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Abstract
To express the asymmetrically uncertain preferred and non-preferred qualitative
judgments of decision makers, this paper introduces interval-valued intuitionistic
multiplicative linguistic variables (IVIMLVs). To show their application in decision
making, a ranking method is first offered. Then, we introduce IVIMLVs for preference
relations and propose interval-valued intuitionistic multiplicative linguistic preference
relations (IVIMLPRs). To obtain the ranking reasonably, a consistency definition for
IVIMLPRs is presented. A mathematical optimization model for judging the consis-
tency of IVIMLPRs based on the new concept is constructed. To address two general
cases: incompleteness and inconsistency, mathematical optimizationmodels for ascer-
taining unknown values in incomplete IVIMLPRs and deriving completely consistent
IVIMLPRs from inconsistent ones are built, respectively. For group decisionmaking, a
consensus index is defined tomeasure the consensus achieved among the decisionmak-
ers’ preferences. If the consensus is not enough, a mathematical optimization model
for improving the consensus level is established. Furthermore, a linear optimization
model for determining theweights of the decisionmakers based on the consensus anal-
ysis is constructed. Finally, a group decision-makingmethodwith IVIMLPRs based on
consistency and consensus analysis is offered, and its application on selecting supply
chain cooperative partners is offered.
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170 J. Tang et al.

1 Introduction

Decision making usually needs a group of decision makers (DMs) comparing and
ranking objects. Preference relation is one of the most important decision-making
methods. Researches about its theory and application have attracted significant atten-
tion. Because traditional preference relations require DMs to offer exact values (Saaty
1980; Tanino 1984), their application is restricted. To solve this issue, scholars intro-
duced Zadeh’s fuzzy sets for preference relations and developed decision making with
fuzzy preference relations (Chiclana et al. 2009; Meng and Chen 2018; Saaty and Var-
gas 1987; van Laarhoven and Pedrycz 1983). Because intervals can simply denote the
uncertainties of DMs, interval fuzzy preference relations are one of the most widely
used preference relations. Following the construction of intervals, there are two types
of interval fuzzy preference relations: additive interval fuzzy preference relations (An
et al. 2018; Meng and Tan 2017; Wu et al. 2019a, b, c, d) and multiplicative interval
fuzzy preference relations (Meng et al. 2017).

The same as other types of quantitative fuzzy variables, intervals are insufficient to
address more complex situations. To better express the fuzziness of human subjective
judgements, Zadeh (1975) introduced linguistic variables to denote the judgements of
DMs, such as fast, slow, and fair. Later, researchers noted the advantages of linguistic
variables and introduced them in preference relations, which is known as linguistic
preference relations (Cabrerizo et al. 2017; Jin et al. 2016a, b; Xu 2004a). Considering
the fact that linguistic variables cannot reflect the uncertainties of DMs, Xu (2004b)
further introduced additive interval linguistic variables and additive interval linguistic
preference relations (AILPRs). After that many decision-making methods with inter-
val linguistic preference relations have been proposed. For example, Chen and Lee
(2012) presented a group decision making (GDM) method with AILPRs based on the
defined interval linguistic ordered weighted aggregation operator and the likelihood
of individual AILPRs. Following the work of Xu (2005), Tapia García et al. (2012)
proposed a GDM method with AILPRs based on the defined consensus measure and
proximity measure. Using the 2-tuple linguistic representation model (Herrera and
Martínez 2000), Xu and Wu (2013) introduced another GDM method with AILPRs
based on consensus analysis and a model for determining the weights of DMs. Chen
et al. (2011) introduced a compatible index for AILPRs and used this index to build
a model for deriving the weights of DMs. Then, the authors proposed a new GDM
method. A similar research can be seen in (Zhou and Chen 2013). Meng et al. (2016)
analyzed the relationship between linguistic variables and interval linguistic variables.
Then, the authors discussed the consistency of AILPRs following the consistency con-
cepts of linguistic preference relations (Dong et al. 2008; Xu 2011). Subsequently, a
consistency and consensus analysis-based algorithm for GDM with AILPRs is intro-
duced. To address differences between operational laws on linguistic variables and
interval linguistic variables, Meng et al. (2019a, b) presented the concepts of quasi
interval linguistic variables and quasi interval linguistic preference relations (QILPRs).
Then, the authors defined an additive consistency concept for AILPRs that satisfies
all properties for the consistency concepts for linguistic preference relations (Dong
et al. 2008; Xu 2011). Based on this concept, a GDM method with inconsistent and
incomplete AILPRs is provided. On the other hand, Xu (2006) introduced multiplica-
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tive interval linguistic variables for preference relations and presented multiplicative
interval linguistic preference relations (MILPRs). Then, the author offered us a GDM
method with MILPRs based on the defined interval linguistic ordered weighted geo-
metricmeanoperators. Zhou et al. (2014) presented an approach toGDMwithMILPRs
using the defined compatible index.

However, in some situations, more than one linguistic variable may exists for a
judgement. To denote such cases, Zhu and Xu (2014) applied hesitant fuzzy linguis-
tic term sets (HFLTSs) (Rodríguez et al. 2012) to define hesitant fuzzy linguistic
preference relations (HFLPRs) and then discussed their consistency. Based on con-
tinuous linguistic term sets, Wang and Xu (2015) proposed extended HFLPRs. Then,
the authors presented a method for ranking objects from extended HFLPRs based
on the assumption that there is a uniform distribution on each hesitant fuzzy linguis-
tic judgement. Furthermore, Wu and Xu (2016a) defined another additive consistency
concept for HFLPRs based on the expectations of HFLTSs (Wu and Xu 2016b). Zhang
and Wang (2014) noted that additive consistency concepts have some limitations and
defined a multiplicative consistency concept for HFLPRs. Liu et al. (2019a, b, c,
d) studied incomplete HFLPRs and presented a consistency improvement method.
Different from HFLPRs, whose elements are defined on the symmetrical linguistic
term sets, Tang and Meng (2019) presented the concept of multiplicative HFLTSs and
introduced multiplicative hesitant fuzzy linguistic preference relations (MHFLPRs).
Based on consistency and consensus analysis, the authors proposed a procedure for
GDM with MHFLPRs. Tang et al. (2019) further researched decision making with
multiplicative interval linguistic hesitant fuzzy preference relations (MILHFPRs) to
denote the asymmetrically interval hesitant qualitative judgements. Note that all of the
abovementioned fuzzy sets cannot denote the preferred and non-preferred judgements
of DMs simultaneously. To cope with this issue, Atanassov’s intuitionistic fuzzy sets
(IFSs) (Atanassov 1986) are good choices that use a real value in [0, 1] to denote
the membership and non-membership degrees of a judgement, respectively. Later,
Atanassov and Gargov (1989) further introduced interval-valued intuitionistic fuzzy
sets (IVIFSs) to express the uncertain membership and non-membership degrees of
DMs. Szmidt and Kacprzyk (1988) noted the advantages of IFSs and presented intu-
itionistic fuzzy preference relations (IFPRs). More researches about decision making
with IFPRs can be found in (Gong et al. 2009, 2011, 2018; Jin et al. 2019; Liu et al.
2019a, b, c, d; Xu 2007; Yang et al. 2019; Zhang and Pedrycz 2018). Furthermore,
Meng et al. (2019a, b) studied decision making with intuitionistic linguistic prefer-
ence relations that can denote the qualitative and quantitative intuitionistic preferences
simultaneously. Jin et al. (2019) followed Liao and Xu’s multiplicative consistency
concept for IFPRs (Liao and Xu 2014) to offer a multiplicative consistency concept
for intuitionistic linguistic preference relations and offered an iteration-based GDM
method. Zhang and Pedrycz (2019) discussed the consistency of interval-valued intu-
itionisticmultiplicative preference relations (IVIMPRs) andbuilt several programming
models to cope with the consistency and consensus.

However, when DMs can only offer their preferred and non-preferred qualitative
judgments, all of the above introduced fuzzy sets are helpless. Considering this situa-
tion, this paper introduces the concept of interval-valued intuitionistic multiplicative
linguistic variables (IVIMLVs) that use a multiplicative interval linguistic variable
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defined on the asymmetrical linguistic term sets to denote the uncertain preferred
and non-preferred qualitative judgements of DMs, respectively. Then, interval-valued
intuitionistic multiplicative linguistic preference relations (IVIMLPRs) are proposed.
After that, this paper studies GDM with IVIMLPRs. The main highlights include:
(i) a consistency concept, which satisfies upper triangular property and robustness,
is defined; (ii) following this concept, mathematical optimization models for judging
the consistency of IVIMLPRs are constructed; (iii) for incomplete and inconsistent
IVIMLPRs, mathematical optimization models for ascertaining unknown values and
deriving consistent IVIMLPRs are built, respectively; (iv) Based on quasi IVIMLPRs,
a consensus index is proposed; (v) following the consensus analysis, a mathematical
optimization model for determining the weights of DMs is established; (vi) when the
consensus of individual judgements does not satisfy a minimum threshold, a math-
ematical optimization model for improving the consensus level is constructed; (vii)
an algorithm for GDM with IVIMLPRs based on consistency and consensus is devel-
oped; (viii) a practical GDM problem on selecting partners in supply chain is offered
to show the application of these new results.

The paper runs as follows: Sect. 2 contains the background results for our study,
including multiplicative linguistic variables, multiplicative linguistic preference rela-
tions (MLPRs),multiplicative interval linguistic variables (MILVs), andmultiplicative
interval linguistic preference relations (MILPRs). Section 3 proposes the concept of
IVIMLPRs and studies the consistency of IVIMLPRs. Section 4 discusses how to judge
the consistency of IVIMLPRs using the built mathematical optimization model. Sec-
tion 5 analyzes two usual cases: incomplete and inconsistent IVIMLPRs. To address
these two types of IVIMLPRs, mathematical optimization models to obtain unknown
linguistic variables and derive consistent IVIMLPRs are constructed, respectively.
Section 6 focuses on GDMwith IVIMLPRs and defines a consensus index. Then, two
mathematical optimization model-based methods for determining the weights of DMs
and improving the consensus level of individual IVIMLPRs are offered, respectively.
Furthermore, an algorithm for GDM with incomplete and inconsistent IVIMLPRs
is provided. Section 7 uses a practical example to show the application of the new
algorithm. Conclusions are drawn in Sect. 8.

2 Background and Framework

For simplicity, let X � {x1, x2, …, xn} denote the object set. To express asymmetrical
qualitative judgements of DMs, Xu (2004a) introduced the concept of multiplicative
linguistic variables (MLVs), which are defined on the discrete asymmetrical linguistic
term set (DALTS) S � {sa |a � 1/t , . . . , 1/2, 1, 2, . . . , t}. Any linguistic term sλ
expresses a value of MLVs with the following conditions:

(i) Ordered relationship: if a1 > a2, then sa1 > sa2 ;
(ii) Reciprocity: for any sa ∈ S, there is sb ∈ S such that sa ⊗ sb � sab � 1.

For instance, a DALTS may be denoted as: S� {s1/3: very small, s1/2: small, s1:
fair, s2: big, s3: very big}. To avoid losing information in the process of calculation,
Xu (2004a) extended the DALTS S to the continuous asymmetrical linguistic term set
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(CALTS) S′ � {sb|b ∈ [1/t , t]}. For any sb ∈ S′, it is called an original linguistic
variable under the condition sb ∈ S. Otherwise, it is a virtual linguistic variable.
Generally speaking, virtual linguistic variables only appear in calculation. For any
sb ∈ S′, we let I (sb) � b.

Let sa , sb ∈ S′, then (i) sa ⊗ sb � sab; (ii) (sa)λ � saλ for any λ ∈ [0, 1]; (iii)
logλ(sa) � slogλ(a) (Xu 2004a). Based on MLVs, MLPRs are defined as follows:

Definition 1 (Xu 2004a) Let R � (ri j )n×n be a linguistic fuzzy matrix on X for the
DALTS S. R is called a MLPR if the followings are true:

ri j ⊗ r ji � s1 rii � s1,

for all i, j � 1, 2, …, n, where ri j ∈ S denote the preferred qualitative degree of the
object xi over xj.To derive the reasonable ranking of objects fromMLPRs, Xu (2004a)
introduced the following consistency concept for MLPRs:

Definition 2 (Xu 2004a). Let R � (ri j )n×n be a MLPR on X for the DALTS S. R is
consistent if

ri j � rik ⊗ rk j (1)

for all i, k, j � 1, 2, …, n.To denote the uncertain qualitative judgements of DMs, Xu
(2006) further introduced the concept of MILVs.

Definition 3 (Xu 2006). Let s̄ � [sa , sb] such that sa , sb ∈ S′ and sa ≤ sb. Then, s̄ is
called a MILV.

Let s̄1 � [sa1 , sb1 ] and s̄2 � [sa2 , sb2 ] be any two MILVs, then several of their
operations are listed as follows (Xu 2006):

(i) s̄1 ⊗ s̄2 � [sa1a2 , sb1b2 ],
(ii) s̄λ

1 � [saλ
1
, sbλ

1
], λ ∈ [0, 1],

(iii) logλ(s̄1) � [slogλ(a1), slogλ(b1)], λ ∈ [0, 1],
(iv) (s̄1)−1 � [s1/b1 , s1/a1 ].

Similar to MLPRs, Xu (2006) presented MILPRs as follows:

Definition 4 (Xu 2006). Let R̄ � (r̄i j )n×n be an interval linguistic fuzzy matrix on X
for the CALTS S′. R̄ is called a MILPR if

r Li j ⊗ rUji � rUi j ⊗ r Lji � s1, r Lii � rUii � s1 (2)

are true for all i, j � 1, 2, …, n, where r̄i j � [r Li j , r
U
i j ] is the uncertain preferred

qualitative degree of the object xi over xj such that r Li j , r
U
i j ∈ S′ and r Li j ≤ rUi j .

Considering differences between operational laws on MLVs and IMLVs, for exam-
ple s̄1 ⊗ (s̄1)−1 �� [s1, s1], we cannot define the consistency of MILPRs in a similar
way to that of MLPRs. Following the work of Meng et al. (2017), we introduce the
following consistency concept for quasi MILPRs (QMILPRs):
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Definition 5 Let R̄ � (r̄i j )n×n be a MILPR on X for the CALTS S′. Q̄ � (q̄i j )n×n is
called a QMILPR for R̄ if{

q̄i j � [r Li j , r
U
i j ]

q̄ j i � [rUji , r
L
ji ]

∨
{
q̄i j � [rUi j , r

L
i j ]

q̄ j i � [r Lji , r
U
ji ]

(3)

for all i, j � 1, 2, …, n.

