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Fuzzy Rule-Based Explainer Systems for Deep
Neural Networks: From Local Explainability

to Global Understanding
Fatemeh Aghaeipoor , Mohammad Sabokrou , and Alberto Fernández

Abstract—Explainability of deep neural networks has been re-
ceiving increasing attention with regard to auditability and trust-
worthiness purposes. Of the various post-hoc explainability ap-
proaches, rule extraction methods assist to understand the logic
that underpins their functioning. Whereas the rule-based solutions
are directly managed and understood by practitioners, the use of
intervals or crisp values in the antecedents that rely on numerical
values might not be intuitive enough. In this case, the benefits of a
linguistic representation based on fuzzy sets/rules are straightfor-
ward, as these semantically meaningful components ease the model
understanding. This article proposes fuzzy rule-based explainer
systems for deep neural networks. The algorithm learns a compact
yet accurate set of fuzzy rules based on features’ importance (i.e.,
attribution values) distilled from the trained networks. These sys-
tems can be used for both local and global explainability purposes.
The evaluation results of different applications revealed that the
fuzzy explainers maintained the fidelity and accuracy of the original
deep neural networks while implying lower complexity and better
comprehensibility.

Index Terms—Attribution methods, deep neural network (DNN),
EXplainable artificial intelligence (XAI), features importance,
fuzzy rule-based systems, trustworthy.

I. INTRODUCTION

EXPLAINABLE Artificial Intelligence (XAI) is the emerg-
ing resurgence of AI that attempts to fulfill the demand

of understanding intelligent models [1]. This demand is even
becoming more crucial in the applications such as healthcare
or criminal justice, where the model’s outcome may directly
influence the mental or physical health of human beings [2],
[3]. In this context, deep neural networks (DNNs), due to their
remarkable feats in many of these sensitive areas, are greatly
facing different challenges [4], [5]. DNNs are usually considered
black-box models and they are often unable to comprehensibly
explain how, why, and when they make a particular prediction
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and whether their high accuracy can be relied upon or not [6].
This information is critical to ensuring transparency, trustwor-
thiness, and accountability of the intelligent methods and mat-
ters from both viewpoints of expert and especially nonexpert
users [7].

Among different explainability strategies of DNN, we can
mention post-hoc explanations, which try to explain the existing
models without sacrificing their accuracy [8]. These methods
take an already trained model and process it subsequently to
uncover its underlying decision-making logic. Recent efforts
in this area can generally be categorized into two groups [4]:
1) attribution methods, and 2) sequential decision processes.
While the former lies in the methods that basically explain
the model’s prediction by discovering which features influence
the predictions most, the latter focuses on explaining the logic
of making the decisions. Attribution methods, such as Lime
and SHAP [9], attribute an importance score to each feature
of every single data example, which is why they are referred
to as attribution algorithms. Local surrogate models, occlusion
analysis, and gradient-based techniques are some of the most
well-known approaches in this area [10].

Attribution methods are able to address some application
requirements. These methods, especially the gradient-based
ones, can effectively be used to explain image data. They are
utilized to provide an understandable visualization of the most
significant parts of an image in the prediction. In addition, they
can be used to analyze decisions, contrast for the absence of
bias, and determine the importance of the different features.
Despite these benefits and the wide range of attribution methods
proposed to date, these methods are unable to account for the
model’s decision-making process; thereby some recent studies
have concluded that they do not necessarily result in a better
grasp of the model’s behavior [11], [12]. Moreover, they are not
able to provide a straightforward comprehension of the tabular
data, unlike their visual perception of the pixel-based data. This
motivated us to consider ways to leverage the knowledge of these
methods for tabular data, robustly and meaningfully.

By way of example, saliency maps, which denote how in-
teresting a particular part of an image is, make no attempt
to explain misclassifications and the reason(s) behind them.
They may also be fragile and vulnerable to adversarial attacks.
Moreover, from the explainability point of view, these saliency
maps are totally local methods offering no global views over
the model’s functionality. Indeed, features that are important in
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the local context may have little relevance to the global setting.
Nevertheless, their full knowledge may guide us through a global
understanding of the model.

An alternative to further explore the system behaviors is the
sequential decision methods, which are dissecting predictions
into semantically meaningful components, as carried out in the
rule-based systems [13], [14]. These models assist to express the
input–output relations in the form of convenient IF–THEN rules.
To this end, there are different rule extraction techniques aiming
at creating supportive or surrogate rule-based models over the
trained artificial neural networks (ANNs) in general or DNN in
particular [15]. These techniques are generally categorized into
three groups:

1) decompositional methods, which process the networks
neuron by neuron;

2) pedagogical techniques that treat the entire network as a
black-box model; and

3) the eclectic ones which fuse both strategies [16].
The use of rule extractors can be a good approach to boost XAI

in DNN models. However, in order to strengthen the comprehen-
sibility of these rule-based surrogate models, we propose the use
of fuzzy linguistic representation, which models the semantic
knowledge of the input space in a way similar to human cogni-
tion [17]. Fuzzy rules, as the key elements of fuzzy rule-based
systems (FRBSs), are constructed using fuzzy linguistic labels
inspired by the human language. In addition, fuzzy variables
provide smoother and wider coverage of the case studies. These
characteristics make FRBSs as flexible and adaptable solutions
to be applied surrogately for the DNNs’ explanations. Indeed,
the simple and transparent inner mechanism of the FRBSs can
supplementarily support understanding of the decision-making
process of the DNNs [18], [19].

