR vs. Eclat 95 25 Rejected 0.04

lift NICGAR vs. Apriori 74 46 Not Rejected ≥ 0.2
NICGAR vs. Eclat 74 46 Not Rejected ≥ 0.2

diversity NICGAR vs. Apriori 117 3 Rejected <0.001
NICGAR vs. Eclat 117 3 Rejected <0.001

Figure 7: Obtained boxplots by classical algorithms on the dataset stock considering the CF and netconf measures.

4.5. Comparison with classical algorithms: Apriori and Eclat
We analyze the usefulness of NICGAR together with two classical algorithms for mining positive association

rules, Apriori [42] and Eclat [48]. In order to compare with the classical methods Apriori and Eclat, the domains of
the quantitative attribute have to be partitioned. In this case, we do not have extra information to use algorithms based
on information theory or other concepts, hence, an usual discretization algorithm has been applied to partition the
domain in to 4 uniformly distributed intervals [27].

Table 12 shows the obtained results by the classical algorithms (the description of this table can be found in
subsection 4.2). This table shows only the average results obtained by Apriori and Eclat on 15 datasets due to the fact
that they cannot be run in all the datasets due to scalability problems. Notice that the values of the standard deviation
obtained by Apriori and Eclat are 0 because they are deterministic, performing only one run. In this case, we have
used a Wilcoxon’s Signed-Ranks test [45] with a level of significance of 0.05 to statistically compare the obtained
results with the analyzed methods for the interesting measures. Table 13 shows the results obtained by this test.

Analyzing the results presented in Table 12 we can see that NICGAR obtains the smallest rule sets and with the
best average coverage of the datasets. On the other hand, the results of the statistical test show that the null hypothesis
is rejected for all the measures analyzed except for the lift measure, even though NICGAR obtains better average lift
than the rest of the method. As we have previously commented, this measure is not bounded above and the classical
methods obtain very high values for lift in some datasets.

Fig. 7 presents a boxplot that represents the results of the interestingness measures CF and netconf on the dataset
stock for the obtained rules from Apriori, Eclat and NICGAR. We can see how NICGAR presents better values of CF
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Table 14: Results of the average value of the measures for all datasets in the comparison with MOEAs algorithms to mine QARs

Algorithm #R AvS up(σ) AvCon f (σ) AvLi f t(σ) AvConv AvCF (σ) AvNetCon f (σ) AvYulesQ(σ) AvAmp(σ) AvDiv(σ) %Tran(σ)

QAR-CIP-NSGA-II 149.36 0.14 (0.02) 0.94 (0.01) 450.06 (83.99) ∞ 0.92 (0.01) 0.79 (0.03) 0.91 (0.02) 2.91 (0.14) 0.81 (0.02) 93.07 (2.53)
MOPNAR 89.63 0.3 (0.04) 0.93 (0.03) 14.11 (3.55) ∞ 0.9 (0.03) 0.74 (0.04) 0.98 (0.01) 2.88 (0.19) 0.58 (0.06) 99.82 (0.31)
NICGAR 19.79 0.22 (0.03) 0.93 (0.01) 8.81 (3.12) ∞ 0.89 (0.03) 0.84 (0.02) 0.98 (0.01) 2.09 (0.03) 0.85 (0.02) 95.57 (3.01)

Table 15: Friedman’s test (α = 0.05) on the different measures for the MOEAs

Friedman Test

CF netcon f yulesQ li f t diversity

Critical Value 7.81 7.81 7.81 7.81 7.81
Statistic (X2

F ) 15.01 14.74 6.68 45.85 41.68
p value <0.0001 <0.0001 0.035 <0.0001 <0.0001

Table 16: Average Friedman rankings on the different measures for the MOEAs

Algorithms Rankings
CF netconf yule’sQ lift diversity

MOPNAR 2.11 2.55 1.64 2.18 3
QAR-CIP-NSGA-II 1.42 1.92 2.35 1 1.64
NICGAR 2.46 1.51 2 2.81 1.35

Table 17: Adjusted p-values obtained by the Shaffer Test

Measure i Algorithms Ad justed p − value

CF
1 QAR-CIP-NSGAII vs NICGAR 0.000416
2 QAR-CIP-NSGAII vs MOPNAR 0.011818
3 MOPNAR vs NICGAR 0.196085

netconf
1 NICGAR vs MOPNAR 0.000416
2 QAR-CIP-NSGAII vs MOPNAR 0.0207
3 NICGAR vs QAR-CIP-NSGAII 0.134417