From the concept of QMILPRs, we easily derive q̄i j ⊗ q̄ j i � [s1, s1] for per (i,
j), namely, elements in QMILPRs satisfy reciprocity. This allows us to define the
consistency of QMILPRs in a similar way to Definition 2 for MLPRs. On the other
hand, elements of QMILPRs are obtained from that of associated IMLPRs. Thus, we
can obtain the consistency of MILPRs following that of QMILPRs. Based on this
point of view, the following consistency concept for MILPRs is presented:

Definition 6 Let R̄ � (r̄i j )n×n be a MILPR on X for the CALTS S′. It is consistent if
there is an associated consistent QMILPR Q̄ � (q̄i j )n×n , namely,

q̄i j � q̄ik ⊗ q̄k j (4)

for all i, j � 1, 2, …, n.

Remark 1 Following the reciprocity of elements in QMILPRs, one can easily show
that Definition 6 satisfies two important properties for consistency concepts: upper
triangular property and robustness.

3 Interval-Valued Intuitionistic Multiplicative Linguistic Preference
Relations

To express the asymmetrically uncertain preferred and non-preferred qualitative judg-
ments of DMs simultaneously, this section introduces a new type of linguistic fuzzy
sets: interval-valued intuitionistic multiplicative linguistic fuzzy sets (IVIMLFSs).

Definition 7 An IVIMLFS S̃ on X for the CALTS S′ is defined as:

S̃ � {〈xi , ([sμ− (xi ), sμ+(xi )], [sv−(xi ), sv+(xi )]
)〉
, i � 1, 2, . . . , n

}
(5)

where [sμ− (xi ), sμ+(xi )] and [sv−(xi ), sv+(xi )] are the uncertain preferred and non-
preferred qualitative degrees of the object xi over xj such that sμ− (xi ) ⊗ sv+(xi ) ≤ s1
and sμ+(xi ) ⊗ sv−(xi ) ≤ s1. In addition, s̃ � ([sμ− , sμ+], [sv− , sv+]

)
is an IVIMLV

such that sμ− ⊗ sv+ ≤ s1 and sμ+ ⊗ sv− ≤ s1.

Now, we apply the following example to show the situations where IVIMLVs may
be used and the advantages of IVIMLVs for representing the judgments of DMs.

ADM is invited to compare two brands of air conditioning. Because there are many
factors, such as noise, energy consumption, appearance, price and brand effect, it is

123



Group Decision Making with Interval-Valued Intuitionistic… 175

not an easy thing to offer his/her quantitative judgment. Linguistic variables are good
choices to address this case. Let S � {s1/5: extremely bad, s1/4: very bad, s1/3: bad, s1/2:
a little bad, s1: fair, s2: a little good, s3: good, s4: very, s5: extremely good} be the given
DALTS. The DM can use linguistic variables in S to give his/her judgment. If the DM
judges that the preferred degree of the first brand of air conditioning over the second
one is between “s1/2: a little bad” and “s3: good”, while it is between “s1/4: a bit bad”
and “s1: fair” for the preferred degree of the second brand of air conditioning over the
first one, namely, the non-preferred degree of the first brand of air conditioning over
the second one is between “s1/4: a bit bad” and “s1: fair”. To express these judgments,
previous fuzzy variables are helpless, and IVIMLVs are good tools that can easily
denote the above judgments, where s̃ � ([s1/2, s3], [s1/4, s1]).

To derive the ranking of objects from IVIMLVs, the score and accuracy functions
are defined as follows:

Definition 8 Let s̃ � ([sμ− , sμ+], [sv− , sv+]
)
be an IVIMLV on X for the CALTS S′.

Then, its score value is defined as:

V (s̃) � μ−μ+

v−v+
(6)

and the accuracy value is defined as:

A(s̃) � (μ−μ+)(v−v+
)

(7)

Let s̃1 �
(
[sμ−

1
, sμ+

1
], [sv−

1
, sv+1 ]

)
and s̃2 �

(
[sμ−

2
, sμ+

2
], [sv−

2
, sv+2 ]

)
be any two

IVIMLVs, then their order relationship is offered as follows:

(i) if V (s̃1) > V (s̃2), then s̃1 > s̃2;

(ii) if V (s̃1) � V (s̃2), then

{
A(s̃1) > A(s̃2) ⇒ s̃1 > s̃2
A(s̃1) � A(s̃2) ⇒ s̃1 � s̃2

.

Now, we introduce the concept of IVIMLPRs whose elements are IVIMLVs.

Definition 9 An IVIMLPR R̃ � (r̃i j )n×n on X for the CALTS S′ is defined as:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sμ−
i j

� sv−
j i
, sμ+

i j
� sv+j i

sv−
i j

� sμ−
j i
, sv+i j � sμ+

j i

sμ−
i j

⊗ sv+i j ≤ s1, sμ+
i j

⊗ sv−
i j

≤ s1

sμ−
i i

� sμ+
i i

� sv−
i i

� sv+i i � s1

(8)

for all i, j � 1, 2,…, n, where r̃i j �
(
[sμ−

i j
, sμ+

i j
], [sv−

i j
, sv+i j ]

)
is an IVIMLV, and [sμ−

i j
,

sμ+
i j
] and [sv−

i j
, sv+i j ] are the uncertain preferred and non-preferred qualitative degrees

of the object xi over xj, respectively.
For example, Let X � {x1, x2, x3} and S′ � {sb|1/4 ≤ b ≤ 4}. Then, an IVIMLPR

R̃ � (r̃i j )n×n on X for S′ may be defined as:
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R̃ �
⎛
⎝ ([s1, s1], [s1, s1])

(
[s1/3, s1], [s1/2, s2]

) (
[s2, s4], [s1/4, s1/3]

)(
[s1/2, s2], [s1/3, s1]

)
([s1, s1], [s1, s1])

(
[s1/4, s1/2], [s1, s3]

)(
[s1/4, s1/3], [s2, s4]

) (
[s1, s3], [s1/4, s1/2]

)
([s1, s1], [s1, s1])

⎞
⎠

Remark 2 When

⎧⎨
⎩
sμ−

i j
⊗ sv+i j � s1

sμ+
i j

⊗ sv−
i j

� s1
for all i, j � 1, 2,…, n, then the IVIMLPR R̃ �

(r̃i j )n×n reduces to a MILPR R̄ � (r̄i j )n×n[52].

To derive the reasonable ranking of objects from IVIMLPRs, the consistency anal-
ysis is indispensable. Therefore, we first introduce the concept of two-dimensional
preferred multiplicative interval linguistic fuzzy variables (TDPMILFVs). Defi-
nition 9 shows that [sv− , sv+] is the uncertain non-preferred qualitative degree
for any s̃ � (

[sμ− , sμ+], [sv− , sv+]
)
. Thus, s1/v+ and s1/v− can be regarded

as the lower and upper preferred degrees for [sv− , sv+], respectively. For any
IVIMLV s̃ � ([sμ− , sμ+], [sv− , sv+]

)
, its associated TDPMILFV is defined as:s̃ �(

[sμ− , s1/v+], [sμ+ , s1/v−]
)
. Following Definition 9, we have sμ−

i j
≤ s1/v+i j and sμ+

i j
≤

s1/v−
i j
.

Definition 10 Let R̃ � (r̃i j )n×n be an IVIMLPRonX for theCALTS S′. P̃ � ( p̃i j )n×n

is called a two-dimensional preferred multiplicative interval linguistic preference rela-

tion (TDP-MILPR), where p̃i j �
(
[sμ−

i j
, s1/v+i j ], [sμ+

i j
, s1/v−

i j
]
)
is a TDP-MILFV for

all i, j � 1, 2,…, n with the conditions as shown in Definition 9.

Following Definition 10, we further propose quasi TDPMILPRs (QTDP-MILPRs)
in a similar way to QMILPRs.

Definition 11 Let P̃ � ( p̃i j )n×n be a TDPMILPR for the IVIMLPR R̃ � (r̃i j )n×n ,

where p̃i j �
(
[sμ−

i j
, s1/v+i j ], [sμ+

i j
, s1/v−

i j
]
)
is a TDPMILFV for all i, j � 1, 2,…, n.

Q̃ � (q̃i j )n×n is called a QTDP-MILPR for P̃ if one of the following four cases is
true:⎧⎪⎨
⎪⎩

q̃i j �
(
[sμ−

i j
, s1/v+i j ], [sμ+

i j
, s1/v−

i j
]
)

q̃ j i �
(
[s1/μ−

i j
, sv+i j ], [s1/μ+

i j
, sv−

i j
]
) ,
⎧⎪⎨
⎪⎩

q̃i j �
(
[s1/v+i j , sμ−

i j
], [sμ+

i j
, s1/v−

i j
]
)

q̃ j i �
(
[sv+i j , s1/μ−

i j
], [s1/μ+

i j
, sv−

i j
]
)

⎧⎪⎨
⎪⎩

q̃i j �
(
[sμ−

i j
, s1/v+i j ], [s1/v−

i j
, sμ+

i j
]
)

q̃ j i �
(
[s1/μ−

i j
, sv+i j ], [sv−

i j
, s1/μ+

i j
]
) ,
⎧⎪⎨
⎪⎩

q̃i j �
(
[s1/v+i j , sμ−

i j
], [s1/v−

i j
, sμ+

i j
]
)

q̃ j i �
(
[sv+i j , s1/μ−

i j
], [sv−

i j
, s1/μ+

i j
]
) (9)

for per (i, j) such that i < j.
Definition 11 shows that a QTDP-MILPR P̃ � ( p̃i j )n×n corresponds to twoQMIL-

PRs: Q̄1 � (q̄1, i j )n×n and Q̄2 � (q̄2, i j )n×n , where⎧⎨
⎩

q̃1,i j � [sμ−
i j
, s1/v+i j ]

q̃1, j i � [s1/μ−
i j
, sv+i j ]

∨
⎧⎨
⎩

q̃1,i j � [s1/v+i j , sμ−
i j
]

q̃1, j i � [sv+i j , s1/μ−
i j
]

(10)
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Fig. 1 The relationships of consistency

⎧⎨
⎩

q̃2,i j � [sμ+
i j
, s1/v−

i j
]

q̃2, j i � [s1/μ+
i j
, sv−

i j
]

∨
⎧⎨
⎩

q̃2,i j � [s1/v−
i j
, sμ+

i j
]

q̃2, j i � [sv−
i j
, s1/μ+

i j
]

(11)

for per (i, j) such that i < j.

Similar to Definition 6, we define the consistency of QTDP-MILPRs using consis-
tent QMILPRs.

Definition 12 Let P̃ � ( p̃i j )n×n be a TDP-MILPR for the IVIMLPR R̃ � (r̃i j )n×n ,
and let Q̃ � (q̃i j )n×n be an associated QTDP-MILPR for P̃ . If the QMILPRs Q̄1 �
(q̄1, i j )n×n and Q̄2 � (q̄2, i j )n×n for Q̃ as shown in formulae (10) and (11) are both
consistent, then Q̃ is consistent.

Following the relationships between elements in IVIMLPRs, TDP-MILPR, and
QTDP-MILPR, we present a consistency concept for IVIMLPRs as follow:

Definition 13 Let P̃ � ( p̃i j )n×n be a TDP-MILPR for the IVIMLPR R̃ � (r̃i j )n×n .P̃
is consistent if there is a consistent QTDP-MILPR Q̃ � (q̃i j )n×n for P̃ based on
Definition 12.

Definition 14 Let R̃ � (r̃i j )n×n be an IVIMLPR R̃ � (r̃i j )n×n . R̃ is consistent if its
associated TDP-MILPR P̃ � ( p̃i j )n×n is consistent based on Definition 13.

To understand the consistency relationships clearly, please see Fig. 1.

Remark 3 Following the properties of consistent QMILPRs, we derive that Definition
14 satisfies: upper triangular property and robustness.

4 Judging the Consistency of IVIMLPRs

Definition 14 indicates that we only need to judge the consistency of the QMILPRs
Q̄1 � (q̄1, i j )n×n and Q̄2 � (q̄2, i j )n×n as shown in formulae (10) and (11) for judging
the consistencyof R̃ � (r̃i j )n×n . Because there aremanyQMILPRs,we cannot directly
use Definition 6 to derive the consistency of R̃ � (r̃i j )n×n . Considering the fact that
we only need to judge whether a pair of associated consistent QMILPRs exists rather
than judge the consistency of all associated QMILPRs, this section builds several
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optimization models to judge the consistency of IVIMLPRs based on the consistency
of their QMILPRs.

For any given IVIMLPR R̃ � (r̃i j )n×n , if it is consistent following Definition 14,
then we have
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
[sμ−

i j
, s1/v+i j ]

)αi j ⊗
(
[s1/v+i j , sμ−

i j
]
)1−αi j �

((
[sμ−

ik
, s1/v+ik ]

)αik ⊗
(
[s1/v+ik , sμ−

ik
]
)1−αik

)
⊗
((

[sμ−
k j
, s1/v+k j ]

)αk j ⊗
(
[s1/v+k j , sμ−

k j
]
)1−αk j

)
(
[sμ+

i j
, s1/v−

i j
]
)βi j ⊗

(
[s1/v−

i j
, sμ+

i j
]
)1−βi j �

((
[sμ+

ik
, s1/v−

ik
]
)βik ⊗

(
[s1/v−

ik
, sμ+

ik
]
)1−βik

)
⊗
((

[sμ+
k j
, s1/v−

k j
]
)βk j ⊗

(
[s1/v−

k j
, sμ+

k j
]
)1−βk j

) (12)

for all i, k, j � 1, 2,…, n such that i <k < j, where αi j and βi j are the 0–1 indicator
variables for q̄1, i j and q̄2, i j , respectively, denoted as

αi j �
{
1 q̄1, i j � [sμ−

i j
, s1/v+i j ]

0 q̄1, i j � [s1/v+i j , sμ−
i j
]
, βi j �

{
1 q̄2, i j � [sμ+

i j
, s1/v−

i j
]

0 q̄2, i j � [s1/v−
i j
, sμ+

i j
]

Formula (12) shows that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(sμ−
i j
)αi j ⊗ (s1/v+i j )

1−αi j �
(
(sμ−

ik
)αik ⊗ (s1/v+ik )

1−αik

)
⊗
(
(sμ−

k j
)αk j ⊗ (s1/v+k j )

1−αk j

)
(s1/v+i j )

αi j ⊗ (sμ−
i j
)1−αi j �

(
(s1/v+ik )

αik ⊗ (sμ−
ik
)1−αik

)
⊗
(
(s1/v+k j )

αk j ⊗ (sμ−
k j
)1−αk j

)
(sμ+

i j
)βi j ⊗ (s1/v−

i j
)1−βi j �

(
(sμ+

ik
)βik ⊗ (s1/v−

ik
)1−βik

)
⊗
(
(sμ+

k j
)βk j ⊗ (s1/v−

k j
)1−βk j

)
(s1/v−

i j
)βi j ⊗ (sμ+

i j
)1−βi j �

(
(s1/v−

ik
)βik ⊗ (sμ+

ik
)1−βik

)
⊗
(
(s1/v−

k j
)βk j ⊗ (sμ+

k j
)1−βk j

)
(13)

where i, k, j � 1, 2,…, n such that i <k < j.
Formula (13) shows that
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