Despite the aforementioned good properties of fuzzy rules
and the potential of FRBSs for XAI, they are not very com-
monly used in the general scope of machine learning (ML).
Specifically, there are a few works on the ANNs’ explainability
using fuzzy rules [20] and, to the best of our knowledge, no
work for the DNNs. While the fusion of the highly informative
features’ attribution into FRBSs could assist in providing post-
hoc explanation methods, which are neither as computational
as decompositional methods nor as unconcerned as pedagogical
ones with the DNNs’ latent space. In this way, we are able to
provide well-performing explanation methods for the DNNs in
any scale/type without computation overhead.

In this study, we propose to directly exploit features’ attri-
bution values and distill them into fuzzy rule-based classifiers,
resulting in what we called fuzzy rule-based explainer systems
(FRBESs) for DNNs. These systems are able to imitate the
performance of their corresponding DNNs and are generated
in two main stages:

1) The operation relating to training the DNNs and obtaining
the most important local features.

2) The procedure associated with creating fuzzy classifiers
and optimizing them (yet preserving the fidelity of the
original networks) to ensure low complexity systems act-
ing in two different directions: 1) to limit the length
of the antecedents of the rules, and 2) to get rid of

redundant rules and promote those that truly cover the
problem space.

To show the good behavior and robustness of the proposed
FRBESs, they were constructed using three different attribution
methods, as well as two aggregated versions of them. They were
individually evaluated using six classification case studies in
terms of interpretability, accuracy, and fidelity to the original
networks. They were also validated by comparison to the basic
FRBSs and the original DNNs. In addition, several statistical
tests were conducted in order to bolster the findings derived from
the analysis. Robustness of the proposed FRBESs against some
adversarial attacks was evaluated as well. The obtained results,
especially in terms of the models’ fidelity, revealed that they can
effectively be applied as post-hoc explainers of the DNNs and
make their black-box functionality more transparent.

It is worth mentioning that, although the DNNs are widely
used in the case of image and text data, they have also shown
great capabilities in heterogeneous tabular and nonimage data.
Taking this into account, and for the sake of consolidating this
work scenario in ML and DNNs, the case studies of FRBESs
will be focused on in this context.

The remainder of this article is structured as follows. Section II
gives a general review of the fundamental concepts and related
works necessary to support the proposed FRBESs. Section III
introduces the proposed method and details the generation pro-
cess of the components. Section IV includes the experimental
study, results, and discussions. Finally, Section V concludes this
study.

II. PRELIMINARIES

In this section, the key concepts and principles that benefit
understanding of the proposed algorithm are introduced. First,
the fundamentals of fuzzy linguistic models are presented, and
these systems are analyzed in terms of how they can potentially
support explainable systems. Then, the attribution algorithms
that are the basis to obtain explanation systems, and in particular
the ones employed in this study are described. Finally, a review
of some related works is presented in order to delve deeper into
the available methodologies.

A. Fuzzy Linguistic Models

1) Components and Structure: Fuzzy rule-based classifica-
tion systems, FRBCSs, as their name indicates, are built on fuzzy
IF–THEN rules. In a typical FRBCS, the task of classification
is accomplished by the interaction of two main components,
namely a knowledge base (KB) and an inference module. The
KB contains a rule base (RB) and a data base (DB) that are made
of fuzzy rules and fuzzy sets, respectively. On the other hand,
there is the inference module that includes a fuzzy reasoning
method and the required fuzzification and/or defuzzification
interfaces.

Suppose that we have dataset X with n data samples, m input
variables, and l class labels. Each data sample is denoted asXi =
(x1

i , x
2
i , . . ., x

m
i ), in which i = 1, . . ., n. This example belongs

to the class label yi =∈ C = {c1, . . ., cl}. This dataset is utilized
by different rule learning strategies to generate fuzzy rules [21],
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[22], [23]. These rules are typically created as the following
format:

Rulej : If x
1 isA1

j and . . ., andxm isAm
j

Then class is cj : RWj (1)

where Ak
j is the corresponding linguistic label of the kth input

variable (k = 1, 2, . . .,m), and cj and RWj are the class label
and the rule weight, respectively. Alternatively, this rule can
be interpreted as a fuzzy association rule such as the following
structure:

Rj : Aj → cj : RWj ; Aj =
{
A1

j , . . ., A
m
j

}
(2)

where Aj is the set of antecedents and cj is the consequence part
of this rule. In this study, Mamdani fuzzy rules, which employ
linguistic labels for both antecedent and consequence parts, are
taken into account. This type of rule is more intuitive and inter-
pretable, resulting in better fulfilling the XAI requirements [24]

RWj =
matchClassj −matchNotClassj
matchClassj + matchNotClassj

(3)

where match Classj aggregates the matching degree of all the
examples that are in the same class of rule j and it is obtained
as

matchClassj =
∑
xi∈cj

μAj
(xi)× cost(yi). (4)

Similarly, for inconsistent examples whose class labels are not
matched with rule j, matchNotClassj is calculated as follows:

matchNotClassj =
∑
xi �∈cj

μAj
(xi)× cost(yi) (5)

in which cost(yi) is the misclassification cost associated with
the class label yi, and it is calculated by counting the frequency
of the class labels (σ) as follows:

cost(yi) =
max( {σ(ck) | ck ∈ C} )

σ(yi)
. (6)

2) Fuzzy Linguistic Models to Improve XAI: In light of XAI
and its human-centered nature, fuzzy modeling has open doors to
greatly benefit from. They provide natural knowledge represen-
tation by employing linguistic and human-like terms. This assists
to enhance the semantic knowledge of the models and facilitates
human interactions. In particular, FRBCSs demonstrate their
inference logic by way of simple and cognitively understandable
If–Then rules and consequently provide direct insight into the
prediction process [24].

