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Abstract—Healthcare agents, in particular in the oncol-
ogy field, are currently collecting vast amounts of diverse
patient data. In this context, some decision-support sys-
tems, mostly based on deep learning techniques, have al-
ready been approved for clinical purposes. Despite all the
efforts in introducing artificial intelligence methods in the
workflow of clinicians, its lack of interpretability - under-
stand how the methods make decisions - still inhibits their
dissemination in clinical practice. The aim of this article is
to present an easy guide for oncologists explaining how
these methods make decisions and illustrating the strate-
gies to explain them. Theoretical concepts were illustrated
based on oncological examples and a literature review of
research works was performed from PubMed between Jan-
uary 2014 to September 2020, using “deep learning tech-
niques,” “interpretability” and “oncology” as keywords.
Overall, more than 60% are related to breast, skin or brain
cancers and the majority focused on explaining the impor-
tance of tumor characteristics (e.g. dimension, shape) in
the predictions. The most used computational methods are
multilayer perceptrons and convolutional neural networks.
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Nevertheless, despite being successfully applied in differ-
ent cancers scenarios, endowing deep learning techniques
with interpretability, while maintaining their performance,
continues to be one of the greatest challenges of artificial
intelligence.

Index Terms—Big Data, interpretability, deep learning,
decision-support systems, oncology.

[. INTRODUCTION

ODAY, in healthcare scenarios, we are living in a digital
T era where physical patient records are mapped to digital
formats. This has opened the possibility to improve the effi-
ciency and quality of treatment provided to patients by building
decision-support systems.

Machine Learning (ML) is a sub-field of Artificial Intelligence
(AI) which studies algorithms that are capable to construct data
driven models. The construction of such models follows two
distinct phases - training and application. During training, the
algorithm builds a model which fits the data received as input,
while in application, the now trained model will produced results
based on a new set of information that it receives exclusively in
this phase and can be used to test its performance.

Between 2014 and 2019 the US Food and Drug Adminis-
tration approved 46 ML algorithms [1] for clinical purposes
encompassing different areas like mammogram screening and
ultrasound image diagnosis, turning the application of ML in
healthcare context a reality.

The majority of these algorithms are supervised which means
that in these scenarios, they need a help of a physician to label the
data before the mining process starts. As an example, in overall
survival prediction of breast cancer patients it is necessary that
a physician labels the set of patient data that will be used in
the training process with the target variable. When this target
variable is discrete we are present to a classification problem
(benign or malignant), or a regression problem in case the
variable is continuous (overall survival - measured in months).

Among different ML paradigms that are used in medical
contexts, the Artificial Neural Network (ANN) is a popular
supervised algorithm inspired by biological neuron, and began
to be used in healthcare in the early 90s [2]. The ANN is an
analogy used by computer scientists to emulate the behaviour
of the human brain and are composed by an input, an output
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and intermediate layers, which are also called hidden layers.
Similarly to biological neurons, each artificial neuron, or per-
ceptron [3], receives a set of inputs, either from the input layer
or other neurons, performs a linear combination based on its
weights and make a non-linear decision whether to activate the
neuron and fires it.

Due to the increasing computational power, the complexity
of these networks has substantially grown, materializing in the
use of dozens of layers and millions of neurons. In this context,
Deep Learning (DL) techniques - a subset of ANN techniques -
emerged as the state of the art for many real world problems, sur-
passing other ML techniques, and reaching human-level perfor-
mance in several task such as in the classification of melanoma
from dermoscopic images [4], or the detection of lymph node
metastases in breast cancers from pathology images [5].

Despite its vast potential DL suffers from several disadvan-
tages. First is the dependency on large amounts of data and
computational power. Also the black-box nature of DL makes it
difficult to interpret their decisions and prevents their dissemi-
nation in clinical practice.

The objective of this study is to present an easy guide for
oncologists explaining how DL techniques make decisions and
illustrating the strategies that can be used in the oncological
field to explain them, as it is an essential step towards the
integration of DL in the workflow of physicians in the field
of oncology. To better illustrate these strategies to oncologists
and other healthcare agents we give self-explanatory oncological
examples. Other reviews already covered specific medical areas
such as radiology [6] which only equate to a small set of
image modalities and does not cover other patient data such
as genomic data. Others expand the review to the medical field
but do not focus on DL techniques [7]. This is the first study to
review in detail work of interpretability of DL techniques in the
oncological field.

Results from this study were compiled by searching the
PubMed database for articles published between January 2014
and September 2020, searching individually and in combination
search terms such as “interpretability,” “deep learning,” “oncol-
ogy”, “cancer” and “decision support systems”.

Overall, from this selection, more than 60% are related to
breast, skin or brain cancers and the majority focused on ex-
plaining the importance of tumor characteristics (e.g. dimen-
sion, shape) in the disease behavior prediction. Among the DL
techniques used in the oncology field which were interpreted,
the majority are multilayer perceptons and convolutional neural
networks. In this study we also have found that the majority of
works focus on medical imaging (e.g. mammogram, histological
images and dermoscopic images) related to breast and skin
cancer. Possible explanations are related to the most prevalent
diseases and also the dissemination of well curated datasets and
challenges target at those diseases. Overall, most works focus
on the validation of the knowledge acquired by the DL model
for the diagnosis of malignancy or detection of a cancer disease.

Despite being successfully applied in different cancer sce-
narios, endowing deep learning techniques with the ability to
explain their predictions, while maintaining their exceptional
performance, will continue to be one of the greatest chal-
lenges faced by artificial intelligence. Future work includes the

density N

0.7
Z —>» o —> malignant

0
Weighted
Sum

Fig. 1. The Perceptron computes the weighted sum of the breast
cancer tumor input variables, and an activation function turns the output
into a binary prediction of malignancy.
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extension of interpretability methods for debugging model mis-
behavior and acquire new knowledge about disease, as well
as largely overlooked cancer tasks such as tumor segmentation
and image registration. Also, the evaluation of interpretability
methods so that they can be compared and validated.

Throughout the next two overview sections, we will talk about
various ANN techniques illustrating their internal architectures
and learning processes using a self-explanatory oncological ex-
ample, that consists of the classification of a breast tumor based
on handcrafted features such as mass density (fat-containing - 0,
low - 1, equal - 2, high - 3), shape (round - 0, oval - 1, irregular
- 2) and the breast side that it was found (left - O or right - 1) as
well as the raw mammogram. Using such features as an input,
the goal of the different types of ANN’s will be predict an output
related to the malignancy of the tumor (benign - 0 or malignant
- 1). In other cases, examples from actual DL works in the field
of oncology will be used to illustrate the techniques.

[I. ANN TECHNIQUES OVERVIEW

Artificial Neural Networks (ANN) are a set of algorithms,
inspired by the human brain, which are used to approximate
unknown functions. They are sometimes called “universal ap-
proximators,” because they can learn to approximate mappings
between any input x and any output y, assuming they are
correlated. ANNs are composed of layers of neurons, which
combine input from the data with a set of coefficients, or weights,
assigning significance to inputs with regard to the output label.