yule’sQ
1 MOPNAR vs QAR-CIP-NSGAII 0.029165
2 NICGAR vs QAR-CIP-NSGAII 0.196085
3 MOPNAR vs NICGAR 0.196085

lift
1 QAR-CIP-NSGAII vs NICGAR 0
2 QAR-CIP-NSGAII vs MOPNAR 0.000013
3 MOPNAR vs NICGAR 0.0207

diversity
1 NICGAR vs MOPNAR 0
2 QAR-CIP-NSGAII vs MOPNAR 0.000001
3 NICGAR vs QAR-CIP-NSGAII 0.276303

and netconf than the classical algorithms, and values close to the best that these measures can achieve.

4.6. Comparison with multi-objective evolutionary approaches for mining association rules

We illustrate the behavior of NICGAR with respect to two recent MOEAs: QAR-CIP-NSGA-II [32] for mining
positive QARs and MOPNAR [32] for mining PNQARs. Table 14 shows the obtained results by the analyzed algo-
rithms (the description of this table can be found in subsection 4.2). Table 15 shows the statistical results obtained by
the Friedman test (the description of this table can be found in subsection 4.4), which show the significant differences
obtained among the observed results with a level of significance α ≤ 0.05. Moreover, Table 16 shows the rankings
(which are computed with the use of a Friedman test) of the different methods that are considered in this study and
Table 17 the adjusted p-value obtained by Shaffer’s post-hoc procedure. Analyzing the results shown in these tables,
we can draw the following conclusions:

• QAR-CIP-NSGA-II allows more specific rule sets to be mined than the rest of algorithms (with 0.14 on average
support) with very high values for the interestingness measures, presenting the best ranking of the Friedman test
for half of the quality measures analyzed in comparison with the rest of the algorithms. However, this algorithm
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Figure 8: Obtained boxplots on all the datasets considering the diver-
sity measure.

Figure 9: Obtained boxplots by all the algorithms on the dataset stock
considering the diversity measure.

obtains the largest rule sets and with the lowest average coverage of the datasets due to that most of its rules are
more specific.

• MOPNAR allows us to obtain reduced sets of PNQARs (almost half the amount of rules obtained by QAR-CIP-
NSGA-II), with the best average coverage of the datasets and low values of the standard deviation. Moreover,
the obtained rules by MOPNAR obtain good values for the interestingness measures on all the datasets that are
close to the obtained rules by the analyzed algorithms.

• NICGAR provides reduced sets of PNQARs (less than 20 rules on average) with the lowest average number of
attributes and a good average coverage of the datasets (higher than 95% on average). On the other hand, the
obtained rules show high values for the interestingness measures, obtaining the best average values for netconf
and yule’sQ and average values for CF and lift similar to the obtained rules by the analyzed algorithms (as
we mentioned before, lift measure is not bounded above and values higher than 3 are very significant for this
measure). Finally, NICGAR obtains the best ranking for the diversity measure, mining rule sets which provide
us with diverse information of the dataset.

The three analyzed algorithms allow us to obtain interestingness association rules, which will be used according to
the specific necessity of each user. The users can base their selection on the potentialities that each method provides,
with the most significant being the following:

• QAR-CIP-NSGA-II: more specific association rules with a very high quality.

• MOPNAR: reduced sets of interestingness PNQARs with the best coverage of the datasets.

• NICGAR: PNQARs sets with a high diversity, quality and a good coverage of the datasets.

Finally, we can highlight that NICGAR allows us to obtain reduced and diverse sets of rules that are easy to
understand, interesting and with a good coverage of the dataset.

4.7. The diversity of the set of rules obtained by some evolutionary approaches

In this section we analyze the diversity of the rule sets obtained by the analyzed methods. Fig. 8 shows a boxplot
that presents the values of the diversity measure (see subsection 4.2) for the rules obtained by NICGAR on all the
datasets. These figures show that all the rule sets obtained present a high level of diversity with values higher than
0.7 for more than 75% of rules on all datasets (except for the dataset quake). Fig. 9 shows a boxplot that presents
the values of the diversity measure for the rules obtained by the analyzed methods on the dataset stock. Moreover,
the obtained rules by NGAs provide more diverse knowledge than the rest of the methods. Notice that the classical
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Table 18: Obtained rules by some evolutionary approaches from stock dataset
Algorithm RuleS et S up CF Netcon f Diversity