I (sμ−
i j
)αi j ⊗ I (s1/v+i j )

1−αi j �
(
I (sμ−

ik
)αik ⊗ I (s1/v+ik )

1−αik

)
⊗
(
I (sμ−

k j
)αk j ⊗ I (s1/v+k j )

1−αk j

)
I (s1/v+i j )

αi j ⊗ I (sμ−
i j
)1−αi j �

(
I (s1/v+ik )

αik ⊗ I (sμ−
ik
)1−αik

)
⊗
(
I (s1/v+k j )

αk j ⊗ I (sμ−
k j
)1−αk j

)
I (sμ+

i j
)βi j ⊗ I (s1/v−

i j
)1−βi j �

(
I (sμ+

ik
)βik ⊗ I (s1/v−

ik
)1−βik

)
⊗
(
I (sμ+

k j
)βk j ⊗ I (s1/v−

k j
)1−βk j

)
I (s1/v−

i j
)βi j ⊗ I (sμ+

i j
)1−βi j �

(
I (s1/v−

ik
)βik ⊗ I (sμ+

ik
)1−βik

)
⊗
(
I (s1/v−

k j
)βk j ⊗ I (sμ+

k j
)1−βk j

)
(14)

namely,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(μ−
i j )

αi j × (1/v+i j )
1−αi j � ((μ−

ik)
αik × (1/v+ik)

1−αik
)(
(μ−

k j )
αk j × (1/v+k j )

1−αk j

)
(1/v+i j )

αi j × (μ−
i j )

1−αi j � ((1/v+ik)αik × (μ−
ik)

1−αik
)(
(1/v+k j )

αk j × (μ−
k j )

1−αk j

)
(μ+

i j )
βi j × (1/v−

i j )
1−βi j � ((μ+

ik)
βik × (1/v−

ik)
1−βik
)(
(μ+

k j )
βk j × (1/v−

k j )
1−βk j

)
(1/v−

i j )
βi j × (μ+

i j )
1−βi j � ((1/v−

ik)
βik × (μ+

ik)
1−βik
)(
(1/v−

k j )
βk j × (μ+

k j )
1−βk j

)
(15)

where i, k, j � 1, 2,…, n such that i <k < j.

123



Group Decision Making with Interval-Valued Intuitionistic… 179

Taking the logarithm for each formula (15), we derive

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αi j log(μ
−
i j ) + (1 − αi j ) log(1/v+i j ) � (αik log(μ

−
ik ) + (1 − αik ) log(1/v+ik )

)
+
(
αk j log(μ

−
k j ) + (1 − αk j ) log(1/v+k j )

)
αi j log(1/v+i j ) + (1 − αi j ) log(μ

−
i j ) � (αik log(1/v+ik ) + (1 − αik ) log(μ

−
ik )
)
+
(
αk j log(1/v+k j ) + (1 − αk j ) log(μ

−
k j )
)

βi j log(μ+
i j ) + (1 − βi j ) log(1/v

−
i j ) � (βik log(μ+

ik ) + (1 − βik ) log(1/v
−
ik )
)
+
(
βk j log(μ+

k j ) + (1 − βk j ) log(1/v
−
k j )
)

βi j log(1/v
−
i j ) + (1 − βi j ) log(μ+

i j ) � (βik log(1/v
−
ik ) + (1 − βik ) log(μ+

ik )
)
+
(
βk j log(1/v

−
k j ) + (1 − βk j ) log(μ+

k j )
)

(16)

namely,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αi j

(
log(μ−

i j ) + log(v+i j )
)

− log(v+i j ) � (αik
(
log(μ−

ik ) + log(v+ik )
)− log(v+ik )

)
+
(
αk j

(
log(μ−

k j ) + log(v+k j )
)

− log(v+k j )
)

log(μ−
i j ) − αi j

(
log(v+i j ) + log(μ−

i j )
)

� (log(μ−
ik ) − αik

(
log(v+ik ) + log(μ−

ik )
))

+
(
log(μ−

k j ) − αk j

(
log(v+k j ) + log(μ−

k j )
))

βi j

(
log(μ+

i j ) + log(v−
i j )
)

− log(v−
i j ) � (βik

(
log(μ+

ik ) + log(v−
ik )
)− log(v−

ik )
)
+
(
βk j

(
log(μ+

k j ) + log(v−
k j )
)

− log(v−
k j )
)

log(μ+
i j ) −

(
βi j log(v

−
i j ) + log(μ+

i j )
)

� (log(μ+
ik ) − βik

(
log(v−

ik ) + log(μ+
ik )
))

+
(
log(μ+

k j ) − βk j

(
log(v−

k j ) + log(μ+
k j )
))

(17)

Based on formula (17), we construct the following optimization model to judge the
consistency of any given IVIMLPR R̃ � (r̃i j )n×n :

f ∗ � min
n−2∑
i�1

n−1∑
k�i+1

n∑
j�k+1

(
ε+k,i j + ε−

k,i j + δ+k,i j + δ−
k,i j + θ+k,i j + θ−

k,i j + ϑ+
k,i j + ϑ−

k,i j

)

s.t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
αik
(
log(μ−

ik) + log(v+ik)
)− log(v+ik)

)
+
(
αk j

(
log(μ−

k j ) + log(v+k j )
)

− log(v+k j )
)

� αi j

(
log(μ−

i j ) + log(v+i j )
)

− log(v+i j ) − ε+k,i j + ε−
k,i j(

log(μ−
ik) − αik

(
log(v+ik) + log(μ−

ik)
))

+
(
log(μ−

k j ) − αk j

(
log(v+k j )

+ log(μ−
k j )
))

� log(μ−
i j ) − αi j

(
log(v+i j ) + log(μ−

i j )
)

− δ+k,i j + δ−
k,i j(

βik
(
log(μ+

ik) + log(v−
ik)
)− log(v−

ik)
)
+
(
βk j

(
log(μ+

k j ) + log(v−
k j )
)

− log(v−
k j )
)

� βi j

(
log(μ+

i j ) + log(v−
i j )
)

− log(v−
i j ) − θ+k,i j + θ−

k,i j(
log(μ+

ik) − βik
(
log(v−

ik) + log(μ+
ik)
))

+
(
log(μ+

k j ) − βk j

(
log(v−

k j )

+ log(μ+
k j )
))

� log(μ+
i j ) −

(
βi j log(v

−
i j ) + log(μ+

i j )
)

− ϑ+
k,i j + ϑ−

k,i j

αi j � 0 ∨ 1,βi j � 0 ∨ 1, i , j � 1, 2, . . . , n, i < j
ε+k,i j , ε

−
k,i j , δ

+
k,i j , δ

−
k,i j , θ

+
k,i j , θ

−
k,i j ,ϑ

+
k,i j ,ϑ

−
k,i j ≥ 0, i , k, j � 1, 2, . . . , n,

i < k < j
(M-1)

By solving model (M-1), if f ∗ � 0, then formula (17) is true, namely, formula (12)
is true. Thus, R̃ � (r̃i j )n×n is consistent. Otherwise, it is inconsistent.
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5 Incomplete and Inconsistent IVIMLPRs

In decision making with preference relations, two cases are usually encountered:
incomplete and inconsistent preference relations (Capuano et al. 2018; Ureña et al.
2015a, b). To extend the application of IVIMLPRs in decision making, this section
discusses incomplete and inconsistent IVIMLPRs.

5.1 Incomplete IVIMLPRs

In the procedure of decision making, some judging information may be unknown
due to various reasons (Liu et al. 2019a, b, c, d; Sahu and Gupta 2018; Tang and
Meng 2018; Wu et al. 2019a; Zhang et al. 2018a, b). To derive ranking of objects, it
is necessary to determine unknown information. Thus, this subsection establishes an
optimization model to determine unknown values based on the consistency analysis
and the known information.

Property 1 Let Q̄ � (q̄i j )n×n be a QMILPR for the MILPR R̄ � (r̄i j )n×n . Then, it is
consistent if and only if

q̄i j � n
√

⊗n
k�1

(
q̄ik ⊗ q̄k j

)
(18)

for all i, j � 1, 2,…, n such that i < j.

Proof If Q̄ � (q̄i j )n×n is consistent, then formula (18) holds following formula (4).
When formula (18) holds, we have

q̄i j � n
√

⊗n
k�1

(
q̄ik ⊗ q̄k j

) � n
√

⊗n
l�1

(
q̄il ⊗ q̄lk ⊗ q̄kl ⊗ q̄l j

)

� n
√

⊗n
l�1 (q̄il ⊗ q̄lk) ⊗ n

√
⊗n

l�1

(
q̄kl ⊗ q̄l j

) � q̄ik ⊗ q̄k j

following q̄i j ⊗ q̄ j i � [s1, s1] for all i, j � 1, 2, …, n. Thus, Q̄ � (q̄i j )n×n is
consistent. �

Following Property 1, we discuss how to build an optimization model for deter-
mining unknown information. For the given incomplete IVIMLPR R̃ � (r̃i j )n×n ,
if there are linguistic variables in the CALTS S′ that make the incomplete IVIMLPR
R̃ � (r̃i j )n×n be consistent, then two associated incompleteQMILPR Q̄1 � (q̄1, i j )n×n

and Q̄2 � (q̄2, i j )n×n are consistent. Following formula (18), we have
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⎧⎨
⎩
(
q̄1,i j
)n−2 � ⊗n

k�1,k ��i , j

(
q̄1,ik ⊗ q̄1,k j

)
(
q̄2,i j
)n−2 � ⊗n

k�1,k ��i , j

(
q̄2,ik ⊗ q̄2,k j

) (19)

for all i, j � 1, 2, …, n such that i < j.
Formula (19) shows that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((
[sμ−

i j
, s1/v+i j ]

)αi j ⊗
(
[s1/v+i j , sμ−

i j
]
)1−αi j

)n−2

� ⊗n
k�1,k ��i , j

(((
[sμ−

ik
, s1/v+ik ]

)αik
⊗
(
[s1/v+ik , sμ−

ik
]
)1−αik

)
⊗
((

[sμ−
k j
, s1/v+k j ]

)αk j ⊗
(
[s1/v+k j , sμ−

k j
]
)1−αk j

))
((

[sμ+
i j
, s1/v−

i j
]
)βi j ⊗

(
[s1/v−

i j
, sμ+

i j
]
)1−βi j

)n−2

� ⊗n
k�1,k ��i , j

(((
[sμ+

ik
, s1/v−

ik
]
)βik

⊗
(
[s1/v−

ik
, sμ+

ik
]
)1−βik

)
⊗
((

[sμ+
k j
, s1/v−

k j
]
)βk j ⊗

(
[s1/v−

k j
, sμ+

k j
]
)1−βk j

))
(20)

for all i, j � 1, 2, …, n such that i < j.
For per (i, j), following formula (20) we derive

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊗n
k�1,k ��i , j

(((
[I (sμ−

ik
), I (s1/v+ik )]

)αik ⊗
(
[I (s1/v+ik ), I (sμ−

ik
)]
)1−αik

)
⊗((

[I (sμ−
k j
), I (s1/v+k j )]

)αk j ⊗
(
[I (s1/v+k j ), I (sμ−

k j
)]
)1−αk j

))

�
((

[I (sμ−
i j
), I (s1/v+i j )]

)αi j ⊗
(
[I (s1/v+i j ), I (sμ−

i j
)]
)1−αi j

)n−2

⊗n
k�1,k ��i , j

(((
[I (sμ+

ik
), I (s1/v−

ik
)]
)βik ⊗

(
[I (s1/v−

ik
), I (sμ+

ik
)]
)1−βik

)

⊗
((

[I (sμ+
k j
), I (s1/v−

k j
)]
)βk j ⊗

(
[I (s1/v−

k j
), I (sμ+

k j
)]
)1−βk j

))

�
((

[I (sμ+
i j
), I (s1/v−

i j
)]
)βi j ⊗

(
[I (s1/v−

i j
), I (sμ+

i j
)]
)1−βi j

)n−2

(21)

namely,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Πn
k�1,k ��i , j

(
(μ−

ik )
αik × (1/v+ik )

1−αik × (μ−
k j )

αk j × (1/v+k j )
1−αk j

)
�
(
(μ−

i j )
αi j × (1/v+i j )

1−αi j
)n−2

Πn
k�1,k ��i , j

(
(1/v+ik )

αik × (μ−
ik )

1−αik × (1/v+k j )
αk j × (μ−

k j )
1−αk j

)
�
(
(1/v+i j )

αi j × (μ−
i j )

1−αi j
)n−2

Πn
k�1,k ��i , j

(
(μ+

ik )
βik × (1/v−

ik )
1−βik × (μ+

k j )
βk j × (1/v−

k j )
1−βk j
)

�
(
(μ+

i j )
βi j × (1/v−

i j )
1−βi j
)n−2

Πn
k�1,k ��i , j

(
(1/v−

ik )
βik × (μ+

ik )
1−βik × (1/v−

k j )
βk j × (μ+

k j )
1−βk j
)

�
(
(1/v−

i j )
βi j × (μ+

i j )
1−βi j
)n−2

(22)

-
Taking the logarithm for formula (24), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n

k�1,k ��i , j

(
αik
(
log(μ−

ik) + log(v+ik)
)− log(v+ik) − log(v+k j )+

αk j

(
log(μ−

k j ) + log(v+k j )
))

� (n − 2)
(
αi j

(
log(μ−

i j ) + log(v+i j )
)

− log(v+i j )
)

∑n

k�1,k ��i , j

(
log(μ−

ik) − αik
(
log(μ−

ik) + log(v+ik)
)
+ log(μ−

k j )−
αk j

(
log(μ−

k j ) + log(v+k j )
))

� (n − 2)
(
log(μ−

i j ) − αi j

(
log(μ−

i j ) + log(v+i j )
))

∑n

k�1,k ��i , j

(
βik
(
log(μ+

ik) + log(v−
ik)
)− log(v−

ik) − log(v−
k j )+

βk j

(
log(μ+

k j ) + log(v−
k j )
))

� (n − 2)
(
βi j

(
log(μ+

i j ) + log(v−
i j )
)

− log(v−
i j )
)

∑n

k�1,k ��i , j

(
log(μ+

ik) − βik
(
log(μ+

ik) + log(v−
ik)
)
+ log(μ+

k j )−
βk j

(
log(μ+

k j ) + log(v−
k j )
))

� (n − 2)
(
log(μ+

i j ) − βi j

(
log(μ+

i j ) + log(v−
i j )
))
(23)