Perceptron: The Perceptron [8] is the the precursor to the ANN
techniques. In this binary classification algorithm, the linear
predictor chooses to “fire” based on a function combining a set
of weights with the input vector.

Training process: As seen in Fig. 1, after receiving a set of
variables as input (21, x2,..., ), the perceptron will attribute
weights for each variable (w, wo,..., w,) and afterwards will
use a mathematical function also known as activation function
that will use the weighted sum of the input variables to produce a
desired output (y). For each set of input variables, the output (y)
is compared to the label corresponding to expected output, also
known as target. During training, the weights are continuously
changed to move the output of the perceptron and the target
closer together.

In the example provided in Fig. 1, the perceptron is given the
breast cancer tumor variables density, shape, and side and given
the weights obtained during training (0.8, 0.7 and O respectively),
predicts the tumor to be malignant.
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output layer and two hidden layers similar to perceptrons that predict
malignancy based on breast cancer tumor variables.

Multilayer Perceptron: The Multilayer Perceptron (MLP)
[8] is the natural extension of the perceptron to solve more
complex problems. Rather than having a single unit, or neuron,
the MLP has multiple layers with multiple neurons each, as can
be seen in Fig. 2. Also, the linear activation function of the
perceptron is replaced by a non-linear activation function which
helps to solve non-linear problems. Due to its multiple layered
structure, the MLP can be seen as a deep neural network.

Training process: After receiving a set of variables as input
(xg, 1..., T,,), each intermediate neurons present in the hidden
layers acts like a perceptron, performing the weighted combina-
tion of its inputs and applying a non-linear activation function.
The output of activations function of each neuron, also known
as activation, acts as input for the neurons of the next layer.
The combination of activations of the last intermediate layer
produces a desired output (y).

MLPs have been explored on multiple public datasets for
breast cancer diagnosis based on tumor characteristics such as
density, shape, and side with high accuracy (>97%). Fig. 2
illustrates the approach used in [9] based on the public Wisconsin
Breast Cancer dataset. In the example, given the tumor variables
(density, shape, and side) the model learns to optimal weight’s
values during training, to predict the malignancy. Due to their
nature, MLPs do not scale well to images. As an example, for
an image with a width and height of 100 pixels, the MLP would
require 10,000 neurons just in the first layer and this number
would grow exponentially with each layer.

Convolutional Neural Networks: Convolutional Neural Net-
works (CNN) [10], [11] techniques emerged as a solution to
addresses the previous computational problem.

Training process: CNNs treat the image as a matrix (Fig. 3),
extracting features using a mathematical operation called con-
volution which helps preserve the spatial relationship between
neighboring pixels. The convolution slides a small matrix, called
a filter, over the original image, and for every position, it com-
putes the element-wise multiplication between the two matrices,
and the resulting value forms a single element of the output
matrix, called feature map. The filter is composed of weights
(w) that are learned during training.

During feature extraction, each convolutional layer is com-
posed by n filters resulting in n feature maps. The values of
the feature maps of the last convolutional layer are concatenated
into a single vector and used as an input for a MLP which makes

region of the image and the filter (shown in the same shade).
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Fig. 4. Representation of Convolutional Neural Network (CNN) used
in [5] for the detection of lymph node metastases of breast cancer
in histopathological images. First, each convolutional layer produces
features maps using the convolution operator across the previous layers’
output. The output of the feature extraction is concatenated into a feature
vector which serves as input for the classification MLP which predicts the
presence of metastases.

the prediction y. During training, the values of the filter matrices
and of the MLP are continuously changed to move the output
closer to the expected targets.

CNNs were used for example in the context of detection of
lymph node metastases of breast cancer based on whole-slide
images of digitally scanned tissue sections of over two hundred
patients [5]. Fig. 4 illustrates the approach which led to a
performance comparable with an expert pathologist interpreting
the slides. The CNN learns the weights of the filters, and during
the feature extraction is able to extract features which may
include the color and shape of the nuclei. The features are used to
make the classification, which predicts the tissue to be malignant.

Although CNNs are able to take advantage of the spatial
relationships between pixels, they struggle with large sequence
data such as text.

Recurrent Neural Networks: Recurrent Neural Networks
(RNN) techniques solve this issue by having a small network
looped for each element of the sequence, allowing information
to persist. A simple RNN contains an hidden state, h;, at time ¢
which depends on the input of the current step ¢ and the state of
the previous step.

Training process: RNNs are usually composed of only a layer
of neurons, which taking an input (x;) predicts the output (0;)
in a recurrent way (Fig. 5 a).

This refers to the fact that its processing unit (P) is looped
n times, where n represents the number of elements of the
sequence. During training, the weights of the RNN are contin-
uously changed to minimize the difference between the target
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Fig. 5. a) The Recurrent Neural Network (RNN) first extracts set of
visual features from CT slides from multiple stages using a CNN [13].
The hidden units optimize their weights to learn useful information from
the features and pass stage-specific context sequentially until a final
metastases prediction is made. b) Hidden unit (H;) shared between
steps (t) and receives the context of previous CT scan (x;) and predicts
the prognosis (y:).

sequenced, and the predicted one. As represented by the self-
arrow in Fig. 5 b, the processing unit shares information among
steps allowing the context and information from each slice to be
passed on until a final diagnosis is given (y;) [12].

In the example provided in Fig. 5 a, the RNN is presented
in an unfolded version, where the processing unit is repeated
for each step in the sequence. It corresponds to an approach for
the treatment prognosis of patients with lung cancer based on
Computerized Tomography (CT) of four different stages (pre-
treatment, 1 months follow-up, 3 months follow-up and 6 months
follow-up) [13]. Outcomes such as survival and metastases were
predicted using a RNN based on the a set of features extracted
from the CT using a CNN. Ateach step, and based on the context
that is passed from the previous step, it learned to extract and
memorize useful context and pass it to subsequent steps until a
final prognosis was made.

Autoencoder: The autoencoder [14] is a unsupervised algo-
rithm, which means that unlike the previous supervised algo-
rithms it does not require labelled data in the training process.
The goal of autoencoders is to learn a compressed representation
(code) of the input data by reconstructing it as the output of
the network. By restricting the size of the code, the technique
can discover the interesting structures of the data, and in the
case of denoising autoencoder, even reconstruct noisy images.
Depending on the characteristics of the input, the encoder and
decoder can have different architectures, some based on multi-
layer perceptrons and other on convolutional neural networks.