NICGAR R1: If Company4 is not [47.37, 59.87] then Company7 is not [74, 85.87] 0.27 0.95 0.93 0.87
R2: If Company1 is not [31.89, 61.5] then Company2 is [49.0, 55.75] 0.33 0.97 0.93 0.84
R3: If Company2 is [22.12, 36] then Company5 is [30.12551.87] 0.24 0.99 0.91 0.86

Alatasetal R1: If Company5 is [90.37, 93] then Company1 is not [31.89, 61.5] 0.02 1 0.66 0
R2: If Company5 is [93, 93] then Company1 is not [31.89, 61.5] 0.001 1 0.65 0
R3: If Company5 is [90.375, 93.0] and Company4 is
[44.37, 45.87] then Company1 is not [31.89, 61.5] 0.02 1 0.66 0

GAR R1: If Company3 is [19.24, 22.37] then Company2 is [49.34, 59.14] 0.39 0.69 0.67 0
R2: If Company2 is [49.34, 59.14] then Company3 is [19.24, 22.37] 0.39 0.64 0.66 0

methods Apriori and Eclat present a wide range of values of diversity (0.2 to 1) due to many of the extracted rules
being redundant.

Table 18 shows some of the rules obtained by our proposal from one of the 5 runs performed in the dataset stock,
where RuleS et is the generated rule, S up is the support of the rules, CF is the value for the CF measure of the rules,
Netcon f is the value for the netconf measure of the rules and Diversity is the value of the diversity of the rule. We
can see that the rules provide us with different information about the problem with values higher than 0.85 for almost
all the rules. This table also shows some of the rules obtained by two of the analyzed methods: Alatasetal and GAR.
Analyzing these rules, we can find some problems:

• The rules obtained by Alatasetal show how R2 is subsumed by the rule R1, where both of them involve the same
attributes, R1 covers all the examples covered by R2, and moreover R1 achieves better values for the quality
measures. In cases such as these, rules like R2 should be removed.

• The rules R1 and R3 obtained by Alatasetal show how adding more attributes to the antecedent of the rule does
not affect the prediction of the consequent. Rules like R3 do not improve the quality of the information provided
and are more difficult to understand for the user, since they involve more attributes in the antecedent. Thus, this
kind of rule should be removed in order to reduce the number of rules provided to the user.

• The rules R1 and R2 obtained by GAR are the same rule but with the antecedent and consequent exchanged.
In this case, if there are significant differences for the interestingness measures between the rules then only the
best rule should be provided to the user.

4.8. Analysis of scalability and complexity

We present some experiments that have been carried out to analyze the scalability of the algorithms in the datasets
Movement Libras and Fars, which present the highest number of attributes and examples, respectively, of the datasets
used for the experiments (see Table 3). In order to perform the experimental study, we have used an Intel Core i7,
2.80 GHz CPU with 12 Gb of memory and running Linux. The average runtime expended by the analyzed algorithms
when the number of attributes increases on the dataset Movement Libras is shown in Table 19 and the average runtime
expended by them when the number of examples increases on the dataset Fars is shown in Table 20. Fig. 10 and
Fig. 11 show the relationship between the runtime and the number of attributes and examples, respectively. Moreover,
the average runtime expended by the analyzed algorithms on all the datasets is shown in Table 21. Because of the
scalability problems presented by Apriori and Eclat, these tables show only the runtime expended on the datasets
where they could be run and the figures do not show these results due to the fact that the values exceeds more than
94000 seconds.

Analyzing the results shown in these tables and figures, we can see that most of the methods increase their runtime
almost linearly in proportion to the increase in the number of attributes and examples, excepting Apriori, Eclat and
GAR which increase exponentially. It should be noted that GAR obtains runtime values far greater than the rest
of algorithms as it requires an additional process to mine the positive QARs. Fig. 11 shows few results pertaining to
GAR, since in all cases the runtime is higher than 8000 seconds. Furthermore, we can highlight how the increase in the
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Table 19: Expended runtime (seconds) by all the algorithms on the dataset Movement Libras with the increase of the number of attributes
Number of Attributes