Following the construction of elements in IVIMLPRs, we can only apply elements
in the upper triangular parts of incomplete QMILPR Q̄1 � (q̄1, i j )n×n and Q̄2 �
(q̄2, i j )n×n to express each incomplete unknown judgment. Taking the first equation in
formula (23) for example, we get

∑n

k �1, k ��i , j

(
αik
(
log(μ−

ik ) + log(v+ik )
)− log(v+ik ) − log(v+k j )+ αk j

(
log(μ−

k j ) + log(v+k j )
))

�
(∑i−1

k�1
+
∑ j

k�i+1
+
∑n

k� j+1

)

×
(
αik
(
log(μ−

ik ) + log(v+ik )
)− log(v+ik ) + αk j

(
log(μ−

k j ) + log(v+k j )
)

− log(v+k j )
)

�
∑i−1

k�1

(
log(v+ki ) − αki

(
log(μ−

ki ) + log(v+ki )
)− log(v+k j )

+αk j

(
log(μ−

k j ) + log(v+k j )
))

+
∑ j

k�i+1

(
αik
(
log(μ−

ik ) + log(v+ik )
)− log(v+ik ) + αk j

(
log(μ−

k j ) + log(v+k j )
)

− log(v+k j )
)

+
∑n

k� j+1
(αik × (log(μ−

ik ) + log(v+ik )
)− log(v+ik ) + log(v+jk ) − α jk

(
log(μ−

jk ) + log(v+jk )
)
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Thus, formula (23) can be equivalently transformed into the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑i−1

k�1
ς1
i ,k, j +

∑ j

k�i+1
ς2
i ,k, j +

∑n

k� j+1
ς3
i ,k, j � (n − 2)

(
αi j

(
log(μ−

i j ) + log(v+i j )
)

− log(v+i j )
)

∑i−1

k�1
ς4
i ,k, j +

∑ j

k�i+1
ς5
i ,k, j +

∑n

k� j+1
ς6
i ,k, j � (n − 2)

(
log(μ−

i j ) − αi j

(
log(μ−

i j ) + log(v+i j )
))

∑i−1

k�1
υ1
i ,k, j +

∑ j

k�i+1
υ2
i ,k, j +

∑n

k� j+1
υ3
i ,k, j � (n − 2)

(
βi j

(
log(μ+

i j ) + log(v−
i j )
)

− log(v−
i j )
)

∑i−1

k�1
υ4
i ,k, j +

∑ j

k�i+1
υ5
i ,k, j +

∑n

k� j+1
υ6
i ,k, j � (n − 2)

(
log(μ+

i j ) − βi j

(
log(μ+

i j ) + log(v−
i j )
))
(24)

where

ς1
i , k, j � log(v+ki ) − αki

(
log(μ−

ki ) + log(v+ki )
)
+ αk j

(
log(μ−

k j ) + log(v+k j )
)

− log(v+k j ),

ς2
i , k, j � αik

(
log(μ−

ik) + log(v+ik)
)− log(v+ik) + αk j

(
log(μ−

k j ) + log(v+k j )
)

− log(v+k j ),

ς3
i , k, j � αik

(
log(μ−

ik) + log(v+ik)
)− log(v+ik) + log(v+jk) − α jk

(
log(μ−

jk) + log(v+jk)
)
,

ς4
i , k, j � αki

(
log(μ−

ki ) + log(v+ki )
)− log(μ−

ki ) + log(μ−
k j ) − αk j

(
log(μ−

k j ) + log(v+k j )
)
,

ς5
i , k, j � log(μ−

ik) − αik
(
log(μ−

ik) + log(v+ik)
)
+ log(μ−

k j ) − αk j

(
log(μ−

k j ) + log(v+k j )
)
,

ς6
i , k, j � log(μ−

ik) − αik
(
log(μ−

ik) + log(v+ik)
)
+ α jk

(
log(μ−

jk) + log(v+jk)
)

− log(μ−
jk),

υ1
i , k, j � log(v−

ki ) − βki
(
log(μ+

ki ) + log(v−
ki )
)
+ βk j

(
log(μ+

k j ) + log(v−
k j )
)

− log(v−
k j ),

υ2
i , k, j � βik

(
log(μ+

ik) + log(v−
ik)
)− log(v−

ik) + βk j

(
log(μ+

k j ) + log(v−
k j )
)

− log(v−
k j ),

υ3
i , k, j � βik

(
log(μ+

ik) + log(v−
ik)
)− log(v−

ik) + log(v−
jk) − β jk

(
log(μ+

jk) + log(v−
jk)
)
,

υ4
i , k, j � βki

(
log(μ+

ki ) + log(v−
ki )
)− log(μ+

ki ) + log(μ+
k j ) − βk j

(
log(μ+

k j ) + log(v−
k j )
)
,

υ5
i , k, j � log(μ+

ik) − βik
(
log(μ+

ik) + log(v−
ik)
)
+ log(μ+

k j ) − βk j

(
log(μ+

k j ) + log(v−
k j )
)
,

υ6
i , k, j � log(μ+

ik) − βik
(
log(μ+

ik) + log(v−
ik)
)
+ β jk

(
log(μ+

jk) + log(v−
jk)
)

− log(μ+
jk).
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Based on formula (24), the following optimization model is established:

g∗ � min
∑n−1

i�+1

∑n

j�i+1

(
π+
i j + π−

i j + ι+i j + ι−i j + τ+i j + τ−
i j + σ +

i j + σ−
i j

)

s.t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑i−1

k�1
ς1
i ,k, j +

∑ j

k�i+1
ς2
i ,k, j +

∑n

k� j+1
ς3
i ,k, j � (n − 2)

(
αi j

(
log(μ−

i j ) + log(v+i j )
)

− log(v+i j )
)

− π+
i j + π−

i j , i , j � 1, 2, . . . , n, i < j∑i−1

k�1
ς4
i ,k, j +

∑ j

k�i+1
ς5
i ,k, j +

∑n

k� j+1
ς6
i ,k, j � (n − 2)

(
log(μ−

i j ) − αi j

(
log(μ−

i j ) + log(v+i j )
))

− ι+i j + ι−i j , i , j � 1, 2, . . . , n, i < j∑i−1

k�1
υ1
i ,k, j +

∑ j

k�i+1
υ2
i ,k, j +

∑n

k� j+1
υ3
i ,k, j � (n − 2)

(
βi j

(
log(μ+

i j ) + log(v−
i j )
)

− log(v−
i j )
)

− τ+i j + τ−
i j , i , j � 1, 2, . . . , n, i < j∑i−1

k�1
υ4
i ,k, j +

∑ j

k�i+1
υ5
i ,k, j +

∑n

k� j+1
υ6
i ,k, j � (n − 2)

(
log(μ+

i j ) − βi j

(
log(μ+

i j ) + log(v−
i j )
))

− σ +
i j + σ−

i j , i , j � 1, 2, . . . , n, i < j

1/t ≤ μ−
i j ≤ μ+

i j ∧ μ−
i jv

+
i j ≤ 1,μ−

i j ∈ U−,μ+
i j /∈ U+, v+i j /∈ V +

μ−
i j ≤ μ+

i j ≤ t ∧ v−
i jμ

+
i j ≤ 1,μ−

i j /∈ U−,μ+
i j ∈ U+, v−

i j /∈ V−

1/t ≤ v−
i j ≤ v+i j ∧ v−

i jμ
+
i j ≤ 1, v−

i j ∈ V−, v+i j /∈ V +,μ+
i j /∈ U+

v−
i j ≤ v+i j ≤ t ∧ μ−

i jv
+
i j ≤ 1, v−

i j /∈ V−, v+i j ∈ V +,μ−
i j /∈ U−

{
1/t ≤ μ−

i j ≤ μ+
i j ≤ t ∧ μ−

i j v
+
i j ≤ 1 ∧ μ+

i jv
−
i j ≤ 1,

μ−
i j ∈ U−,μ+

i j ∈ U+, v−
i j /∈ V−, v+i j /∈ V +

{
1/t ≤ v−

i j ≤ v+i j ≤ t ∧ μ−
i jv

+
i j ≤ 1 ∧ μ+

i jv
−
i j ≤ 1,

μ−
i j /∈ U−,μ+

i j /∈ U+, v−
i j ∈ V−, v+i j ∈ V +

{
1/t ≤ μ−

i j ≤ μ+
i j ≤ t ∧ 1/t ≤ v−

i j ≤ v+i j ∧ μ−
i jv

+
i j ≤ 1

∧μ+
i jv

−
i j ≤ 1,μ−

i j ∈ U−,μ+
i j ∈ U+, v−

i j ∈ V−, v+i j /∈ V +

{
1/t ≤ μ−

i j ≤ μ+
i j ≤ t ∧ v−

i j ≤ v+i j ≤ t ∧ μ−
i j v

+
i j ≤ 1∧

μ+
i jv

−
i j ≤ 1,μ−

i j ∈ U−,μ+
i j ∈ U+, v−

i j /∈ V−, v+i j ∈ V +

{
1/t ≤ μ−

i j ≤ μ+
i j ∧ 1/t ≤ v−

i j ≤ v+i j ≤ t ∧ μ−
i jv

+
i j ≤ 1∧

μ+
i jv

−
i j ≤ 1,μ−

i j ∈ U−,μ+
i j /∈ U+, v−

i j ∈ V−, v+i j ∈ V +

{
μ−
i j ≤ μ+

i j ≤ t ∧ 1/t ≤ v−
i j ≤ v+i j ≤ t ∧ μ−

i j v
+
i j ≤ 1∧

μ+
i jv

−
i j ≤ 1,μ−

i j /∈ U−,μ+
i j ∈ U+, v−

i j ∈ V−, v+i j ∈ V +

{
1/t ≤ μ−

i j ≤ μ+
i j ≤ t ∧ 1/t ≤ v−

i j ≤ v+i j ≤ t ∧ μ−
i jv

+
i j ≤

1 ∧ μ+
i jv

−
i j ≤ 1,μ−

i j ∈ U−,μ+
i j ∈ U+, v−

i j ∈ V−, v+i j ∈ V +

αi j + α j i � 1,βi j + β j i � 1,αi j � 0 ∨ 1,

βi j � 0 ∨ 1, i , j � 1, 2, . . . , n, i < j

π+
i j ,π

−
i j , ι

+
i j , ι

−
i j , τ

+
i j , τ

−
i j , σ

+
i j , σ

−
i j ≥ 0, i , j � 1, 2, . . . , n, i < j

(M-2)

where

U− �
{
μ−
i j |sμ−

i j
is missing, i , j � 1, 2, . . . , n, i < j

}
,

U+ �
{
μ+
i j |sμ+

i j
is missing, i , j � 1, 2, . . . , n, i < j

}
,

V− �
{
v−
i j |sv−

i j
is missing, i , j � 1, 2, . . . , n, i < j

}
,

V + �
{
v+i j |sv+i j is missing, i , j � 1, 2, . . . , n, i < j

}
,
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and t is the biggest index of linguistic variables in the CALTS S′.
Example 1 Let X � {x1, x2, x3, x4} be the set of objects, and let R̃ � (r̃i j )4×4 be an
incomplete IVIMLPR on X for the CALTS S′ � {sb|1/4 ≤ b ≤ 4}, where

R̃ �

⎛
⎜⎜⎜⎜⎜⎝

([s1, s1], [s1, s1])
(
[s1/3, s1/2], [sv−

12
, sv+12 ]

) (
[s1, s3], [s1/4, s1/2]

) (
[s1, s2], [s1/3, s1/2]

)
(
[sμ−

21
, sμ+

21
], [s1/3, s1/2]

)
([s1, s1], [s1, s1])

(
[sμ−

23
, sμ+

23
], [sv−

23
, sv+23 ]

) (
[sμ−

24
, sμ+

24
], [s1/3, s1]

)
(
[s1/4, s1/2], [s1, s3]

) (
[sμ−

32
, sμ+

32
], [sv−

32
, sv+32 ]

)
([s1, s1], [s1, s1])

(
[s1/2, s1], [s1/2, s2]

)
(
[s1/3, s1/2], [s1, s2]

) (
[s1/3, s1], [sv−

24
, sv+24 ]

) (
[s1/2, s2], [s1/2, s1]

)
([s1, s1], [s1, s1])

⎞
⎟⎟⎟⎟⎟⎠

Using model (M-2), unknown linguistic variables are determined as follows:

[sv−
12
, sv+12 ] � [s0.63, s0.63], [sμ−

24
, sμ+

24
] � [s1,

s2.62]
(
[sμ−

23
, sμ+

23
], [sv−

23
, sv+23 ]

)
� ([s1.59, s1.82], [s0.25, s0.41]) .

5.2 Inconsistent IVIMLPRs

In general, preference relations provided by DMs are inconsistent. It is indispensable
to adjust the consistency of preference relations for ranking objects reasonably. There-
fore, this subsection studies inconsistent IVIMLPRs. Based on consistency analysis,
several optimization models are established for adjusting inconsistent IVIMLPRs and
deriving completely consistent IVIMLPRs.

Let R̃ � (r̃i j )n×n be an any given IVIMLPR. If f ∗ �� 0 following model (M-1),
then R̄ is inconsistent. In this case, we build the following optimization model for
determining QMILPRs with the highest consistency level:

h∗ � max
∑n−1

i�1

∑n

j�i+1

(
αi j + βi j

)

s.t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
αik
(
log(μ−

ik) + log(v+ik)
)− log(v+ik)

)
+
(
αk j

(
log(μ−

k j ) + log(v+k j )
)

− log(v+k j )
)

� αi j

(
log(μ−

i j ) + log(v+i j )
)

− log(v+i j ) − ε+k,i j + ε−
k,i j(

log(μ−
ik) − αik

(
log(v+ik) + log(μ−

ik)
))

+
(
log(μ−

k j ) − αk j

(
log(v+k j )+

+ log(μ−
k j )
))

� log(μ−
i j ) − αi j

(
log(v+i j ) + log(μ−

i j )
)

− δ+k,i j + δ−
k,i j(

βik
(
log(μ+

ik) + log(v−
ik)
)− log(v−

ik)
)
+
(
βk j

(
log(μ+

k j ) + log(v−
k j )
)

− log(v−
k j )
)

� βi j

(
log(μ+

i j ) + log(v−
i j )
)

− log(v−
i j ) − θ+k,i j + θ−

k,i j(
log(μ+

ik) − βik
(
log(v−

ik) + log(μ+
ik)
))

+
(
log(μ+

k j ) − βk j

(
log(v−

k j )+

+ log(μ+
k j )
))

� log(μ+
i j ) −

(
βi j log(v

−
i j ) + log(μ+

i j )
)

− ϑ+
k,i j + ϑ−

k,i j∑n−2

i�1

∑n−1

k�i+1

∑n

j�k+1

(
ε+k,i j + ε−

k,i j + δ+k,i j + δ−
k,i j

+θ+k,i j + θ−
k,i j + ϑ+

k,i j + ϑ−
k,i j

)
� f ∗

αi j � 0 ∨ 1,βi j � 0 ∨ 1, i , j � 1, 2, . . . , n, i < j
ε+k,i j , ε

−
k,i j , δ

+
k,i j , δ

−
k,i j , θ

+
k,i j , θ

−
k,i j ,ϑ

+
k,i j ,ϑ

−
k,i j ≥ 0,

i , k, j � 1, 2, . . . , n, i < k < j
(M-3)
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By solving model (M-3), the optimal 0–1 indicator variables α∗
i j and β∗

i j can be
obtained, where i, j � 1, 2,…, n such that i < j. Following the derived 0–1 indicator
variables, the QMILPRs P̄1 � ( p̄1, i j )n×n and P̄2 � ( p̄2, i j )n×n are derived having the
highest consistency level.