Training process: The denoising autoencoder (Fig. 6) contains
an encoder which receives the noisy input, compresses into
a small representation, called code, and is reconstructed by a
decoder into the original noiseless input. Due to the small size
of the code, the autoencoder learns the distinctive features of
the image and learns to ignore random noise. During training,
the weights of the neurons present in the encoder and decoder
are continuously updated to reduce the difference between the

Genes Noise Output

Expression
Low mmmmmmmsc igh

Code

Fig. 6. In a Denoising Autoencoder an encoder transforms a noisy
gene expression data into a compressed representation (code) and the
decoder transforms the code back into denoised version of original data.

original input and the output, called reconstruction error, to find
useful patterns in the data.

One frequent use of denoising autoencoders is the extraction
and compression of relevant features for the detection of genes
correlated with the ER status of patients with breast cancer [15].
Fig. 6 illustrates how the autoencoder is given a set of gene
expression data with some noise with the task of compressing
the data into an relevant representation (code).

I1l. INTERPRETABILITY CONCEPTS OVERVIEW: DESIDERATA,
DIMENSIONS, AND STRATEGIES

The significance of interpretability when developing ML so-
lutions is well-known in academia and corporations. However,
there is no consensus upon the definition of interpretability [16].
One of the most used definitions was presented by [17] which
defined interpretability as the “ability to explain or to present in
understandable terms to a human,” and will be used in this work.

A. Desiderata of Interpretability

The demand of interpretability arises due to a mismatch
between the objectives of the model and of the users - clinicians
and patients. Although DL techniques have reach human per-
formance in melanoma diagnosis from dermoscopic images [4],
or the detection of lymph node metastases in breast cancers
from pathology images [5], the need to interpret them emerges,
especially in healthcare contexts.

In addition to high accuracy of ML algorithms, users have
additional desiderata. Doshi-Velez and Kim [17] specified five
main desiderata for interpretability:

® Fairness: Assure that protected groups (e.g. gender, eth-
nicity) are not somehow discriminated against (explicit or
implicit);

® Privacy: Assure that sensitive information is protected;

® Reliability/Robustness: Assure high algorithmic perfor-
mance despite variation of parameter or input;

® Causality: Assure that the predicted change in output due
to a perturbation will occur in the real system;

e Trust: Allow users to trust a system capable of explaining
its decisions rather than a black box that just outputs the
decision itself.

B. Dimensions of Interpretability

Interpretability methods can be characterized by a set of
dimensions [18]: global and local interpretability, intrinsic and
post-hoc interpretability and model-specific and model-agnostic
interpretability. These will be described in what follows.
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a) Global and Local Interpretability: This dimension reflects
the scope of interpretability of a model and depicts the portion
of predictions that the model can explain. To perform a classi-
fication task an ML algorithm first creates a data-driven model
based on a set of input features (e.g. age and sex) during the
training phase. The objective of this phase is allowing neurons
to selectimportant features and learn relationships between them
and the target output. Global interpretability aims to analyze this
model, to understand the common patterns in the overall data that
help make decisions, by studying the model’s parameters (i.e.
weights), and the learned relationships. Local interpretability
aims to understand the relationship between the set of input
features of a specific case and the model decision.

In our MLP example (Fig. 2), based on the instances provided,
the network learned relationships that help predict the tumor
malignancy, based on its density, shape and breast side. As
the breast side (left or right) where the tumor appears is not
indicative of the level of malignancy, the network should have
learned to discard this input feature.

Global interpretability could help understand which relation-
ships the network learned, and for the example of breast side
confirm that it was not used. Global interpretability can also help
as know if non-random sources of noise which have been not
been removed have affected the model’s learning (e.g. artifacts).
Local interpretability could help understand the importance of
the input features in the malignancy prediction of a particular
patient.

b) Intrinsic and Post-hoc Interpretability: While the increase
of complexity of ANNs (i.e. number of neurons), help solve
complex problems, it increase the difficulty to interpret them.
Intrinsic interpretability refers to models which due to their
simplicity are interpretable by themselves, such as decision trees
or sparse linear models [18]. Complex models can increase
their intrinsic interpretability by constraining their complexity
or simplifying their behavior. Examples of these constraints
are sparsity, monotonicity, adding domain knowledge, or even
constraints on the complexity of the network by limiting the
number of neurons or layers.

Post-hoc interpretability refers to the application of inter-
pretability methods after the model’s training [18]. Post-hoc
methods help elucidate how the model works without constrain-
ing it.

In our MLP example, we could instead use a short decision
tree or a small sparse MLP to achieve intrinsic interpretability
or choose to maintain the complexity of the MLP and use a
post-hoc method such as feature importance to understand the
importance of the input features.

¢) Model-specific and Model-agnostic: Another way to clas-
sify interpretability methods is based on the dependency the
method has on the type of model which it tries to explain.
Model-agnostic methods can be applied to different types of
models, while model-specific methods are only applicable to a
specific type of model [18].

In our example, while a model-agnostic method could extract
the importance of the density and shape from a model trained
from any ML algorithm, a model-specific method would only
be able to do the same for similar models.

Fig. 7. Example of a saliency map depicting the important pixels
for malignancy prediction based on mammograms. Left: ground-truth
expert segmentation. Right: saliency map, where the pixel intensity
indicates the importance of the pixel in the classification.) [23].

C. Interpretability Strategies

During the training phase, DL algorithms create data-
driven models that can be interpreted using different strategies
producing different types of explanations. Namely feature im-
portance, saliency map, model visualization, surrogate model,
domain knowledge and example-based explanations, which will
be introduced next.

1) Feature Importance: One of the more explored expla-
nations is feature importance, which gives the importance or
contribution of an input feature on the prediction of an ex-
ample. Two main approaches are used for computing fea-
ture importance: sensitivity analysis [19] and decomposition
[20], [21].

Sensitivity analysis computes the effects of the variation in
the input variables in the model’s output and help us answer the
question “What change would make the instance more or less
like a specific category?.”

Decomposition approaches successively decomposes the im-
portance of the output of a layer into previous layers, until the
contribution that the input features have on the output is found.
It help us answer the question “What was the feature’s influence
on the model’s output?.”

If we extract the feature importance of a decision of our
example, it can have different meanings depending on the type
of method used. High sensitivity values for density and shape
means that their growth would also increase the prediction of
malignancy. While high contribution values of density and shape
means that the prediction of malignancy was highly influenced
by the value of these features.

2) Saliency Map: When dealing with images, saliency
maps [17] (or heatmaps) can be used to visually illustrate
variations in the importance of different features, using color
to convey the weight of pixel in a given prediction.

Similarly to feature importance, the pixel values of saliency
maps can be obtained following two main approaches: Back-
propagation methods compute the relevance of a pixel by prop-
agating a signal from the output neuron backward through the
layers to the input image in a single pass [21]. Perturbation
methods compute pixel relevance by making small changes in
the pixel value of the input image and compute how the changes
affect the prediction [22].

An example of a saliency map, extracted from a CNN trained
to predict the malignancy based on mammogram patches is
seen in Fig. 7. The red and yellow regions correspond to the
most important regions of the image. The method correctly
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Top Activating Patches for each
Target Unit

Fig. 8. lllustration of the internal behaviour of a network unit by visual-
izing regions of mammograms with patterns detected by individual units
of the network [27].