Algorithms 18 36 54 72 91

Clearing 4 5 6 7 10
ASCGA 13 7 7 9 13
EARMGA 6 4 3 3 4
GAR 81 31 46 51 67
GENAR 2 1 2 2 2
Alatasetal 14 4 4 3 3
Apriori 94200 106482 128324 - -
Eclat 94200 99940 119427 - -
QAR-CIP-NSGA-II 3 4 6 7 9
MOPNAR 3 4 6 7 9
NICGAR 10 8 9 19 14

Table 20: Expended runtime (seconds) by all the algorithms on the dataset Fars with the increase of the number of examples
Number of Examples

Algorithms 20% 40% 60% 80% 100%

Clearing 224 386 565 958 1178
ASCGA 263 395 462 1240 1663
EARMGA 270 553 624 1078 1438
GAR 6872 17621 23619 36597 45986
GENAR 64 139 131 174 289
Alatasetal 119 345 634 672 796
QAR-CIP-NSGA-II 254 358 549 749 1163
MOPNAR 215 398 799 833 1262
Apriori - - - - -
Eclat - - - - -
NICGAR 259 543 834 1097 1657
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Figure 10: Relationship between the expended runtime by the evolutionary algorithms and the number of attributes on the dataset Movement Libras
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Figure 11: Relationship between the expended runtime by the evolutionary algorithms and the number of examples on the dataset Fars
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Table 21: Expended runtime (seconds) on all the datasets
Datasets Clearing ASCGA Alatasetal EARMGA GAR GENAR QAR-CIP-NSGA-II MOPNAR Apriori Eclat NICGAR

ba 3 6 4 8 46 1 2 3 28 23 7
bas 1 1 1 1 14 0 0 1 5 4 3
bo 1 1 1 1 8 0 0 0 5 4 2
co 156 355 28 110 3094 48 189 384 - - 171
hh 132 553 326 208 4858 119 129 226 12652 8065 173
fa 3195 2864 553 1772 30901 160 710 899 - - 1036
io 5 10 2 5 77 2 3 6 165432 110001 8
le 123 175 70 231 4208 76 195 202 3486 3032 167
ma 100 296 75 199 3446 68 77 129 28360 15072 133
mo 9 20 3 5 71 2 7 15 - - 15
op 82 210 14 64 1370 18 95 164 - - 125
pe 72 198 37 142 1407 32 130 108 511 473 114
po 1 2 1 1 14 0 1 1 181 178 3
qu 9 22 9 24 225 6 8 11 0 0 12
sa 54 162 13 63 1498 63 90 114 - - 78
se 15 34 11 28 315 7 18 26 - - 24
so 4 9 2 3 44 1 4 7 - - 8
sp 41 157 13 45 477 56 98 128 - - 57
spe 4 9 1 2 73 1 9 7 - - 8
st 4 13 4 9 52 2 4 6 23 20 6
stu 6 13 7 14 305 4 6 7 102 93 10
te 51 107 15 54 684 27 65 103 - - 64
th 50 169 147 72 1624 37 79 91 - - 49
ve 6 10 2 5 140 2 10 8 198338 172034 11
wd 7 12 2 6 139 1 5 9 - - 9
wi 2 3 3 2 25 0 1 2 10 9 4
wo 6 13 9 11 92 1 5 8 34 23 10

number of examples and attributes affects the evolutionary algorithms less than classical association rules extraction
algorithms. Finally, notice how it is the number of examples rather than the number of attributes that most affects the
runtime expanded by all the algorithms.

5. Conclusion

In this paper, we have proposed NICGAR, a new NGA for mining with low runtime a diverse set of interesting
PNQARs. To do so, NICGAR performs a condition selection and an evolutionary learning of the intervals of attributes
of the rules considering a punishment mechanism, an EP and restarting process to locate and preserve multiple global
solutions in the population. This proposal also includes two threshold values that allow the user to adjust the diversity
and quality of the obtained PNQARs. Moreover, we have proposed a new similarity measure between rules based on
two of their properties: the examples covered and the common attributes of the rules.

The results obtained over 27 real-world datasets have shown how NICGAR enables us to extract rule sets with a
good trade off between the quality and diversity of the knowledge obtained of the whole of the datasets, presenting a
high percentage of coverage of the datasets. Moreover, since we usually obtain few attributes in the rule sets derived
from the proposed approach, the obtained rules should be simpler to comprehend. It should be noted that the proposed
approach expends a reasonable amount of time in all the datasets and presents good scalability when the size of the
problem increases.
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