Let P̄1 � ( p̄1, i j )n×n �
(
[pl1, i j , p

u
1, i j ]
)
n×n

and P̄2 � ( p̄2, i j )n×n �([pl2, i j ,

pu2, i j ])n×n . Next, we adjust the consistency of P̄1 and P̄2 for deriving the consistent

IVIMLPR R̃ � (r̃i j )n×n . Let

I (P̄1) � (I ( p̄1, i j ))n×n �
(
[I (pl1, i j ), I (p

u
1, i j )]
)
n×n

I (P̄2)

� (I ( p̄2, i j ))n×n �
(
[I (pl2, i j ), I (p

u
2, i j )]
)
n×n

For per (i, j) such that i < j, let sl1, i j and su1, i j be the respective left and right

adjustments of p̄1, i j ’s endpoints, and let sl2, i j and s
u
2, i j be the respective left and right

adjustments of p̄2, i j ’s endpoints, where 1/t ≤sl1, i j ,s
u
1, i j ,s

l
2, i j ,s

u
2, i j≤ t . Then,

{
[pl1,i j ⊗ sl1,i j , p

u
1,i j ⊗ su1,i j ] � [pl1,ik ⊗ sl1,ik , p

u
1,ik ⊗ su1,ik ] ⊗ [pl1,k j ⊗ sl1,k j , p

u
1,k j ⊗ su1,k j ]

[pl2,i j ⊗ sl2,i j , p
u
2,i j ⊗ su2,i j ] � [pl2,ik ⊗ sl2,ik , p

u
2,ik ⊗ su2,ik ] ⊗ [pl2,k j ⊗ sl2,k j , p

u
2,k j ⊗ su2,k j ]

(25)

for each triple of (i, k, j) such that i <k < j.
Using (25), we obtain

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

I (pl1,i j ) × I (sl1,i j ) � I (pl1,ik) × I (sl1,ik) × I (pl1,k j ) × I (sl1,k j )

I (pu1,i j ) × I (su1,i j ) � I (pu1,ik) × I (su1,ik) × I (pu1,k j ) × I (su1,k j )

I (pl2,i j ) × I (sl2,i j ) � I (pl2,ik) × I (sl2,ik) × I (pl2,k j ) × I (sl2,k j )

I (pu2,i j ) × I (su2,i j ) � I (pu2,ik) × I (su2,ik) × I (pu2,k j ) × I (su2,k j )

(26)

Taking the logarithm for formula (26), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

log
(
I (pl1,i j )

)
+ log
(
I (sl1,i j )

)
� log

(
I (pl1,ik )

)
+ log
(
I (sl1,ik )

)
+ log
(
I (pl1,k j )

)
+ log
(
I (sl1,k j )

)
log
(
I (pu1,i j )

)
+ log
(
I (su1,i j )

)
� log

(
I (pu1,ik )

)
+ log
(
I (su1,ik )

)
+ log
(
I (pu1,k j )

)
+ log
(
I (su1,k j )

)
log
(
I (pl2,i j )

)
+ log
(
I (sl2,i j )

)
� log

(
I (pl2,ik )

)
+ log
(
I (sl2,ik )

)
+ log
(
I (pl2,k j )

)
+ log
(
I (sl2,k j )

)
log
(
I (pu2,i j )

)
+ log
(
I (su2,i j )

)
� log

(
I (pu2,ik )

)
+ log
(
I (su2,ik )

)
+ log
(
I (pu2,k j )

)
+ log
(
I (su2,k j )

)
(27)
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However, formula (27) cannot guarantee the adjusted linguistic variables fall into
S′ � {sb|b ∈ [1/t , t]}, namely, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− log(t) ≤ log
(
I (pl1,i j )

)
+ log
(
I (sl1,i j )

)
≤ log(t)

− log(t) ≤ log
(
I (pu1,i j )

)
+ log
(
I (su1,i j )

)
≤ log(t)

− log(t) ≤ log
(
I (pl2,i j )

)
+ log
(
I (sl2,i j )

)
≤ log(t)

− log(t) ≤ log
(
I (pu2,i j )

)
+ log
(
I (su2,i j )

)
≤ log(t)

(28)

for per (i, j) such that i < j.
In addition, to retain information offered by the DMs, the adjustment should be as

small as possible. Thus, we construct the following optimization model to adjust the
QMILPRs P̄1 and P̄2:

ϕ∗ � min
∑n−1

i�1

∑n

j�i+1

(
log
(
I (sl1,i j )

)
+ log
(
I (su1,i j )

)
+ log

(
I (sl2,i j )

)
+ log
(
I (su2,i j )

))

s.t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log
(
I (pl1,i j )

)
+ log
(
I (sl1,i j )

)
� log

(
I (pl1,ik )

)
+ log
(
I (sl1,ik )

)
+ log
(
I (pl1,k j )

)
+ log
(
I (sl1,k j )

)
log
(
I (pu1,i j )

)
+ log
(
I (su1,i j )

)
� log

(
I (pu1,ik )

)
+ log
(
I (su1,ik )

)
+ log
(
I (pu1,k j )

)
+ log
(
I (su1,k j )

)
log
(
I (pl2,i j )

)
+ log
(
I (sl2,i j )

)
� log

(
I (pl2,ik )

)
+ log
(
I (sl2,ik )

)
+ log
(
I (pl2,k j )

)
+ log
(
I (sl2,k j )

)
log
(
I (pu2,i j )

)
+ log
(
I (su2,i j )

)
� log

(
I (pu2,ik )

)
+ log
(
I (su2,ik )

)
+ log
(
I (pu2,k j )

)
+ log
(
I (su2,k j )

)
i , k, j � 1, 2, . . . , n, i < k < j

− log(t) ≤ log
(
I (pl1,i j )

)
+ log
(
I (sl1,i j )

)
≤ log(t)

− log(t) ≤ log
(
I (pu1,i j )

)
+ log
(
I (su1,i j )

)
≤ log(t)

− log(t) ≤ log
(
I (pl2,i j )

)
+ log
(
I (sl2,i j )

)
≤ log(t)

− log(t) ≤ log
(
I (pu2,i j )

)
+ log
(
I (su2,i j )

)
≤ log(t),

i , j � 1, 2, . . . , n, i < j
(M-4)

By solving model (M-4), we get completely consistent QMILPRs, and then the
associated completely consistent IVIMLPRs can be derived. However, the completely
consistent QMILPRs obtained from model (M-4) cannot guarantee the conditions of
elements in IVIMLPRs, namely, one of the four following cases is true
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(1)

{
pl1, i j ⊗ sl1, i j ≤ pu1, i j ⊗ su1, i j

pl2, i j ⊗ sl2, i j ≤ pu2, i j ⊗ su2, i j
⇒
⎧⎨
⎩

pl1, i j ⊗ sl1, i j ≤ pl2, i j ⊗ sl2, i j(
pu2, i j ⊗ su2, i j

)−1 ≤
(
pu1, i j ⊗ su1, i j

)−1

(2)

{
pl1, i j ⊗ sl1, i j > pu1, i j ⊗ su1, i j

pl2, i j ⊗ sl2, i j ≤ pu2, i j ⊗ su2, i j
⇒
⎧⎨
⎩

pu1, i j ⊗ su1, i j ≤ pl2, i j ⊗ sl2, i j(
pu2, i j ⊗ su2, i j

)−1 ≤
(
pl1, i j ⊗ sl1, i j

)−1

(3)

{
pl1, i j ⊗ sl1, i j ≤ pu1, i j ⊗ su1, i j

pl2, i j ⊗ sl2, i j > pu2, i j ⊗ su2, i j
⇒
⎧⎨
⎩

pl1, i j ⊗ sl1, i j ≤ pu2, i j ⊗ su2, i j(
pl2, i j ⊗ sl2, i j

)−1 ≤
(
pu1, i j ⊗ su1, i j

)−1

(4)

{
pl1, i j ⊗ sl1, i j > pu1, i j ⊗ su1, i j

pl2, i j ⊗ sl2, i j > pu2, i j ⊗ su2, i j
⇒
⎧⎨
⎩

pu1, i j ⊗ su1, i j ≤ pu2, i j ⊗ su2, i j(
pl2, i j ⊗ sl2, i j

)−1 ≤
(
pl1, i j ⊗ sl1, i j

)−1

for per (i, j) such that i < j.
To solve this issue, we further build the following optimization model based on

model (M-4):

ψ∗ � min
∑n−1

i�1

∑n

j�i+1

(
log
(
I (sl1,i j )

)
+ log
(
I (su1,i j )

)
+ log

(
I (sl2,i j )

)
+ log
(
I (su2,i j )

))

s.t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log
(
I (pl1,i j )

)
+ log
(
I (sl1,i j )

)
� log

(
I (pl1,ik )

)
+ log
(
I (sl1,ik )

)
+ log
(
I (pl1,k j )

)
+ log
(
I (sl1,k j )

)
log
(
I (pu1,i j )

)
+ log
(
I (su1,i j )

)
� log

(
I (pu1,ik )

)
+ log
(
I (su1,ik )

)
+ log
(
I (pu1,k j )

)
+ log
(
I (su1,k j )

)
log
(
I (pl2,i j )

)
+ log
(
I (sl2,i j )

)
� log

(
I (pl2,ik )

)
+ log
(
I (sl2,ik )

)
+ log
(
I (pl2,k j )

)
+ log
(
I (sl2,k j )

)
log
(
I (pu2,i j )

)
+ log
(
I (su2,i j )

)
� log

(
I (pu2,ik )

)
+ log
(
I (su2,ik )

)
+ log
(
I (pu2,k j )

)
+ log
(
I (su2,k j )

)
i , k, j � 1, 2, . . . , n, i < k < j

− log(t) ≤ log
(
I (pl1,i j )

)
+ log
(
I (sl1,i j )

)
≤ log(t)

− log(t) ≤ log
(
I (pu1,i j )

)
+ log
(
I (su1,i j )

)
≤ log(t)

− log(t) ≤ log
(
I (pl2,i j )

)
+ log
(
I (sl2,i j )

)
≤ log(t)

− log(t) ≤ log
(
I (pu2,i j )

)
+ log
(
I (su2,i j )

)
≤ log(t)

χ1
i j I

1
i j ∧ χ1

i j I
2
i j ∧ χ1

i j I
3
i j ∧ χ1

i j I
4
i j ≤ 0

χ2
i j I

1
i j > 0,χ2

i j I
2
i j ∧ χ2

i j I
5
i j ∧ χ2

i j I
6
i j ≤ 0

χ3
i j I

2
i j > 0,χ3

i j I
1
i j ∧ χ3

i j I
5
i j ∧ χ3

i j I
6
i j ≤ 0

χ4
i j I

1
i j ∧ χ4

i j I
2
i j > 0,χ4

i j I
5
i j ∧ χ4

i j I
6
i j ≤ 0

i , j � 1, 2, . . . , n, i < j

χ1
i j ,χ

2
i j ,χ

3
i j ,χ

4
i j � 0 ∨ 1, i , j � 1, 2, . . . , n, i < j

χ1
i j + χ2

i j + χ3
i j + χ4

i j � 1, i , j � 1, 2, . . . , n, i < j

(M-5)
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where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I 1i j � log
(
I (pl1, i j )

)
+ log
(
I (sl1, i j )

)
− log

(
I (pu1, i j )

)
− log

(
I (su1, i j )

)
I 2i j � log

(
I (pl2, i j )

)
+ log
(
I (sl2, i j )

)
− log

(
I (pu2, i j )

)
− log

(
I (su2, i j )

)
I 3i j � log

(
I (pl1, i j )

)
+ log
(
I (sl1, i j )

)
− log

(
I (pl2, i j )

)
− log

(
I (sl2, i j )

)
I 4i j � log

(
I (pu1, i j )

)
+ log
(
I (su1, i j )

)
− log

(
I (pu2, i j )

)
− log

(
I (su2, i j )

)
I 5i j � log

(
I (pu1, i j )

)
+ log
(
I (su1, i j )

)
− log

(
I (pl2, i j )

)
− log

(
I (sl2, i j )

)
I 6i j � log

(
I (pl1, i j )

)
+ log
(
I (sl1, i j )

)
− log

(
I (pu2, i j )

)
− log

(
I (su2, i j )

)

.