Rule 1: IF (density = 'high' or 'equal’) and (shape = ‘irregular’)
THEN malignant

Rule 2: IF (density = 'high')
THEN malignant

Rule 3: IF (density = 'fat-containing') and (shape = 'irregular')
THEN benign

Rule 4: OTHERWISE benign

Fig. 9. Rule list extracted from a MLP trained to predict the malignancy
of a breast tumor using a surrogate model strategy.

focus on the mass, supporting our confidence in the model’s
decisions.

3) Model Visualization: The ML algorithm receives an ex-
ample with a set of input features, and in their internal process
creates a combination of its features also called internal fea-
tures. Some strategies help visualizing patterns detected in an
image [24], whereas others help visualizing the feature distribu-
tion in the dataset [25], [26]. Also, whereas some strategies may
ease to find the image that contains a pattern detected by the
network [27], others artificially create images that accentuate
the same patterns [28], [29].

In Fig. 8 we can see regions of mammograms which contain
patterns detected by individual filters of the CNN trained to
diagnose the tumor malignancy.

4) Surrogate Model: Surrogate models are interpretable
models that are trained to explain predictions of a black-box
model. In the example of oncology, a rule list [30] can be
extracted from a network allowing the clinician to understand
the knowledge produced by the algorithm. Each rule specifies a
condition which when evaluated as true produces on result (be-
nign/malignant in malignancy diagnosis). One way of doing this
is by creating a new dataset where each example of the dataset
used to train the DL model is combined with its prediction and
the task of the surrogate model is to predict this values.

While global surrogates models approximate the model in
all the input space, local surrogate models approximate single
predictions, which makes them more accurate and faithful to the
model being explained.

To better understand what is a surrogate model, let’s consider
the example in Fig. 9, where we can see a rule list extracted from
a MLP that demonstrate its decisions. This surrogate model was
built by iterating through the MLP neurons and inspecting the

TABLE |
ASSOCIATION BETWEEN INTERPRETABILITY STRATEGIES AND DIMENSIONS
OF INTERPRETABILITY

Dimensions
Strategy Scope Intrinsic vs. Post-hoc

Feature Importance Local Post-hoc
Saliency Map Local Post-hoc
Model Visualization Global Post-hoc
Surrogate Model Local/Global Post-hoc
Domain Knowledge Global Intrinsic
Example-based Global Post-hoc

connections between the input features and the output label, so
that they can be represented by rules. Decision tree is another
appropriate type of surrogate model. This method could be seen
as an unordered rule list where each leaf is a separate rule where
the condition is the labels of the path from the root to the leaf.

5) Domain Knowledge: Although DL algortihms extract
internal features (combination of input features) automatically
during the training phase, the domain knowledge of the medical
field which physicians have can be used to validate the decision
of the network.

The introduction of domain knowledge from medical doctors
on training can help produce models that resemble how medical
doctors diagnose or focus on the features or areas they pay
particular attention to [31].

In the case of malignancy diagnosis, domain knowledge can
be introduced directly as an input feature, for example a discrete
value indicating the shape of the tumor. Domain knowledge can
also be used as an additional target variable (e.g. shape, density),
besides malignancy, allowing to evaluate how well the model
predicts both target variables similarly to how clinicians also
take those variables into account.

6) Example-Based Explanation: Example-based explana-
tion methods select examples of the dataset that explain the
behavior of the network [18]. This behavior is usually explained
using the internal features (combination of input features) ex-
tracted from the examples by the network.

Similar examples are examples of the dataset that have similar
values on the internal features and produce the same prediction
as the example whose prediction we are explaining [32].

Counterfactual explanations can be used to explain predic-
tions of examples by finding small changes in the example that
cause the network to change its prediction.

Usually examples of a dataset can be grouped together based
on existing patterns. A prototype is a particular example of the
dataset representative of its group.

Table I associates the interpretability strategies previously
introduced with the dimensions of interpretability, namely scope
and intrinsic vs. post-hoc. The dimensions of model specificity
vs. agnostic was omitted as it depends on the actual algorithms
used and not on the broader interpretability strategy.

[V. INTERPRETING DEEP LEARNING IN ONCOLOGY

The use of DL techniques has become widespread in the
oncology area, covering different pathologies, but their inter-
pretation remains an unexplored field [33], [34]. In this section,
an overview of interpretability strategies applied to oncological
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TABLE Il
SUMMARY OF PAPERS REVIEWED
Ref Disease Task Modality Explanation Architecture | Dataset
[35] Breast Cancer Metastases Detection WSI H&E Model Visualization, Saliency Map CNN Public
[27] Breast Cancer Malignancy Diagnosis Mammogram Model Visualization CNN Public
[36], [37] | Breast Cancer Malignancy Diagnosis WSI H&E Feature Importance, Domain Knowledge CNN Public
[38] Breast Cancer Malignancy Diagnosis Mammogram Domain Knowledge, Saliency Map CNN Public
[39] Breast Cancer Malignancy Diagnosis Mammogram, Ultrasound, MRI Domain Knowledge CNN Public
[40] Breast Cancer Malignancy Diagnosis Mammogram Saliency Map, Text CNN + RNN Public
[41] Breast Cancer Malignancy Diagnosis Hand-crafted Feature Importance CNN Public
[42] Breast Cancer Malignancy Diagnosis Hand-crafted from H&E Surrogate MLP Private
[43] Breast Cancer Malignancy Diagnosis Hand-crafted from H&E Surrogate MLP Public
[44] Breast Cancer Survival Prediction Gene expression, Biomarkers Feature Importance MLP Public
[45] Breast Cancer ER+ Prediction Metabolomics Data Feature Importance AE + MLP Public
[46] Breast Cancer Clustering Gene expression, CNA data Model Visualization AE Public
[47] Skin Cancer Malignancy Diagnosis Dermoscopic images Model Visualization CNN Public
[48] Skin Cancer Malignancy Diagnosis WSI H&E Saliency Map CNN Private
[49] Skin Cancer Malignancy Diagnosis Dermoscopic images Saliency Map CNN Public
[50] Skin Cancer Diagnosis of Skin Lesion WSI H&E Saliency Map CNN Public
[51] Skin Cancer Diagnosis of Skin Lesion Dermoscopic images Saliency Map CNN Public
[52] Skin Cancer Malignancy Diagnosis WSI H&E Saliency Map CNN Public
[53] Skin Cancer Diagnosis of Skin Lesion Dermoscopic images Example CNN Public
[54], [55] Skin Cancer Malignancy Diagnosis Dermoscopic images Feature Importance, Example, Surrogate MLP Public
[56] Skin Cancer Diagnosis of Skin Lesion Dermoscopic images Example, Saliency Map CNN Public
[57] Lung Cancer Disease Diagnosis Chest Radiograph Saliency Map CNN Public
[58] Lung Cancer Malignancy Diagnosis CT Domain knowledge CNN Public
[59] Lung Cancer Malignancy Diagnosis CT Domain knowledge CNN Public
[60] Lung Cancer Prognosis Radiation Biomarker, clinical data Domain knowledge AE + MLP Private
[61] Brain Cancer Tumor Grading MRI Saliency Map CNN Public
[62] Brain Cancer Tumor Grading MRI Feature Importance, Saliency Map MLP Public
[63] Brain Cancer | Predict Methylation State MRI Model Visualization CNN + RNN Public
[64] Brain Cancer Survival Prediction MRI Feature Importance CNN Public
[65] Brain Cancer Survival Prediction WSI H&E, Biomarkers Saliency Map CNN Public
[66] Other Malignancy Diagnosis Gene expression Feature Importance MLP Public
[67] Other Survival Prediction Gene and protein expression Feature Importance MLP Public
[68] Other Disease Diagnosis RNA-seq expression, SVN data Feature Importance, Surrogate MLP Private
[69] Other Disease Diagnosis Volumetric Laser Endomicroscopy Saliency Map CNN Private
[70] Other Disease Diagnosis Endoscopic images Saliency Map CNN Public
[71] Other Disease Diagnosis WSI H&E Saliency Map CNN Private
[72] Other Disease Diagnosis DESI Cluster AE Private
[73] Other Disease Diagnosis Ophtalmic images Domain Knowledge CNN Private
[74] Other Malignancy Diagnosis Ultrasound Domain knowledge CNN Private
[75] Other Malignancy Diagnosis WSI H&E Text, Saliency Map CNN + RNN Public
[76] Other Disease Diagnosis Chest Radiograph Text, Saliency Map, Text CNN + RNN Public
[77] Other Tumor Grading WSI H&E Text, Saliency Map CNN + RNN | Private