In the context of XAI, further emphasis must be placed on the
compactness of the RB and the semantic comprehensibility of
the DB. Indeed, two main kinds of approaches are available
in the literature to take into account the interpretability of
linguistic FRBSs [24], [25]: Complexity-based interpretability
and semantics-based interpretability. The former is devoted to
decreasing the complexity of the obtained model, i.e., a few rules
with good coverage and high level of confidence are desirable.
Furthermore, rules with long antecedent parts are difficult to be

handled by human cognition and they may cause interpretability
issues. Conversely, the semantics-based approaches are devoted
to preserving the semantics and the comprehensibility associated
with the DB, in which a small number of linguistic fuzzy
sets with homogeneous distribution are more meaningful and
straightforward to be interacted with [17]. Given these state-
ments, the explainability potentials of fuzzy systems can be
leveraged to construct simple and transparent models, even to be
accompanied by the other black-box models such as the DNNs
and alleviate their transparency limitations.

B. Attribution Algorithms

In respect of covering scope, explanation methods are classi-
fied into two groups: global and local [1]. The former provides
insight into how a model functions as a whole, that is, they ex-
plain the model’s behavior for a range of input data. Conversely,
local methods are trying to explain individual decisions made
by a classifier for every single data example, e.g., in a medi-
cal scenario, imagine understanding of the model’s prediction
for a certain patient, where the doctor needs to make reliable
judgments based on the outputs of the model.

Different local explainers are available in the literature [4].
They typically work by processing features-based data. Among
them, attribution algorithms are designed to explore how much
each input feature contributes to the model prediction, i.e., the
input examples are assigned featurewise scores (attribution val-
ues), either positive or negative values. In this context, the pos-
itive values indicate that the corresponding features improved
the class probability of that given output, whereas the negative
values show that those features deteriorated the output class
probability [26].

To compute the attribution values in ANNs, different strate-
gies are applied. For instance, perturbation-based methods re-
move, mask, or alert the input features and then run a forward
pass on the newly obtained data and measure the differences
with the original output. In this way, the importance of those
manipulated features is revealed. On the other hand, there are
backpropagation-based methods, which compute the attribu-
tion values in a single forward and backward pass through
the network. Sometimes, these methods are referred to as the
gradient-based ones [27].

Among backpropagation-based methods, we can mention in-
tegrated gradients [28], DeepLIFT [29], and gradient SHAP [9]
as some of the best-performing ones. In the former, gradients are
computed with respect to the inputs and then integrated along
the path from a given baseline to an input. DeepLIFT is one
of the most efficient and noncostly attribution methods, which,
instead of gradients, computes the differences with respect to a
reference data point. This makes information can be propagated
even when activation saturation happens and the gradients are
zero. As a result of this as well as differentiating between
positive and negative contributions, DeepLIFT is capable of
uncovering dependencies that other methods do not recognize.
Gradient SHAP is also a gradient-based method that computes
SHAP values, which are based on Shapley values proposed in
cooperative game theory.
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C. Related Works

Among different rule extraction algorithms from ANNs,
DeepRED [30] was one of the earliest that focused on DNNs with
several hidden layers. This method decompositionally processes
a network and generates intermediate rules for every single
layer. In the second step, the rules are substituted backward
to demonstrate the networks’ behavior from inputs to outputs.
This method was later modified in REM-D [31] by merging
the rules incrementally and employing C5.0 as the intermediate
rule extraction strategy, leading to a more accurate rule set and a
more efficient algorithm in terms of time and memory. In both
of these methods, the substitution step was accomplished in a
termwise manner, resulting in an exponential postprocessing
substitution step. In a quite recent contribution, ECLAIRE [32]
proposes a clausewise substitution and consequently a polyno-
mial rule extraction method from DNNs. Despite these efforts,
the decompositional nature of these algorithms and processing
the output of every single neuron cause some serious challenges
such as excessive memory usage, a large set of rules, and high
running times, especially in the case of big datasets and huge
networks. These issues inspired the authors to wonder whether
we can take advantage of the neurons’ outputs indirectly, rather
than going through them one by one e.g., utilizing the features’
importance obtained in a single backward or forward pass using
the neurons’ outputs.

Another group of rule extraction methods is related to the
fuzzy-based ones [20], which are in a very fewer range. They
mostly focus on shallow networks. For instance, Tan et al.
[18] proposed extraction of rules from a two-layer feed-forward
neural network and Jin et al. [33] proposed an algorithm to
extract fuzzy rules from the trained radial basis function (RBF)
networks. In another work, an approach was developed in order
to the fuzzy discretization of continuous input parameters and
then extract the most dominant fuzzy rules from the trained
binary single-layer neural networks [34]. That study took ad-
vantage of an adaptive weight-sharing algorithm and a neural
network regularization technique. In [35], the antecedent parts
of the fuzzy rules were created using the similarity of the input
data and the networks’ weight vectors. In this way, the fuzzy
models were able to better uncover hidden knowledge of the
networks. Even with these works, to the best of our knowledge,
it is surprising that this field of study comprises so little research
yet, especially for the DNNs. This can be probably due to the
lack of knowledge of fuzzy from the general ML community.

III. FRBESS: FUZZY RULE-BASED EXPLAINER SYSTEMS FOR

DNNS

FRBESs are simpler and more manageable models having
similar predictive performance to surrogately explain the DNNs
functionality. These systems are built taking advantage of an
already trained DNN rather than from scratch. Indeed, they
utilize the trained networks to find out the most informative
features, getting rid of usually expensive and nonprecise feature
selection operations in conventional fuzzy modeling. To do so,
the working procedure of creating FRBESs is composed of two
main stages: one to create, configure, train, and fine-tune the

DNNs (Section III-A); and the other to extract and optimize the
fuzzy classifiers based on those trained DNNs (Section III-B).
In view of the fact that the whole of this procedure is devel-
oped to satisfy the priorities of XAI, it also strives to keep the
surrogate fuzzy classifiers as compact as possible, especially in
terms of complexity at the level of DB and RB, as discussed
in Section II-A. Algorithm 1 shows the details of the FRBESs
generation, which is described in the following.