By solving model (M-5), we can derive the completely consistent QMILPRs

Q̄∗
1 � (q̄∗

1, i j )n×n and Q̄∗
2� (q̄∗

2, i j )n×n , where q̄∗
1, i j �

[
pl1, i j ⊗ s∗l

1, i j , p
u
1, i j ⊗ s∗u

1, i j

]
,

and q̄∗
1, i j �

[
pl1, i j ⊗ s∗l

1, i j , p
u
1, i j ⊗ s∗u

1, i j

]
for all i, j � 1, 2, …, n. Based on the rela-

tionships between QMILPRs and IVIMLPRs, we can derive the completely consistent

IVIMLPR R̃∗ � (r̃∗
i j )n×n �

(
[s∗

μ−
i j
, s∗

μ+
i j
], [s∗

v−
i j
, s∗

v+i j
]

)
n×n

, where

{
pl1, i j ⊗ s∗l

1, i j ≤ pu1, i j ⊗ s∗u
1, i j

pl2, i j ⊗ s∗l
2, i j ≤ pu2, i j ⊗ s∗u

2, i j

⇒

⎧⎪⎪⎨
⎪⎪⎩
s∗
μ−
i j

� pl1, i j ⊗ s∗l
1, i j , s

∗
v+i j

�
(
pu1, i j ⊗ s∗u

1, i j

)−1

s∗
μ+
i j

� pl2, i j ⊗ s∗l
2, i j , s

∗
v−
i j

�
(
pu2, i j ⊗ su2, i j

)−1

{
pl1, i j ⊗ s∗l

1, i j > pu1, i j ⊗ s∗u
1, i j

pl2, i j ⊗ s∗l
2, i j ≤ pu2, i j ⊗ s∗u

2, i j

⇒

⎧⎪⎪⎨
⎪⎪⎩
s∗
μ−
i j

� pu1, i j ⊗ s∗u
1, i j , s

∗
v+i j

�
(
pl1, i j ⊗ s∗l

1, i j

)−1

s∗
μ+
i j

� pl2, i j ⊗ s∗l
2, i j , s

∗
v−
i j

�
(
pu2, i j ⊗ su2, i j

)−1

{
pl1, i j ⊗ s∗l

1, i j ≤ pu1, i j ⊗ s∗u
1, i j

pl2, i j ⊗ s∗l
2, i j > pu2, i j ⊗ s∗u

2, i j

⇒

⎧⎪⎪⎨
⎪⎪⎩
s∗
μ−
i j

� pl1, i j ⊗ s∗l
1, i j , s

∗
v+i j

�
(
pu1, i j ⊗ s∗u

1, i j

)−1

s∗
μ+
i j

� pu2, i j ⊗ su2, i j , s
∗
v−
i j

�
(
pl2, i j ⊗ s∗l

2, i j

)−1

{
pl1, i j ⊗ s∗l

1, i j > pu1, i j ⊗ s∗u
1, i j

pl2, i j ⊗ s∗l
2, i j > pu2, i j ⊗ s∗u

2, i j

⇒

⎧⎪⎪⎨
⎪⎪⎩
s∗
μ−
i j

� pu1, i j ⊗ s∗u
1, i j , s

∗
v+i j

�
(
pl1, i j ⊗ s∗l

1, i j

)−1

s∗
μ+
i j

� pu2, i j ⊗ su2, i j , s
∗
v−
i j

�
(
pl2, i j ⊗ s∗l

2, i j

)−1

for all i, j � 1, 2, …, n such that i < j.
For the derived complete IVIMLPR R̃ � (r̃i j )4×4 shown in Example 1, we get

f ∗ � 6.9315 followingmodel (M-1). Thus, this complete IVIMLPR R̃ is inconsistent.
Based on model (M-3), the optimal 0–1 indicator variables are derived as follows:{

α12 � α13 � α14 � α24 � α34 � 1, α23 � 0

β12 � β13 � β14 � β34 � 1, β23 � β24 � 0
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by which the following QMILPRs are derived:

Q̄1 �

⎛
⎜⎜⎝

[s1, s1] [s0.33, s0.5] [s1, s3] [s1, s2]
[s3, s2] [s1, s1] [s1.82, s1.59] [s1, s2.62]
[s1, s0.33] [s0.55, s0.63] [s1, s1] [s0.5, s1]
[s1, s0.5] [s1, s0.38] [s2, s1] [s1, s1]

⎞
⎟⎟⎠

Q̄2 �

⎛
⎜⎜⎝

[s1, s1] [s0.63, s0.63] [s0.25, s0.5] [s0.33, s0.5]
[s1.59, s1.59] [s1, s1] [s0.25, s0.41] [s0.33, s1]
[s4, s2] [s4, s2.44] [s1, s1] [s0.5, s2]
[s3, s2] [s3, s1] [s2, s0.5] [s1, s1]

⎞
⎟⎟⎠

For these two QMILPRs, the following completely consistent QMILPRs are
obtained using model (M-5):

Q̄∗
1 �

⎛
⎜⎜⎝

[s1, s1] [s1, s1.15] [s1.82, s3] [s1, s3]
[s1, s0.87] [s1, s1] [s1.82, s2.62] [s1, s2.62]
[s0.55, s0.33] [s0.55, s0.38] [s1, s1] [s0.55, s1]
[s1, s0.33] [s1, s0.38] [s1.82, s1] [s1, s1]

⎞
⎟⎟⎠

Q̄∗
2 �

⎛
⎜⎜⎝

[s1, s1] [s1.15, s1] [s3, s1.82] [s1.65, s3.64]
[s0.87, s1] [s1, s1] [s2.62, s1.82] [s1.44, s3.64]
[s0.33, s0.55] [s0.38, s0.55] [s1, s1] [s0.55, s2]
[s0.61, s0.27] [s0.69, s0.27] [s1.82, s0.5] [s1, s1]

⎞
⎟⎟⎠

Then, the corresponding consistent IVIMLPR is

R̃∗ �

⎛
⎜⎜⎝

([s1, s1], [s1, s1]) ([s1, s1], [s0.87, s0.87]) ([s1.82, s1.82], [s0.33, s0.33]) ([s1, s1.65], [s0.27, s0.33])
([s0.87, s0.87], [s1, s1]) ([s1, s1], [s1, s1]) ([s1.82, s1.82], [s0.38, s0.38]) ([s1, s1.44], [s0.27, s0.38])
([s0.33, s0.33], [s1.82, s1.82]) ([s0.38, s0.38], [s1.82, s1.82]) ([s1, s1], [s1, s1]) ([s0.55, s0.55], [s0.5, s1])
([s0.27, s0.33], [s1, s1.65]) ([s0.27, s0.38], [s1, s1.44]) ([s0.5, s1], [s0.55, s0.55]) ([s1, s1], [s1, s1])

⎞
⎟⎟⎠

6 GDMwith IVIMLPRs

To derive the objective ranking of objects, more than one DM is usually needed,
namely, the so-called GDM. This section studies GDM with IVIMLPRs. To do this,
the section contains two parts. The first part studies consensus that is a necessary step
for measuring the agreement degree of DMs’ preferences for final ranking (Cabrerizo
et al. 2015; del Moral et al. 2018; Dong et al. 2019; Herrera-Viedma et al. 2014; Liu
et al. 2017; Liu et al. 2019a, b, c, d; Perez et al. 2014; Wu et al. 2019b, c; Zhang et al.
2018a, b), and the second part offers a method for GDM with IVIMLPRs.

6.1 Consensus Analysis

Considering a GDM problem, suppose that there are m DMs, namely, E � {e1, e2,
…, em}, who are invited to compare objects in X � {x1, x2, …, xn} for the CALTS
S′ � {sb|b ∈ [1/t , t]}. Let R̃k � (r̃ ki j )n×n be the individual IVIMLPR provided by the
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DM ek , k � 1, 2,…, m, where r̃ ki j �
(
[sk

μ−
i j
, sk

μ+
i j
], [sk

v−
i j
, sk

v+i j
]

)
is the IVIMLV offered

by the DM ek for the object xj over xj, i, j � 1, 2, …, n; k � 1, 2,…, m.

Definition 15 Let R̃k � (r̃ ki j )n×n , k � 1, 2,…, m, be any given m IVIMLPRs, and

let Q̄∗, k
1 � (q̄∗, k

1, i j )n×n and Q̄∗, k
2 � (q̄∗, k

2, i j )n×n be the associated individual QMILPRs.

Then, the comprehensiveQMILPRs Q̄1 � (q̄1, i j )n×n and Q̄2 � (q̄2, i j )n×n are defined
as:

⎧⎪⎨
⎪⎩
q̄1,i j � ⊗m

k�1

(
q̄∗,k
1,i j

)wk

q̄2,i j � ⊗m
k�1

(
q̄∗,k
2,i j

)wk
(29)

where w � (w1, w2, . . . , wm) is a weight vector such that
∑m

k�1 wk � 1 and wk ≥ 0
for all k � 1, 2,…, m.

Remark 4 Similar to the analysis for model (M-4), the comprehensive QMILPRs
derived from formula (29) may not satisfy one of the four cases (1)–(2). Therefore,
model (M-5) is adopted to adjust comprehensive QMILPRs Q̄1 � (q̄1, i j )n×n and
Q̄2 � (q̄2, i j )n×n . Note that the adjusted comprehensive QMILPRs are completely
consistent.

Property 2 Let R̃k � (r̃ ki j )n×n, k � 1, 2, …, m, be any given m IVIMLPRs, and

let Q̄∗, k
1 � (q̄∗, k

1, i j )n×n and Q̄∗, k
2 � (q̄∗, k

2, i j )n×n be the associated individual consistent

QMILPRs. Then, the comprehensive QMILPRs Q̄1 � (q̄1, i j )n×n and Q̄2 � (q̄2, i j )n×n

obtained from formula (29) are completely consistent.

Proof For per (i, j), following formula (29) we get

q̄1, i j � ⊗m
k�1

(
q̄∗, k
1, i j

)wk � ⊗m
l�1

(
q̄∗, k
1, il ⊗ q̄∗, k

1, l j

)wk

�
(
⊗m

l�1

(
q̄∗, k
1, il

)wk
)

⊗
(
⊗m

l�1

(
q̄∗, k
1, l j

)wk
)

� q̄1, il ⊗ q̄1, l j

wherew � (w1, w2, . . . , wm) is aweight vector as shown in formula (29). Thus, Q̄1 �
(q̄1, i j )n×n is completely consistent. Similarly, one can check that Q̄2 � (q̄2, i j )n×n is
completely consistent too. �

Definition 16 Let R̃k � (r̃ ki j )n×n , k � 1, 2,…, m, be any given m IVIMLPRs, let

Q̄∗, k
1 � (q̄∗, k

1, i j )n×n and Q̄∗, k
2 � (q̄∗, k

2, i j )n×n be the associated individual consistent

QMILPRs, and let Q̄1 � (q̄1, i j )n×n and Q̄2 � (q̄2, i j )n×n be the comprehensive
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QMILPRs as shown in Definition 15. Then, the consensus level of R̃k � (r̃ ki j )n×n is
defined as:

GC I (R̃k)

� 1

− 1

4n(n − 1)

n−1∑
i�1

n∑
j�i+1

(∣∣∣logt (q∗,k,l
1,i j ) − logt (q

l
1,i j )
∣∣∣ + ∣∣∣logt (q∗,k,u

1,i j ) − logt (q
u
1,i j )
∣∣∣

+
∣∣∣logt (q∗,k,l

2,i j ) − logt (q
l
2,i j )
∣∣∣ + ∣∣∣logt (q∗,k,u

2,i j ) − logt (q
u
2,i j )
∣∣∣)

(30)

Following formula (30), we derive 0 ≤ GC I (R̃k) ≤ 1 for any IVIMLPR R̃k .
In the procedure of calculating comprehensive QMILPRs, the weight vector is

used. In the setting of GDM, the weights of DMs are usually unknown. Therefore, we
first need to determine the weights of DMs for calculating comprehensive QMILPRs.
Based on formula (30), we next build an optimization model to determine the weights
of DMs.

For all i, j � 1, 2,…, n and all k � 1, 2, …, m, formula (30) shows that the smaller
the value of the following equation is, the higher the consensus level will be, where∣∣∣logt (q∗, k, l

1, i j ) − logt (q
l
1, i j )
∣∣∣ + ∣∣∣logt (q∗, k, u

1, i j ) − logt (q
u
1, i j )
∣∣∣

+
∣∣∣logt (q∗, k, l

2, i j ) − logt (q
l
2, i j )
∣∣∣ + ∣∣∣logt (q∗, k, u

2, i j ) − logt (q
u
2, i j )
∣∣∣

Thus, we construct the following optimization model to determine the weights of
DMs:

ζ ∗ � min
m∑

k�1

n−1∑
i�1

n∑
j�i+1

(
c+k,i j + c−

k,i j + d+k,i j + d−
k,i j+ x+k,i j + x−

k,i j + y+k,i j + y−
k,i j

)

s.t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

logt (q
∗,k,l
1,i j ) −

∑m

z�1
ωz logt (q

∗,z,l
1,i j ) − c+k,i j + c−

k,i j � 0

logt (q
∗,k,u
1,i j ) −

∑m

z�1
ωz logt (q

∗,z,u
1,i j ) − d+k,i j + d−

k,i j � 0

logt (q
∗,k,l
2,i j ) −

∑m

z�1
ωz logt (q

∗,z,l
2,i j ) − x+k,i j + x−

k,i j � 0

logt (q
∗,k,u
2,i j ) −

∑m

z�1
ωz logt (q

∗,z,u
2,i j ) − y+k,i j + y−

k,i j � 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

i , j � 1, 2, . . . , n, i < j , k � 1, 2, . . . ,m

c+k,i j , c
−
k,i j , d

+
k,i j , d

−
k,i j , x

+
k,i j , x

−
k,i j , y

+
k,i j , y

−
k,i j ≥ 0,

i , j � 1, 2, . . . , n, i < j , k � 1, 2, . . . ,m∑m

z�1
ωz � 1,ωz ≥ 0, z � 1, 2, . . . ,m

(M-6)

where ω � (ω1, ω2, . . . , ωm) is the weight vector on the DM set.
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Let Θ∗ be the given threshold of consensus. If the consensus level of the DM ek’s
opinion does not satisfy the minimum threshold, namely,GC I (R̃k) < Θ∗, then, we
need to improve his/her consensus level. Considering that the influences of different
judgments are different, their adjustments should be different too. For all i, j � 1, 2,…,
n such that i < j, let

⎧⎪⎨
⎪⎩
[
q

′∗,k,l
1,i j , q

′∗,k,u
1,i j

]
� [(q∗,k,l

1,i j )
κ
k,l
1,i j , (q∗,k,u

1,i j )κ
k,u
1,i j ] ⊗ [(ql1,i j )

1−κ
k,l
1,i j , (qu1,i j )

1−κ
k,u
1,i j ][

q
′∗,k,l
2,i j , q

′∗,k,u
2,i j

]
� [(q∗,k,l

2,i j )
κ
k,l
2,i j , (q∗,k,u

2,i j )κ
k,u
2,i j ] ⊗ [(ql2,i j )

1−κ
k,l
2,i j , (qu2,i j )

1−κ
k,u
2,i j ]

(31)

where κk
1, i j , κk

2, i j ∈ (0, 1).
Based on formula (31), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

log
(
I (q

′∗,k,l
1,i j )
)

� κ
k,l
1,i j log

(
I (q∗,k,l

1,i j )
)
+ (1 − κ

k,l
1,i j ) log

(
I (ql1,i j )

)
log
(
I (q

′∗,k,u
1,i j )

)
� κ

k,u
1,i j log

(
I (q∗,k,u

1,i j )
)
+ (1 − κ

k,u
1,i j ) log

(
I (qu1,i j )

)
log
(
I (q

′∗,k,l
2,i j )
)

� κ
k,l
2,i j log

(
I (q∗,k,l

2,i j )
)
+ (1 − κ

k,l
2,i j ) log

(
I (ql2,i j )

)
log
(
I (q

′∗,k,u
2,i j )

)
� κ

k,u
2,i j log

(
I (q∗,k,u

2,i j )
)
+ (1 − κ

k,u
2,i j ) log

(
I (qu2,i j )

)
(32)

In addition, the adjusted QMILPRs should satisfy the following conditions:

(i) The consensus level of the adjusted QMILPRs should not be smaller than the
given consensus threshold;

(ii) The consistency of the adjusted QMILPRs should not change;
(iii) The adjusted QMILPRs should satisfy the conditions of elements in IVIMLPRs;
(iv) The adjustment should be as small as possible for retaining more original infor-

mation.