diseases will be presented. The section will be divided into dif-
ferent diseases, namely breast cancer, skin cancer, lung cancer,
brain cancer and other. This division was chosen to promote the
best understanding of the area by the main target audience of
this paper - oncologist, clinicians and other practitioners.

We conducted a search of papers in the PubMed database pub-
lished between January 2014 and September 2020 with individ-
ual and combination of search terms such as “interpretability,”
“deep learning,” “oncology”, “cancer” and “decision support
systems,” and compiled the results in Table II. In total, 44 works
were found, where the majority target in breast cancer (30%),
skin cancer (23%), lung cancer (9%) and brain cancer (11%).
The most common interpretability strategies were saliency maps
(32%) and feature importance (20%) and among the prediction
tasks, most works focused on diagnosis of malignancy (45%)
and of different pathologies (27%).

Fig. 10 helps visualize the distribution of papers based on
different classifications present in Table II, namely the target
disease and task as well as the interpretability strategy (expla-
nation) and ANN technique (architecture).

A. Breast Cancer

Prediction of breast cancer malignancy has been one the most
successful applications of deep learning in oncology, achieving
87% sensitivity and 96% specificity when diagnosing mammo-
grams [78]. It also is the main task on interpretability work

(69% of breast cancer studies). Due to the availability of well-
curated public datasets on breast cancer, mainly mammograms
and hematoxylin and eosin (H&E) stained histological images,
research in this area has taken a step forward.

When dealing with imaging data, researchers found it
important to visualize the patterns detected by the networks
either through model visualization techniques or with saliency
maps, please refer to section III-C2. These patterns were then
either validated by experts or correlated with medical concepts.
For other types of data (e.g. gene expression, hand-crafted
features), researchers mainly focused on computing feature
importance or extracting surrogate models (i.e. rule lists). In
what follows, we analyze with detail some of the main selected
works on the topic.

Graziani et al. [35] visualized the patterns of a metastases de-
tection CNN for WSI H&E images by synthesizing images that
increase the network’s confidence on the prediction (Activation
Maximization [28], [29]) and by extracting saliency maps [79].
They found that the network detected nuclei-resembling shapes
and regions of nuclei with marked variations in size and irregular
shapes. Hsieh et al. [27] used Network Dissection method [80]
to visualize the patterns of individual filters of a malignancy
classifier based on mammograms and developed a web-based
tool which let experts label the patterns. Fig. 11 shows an
example of a pattern which was labeled as ‘Calcified Vessels’.
Also, other BI-RADS [81] medical concepts (e.g. mass margin)
were found to overlap with patterns detected by the network.
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Antropova et al. [39] visualized the values of both deep fea-
tures and hand-crafted features from different image modalities
(i.e. Mammogram, Ultrasound, DCE-MRI) and found that their
fusion improved malignancy diagnosis performance, most likely
due to the low agreement between deep and handcrafted features.

Lee et al. [40] trained a malignancy diagnosis network able
to justify its decisions both visually and textually. It trained a a
language model that composes text description [38], [76], [77],
[83] from mammograms. Although the descriptions are still not
sufficiently good (i.e. “There are sharp lines on some part of
complexly formed mass.”), they show that this interpretability
strategy has great potential.

When dealing with hand-crafted features relating with tumor

Fig. 10.  Distribution of papers reviewed based on characteristics of Table Il
e
Fig. 11.  Example of pattern detected by the network and labeled by

an expert as ‘Calcified Vessels’ in the web-based labeling tool [27].

Rather than being validated by experts, Graziani et al. [36],
[37] introduced Regression Concept Vectors (an extension of
Concept Activation Vectors [82]) which let them detected the
importance of medical concepts (i.e. area, perimeter and con-
trast) on the decisions of a breast cancer malignancy classifier
based on WSI H&E network, even though they were not present
in the training dataset. Contrast was found to be positively
correlated with malignancy, while correlation was negatively
correlated. Kim et al. [38] used medical concepts during training,
computing their importance alongside saliency maps to help
explain the malignancy diagnosis of mammograms.

size and shape, researchers found it important to simplify the
network to behave linearly [41] making it easier to compute
the feature importance, or extract simpler classifiers that could
present physicians with simple rules (i.e. decision rules [42] and
symbolic rules [43]) increasing interpretability.

Feature importance was the focus of most works dealing with
gene expression data. For example, SALMON [44] predicted
survival risk of patients with breast cancer, and feature impor-
tance of eigengene’s modules and other clinical information,
they confirmed that age, progesterone receptor status and other
five mRNA sequence data co-expression modules play pivotal
roles in patient prognosis. Similar methods, using the H20 [84]
library, were used to detect the important features in the detection
of estrogen-receptor-positive (ER+) patients based on the classi-
fication of the Estrogen Receptor Status of breast cancer patients
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based on metabolomics data [45]. They found eight commonly
enriched significant metabolomics pathways: isoleucine, pu-
trescine, glycerol, 5’-deoxy-5’-methylthioadenosine, ornithine,
tocopherol beta, phenylalanine, and arachidonic acid. Finally,
Liu et al. [46] used an autoencoder to find clusters of breast
cancer patients based on their gene expression and copy num-
ber alteration data, and visualized them using heatmaps. They
found that the cluster of patients with ER-negative breast cancer
patients usually have a poor prognosis.