A. Stage 1: Training DNN and Obtaining Features Importance

Considering the general assumption of Section II-A, a DNN
fθ is trained on dataset X and for each input sample Xi,
fθ predicts the probability distribution of each class label as
fθ(Xi) = (pc1i , pc2i , . . ., pcli ). Then, the final class is predicted
as

ŷi = argmaxck∈C ( pcki ) . (7)

In order to create a compact and efficient FRBES having
short antecedent rules, we must reduce dimensionality of the
RB by considering the subset of the most important features.
For this purpose, we can make a great use of fθ. Indeed, the
knowledge of fθ is exploited using the attribution algorithms
and the importance degrees (attribution values) are assigned
to the input features, i.e., as line 1 in Algorithm 1 shows, the
value of Features’ Importance is calculated for every single
dimension of each example. These values will be the basis for
the establishment of the FRBESs in the next stage.

B. Stage 2: Establishment of the FRBESs

In order to construct a comprehensive linguistic FRBS, two
fundamental components of the systems, DB and RB, must be
well defined. DB contains parameters of membership functions
(MFs) to transform crisp values into fuzzy degrees and RB
includes fuzzy linguistic If–Then rules to make inferences. In
the following, the creating procedure of these two components
as well as the output prediction process are described.

1) Generating DB: In this framework, triangular MFs and
uniform fuzzy partitioning1 are employed to fuzzify the input
values. Indeed, a set of homogeneous fuzzy labels is defined on
the domain of each variable of dataset X . That way, variable
Xf , which is in the range of U = [af , bf ], has NS(Xf ) uniform
fuzzy sets, in whichNS(.) counts the number of fuzzy sets. Fig. 1
illustrates an example of this distribution with NS(Xf ) = 3.

2) Generating RB: The process of creating RB follows a
standard learning procedure from examples. Specifically, it starts
with developing initial rules that are then optimized to promote
the interpretability perspectives of the system as well as the
predictive performance of the model. This process is conducted
through the three steps of generating initial candidate rules,
pruning redundant rules, and selecting best rules, which are
detailed in what follows.

Generating Initial Candidate Rules: The initial RB includes
several candidate rules, which may potentially perform well

1The fuzzy partitioning methodology is considered linguistic, that is, all rules
share the same fuzzy partitions for all variables [24].
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Algorithm 1: Fuzzy Rule-Based Explainer Systems
(FRBESs) for DNNs.

Input:
DNN fθ, Xn×m, C = {c1, c2, . . ., cl}, maxLen, α :
Xi = (x1

i , x
2
i , . . ., x

m
i ), i = 1, 2, .., n

Output : FRBES (DB, RB)
1: Apply attribution algorithm on fθ(X) and obtain

FIX : FIXi
= (FIx1

i
, F Ix2

i
, . . ., F Ixm

i
), i =

1, 2, .., n
2: Build DB on top of X
/* Create initial rule set */

3: Initialize RB = ∅
4: for i← 1 to n do
5: for k ← 1 to maxLen do
6: X ′i = {(x′i1, x′i2, . . ., x′ik) | x′i ∈ Xi andFIx′i

1 ≥
FIx′i

2 ≥ . . . ≥ FIx′i
k . . . ≥ FIx′i

m}
7: Ri,k = CHI(X ′i,DB) with PCF-CS as RWRi,k

8: RB = RB ∪ {Ri,k}
9: end for

10: end for
11: Resolve rules’ conflict in RB
12: RB Initial = {Ri ∈ RB | RWRi

> 0 }
/* Prune redundant rules */

13: RB Pruned = {Rj ∈ RB Initial | �Ri ∈ RB Initial : Ai ⊂
Aj and ci = cj and Conf(Ri) ≥ Conf(Rj)}

/* Select best rules */
14: RBck = Sort_and_Select( {Ri ∈ RBPruned | ci =

ck} , α ) : ∀ck ∈ C
15: RBFinal = RBc1 ∪ RBc2 ∪ . . . ∪ RBcl

16: return FRBES (DB, RBFinal)

Fig. 1. Fuzzy partitioning of variable Xf , where U = [0, 1].

considering all the data examples. To generate these rules,
an adaptation of Chi et al.’s algorithm [22] is employed and
fuzzy rules are built from the examples. However, unlike the
conventional fuzzy algorithms, the rules are not built on top of
all the input dimensions and they are created using the most
fruitful features learned with the help of the DNN.

Chi algorithm is a fast rule learning approach that generates
one fuzzy rule per example. It assigns antecedent labels using
variables having maximum membership values. Indeed, after
fuzzifying input values, the top k � m features of every sin-
gle example are identified based on the attribution values and
then, the Chi algorithm is applied to make the corresponding
rules and add them to the initial RB, i.e., for data example

X ′i = (x′i
1, x′i

2, . . ., x′i
k) with target class yi = ci (see line 6 in

Algorithm 1), fuzzy rule Ri,k is generated as follows:

Ri,k : Ai,k → ci : RW i,k ; Ai,k =
{
A1

i , . . ., A
k
i

}
(8)

where Ai,k is the antecedent set of this rule and ci is its
consequence. This rule is exactly according to the original rule
structure (2), in which the absent features2 are marked as “don’
care” linguistic labels, meaning that the classifier disregards
those dimensions they pertain to. This rule has weight RW i,k,
which is calculated with the method of penalized cost-sensitive
certainty factor (PCF-CS), as (3).