Following the above analysis, we construct the following optimization model to
improve the consensus level of individual IVIMLPRs:
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ξ∗ � max
∑n−1

i�1

∑n

j�i+1

(
κ
k,l
1,i j + κ

k,u
1,i j + κ

k,l
2,i j + κ

k,u
2,i j

)

s.t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CA(R̃k ) ≤ 4n(n − 1) × (1 − �∗) log(t)

κ
k,l
1,i j log

(
I (q∗,k,l

1,i j )
)
+ (1 − κ

k,l
1,i j ) log

(
I (ql1,i j )

)
� κ

k,l
1,ih log

(
I (q∗,k,l

1,ih )
)
+

(1 − κ
k,l
1,ih) log

(
I (ql1,ih)

)
+ κ

k,l
1,hj log

(
I (q∗,k,l

1,hj )
)
+ (1 − κ

k,l
1,hj ) log

(
I (ql1,hj )

)
κ
k,u
1,i j log

(
I (q∗,k,u

1,i j )
)
+ (1 − κ

k,u
1,i j ) log

(
I (qu1,i j )

)
� κ

k,u
1,ih log

(
I (q∗,k,u

1,ih )
)
+

(1 − κ
k,u
1,ih) log

(
I (qu1,ih)

)
+ κ

k,u
1,hj log

(
I (q∗,k,u

1,hj )
)
+ (1 − κ

k,u
1,hj ) log

(
I (qu1,hj )

)
κ
k,l
2,i j log

(
I (q∗,k,l

2,i j )
)
+ (1 − κ

k,l
2,i j ) log

(
I (ql2,i j )

)
� κ

k,l
2,ih log

(
I (q∗,k,l

2,ih )
)
+

(1 − κ
k,l
2,ih) log

(
I (ql2,ih)

)
+ κ

k,l
2,hj log

(
I (q∗,k,l

2,hj )
)
+ (1 − κ

k,l
2,hj ) log

(
I (ql2,hj )

)
κ
k,u
2,i j log

(
I (q∗,k,u

2,i j )
)
+ (1 − κ

k,u
2,i j ) log

(
I (qu2,i j )

)
� κ

k,u
2,ih log

(
I (q∗,k,u

2,ih )
)
+

(1 − κ
k,u
2,ih) log

(
I (qu2,ih)

)
+ κ

k,u
2,hj log

(
I (q∗,k,u

2,hj )
)
+ (1 − κ

k,u
2,hj ) log

(
I (qu2,hj )

)
0 < κ

k,l
1,i j , κ

k,u
1,i j , κ

k,l
2,i j , κ

k,u
2,i j < 1, i , j � 1, 2, . . . , n, i < j

γ 1
i jρ

1,k
i j ∧ γ 1

i jρ
2,k
i j ∧ γ 1

i jρ
3,k
i j ∧ γ 1

i jρ
4,k
i j ≤ 0, i , j � 1, 2, . . . , n, i < j

γ 2
i jρ

1,k
i j > 0, γ 2

i jρ
2,k
i j ∧ γ 2

i jρ
5,k
i j ∧ γ 2

i jρ
6,k
i j ≤ 0, i , j � 1, 2, . . . , n, i < j

γ 3
i jρ

2,k
i j > 0, γ 3

i jρ
1,k
i j ∧ γ 3

i jρ
5,k
i j ∧ γ 3

i jρ
6,k
i j ≤ 0, i , j � 1, 2, . . . , n, i < j

γ 4
i jρ

1,k
i j ∧ γ 4

i jρ
2,k,l
i j > 0, γ 4

i jρ
3,k
i j ∧ γ 4

i jρ
4,k
i j ≤ 0, i , j � 1, 2, . . . , n, i < j

γ 1
i j , γ

2
i j , γ

3
i j , γ

4
i j � 0 ∨ 1, i , j � 1, 2, . . . n, i < j

γ 1
i j + γ 2

i j + γ 3
i j + γ 4

i j � 1, i , j � 1, 2, . . . , n, i < j

(M-7)

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
1, k
i j � κ

k, l
1, i j log

(
I (q∗, k, l

1, i j )
)
+ (1 − κ

k, l
1, i j ) log

(
I (ql1, i j )

)
− κ

k, u
1, i j log

(
I (q∗, k, u

1, i j )
)

− (1 − κ
k, u
1, i j ) log

(
I (qu1, i j )

)
ρ
2, k
i j � κ

k, l
2, i j log

(
I (q∗, k, l

2, i j )
)
+ (1 − κ

k, l
2, i j ) log

(
I (ql2, i j )

)
− κ

k, u
2, i j log

(
I (q∗, k, u

2, i j )
)

− (1 − κ
k, u
2, i j ) log

(
I (qu2, i j )

)
ρ
3, k
i j � κ

k, l
1, i j log

(
I (q∗, k, l

1, i j )
)
+ (1 − κ

k, l
1, i j ) log

(
I (ql1, i j )

)
− κ

k, l
2, i j log

(
I (q∗, k, l

2, i j )
)

− (1 − κ
k, l
2, i j ) log

(
I (ql2, i j )

)
ρ
4, k
i j � κ

k, u
1, i j log

(
I (q∗, k, u

1, i j )
)
+ (1 − κ

k, u
1, i j ) log

(
I (qu1, i j )

)
− κ

k, u
2, i j log

(
I (q∗, k, u

2, i j )
)

− (1 − κ
k, u
2, i j ) log

(
I (qu2, i j )

)
ρ
5, k
i j � κ

k, u
1, i j log

(
I (q∗, k, u

1, i j )
)
+ (1 − κ

k, u
1, i j ) log

(
I (qu1, i j )

)
− κ

k, l
2, i j log

(
I (q∗, k, l

2, i j )
)

− (1 − κ
k, l
2, i j ) log

(
I (ql2, i j )

)
ρ
6, k
i j � κ

k, l
1, i j log

(
I (q∗, k, l

1, i j )
)
+ (1 − κ

k, l
1, i j ) log

(
I (ql1, i j )

)
− κ

k, u
2, i j log

(
I (q∗, k, u

2, i j )
)

− (1 − κ
k, u
2, i j ) log

(
I (qu2, i j )

)

and

CA(R̃k) �
∑n−1

i�1

∑n

j�i+1

(∣∣∣κk, l
1, i j log

(
I (q∗, k, l

1, i j )
)
+ (1 − κ

k, l
1, i j ) log

(
I (ql1, i j )

)
−
∣∣∣ωk

(
κ
k, l
1, i j log

(
I (q∗, k, l

1, i j )
)
+ (1 − κ

k, l
1, i j ) log

(
I (ql1, i j )

))
−
(∑m

z�1, z ��k
ωz log(q

∗, z, l
1, i j )
)∣∣∣
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+
∣∣∣κk, u

1, i j log
(
I (q∗, k, u

1, i j )
)
+ (1 − κ

k, u
1, i j ) log

(
I (qu1, i j )

)
−ωk

(
κ
k, u
1, i j log

(
I (q∗, k, u

1, i j )
)
+ (1 − κ

k, u
1, i j ) log

(
I (qu1, i j )

))
−
(∑m

z�1, z ��k
ωz ×

(∑m

z�1, z ��k
ωz log(q

∗, z, l
1, i j )
)∣∣∣

+
∣∣∣κk, u

1, i j log
(
I (q∗, k, u

1, i j )
)
+ (1 − κ

k, u
1, i j ) log

(
I (qu1, i j )

)
− ωk

(
κ
k, u
1, i j log

(
I (q∗, k, u

1, i j )
)
+ (1 − κ

k, u
1, i j ) log

(
I (qu1, i j )

))
−
(∑m

z�1, z ��k
ωz× log(q∗, z, u

1, i j )
)∣∣∣

+
∣∣∣κk, l

2, i j log
(
I (q∗, k, l

2, i j )
)
+ (1 − κ

k, l
2, i j ) log

(
I (ql2, i j )

)
− ωk ×

(
κ
k, l
2, i j log

(
I (q∗, k, l

2, i j )
)

+(1 − κ
k, l
2, i j ) log

(
I (ql2, i j )

))
−
(∑m

z�1, z ��k
ωz log(q

∗, z, l
2, i j )
)∣∣∣

+
∣∣∣κk, u

2, i j log
(
I (q∗, k, u

2, i j )
)
+ (1 − κ

k, u
2, i j ) log

(
I (qu2, i j )

)
− ωk

(
κ
k, u
2, i j log

(
I (q∗, k, u

2, i j )
)

+(1 − κ
k, u
2, i j ) log

(
I (qu2, i j )

))
−
(∑m

z�1, z ��k
ωz log(q

∗, z, u
2, i j )

)∣∣∣
6.2 A consistency and Consensus Based-Algorithm for GDM

Based on the consistency and consensus analysis, this subsection offers an algorithm
for GDM with IVIMLPRs

Step 1 Let R̃k � (r̃ ki j )n×n be the individual IVIMLPR offered by the DM ek , where
k � 1, 2,…, m. If all of them are complete, go to Step 2. Otherwise, model
(M-2) is used to determine unknown linguistic variables in each incompletely
individual IVIMLPR, which is still denoted by R̃k � (r̃ ki j )n×n , k � 1, 2,…,
m;

Step 2 For each completely individual IVIMLPR R̃k � (r̃ ki j )n×n , k � 1, 2,…, m,
model (M-1) is adopted to judge its consistency. If the value of objective
function is zero, then the associated individual IVIMLPR is consistent, and
skip to Step 4. Otherwise, go to Step 3;

Step 3 For each inconsistent individual IVIMLPR R̃k � (r̃ ki j )n×n , k � 1, 2,…,
m, models (M-3) and (M-5) are applied to improve the consistency. The
associated individual QMILPRs are denoted as: Q̄∗, k

1 � (q̄∗, k
1, i j )n×n and

Q̄∗, k
2 � (q̄∗, k

2, i j )n×n , k � 1, 2,…, m;
Step 4 Based on individual consistent QMILPRs, model (M-6) is adopted to deter-

mine the weights of the DMs, denoted as ω � (ω1, ω2, . . . , ωm);
Step 5 Formula (29) is used to calculate the comprehensively consistent QMILPRs

Q̄∗
1 � (q̄∗

1, i j )n×n and Q̄∗
2 � (q̄∗

2, i j )n×n . If the conditions of elements in
the associated IVIMLPRs is not true, then model (M-5) is applied to adjust
the consistency of Q̄∗

1 � (q̄∗
1, i j )n×n and Q̄∗

2 � (q̄∗
2, i j )n×n again. If there is

no fear of confusion, the adjusted consistent QMILPRs are still denoted as
Q̄∗

1 � (q̄∗
1, i j )n×n and Q̄∗

2 � (q̄∗
2, i j )n×n ;
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Step 6 Let Θ∗ be the given threshold of consensus. Formula (31) is utilized
to adjust the consensus of each individual IVIMLPR R̃k � (r̃ ki j )n×n . If

min1≤l≤m GC I (R̃l ) ≥ Θ∗, skip to Step 8. Otherwise, go to the next step;
Step 7 Let GC I (R̃k) � min

1≤l≤m
GC I (R̃l ) < Θ∗. Model (M-7) is used to improve

the consensus level of QMILPRs Q̄∗, k
1 � (q̄∗, k

1, i j )n×n and Q̄∗, k
2 � (q̄∗, k

2, i j )n×n .

If there is no fear of confusion, we still use Q̄∗, k
1 � (q̄∗, k

1, i j )n×n and Q̄∗, k
2 �

(q̄∗, k
2, i j )n×n to denote them and return to Step 5;

Step 8 Based on the comprehensively consistent QMILPRs Q̄∗
1 � (q̄∗

1, i j )n×n and

Q̄∗
2 � (q̄∗

2, i j )n×n , the comprehensively consistent IVIMLPR R̃∗ � (r̃∗
i j )n×n �(

[s∗
μ−
i j
, s∗

μ+
i j
], [s∗

v−
i j
, s∗

v+i j
]

)
n×n

can be derived. The interval-valued intuitionis-

tic multiplicative linguistic priority weights are

w̃i �
([

n

√
⊗n

j�1s
∗
μ−
i j
, n
√⊗n

j�1s
∗
μ+
i j

]
,

[
n

√
⊗n

j�1s
∗
v−
i j
, n
√⊗n

j�1s
∗
v+i j

])
,

i � 1, 2, . . . , n; (33)

Step 9 Formulae (6) and (7) are used to calculate the score and accuracy values of w̃i ,
i � 1, 2,…, n, by which the ranking of objects x1, x2, …, xn can be derived.

To see the procedure of the above algorithm intuitively, please see Fig. 2.

7 A Case Study

With the development of human social and economic activities and information tech-
nology, the production and sales enterprises are more and more dependent on the
technical level and economic scale of their partners. The status and role of electing
suitable partners become more and more important for making more benefits and
gaining competitive advantages. Therefore, enterprises pay more and more attentions
to the choice of partners. Because there is usually more than one evaluating factor,
and the situation where one potential partner is superior to other potential partners for
all considered factors seldom exists, it is difficult for the DMs to offer their quanti-
tative judgments. Considering that linguistic fuzzy variables are powerful to express
the subjective vagueness of human and more convenient for DMs to make judgments,
IVIMLVs are a good choice as they can denote the asymmetrically uncertain preferred
and non-preferred qualitative judgments. There is a coal thermal power enterprise to
select coal suppliers. After the initial investigations, four coal companies are selected
as potential partners. To select the most suitable partners, four DMs are invited to
evaluate them based on having information and their expertise. When the DMs do
not offer some comparisons, unknown linguistic information is permitted. Let S �
{s1/5: very bad; s1/4: very poor; s1/3: poor; s1/2: slightly worse; s1: not bad; s2: slightly
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Fig. 2 The framework of the above algorithm

better; s3: good; s4: very good; s5: excellent} be the given DALTS. Assume that the
individual IVIMLPRs are provided as follows:

R̃1 �

⎛
⎜⎜⎜⎜⎜⎝

([s1, s1], [s1, s1])
(
[s1, s2], [s1/3, s1/2]

) (
[s1/2, s1], [s1, s2]

) (
[s1/4, s1/2], [s1, s2]

)
(
[s1/3, s1/2], [s1, s2]

)
([s1, s1], [s1, s1])

(
[sμ−

23
, sμ+

23
], [sv−

23
, sv+23 ]

) (
[sμ−

24
, sμ+

24
], [sv−

24
, sv+24 ]

)
(
[s1, s2], [s1/2, s1]

) (
[sμ−

32
, sμ+

32
], [sv−

32
, sv+32 ]

)
([s1, s1], [s1, s1])

(
[s1, s3], [s1/4, s1]

)
(
[s1, s2], [s1/4, s1/2]

) (
[sμ−

42
, sμ+

42
], [sv−

42
, sv+42 ]

) (
[s1/4, s1], [s1, s3]