B. Skin Cancer

Works in skin cancer almost evenly divided on the malig-
nancy diagnosis and diagnosis of multiple skin diseases. The
modality used was also divided between two types, dermoscopic
images (70%) and H&E stained histopathological images (30%).
Similarly to breast cancer detection, DL has also achieved
great results in skin cancer detection based on medical imag-
ing [85]. Interpretability methods for these pathologies ranged
from saliency maps, model visualization, rule extraction, text
explanations and example-based explanations.

A simple visualization method was used to visualize the
activation of neurons of a CNN trained to predict the malignancy
of dermoscopic images [47]. Inspection of activations led to
finding neurons related to medical concepts such as borders,
lesions, and skin type, as well as different image artifacts such
as hairs.

Cruz-Roa et al. [48] proposed a DL technique for the ma-
lignancy diagnosis using histological images and visualized the
most salient patterns in that task which when validated by pathol-
ogists were found to be related large-dark nuclei. Researchers
also tried to improve the quality of saliency maps by making
changes on the architecture of the network when diagnosis
malignancy based dermoscopic images [49] and diagnosis of
skin diseases based on WSI H&E images [50]. PatchNet [49]
found a trade-off between interpretability and performance, as
smaller patch sizes provided saliency maps with better visual in-
terpretability at the expense of worse generalization capabilities.
Paschali et al. [50] also found that smaller convolutional filters
resulted in more fine-grained saliency maps. Gonzalez-Diaz
et al. [51] incorporated segmentation of lesion areas based
on high-level dermoscopic features, and used these seg-
mentations to diagnose of skin lesions and show relevant
regions.

Example-based explanation are also useful interpretability
strategies in skin cancer, as shown by Sadeghi et al. [53] which
conducted a study which revealed that similar examples pro-
vided by DL techniques help users in classifying skin lesions
from dermoscopic images. In the study, accuracy increased from
51% to 61% when the 15 most similar cases were provided to the
users. Silva et al. [54], [55] unified complementary explanations
to explain skin lesion predictions from dermoscopic images. The
method extracted rules and presented them as text sentences
alongside positive and a counter-factual examples for every
decision. Also on the same task, Codella et al. [56] explained
the decision with similar examples using k-nearest neighbors on
the deep features and highlighted the most salient regions of the
image.

C. Lung Cancer

Interpretability research on the diagnosis of lung cancer fo-
cused mainly on two modalities, Chest Radiography (X-Ray) or
Computed Tomography (CT). Similarly, to breast and skin can-
cer, DT techniques have been shown to be able to reach human-
level performance. In the diagnosis of 14 different pathologies
from chest radiographs, a CNN achieved radiologist-level per-
formance [57]. Radiologists confirmed, by inspecting saliency
maps [86], that the network localizes accurately the lung masses.

Other works focused on the integration between hand-
crafted features related to medical concepts and deep features.
Paul et al. [58] developed a model for the malignancy diagnosis
of lung cancer using CT images, and interpreted their correlation
with medical features used by physicians by iteratively replacing
deep features and evaluating the drop in confidence. Although
deep features were not found to be perfectly correlated with
medical features, they could represent 9 of the medical features
with the deep features without losing performance. In the same
task, Shen et al. [59] proposed to model that made high-level
predictions for the tumor malignancy, and low-level predictions
of medical features - calcification, subtlety, lobulation, spheric-
ity, internal structure, margin, texture and spiculation. The ap-
proach achieved comparable or better results with state-of-the-
art methods in the public Lung Image Database Consortium
(LIDC).

Finally, Cui et al. [60] used a combination of hand-crafted
features composed of clinical features and cancer biomarkersin a
non-small cell lung cancer who received radiotherapy to predict
the damage caused by the treatment. The results found that better
performance was achieved by integrating the hand-crafted fea-
tures with the deep features extracted from a autoencoder [87].

D. Brain Cancer

Unlike previous pathologies, brain cancer research deviates
from diagnosis of diseases and focus on survival prediction
(40%) and tumor grading (40%), almost entirely based on Mag-
netic Resonance Imaging (MRI) (83%).

When performing tumor grading - distinguishing from lower
grade gliomas from high grade gliomas from MRI - researchers
have focused on producing saliency maps from the 3D MRI
scans or Region of Interest (ROI) annotated by experts. Pereira
et al. [61] extended existing saliency map methods for three
dimensional inputs [79], [88]. The ROI classifier achieved better
performance than the 3D scan 93% and 90% accuracy), but they
were both able to locate the tumor. Pereira et al. [62] also used
a feature importance method [89] to identified MRI sequences
which were relevant for features extracted from the network,
and then produce saliency maps. The sequences chosen were
consistent with domain knowledge.

Han et al. [63] trained a model to predict the methylation state
of the MGMT regulatory regions using MRI of Glioblastoma
Multiforme (GBM) patients, resulting in 62% accuracy. The
MRI scans were extracted from the Cancer Imaging Archive
(TCIA) [90] and the methylation data from the Cancer Genome
Atlas (TCGA) [91]. The authors developed a online visualization
tool which allows the user to load an MRI scan and visualize
the activation of different filters. Through this the model was
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found to classify lesions with ring enhancement with negative
methylation status and tumors with less clearly defined borders
and heterogeneous texture with positive methylation status.

Lao et al. [64] constructed a model for survival prediction of
patients with GBM based on deep features and hand-crafted fea-
tures extracted from MRI. to reduce the number of features used,
feature selection was done using feature importance methods
to find features that were robust to tumor segmentation uncer-
tainty, highly predictive and non-redundant. Survival prediction
was also performed using histological samples and genomic
data [65] with validation of produced saliency maps by expert
pathologists.

E. Other Pathologies

Other oncological pathologies have been showed interested
in interpretability using different modalities of data (not exclu-
sively image). Researchers that applied DL techniques on data of
multiple pathologies have seeked to interpret them using feature
importance. For example, Ahn et al. [66] trained a network
for malignancy diagnosis based on gene-expression data from
multiple tissues and by computing the feature importance of
individual genes on the diagnosis found a sub-group suspected
to be oncogene-addicted as an individual gene contribute ex-
tensively in the classification. Similarly, Yousefi er al. [67]
proposed a model for the survival prediction based on clinical,
gene-expression and protein-expression data of multiple tissues
and computed the sensitivity of each feature on the survival
risk, identifying that TGF-Beta 1 signaling and epithelialmes-
enchymal transition (EMT) gene sets are associated with poor
prognosis. Oni et al. [68] diagnosed eight different cancer types
from RNA-seq expression and single nucleotide variation (SNV)
data. To explain its decisions, a linear surrogate model [89]
was extracted, where its coefficient’s magnitude corresponded
to importance of the genes in the prediction. The location and
variability of explanations were visualized using 2D embeddings
of the RNA-seq input data. They found genes related to cell
proliferation and tumor growth were important for the diagnosis.