Regarding the value of k, as lines 4-10 Algorithm 1 indicate,
different combinations of top features (for each certain data
example) are taken into account, ensuring having variant-length
rules as well as not losing informative relations. Number of
these combinations is specified using maxLen, which is a
hyperparameter and determines the maximum length of the
(initial) rule’s antecedents. SettingmaxLen to the proper values
is a case-dependent task and results in creating rules that are
sufficiently representative.

Up to this step, we may have an RB with some possible
conflicting rules, which have the same antecedent parts but
different consequences. To resolve these conflicts, the rules must
be evaluated to find out how strong they are with respect to
their class labels. This task is straightforwardly accomplished
using the RWs, i.e., that rule with the highest RW is kept in the
candidate RB, and the others are removed.

The last modification before RB optimization is removing
rules with nonpositive RWs. These rules may be destructive
for their corresponding class labels in the whole dataset, as the
contribution of inconsistent examples (examples whose class
labels are not as the same as this particular rule) is higher than
the consistent ones.

From the interpretability perspective of fuzzy systems, more
compact RBs having short antecedent and minimum number
of rules are desirable [24]. In this framework, the former was
attained considering the aforementioned maxLen parameter,
and the latter is achieved through the two following optimization
tasks.

Pruning Redundant Rules: In the initial rule learning process,
we may face the case of covering rules, which are defined as
rules that exclusively contain some antecedent part of another
rule. These cases may happen for two reasons: 1) we considered
variant-length combinations of top features for every single
example, and 2) two different examples may have common
top features. These rules, either the covered or the covering
ones, may be redundant in the rule set and should be removed.
Toward this end, in a pair of covering and covered rules, the
most confident one is recognized by the measure of (fuzzy)
confidence and chosen to remain, but the other to remove. In this
context, the confidence degree of the jth rule is calculated by
taking advantage of the previously computed matching degrees
as follows:

Conf(Rj) =
matchClassj

matchClassj + matchNotClassj
(9)

2Features that have lower importance degrees and are not present in X ′.
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where matchClassj and matchNotClassj are estimated using (4)
and (5), respectively.

As a means of clarifying the pruning process, suppose these
two candidate rules, either generated from one example or two
different examples, as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ri : If x
1 isLow andx5 isHigh,

Then class is c1 : Conf(Ri) = 0.899

Rj : If x
1 isLow andx5 isHigh andx9 isLow,

Then class is c1 : Conf(Rj) = 0.765.

These rules are in the same class and the antecedent part of Ri is
entirely covered byRj . Additionally, Conf(Ri) ≥ Conf(Rj). In
this case, Rj can be truly pruned, because there is a shorter and
more confident rule that covers all the covered examples of Rj .
As line 13 of Algorithm 1 shows, all such redundant rules are
discarded and only those rules that do not have a better covering
pair are kept in the RB. In this way, it is assured that we have
the most “informative” and “shortest-length” combinations in
the rules.

Selecting Best Rules: Finally, a selection process is carried
out to retain more confident rules and improve the global in-
terpretability of the model. Since the RB of the previous stage
(RBPruned) may still include less-effective rules, it is purified in
a classwise manner, i.e., the rules are descendingly sorted based
on their confidence values, and the topα% of each class are only
retained in the final RB and the rest are discarded (lines 14 and
15 in Algorithm 1).

The idea of doing selection in a classwise manner is to
ensure that the final RB is constructed with the top confident
rules of every single class present in the initial dataset. This
avoids removing rules of underrepresented classes, or those
difficult rules that are overlapped and therefore are given lower
confidences. Parameter α is a user-defined threshold to directly
control the model complexity and provide different tradeoffs
between the system interpretability and the model performance.
Along the experiments, it was set following similar studies [23]
as well as empirical trials.

C. Making Predictions

Having the DB and RB generated, FRBESs are ready to be
used. In this step, a fuzzy reasoning method must be applied
to make new predictions using the learned components. One of
the alternative reasoning methods that provides a great level of
explainability is the winning rule [36]. This method predicts
the final class label using rule having the highest matching
degree among all, and since there is only one rule involved, it
is straightforward to determine the specific attributes and values
that contribute to the decision. In this way, for the new example
Xi, the output ŷi is predicted co, where co is the class label of
the winning rule Ro, which is obtained as follows:

Ro = argmaxRj∈RB

{
μAj

(Xi) · RW j

}
(10)

in which μAj
(Xi) shows the matching degree of example Xi

with rule Rj (1), and it is computed as

μAj
(Xi) =

m∏
k=1

μAk
j

(
xk
i

)
(11)

whereμAk
j
(xk

i ) returns the degree of membership for input value

xk
i in fuzzy set Ak

j . For the sake of simplicity, as (11) shows, the
t-norm of product was applied as the aggregation function in all
the experiments of this study.

IV. EXPERIMENTS AND RESULTS

In this section, a detailed discussion of the conducted experi-
ments is presented. First, the experimental framework, including
the datasets, the configuration of the DNNs and the fuzzy
systems, the evaluation criteria, and the comparing methods,
is described. Next, the performance of the FRBESs in terms
of accuracy and interpretability as well as their fidelity to the
original DNNs is discussed. Finally, the robustness evaluation
and statistical tests are supplementary provided to conclude the
findings of this section.

A. Experimental Setup

1) Datasets: In this study, six classification datasets from
different areas of real life were employed to execute the ex-
periments [37], [38]. These datasets have different numbers of
features and samples summarized in Table I. Some of these
datasets are related to medical applications in which providing
explainable yet accurate models is certainly a critical issue. The
fivefold cross-validation mechanism was applied to generate the
training and test data of the experiments and the average of the
five trials performed on the obtained folds have been reported
as the final results.