In the diagnosis of early Barrett’s Neoplasia using Volumetric
Laser Endomicroscopy [69], saliency maps [86] focused on
the glands located around the first layers of the esophagus in
high-grade dysplasia cases, and on homogeneous esophagus lay-
ers in non-dysplastic Barrett’s esophagus cases. Garcia-Peraza-
Herrera et al. [70] extended the same saliency map method to
interpret the diagnosis of esophageal cancer based on endoscopic
images. By computing saliency maps of different resolutions
they were able to detect unhealthy patterns and diseased tissue.

Korbar et al. [71] interpreted the diagnosis of colorectal
polyps based on histological images using saliency maps [79]
[86] and found that by adding a boundary box around them
increased their similarity with pathologists’ segmentations.

Inglese et al. [72] used DL techniques to find a high-level
representation of mass spectrometry imaging data from col-
orectal adenocarcinoma biopsies. The features extracted from
the network was visualized in two dimensions using t-SNE [92]
unveiling clusters with different chemical and biological inter-
actions occurring.

Tumour
1
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Nuclear features show moderate pleomorphism. mild crowding
of the nuclei can be seen. polarity is not completely lost toward
the surface urothelium. mitosis is rare throughout the tissue.
the nuclei have inconspicuous nucleoli. High grade.

Diagnosis HG

Fig. 12. Left: H&E stained whole-slide tissue image. Right: saliency
map generated [75]. Bottom: description generated for the image and
feature-aware attention maps.

Zhang et al. [73] developed a diagnostic system of ophtalmic
images that explained the diagnosis with sub-tasks. In addi-
tion to the diagnosis disease, the network segmented important
anatomical regions, and detected other illnesses. The results
show an accuracy of 93% on the diagnosis, localization accu-
racy of the foci of 82% in normal lighted images and 90% in
fluorescein sodium eye drops.

Zhang et al. [74] proposed a system for diagnosing the ma-
lignancy of thyroid nodules on ultrasound with performance
comparable with radiologists. The network provides prediction
on medical concepts based on the TI-RADS lexicon.

The automatic generation of text reports based on medical
imaging system is also an active research area. Zhang et al. [75]
presented network trained on H&E patches for the malignancy
diagnosis of bladder cancer, and conditioned a RNN-based
language model to generate text descriptions and visual attention
(i.e. saliency maps) highlighting regions of the image relevant
for specific parts of the text (Fig. 12). Similarly, TieNet [76]
provided the same explanation for the network which diagnoses
diseases based on chest radiographs and generates text descrip-
tions with similar visual attention. MDNet [77] establishes a
relationship between histological images of bladder cancer and
diagnostic reports to generate text descriptions and provide
visual attention for specific parts of the text.

V. OPEN ISSUES AND PROMISING RESEARCH DIRECTIONS

As DL grows in popularity, so does the need for interpretabil-
ity in the dichotomy between ML and medical practice. From
this survey, it becomes clear that are four main issues that needs
more attention: (1) limitation on the applications of interpretabil-
ity methods; (2) limitation on medical tasks explored; (3) lack
of reliability of some interpretability method; and (4) lack of
evaluation metrics for interpretability methods. Throughout this
section, we will provide a discussion on the former four issues.

A. Limitation on the Applications of Interpretability
Methods

Du et al. [93] classified three major application of inter-
pretability strategies: model validation, model debugging and
knowledge discovery.
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Model validation verifies that the model was able to learn
useful knowledge and avoid learning bias information. The
majority of works reviewed follow in this category, for example
works which explored the use of saliency maps mainly focused
on verifying that the region highlighted corresponded to regions
segmented by experts.

Other applications for the interpretation of deep learning
models, such as model debugging and knowledge discovery,
were overlooked by the current literature and constitute promis-
ing directions to further improve the diagnostic capabilities of
models and discover new insights on the biology of different
cancer diseases.

Model debugging aims at analyzing what leads to the mis-
behaviour of models and erroneous predictions. Interpretability
can help to uncover the reason for this misbehaviour, by in-
specting the examples what were misclassified by the model,
examples that have artifacts from the data collection (e.g. metal
tools in a CT scan, hairs in a dermoscopic image), in addition to
difficult to diagnose cases. Model debugging is also extremely
relevant when generalizing the model for other hospital data or
for clinical use where the risk for misbehavior is much bigger.
This application is still overlooked in current works in the field
of oncology.

Carlini et al. [94] demonstrated that standard models can
make perfect predictions in random training set while perform-
ing poorly on the test set. This proves the model’s ability to
memorize the input data even if it is random which causes
low generalization to unseen data. The lack of generalization
of models which can be caused by overfitting to the training
dataset must be an active concern of all ML practitioners,
especially deep learning techniques as the high complexity of
the models coupled with an low data size increases risk of
overfitting.

Another issue related with model debugging is adversarial
attacks which consist on inputs that are intentionally crafted to
force the model to make a mistake. Finlayson [95] demonstrated
how an adversarial noise added to a dermoscopic image previ-
ously diagnosed as benign with over 99% confidence by a highly
accurate model resulted with the model predicting malignant
with 100% of confidence even though the difference is imper-
ceptible to the human eye. Finlayson [95] also pointed at insur-
ance claims approvals as a possible motivation for adversarial
attacks.

Another problem with generalizability is discriminatory bias
where models learn unintended associations regarding minority
subgroups due to bias in the data used to train the model [96].
An example is how malignancy diagnosis systems with ac-
curacy similar to that of board-certified dermatologists under-
performed on images of lesions in skin of color due to the ma-
jority of training examples represent fair skinned patients [96].

Discriminatory bias is not the only type of bias which can
cause problems as there have been several instances where
exceptional results have been obtained from the model learning
to distinguish slides based on the hospital they came from or
the clinicians that generated the ground truth rather than actual
evidence in the slide [96]. For example, a system for the detection
of pneumonia on chest x-rays was able learn to associate the use
of a portable x-ray machine with pneumonia [57].

Knowledge discovery allows physicians and researchers to
obtain new insights on the physiology of the disease by in-
terpreting the deep learning model and its decision process,
such as finding that HER2 receptor over-expression is related to
breast cancer. Knowledge discovery could lead to finding other
receptors, thus helping in the characterization of cancer diseases
that are still unknown to this date. While some visualization
methods have been used to discover cluster of patients with
specific characteristics [46], [72], this direction of research is
still mostly unexplored.

B. Limitation on Medical Tasks Explored

Analysis on the results of the review (Fig. 10) shows that
72% of works focus on some type of disease classification (45%
malignancy diagnosis, 18% disease diagnosis, 9% diagnosis
of skin lesion). This shows a great imbalance as there exists
many more medical tasks in the oncology field with promising
results but still lack interpretability. In the following sub-section
relevant work on other medical tasks will be briefly reviewed.
Those medical tasks are:

e Tumor or lesion segmentation: identify the set of voxels
which make up the lesions or tumors present [97], [98];

¢ Organ and substructure segmentation: identify the set of
voxels which make up either the contour or the interior of
the objects of interest [99];

e Cancer prognosis: estimate the likely course and outcome
of a disease [13], [100];

e Radiation treatment planning: determine location and
dosage to deliver the most desirable dose distribution of
radiotherapy [101];

® Image registration: seeks to determine a transformation
that will map two volumes (source and reference) to the
same coordinate system [102];

® Image generation and enhancement: includes many differ-
ent tasks to improve quality of the input from removing
obstructing artifacts or noise in images to complete miss-
ing data [103]-[105].

Tumor and lesion segmentation is an important first step for
numerous other tasks such as diagnosis and treatment planning,
in order to evaluate the extend of the diseased tissue. DL tech-
niques have achieved state-of-the-art results is in brain tumor
segmentation from MRI scans [97], [98]. The same type of
networks have also been used in the segmentation of different
lesion of the skin based on dermoscopic images [106], [107].

Segmentation of organs and substructures is also an critical
step before radiotherapy in order to decide the which regions
to avoid targeting with radiation. One example of it is the
segmentation of organs from abdominal CT scans [99].

Cancer prognosis is comprised of a large number of sub-tasks
such as survival prediction and prediction of likelihood of metas-
tases. Zhu et al. [100] for example, reviewed a large number
of studies which applied DL techniques to different cancer
prognosis tasks such as cancer recurrence, progression and sur-
vival prediction [100]. Other studies focused on sub-tasks which
concern with the progression of the disease after treatment, from
the prediction of future distant metastases and local-regional
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recurrence using pre-treatment, post-treatment and follow-up
medical imaging scans [13].

Radiation treatment planning requires not only the segmenta-
tion of diseased tissue but also the dosage that should be used.
An CNN-based model was used to MRI to accurately transfer
contrast into CT images with clearly identified air, brain soft
tissue, and bone highly similar to that of current methods based
on CT and used in medical practice [101].

Image registration, also known as image fusion, is commonly
used to combine two modalities - for example PET-CT is ob-
tained by combining two different modalities (PET and CT),
but also multiple images of the same modalities. Fu ez al. [102]
review a large number of DL techniques proposed for the image
registration of different modalities such as T1 and T2 MRIs and
MRI and CT.

In addition, DL approaches also has seen success in restor-
ing medical images corrupted with noise or artifacts, but the
interpretation of the reasoning behind this process has also been
pointed out as a challenge [108]. The extensive use of CT in
medical analysis has raise some concerns due to the large dose of
radiation that it delivers to the patient. Low dose CT is a solution
for this problem, but by using lower radiation amounts, noise and
artifacts become a problem. DL techniques have been proposed
to reconstruct low dose CT images and recover from noise and
streaking artifacts caused by metal objects [103]-[105].

Even though DL techniques have help the numerous problems
pointed out above, they all face the same obstacle which prevents
their use in clinical practice, the lack of interpretability. Future
research efforts should then be targeted in the exploration of
other application of interpretability methods other than model
validation and different cancer tasks than disease diagnosis.
With the expansion of cancer applications, other interpretability
strategies will emerge based on images (most used modality)
and other modalities that may be more associated with other
problems.

C. Lack of Reliability of Some Interpretability Methods

Some post-hoc interpretability methods can present
bias [109], [110] and might not be representative of the
behavior of the model they are trying to explain [111]. This
happens because although explanations should approximate
as much as possible the actual behaviour of the model, during
the process of optimization (e.g. backpropagation) some inputs
given to the network are outside the distribution of the training
data and can trigger artifacts of the deep learning model.

As different interpretation methods sometimes focus on dis-
tinct aspects of the model [105], a promising direction to im-
prove the reliability of the interpretations is deploy an ensemble
of complementary interpretability methods. Furthermore, inter-
pretability methods should also be provided with imperfect data
(i.e. noisy) to guarantee robustness to noise.

D. Lack of Evaluation Metrics for Interpretability Methods

To quantitatively evaluate an interpretability method without
the validation of an expert requires a formal definition of inter-
pretability and the use of a proxy metric describing the quality

of the explanation [17]. The lack of ground-truth explanations,
for example the expert annotated tumor segmentations which
indicated what the expected value of a saliency map should be,
makes it difficult to make quantitative analysis of the results,
and generalize the obtained results. One of possible solutions to
solve this issue is to conduct a comparison study between the
interpretation produced by the deep model and one produced by
a set of physicians. However, and once again, this solution may
not be generalizable, hence most studies conducting evaluation
by letting experts (e.g. pathologist) compare the explanations of
few number of selected examples and their domain knowledge.

Future research should help find interpretability metrics able
to assess methods based on three factors. First, evaluate how
faithful the explanations are to the actual model’s behaviour.
Second, evaluate how easily the explanations are understood by
the physician. Third, evaluate the usefulness of the explanation
of its target application (i.e. model validation). Only by evaluat-
ing these factors can explanations extracted from deep learning
models be truly trusted and applied in clinical practice.

VI. CONCLUSION

Interpretability of deep learning is a growing field with mostly
open problems and many opportunities for the field of medicine
and oncology.

The lack of interpretability in deep learning has been pointed
out as a major problem by many researchers that have studied
the application of deep learning in various areas of medicine and
bioinformatics [33], [34], [112].

In this work, we presented an easy guide for oncologists
where we introduced various deep learning techniques and
illustrated how the decisions of these could be interpreted with
self-explanatory oncological cases to better illustrate. We also
review the related research on the application of interpretability
methods for cancer diseases, summarizing their main conclu-
sions.

To the extent of the authors’ knowledge, such comprehensive
review on the interpretability of DL models for cancer diseases
has not been previously performed. Overall, a high number of
studies focused on breast, skin and brain cancers (60%) and on
the explanation of the importance of tumor characteristics like
tumor dimensions and shape, in the prediction of decision sys-
tem. The majority of DL techniques interpreted were multilayer
perceptrons and convolutional neural networks, often used to
predict based on raw images or handcrafted features extracted
from them.

As discussed in the previous section, three main issues were
identified: (1) limitation on the applications of interpretability
methods; (2) lack of reliability of some interpretability method;
and (3) lack of evaluation metrics for interpretability methods.

Future research should go beyond model validation and apply
interpretability to understand how models misbehave, as well as
discover new knowledge about different cancer diseases. Also,
although DL has been successful in many cancer tasks (e.g.
tumor segmentation, cancer prognosis and image registration),
works aim at interpreting models on these tasks remain un-
explored. Lastly, future research in the design of evaluation
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metrics and frameworks is mandatory to assess the reliability
of Al systems and for increasing the trust to be used on clinical
practice.
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