2) Configuration of the DNNs: A fully connected network,
with three hidden layers and relu activation function in be-
tween, was considered to learn each task. The networks were
examined over different hyperparameters to find out the best
architecture and configuration in terms of number of neurons per
layer, batch size, and learning rate. Indeed, a grid search with
the following search space and early stopping of the evaluation
of bad trials was performed for each task; {256, 128}, {64, 32},
and {16, 8, 4} for size of first, second, and third hidden layers,
respectively, {32, 64} for the batch size, and {0.01, 0.001} for
the learning rate. Furthermore, the networks were trained using
an Adam optimizer for 150 epochs to minimize the weighted
classification cross-entropy loss. All these settings are in line
with encoding architectures of several state-of-the-art rule ex-
traction methods of the DNNs [31], [32]. The training processes
were run using the GPU resources offered by Google’s Colab
services.

3) Configuration of the FRBESs: In order to investigate the
effect of attribution methods on the performance of the proposed
systems, we constructed FRBESs on top of three attribution
methods, namely DeepLIFT [29], integrated gradients [28],
and gradient Shap [9] (in the following tables, these systems
are abbreviated as FRBES_DL, FRBES_IG, and FRBES_GS,
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TABLE I
PROPERTIES OF THE USED DATASETS

respectively). These methods were chosen because they are
some of the most well-established and best-performing attri-
bution approaches that serve as good representative methods
as well. In order to satisfy the conditions of equivalence, all
these methods are among the backpropagation-based ones (see
Section II-B for details). In addition, given the hypothesis that
an ensemble of several multiple attribution methods would be
more robust than any single method, we also employed two
aggregated versions of them, namely AGG-Mean and AGG-Var
(abbreviated as FRBES_Mean and FRBES_Var). The former
takes the pointwise average over the attribution values of all the
available methods and the latter considers the local variance as
well (see [39] for details).

In all the FRBESs, maxLen was set to 3 in accordance with
the previous fuzzy models having appropriate complexity and
accuracy tradeoffs [21], [23]. Regarding the selection parameter
of α, it was set depending on the use case under study, trying
to keep it as low as possible in the direction of XAI priorities.
Nevertheless, in most tasks, it was observed that the values lower
than 0.5 tend to give more compact and efficient rule sets.

4) Evaluation Criteria and Statistical Tests: In the following
tables, the values of seven evaluation criteria, namely ACC,
AUC, Fidelity, #Fc, #R, ARL, and time, have been reported to
assess the accuracy, complexity,3 and efficiency of the models.
ACC and AUC were considered to measure the discrimination
capability of the proposed systems. AUC was employed to
demonstrate the classification success considering all the class
labels and also cover the imbalance cases [40].

Another essential performance criterion is Fidelity, which
signifies how much reliable the surrogate models are. In our
context, Fidelity refers to how truthfully the fuzzy explainers
portray the underlying networks. This measure is computed as
the percentage of match between the predictions of the two
models, namely the original DNN and its corresponding FRBES.
Despite the fact that it is almost impossible for an explanation
to be fully faithful unless it is a complete description of the
model itself. In order for an explainer to be reliable, it must
at least appear to be generally faithful and possess a relatively
acceptable level of Fidelity, i.e., the higher the Fidelity, the closer
the performance of the models. Last but not least, this measure
is emphasized in alignment with the other accuracy criteria [41].

In terms of complexity measures, #Fc shows the number of
features contributing to the whole process of modeling, e.g.,
in FRBESs, features that appeared in the final rule sets are

3The interpretability is considered based on the complexity (not semantics)
of the FRBSs [24].

aggregated to compute #Fc. Indeed, with the functionality
of DNNs in feature learning and utilizing the most important
of these features in the construction of FRBESs, we expect
a substantial reduction in the number of used features. This
achievement is highly desirable in the context of XAI, especially
for high-dimensional cases.

In addition to the above-mentioned criteria, the values of #R
and ARL were calculated to quantify the compactness of the
rule sets. #R shows the number of rules available in the final
RB, and ARL indicates the average length of them. The amount
of time (h:mm:ss) taken to provide the post-hoc explainers are
also reported for each problem. These times are related to the
whole process of learning and classifying.

To provide more comprehensive comparisons, several statis-
tical tests, including Friedman’s and Holm’s, were conducted in
this study [42]. Friedman’s test ranks the algorithms according
to a certain criterion considering all the datasets. This test begins
by evaluating the equality hypothesis (H0) of all the algorithms,
which can be either accepted or rejected. Additionally, the
post-hoc Holm’s test is conducted to compare the performance of
two methods versus each other, namely a certain control method
versus each of the remaining ones. These tests calculate the
measure of p-value and determine whether the hypothesis
is accepted/rejected. This evaluation is conducted using the
significance level parameterα, which was set to 0.1 in this study.

5) Comparing Methods: To the best of our knowledge, there
is no fuzzy rule-based algorithm to explain DNNs. Being a pio-
neering approach, we were unable to find a fuzzy-based baseline
to compare with. Therefore, we chose ECLAIRE [32] as the
comparison method, which is the state-of-the-art rule extraction
algorithm for DNNs and creates efficient yet compact explainer
systems composed of crisp rules. Although this method follows
a different strategy and is not comparable to FRBESs in terms
of time and memory, it helps us to obtain a good view of
accuracy/fidelity and interpretability of the explainers.

Additionally, we have included the results of original DNNs
and Chi_FRBCS. The latter is a fuzzy rule learning method
based on the standard Chi et al.’s algorithm performing on all
the input features (see Section III-B2). It assists to confirm
the necessity of using DNNs rather than applying inherently
explainable models (such as FRBSs) from scratch.

B. Results and Discussions

In the following, results of different applications are sepa-
rately evaluated and discussed. In addition, several statistical
and robustness tests are conducted to further analyze the results.
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TABLE II
FINAL EXTRACTED RULES FROM THE TRAINED DNN OF THE XOR TASK

(HIDDEN LAYER SIZES: {256,64,16}, LR: 0.001, AND BATCH_SIZE: 32)

1) A Synthetic Case Study (XOR Dataset): In the first case, a
synthetic dataset was employed to demonstrate the performance
of FRBESs. We used a variant of XOR dataset having ten input
features and 1000 data examples. This dataset has commonly
been used for studying feature selection methods and is known as
a challenging dataset for vanilla rule induction algorithms [32],
[43]. In this problem, input values were independently generated
using a uniform distribution in the range of [0, 1], and binary
output labels were assigned by performing the XOR operation
on the rounded values of the first two features, namely x1 and
x2. To efficiently perform this task, the classifier must be able to
learn that only the first two dimensions are relevant for predicting
the output label. In this regard, the DNN’s latent space could
effectively be utilized not only to guide the rule set construction
but also to identify the most important and meaningful features
for the classification task.

First, to illustrate the performance of the FRBESs, we indicate
the rules extracted from the best-performing DNN (in terms of
the validation’s accuracy obtained by different grid search trails
of a certain fold) in Table II. This FRBES was made using the
DeepLIFT attribution values (FRBES_DL). As can be seen, the
rule set is truly compact and has only five rules with maximum
of three antecedents. Furthermore, in R1, R4, and R5, the main
features x1 and x2, were finely recognized and the XOR patterns
were properly described using fuzzy labels. These rules have also
a greater degree of confidence rather than the less precise ones,
namely R2 and R3. This indicates the ability of FRBES_DL in
identifying the most reliable relations hidden in the knowledge
of the DNNs.

Table III reports results of FRBESs as well as the other
comparing methods. The best values of each dataset (among
the explainers) have been indicated in bold. In the XOR rows
of this table, there are considerable differences between the
measures of the original DNN and the Chi_FRBCS. This implies
first, the necessity of using the power of DNNs in detecting
strong features of the problem space, and second, the potential
advantages of the FRBESs to easily represent this knowledge.
That is, fuzzy logic is needed for explainability purposes, but
FRBESs are proposed to address the interpretability issues better
than a simple FRBCS. The results also show that the FRBESs are
able to efficiently follow the behavior of the DNNs, in which the
accuracy measures are close to the original DNN and the Fidelity
values are acceptably high. In this case, all the fuzzy explainers
performed more or less similar but FRBES_DL was slightly
better with ACC 96.50% and Fidelity 93%. In comparison

to the other rule-based explainer, ECLAIRE, all the FRBESs
performed better in terms of both accuracy and fidelity.

Regarding the complexity of the systems, FRBESs generated
significantly fewer rules than ECLAIRE and they made shorter
rules as well. Such results indicate that FRBESs are able to
properly capture the underlying classification process and pro-
vide straightforward and cognitively convenient explanations for
what DNNs learn from the XOR dataset.

2) Medical Applications (MB_GE_ER and MB_Hist):
FRBESs were evaluated using two real applications of medical
areas where, as commented, both accuracy and explainabil-
ity of predictive models play a critical role in making and/or
supporting decisions. MB_GE_ER and MB_Hist datasets have
been created based on the METABRIC data to predict the
immunohistochemical and histological subtype of the breast
cancer patients, respectively [31], [37]. These datasets are almost
high-dimensional, comprising 1000 and 1004 mRNA expression
patterns.

Results of these datasets have been reported in Table III. Like
the previous case, the performance of Chi_FRBCSs in both
datasets is obviously behind the other methods and we must take
advantage of the DNNs. In the case of MB_GE_ER, FRBES_IG
performed closer to the DNN and has the highest Fidelity among
all. All the other FRBESs have also good results of accuracy and
fidelity. However, the most notable achievement in this problem
is in the interpretability measures, where the fuzzy systems are
able to explain the underlying data with around 30 rules and two
antecedents. Furthermore, the number of contributing features
in the modeling process of FRBESs considerably reduced, i.e.,
from 1000 features to 10.2 in average (more than 98%). This
matter helps to present more manageable and understandable
explanations, and in this sense, FRBESs can be considered as
a bridge that leads us from the most important local features to
the most critical global ones.

The other case, MB_Hist, is a special and interesting case,
where the efficiency of the aggregated methods is better revealed.
This dataset is highly imbalanced. Among FRBESs, FRBES_IG
and FRBES_GS obtained the highest values of Fidelity and
generated 2 and 2.5 rules, respectively. However, it seems that
these rules are not truly enough to cover all the class labels and
the high values of Fidelity are not reliable, because they are
not in companion with acceptable levels of AUC, and that is the
circumstance that we mentioned Fidelity must be emphasized in
alignment with the other accuracy criteria. On the other hand, we
have FRBES_Mean and FRBES_Var with more robust results
considering all the class labels, i.e., the higher performance
measures and the higher number of rules are implying that the
aggregation of attribution methods could potentially work better
for the imbalance cases. It will, however, take a separate effort
to study the performance of fuzzy explainers for imbalanced
cases in the future. Finally, it is worth noting that ECLAIRE
is outperformed in nearly all the measures for this dataset
as well.

3) Particle Physics Tasks (MAGIC and MiniBoo): In order
to examine the scalability of the models, two classification tasks
from the particle physics area, namely MAGIC and MiniBoo,
were chosen [38]. These datasets have a large number of training
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TABLE III
RESULTS OF DIFFERENT METHODS

examples, thereby prone to an increasing number of rules and
high computation times. But, according to the results of the
FRBESs in Table III, not only the number of rules is not high,
but also they have extremely reduced, compared to ECLAIRE,
and the obtained rules are shorter in both cases. In the case of

MiniBoo, the number of contributing features decreased from
50 to 18.3 in average, and the process of fuzzy modeling was
also faster. All these results were obtained while the accuracy
and fidelity of DNNs, FRBESs, and ECLAIRE were mostly in
the same range. It means that FRBESs provide less complex
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TABLE IV
RESULTS OF FRIEDMAN’S TESTS ON THE ACC AND FIDELITY VALUES

yet accurate surrogate models in tolerable times, even for large
datasets.

4) A Multiclass Case (Letter Recognition): The last case is
a Letter Recognition problem [38], which identifies the class of
images among 26 English capital letters (A to Z). This dataset
has 20 000 representations of black-and-white images, which
were employed to extract 16 statistical features to perform the
classification task. Results of this task have been shown in the
last rows of Table III. As indicated, all the explainers are reliably
following the performance of the DNNs and the differences lie
in the complexity criteria, where the results FRBESs are much
more efficient than the best results of ECLAIRE in this perspec-
tive. Although these findings adequately justify the functionality
of the DNNs and confirm the proposed algorithm is a general
solution that can easily be applied even in multiclass problems,
taking advantage of multiclass/imbalanced strategies [44], [45],
[46] may result in better coverage of the rule set and conse-
quently improve the efficiency of the explainers, which we leave
as the future research to explore.

5) Statistical Tests: Throughout this section, results of the
conducted statistical tests are reported. First, Table IV shows the
ranking values of Friedman’s test for the performance measures,
namely ACC and Fidelity. In both of these tests, H0 is not
rejected (p-values are higher than the significance level 0.1),
meaning that all the methods are statistically as accurate as the
DNNs and preserve fidelity up to the same levels.

As the above results, the major differences probably lie in
the complexity of the models. To investigate this, we performed
Friedman’s test for #R and ARL, as indicated in Table V. This
time,H0 is rejected for#R and is not rejected for ARL, implying
that there is a significant difference in the compactness of the
generated RBs in terms of number of rules, while the average
length of the rules is more or less the same. The ranking results
also emphasize that the FRBES_DL has the most compact RB
(vertically), while ECLAIRE has the largest one (both vertically
and horizontally). Therefore, it seems that DeepLIFT could be an
appropriate option to be used in the explainability frameworks.

To take the last step, the Holm’s post-hoc test was conducted
for #R with ECLAIRE as the control method. Results of
Table VI confirm that, in this perspective, ECLAIRE is consider-
ably outperformed by nearly all the FRBESs (except the case of
FRBES_Var). As these statements, FRBESs make effective use

TABLE V
RESULTS OF FRIEDMAN’S TESTS ON THE COMPLEXITY MEASURES

TABLE VI
RESULTS OF HOLM’S TEST FOR #R WITH CONTROL METHOD ECLAIRE

TABLE VII
EVALUATING THE MODELS’ ROBUSTNESS AGAINST ADVERSARIAL ATTACKS

FOR THE XOR PROBLEM

of linguistic fuzzy systems and provide more straightforward
and meaningful yet accurate models to explain the predictive
logic of the DNNs.

In addition to the above findings, Tables IV and V show
that trials with different attribution algorithms statistically have
close performance, implying that to form reliable FRBESs,
distilling attribution values efficiently is more critical than the
type of attribution methods to generate these values, i.e., the most
influential factor on the systems’ performances is the process of
creating and optimizing FRBESs.

6) Robustness Tests: Finally, to find knowledge about robust-
ness of the FRBESs, we examined the models against two of
the most commonly used attacks that are stable and efficient at
present, one gradient-based method namely projected gradient
descent (PGD) [47] and one gradient-free method namely simul-
taneous perturbation stochastic approximation (SPSA) [48]. In
this way, the generated adversarial examples of the methods were
fed into the trained DNNs and their corresponding FRBES_DL,
and then the performances were evaluated. Table VII shows
the results of these attacks. As can be seen, in both cases, the
accuracy values of the FRBESs deteriorated less than the DNNs.
Additionally, given the Fidelity values, the FRBESs preserved

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on September 14,2023 at 08:02:23 UTC from IEEE Xplore.  Restrictions apply. 



AGHAEIPOOR et al.: FUZZY RULE-BASED EXPLAINER SYSTEMS FOR DEEP NEURAL NETWORKS 3079

the original models’ performances to a higher extent than the
DNNs, indicating the better robustness of the surrogate models
against adversarial noisy data. Despite these results, studying the
robustness of explainer systems from different points of view is
a pivotal subject that needs to be approached in separate works.

In the end, it is worth mentioning that FRBESs are fully
deployable models, which “simulates” the behavior of the orig-
inal complex DNNs so that by means of “explaining” the
decision/inference process of the DNNs, a complete decision
support system is obtained, and this is not just explaining sin-
gle decisions, but having new simplified models, as well as a
methodology to generate them.

V. CONCLUSION

In this work, we proposed FRBESs to bridge between DNNs
and FRBSs. We took advantage of attribution methods to supple-
mentarily distill the DNNs knowledge into a set of fuzzy rules,
which clarify the DNNs’ decision process in the classification
problems of tabular data.

In practice, we are interested in explaining how DNNs predict
a single data point (interpretability) as well as their statistics
for a whole dataset (explainability). In the proposed FRBESs,
the former is achieved by observing the fired fuzzy rules and
the latter by delving into the obtained fuzzy rules associated
with every single class label. In addition, the synergy between
the DNNs and the FRBESs obtained from them provides fast,
robust, and competitive models that also have a straightforward
understanding for the practitioner.

Our future work will focus on investigating how these fuzzy
classifiers work when applied to homogeneous datasets like
images. Convolutional neural networks could be among the best
candidate for improving the discovery of the potential relation-
ships between different parts of the learned feature maps, thereby
facilitating the application of intelligent methods in analyzing
medical images or other critical data.
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