)
([s1, s1], [s1, s1])

⎞
⎟⎟⎟⎟⎟⎠
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R̃2 �

⎛
⎜⎜⎜⎜⎜⎝

([s1, s1], [s1, s1])
(
[sμ−

12
, sμ+

12
], [sv−

12
, sv+12 ]

) (
[sμ−

13
, sμ+

13
], [sv−

13
, sv+13 ]

) (
[s1/3, s1], [s1/2, s2]

)
(
[sμ−

21
, sμ+

21
], [sv−

21
, sv+21 ]

)
([s1, s1], [s1, s1])

(
[s2, s3], [s1/4, s1/2]

) (
[s1/3, s1/2], [s1, s2]

)
(
[sμ−

31
, sμ+

31
], [sv−

31
, sv+31 ]

) (
[s1/4, s1/2], [s2, s3]

)
([s1, s1], [s1, s1])

(
[s1, s2], [s1/3, s1]

)
(
[s1/2, s2], [s1/3, s1]

) (
[s1, s2], [s1/3, s1/2]

) (
[s1/3, s1], [s1, s2]

)
([s1, s1], [s1, s1])

⎞
⎟⎟⎟⎟⎟⎠

R̃3 �

⎛
⎜⎜⎜⎜⎜⎝

([s1, s1], [s1, s1])
(
[s2, s3], [s1/4, s1/2]

) (
[sμ−

13
, sμ+

13
], [s2, s4]

) (
[sμ−

14
, sμ+

14
], [sv−

14
, sv+14 ]

)
(
[s1/4, s1/2], [s2, s3]

)
([s1, s1], [s1, s1])

(
[s2, s3], [s1/4, s1/2]

) (
[s1/2, s1], [s1, s2]

)(
[s2, s4], [sv−

13
, sv+13 ]

) (
[s1/4, s1/2], [s2, s3]

)
([s1, s1], [s1, s1])

(
[sμ−

34
, sμ+

34
], [sv−

34
, sv+34 ]

)
(
[sμ−

41
, sμ+

41
], [sv−

41
, sv+41 ]

) (
[s1/2, s1], [s1, s2]

) (
[sμ−

43
, sμ+

43
], [sv−

43
, sv+43 ]

)
([s1, s1], [s1, s1])

⎞
⎟⎟⎟⎟⎟⎠

R̃4 �

⎛
⎜⎜⎜⎜⎜⎝

([s1, s1], [s1, s1])
(
[sμ−

12
, sμ+

12
], [s1/3, s1]

) (
[s1, s2], [sv−

13
, sv+13 ]

) (
[s1/3, s1/2], [s1, s2]

)
(
[s1/3, s1], [sv−

21
, sv+21 ]

)
([s1, s1], [s1, s1])

(
[s2, s4], [s1/4, s1/3]

) (
[sμ−

24
, sμ+

24
], [sv−

24
, sv+24 ]

)
(
[sμ−

31
, sμ+

31
], [s1, s2]

) (
[s1/4, s1/3], [s2, s4]

)
([s1, s1], [s1, s1])

(
[s2, s3], [s1/4, s1/3]

)
(
[s1, s2], [s1/3, s1/2]

) (
[sμ−

42
, sμ+

42
], [sv−

42
, sv+42 ]

) (
[s1/4, s1/3], [s2, s3]

)
([s1, s1], [s1, s1])

⎞
⎟⎟⎟⎟⎟⎠

Next, we apply the algorithm listed in Subsection 6.2 to rank these four coal com-
panies following the above individual IVIMLPRs:

Step 1: For each individual incomplete IVIMLPR, the unknown linguistic variables
based on model (M-2) are derived as follows:{
r̃123 � ([s0.25, s0.25], [s3.17, s3.17])

r̃124 � ([s0.25, s0.4], [s2, s3.56])
,

{
r̃212 � ([s0.55, s0.87], [s1.14, s1.59])

r̃213 � ([s0.61, s1.14], [s0.66, s1.26])
,

⎧⎪⎪⎨
⎪⎪⎩

[
s3
μ−
13
, s3

μ+
13

]
� [s0.25, s0.5]

r̃314 � ([s0.4, s1.14], [s0.79, s2.52])

r̃334 � ([s0.63, s0.79], [s1.14, s1.59])

,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
s4
μ−
12
, s4

μ+
12

]
� [s0.2, s0.22]

[s4
v−
13
, s4

v+13
] � [s0.5, s1]

r̃424 � ([s1.15, s2.31], [s0.2, s0.21])

Step 2: Model (M-1) is used to judge the consistency of each individual complete
IVIMLPR, we have

f ∗
1 � 6.3561, f ∗

2 � 16.2957, f ∗
3 � 7.9552, f ∗

3 � 21.2655.

Step 3: For each individual complete IVIMLPR, the optimal 0–1 indictor variables
based on model (M-3) are obtained as:
{

α12 � α14 � 0, α13 � α24 � α34 � α23 � 1

β12 � β13 � β14 � β23 � β24 � β34 � 1
,

{
α12 � α14 � α13 � α24 � α34 � α23 � 1

β12 � β13 � β14 � β23 � β24 � β34 � 1{
α12 � α14 � α13 � α24 � α34 � α23 � 1

β12 � β13 � β14 � β23 � β24 � β34 � 1
,

{
α12 � 0, α13 � α14 � α24 � α34 � α23 � 1

β12 � β13 � β14 � β23 � β24 � β34 � 1

Using these 0–1 indicator variables, the individualQMILPRs can be derived. Taking
the individual complete IVIMLPR R̃1 for example, the associated individual QMIL-
PRs are
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Q̄1
1 �

⎛
⎜⎜⎝

[s1, s1] [s2, s1] [s0.5, s0.5] [s0.5, s0.25]
[s0.5, s1] [s1, s1] [s0.25, s0.31] [s0.25, s0.28]
[s2, s2] [s4, s3.17] [s1, s1] [s1, s1]
[s2, s4] [s4, s3.56] [s1, s1] [s1, s1]

⎞
⎟⎟⎠ ,

Q̄1
2 �

⎛
⎜⎜⎝

[s1, s1] [s2, s3] [s1, s1] [s0.5, s1]
[s0.5, s0.33] [s1, s1] [s0.25, s0.31] [s0.4, s0.5]
[s1, s1] [s4, s3.17] [s1, s1] [s3, s4]
[s2, s1] [s2.5, s2] [s0.33, s0.25] [s1, s1]

⎞
⎟⎟⎠

With respect to per individual QMILPR, the individual consistent QMILPRs based
on model (M-5) are obtained as:

Q̄1, ∗
1 �

⎛
⎜⎜⎝

[s1, s1] [s2, s1] [s0.5, s0.31] [s0.5, s0.28]
[s0.5, s1] [s1, s1] [s0.25, s0.31] [s0.25, s0.28]
[s2, s3.23] [s4, s3.23] [s1, s1] [s1, s0.9]
[s2, s3.57] [s4, s3.57] [s1, s1.11] [s1, s1]

⎞
⎟⎟⎠ ,

Q̄1, ∗
2 �

⎛
⎜⎜⎝

[s1, s1] [s2, s3] [s0.5, s0.93] [s0.8, s1.5]
[s0.5, s0.33] [s1, s1] [s0.25, s0.31] [s0.4, s0.5]
[s2, s1.08] [s4, s3.23] [s1, s1] [s1.6, s1.61]
[s1.25, s0.67] [s2.5, s2] [s0.62, s0.62] [s1, s1]

⎞
⎟⎟⎠

Q̄2, ∗
1 �

⎛
⎜⎜⎝

[s1, s1] [s0.55, s0.88] [s0.61, s0.79] [s0.33, s0.5]
[s1.82, s1.14] [s1, s1] [s1.11, s0.9] [s0.6, s0.57]
[s1.64, s1.26] [s0.9, s1.11] [s1, s1] [s0.54, s0.63]
[s3.03, s2] [s1.67, s1.76] [s1.85, s1.58] [s1, s1]

⎞
⎟⎟⎠ ,

Q̄2, ∗
2 �

⎛
⎜⎜⎝

[s1, s1] [s0.87, s0.88] [s1.14, s1.52] [s1, s2]
[s1.15, s1.14] [s1, s1] [s1.31, s1.73] [s1.15, s2.27]
[s0.88, s0.66] [s0.76, s0.58] [s1, s1] [s0.88, s1.32]
[s1, s0.5] [s0.87, s0.44] [s1.14, s0.76] [s1, s1]

⎞
⎟⎟⎠

Q̄3, ∗
1 �

⎛
⎜⎜⎝

[s1, s1] [s0.8, s0.8] [s0.63, s0.63] [s0.4, s0.4]
[s1.25, s1.25] [s1, s1] [s0.79, s0.79] [s0.5, s0.5]
[s1.58, s1.58] [s1.26, s1.26] [s1, s1] [s0.63, s0.63]
[s2.5, s2.52] [s2, s2] [s1.59, s1.59] [s1, s1]

⎞
⎟⎟⎠ ,

Q̄3, ∗
2 �

⎛
⎜⎜⎝

[s1, s1] [s1.14, s1.27] [s1.44, s1.44] [s1.14, s1.27]
[s0.88, s0.79] [s1, s1] [s1.27, s1.14] [s1, s1]
[s0.69, s0.69] [s0.79, s0.88] [s1, s1] [s0.79, s0.88]
[s0.88, s0.79] [s1, s1] [s1.27, s1.14] [s1, s1]

⎞
⎟⎟⎠

Q̄4, ∗
1 �

⎛
⎜⎜⎝

[s1, s1] [s0.22, s0.5] [s0.44, s1] [s0.33, s2.38]
[s4.55, s2] [s1, s1] [s2, s2] [s1.5, s4.76]
[s2.27, s1] [s0.5, s0.5] [s1, s1] [s0.75, s2.38]
[s3.03, s0.42] [s0.67, s0.21] [s1.33, s0.42] [s1, s1]

⎞
⎟⎟⎠ ,

Q̄4, ∗
2 �

⎛
⎜⎜⎝

[s1, s1] [s0.22, s1] [s0.88, s2] [s0.66, s5]
[s4.55, s1] [s1, s1] [s4, s2] [s3, s5]
[s1.14, s0.5] [s0.25, s0.5] [s1, s1] [s0.75, s2.5]
[s1.52, s0.2] [s0.33, s0.2] [s1.33, s0.4] [s1, s1]

⎞
⎟⎟⎠
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Step 4: Based on individual consistent QMILPRs, the weight vector on the DM set
based on model (M-6) is ω � (0.0447, 0.7283, 0.1841, 0.0429).

Step 5: The comprehensively consistent QMILPRs using formula (29) are derived
as:

Q̄∗
1 �

⎛
⎜⎜⎝

[s1, s1] [s0.6, s0.85] [s0.6, s0.73] [s0.35, s0.5]
[s1.67, s1.18] [s1, s1] [s1, s0.87] [s0.58, s0.59]
[s1.67, s1.36] [s1, s1.15] [s1, s1] [s0.58, s0.68]
[s2.87, s2] [s1.73, s1.7] [s1.73, s1.47] [s1, s1]

⎞
⎟⎟⎠ ,

Q̄∗
2 �

⎛
⎜⎜⎝

[s1, s1] [s0.89, s1] [s1.13, s1.49] [s1, s1.89]
[s1.12, s1] [s1, s1] [s1.27, s1.49] [s1.11, s1.89]
[s0.88, s0.67] [s0.79, s0.67] [s1, s1] [s0.88, s1.27]
[s1, s0.53] [s0.9, s0.53] [s1.14, s0.79] [s1, s1]

⎞
⎟⎟⎠

Step 6: Let Θ∗ � 0.9. Following formula (31), we have

GC I (R̃1) � 0.7644, GC I (R̃2) � 0.9831, GC I (R̃3) � 0.942, GC I (R̃4) � 0.7744

Step 7: Because GC I (R̃1) � min
1≤l≤4

GC I (R̃l ) � 0.7644 < 0.9. Model (M-7) is

adopted to improve the consensus level of individual consistent QMILPRs Q̄∗, 1
1 and

Q̄∗, 1
2 . Following formula (31), we have

GC I (R̃1) � 0.9052, GC I (R̃2) � 0.9866, GC I (R̃3) � 0.9365, GC I (R̃4) � 0.7791

Because GC I (R̃4) � min
1≤l≤4

GC I (R̃l ) � 0.7791 < 0.9, we need to use model

(M-7) to improve the consensus level of individual consistent QMILPRs Q̄∗, 4
1 and

Q̄∗, 4
2 , where the adjusted individual consistent QMILPRs are

Q̄1, ∗
1 �

⎛
⎜⎜⎝

[s1, s1] [s0.86, s1] [s0.5, s0.44] [s0.5, s0.4]
[s1.16, s1] [s1, s1] [s0.58, s0.44] [s0.58, s0.4]
[s2, s2.27] [s1.72, s2.27] [s1, s1] [s1, s0.9]
[s2, s2.52] [s1.72, s2.52] [s1, s1.11] [s1, s1]

⎞
⎟⎟⎠ ,

Q̄1, ∗
2 �

⎛
⎜⎜⎝

[s1, s1] [s0.89, s1] [s0.89, s0.93] [s0.8, s1.5]
[s1.12, s1] [s1, s1] [s1, s0.93] [s0.9, s1.5]
[s1.12, s1.07] [s1, s1.07] [s1, s1] [s0.9, s1.61]
[s1.25, s0.67] [s1.11, s0.67] [s1.11, s0.62] [s1, s1]

⎞
⎟⎟⎠

Q̄4, ∗
1 �

⎛
⎜⎜⎝

[s1, s1] [s0.22, s0.74] [s0.44, s1] [s0.33, s0.68]
[s4.55, s1.35] [s1, s1] [s2, s1.35] [s1.5, s0.92]
[s2.27, s1] [s0.5, s0.74] [s1, s1] [s0.75, s0.68]
[s3.03, s1.47] [s0.67, s1.09] [s1.33, s1.47] [s1, s1]

⎞
⎟⎟⎠ ,

Q̄4, ∗
2 �

⎛
⎜⎜⎝

[s1, s1] [s0.46, s1] [s0.88, s2] [s0.66, s2.54]
[s2.19, s1] [s1, s1] [s1.93, s2] [s1.44, s2.54]
[s1.14, s0.5] [s0.52, s0.5] [s1, s1] [s0.75, s1.27]
[s1.52, s0.39] [s0.69, s0.39] [s1.33, s0.79] [s1, s1]

⎞
⎟⎟⎠
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Furthermore, the corresponding comprehensive consistent QMILPRs are

Q̄∗
1 �

⎛
⎜⎜⎝

[s1, s1] [s0586, s0.86] [s0.6, s0.75] [s0.35, s0.48]
[s1.73, s1.16] [s1, s1] [s1.04, s0.87] [s0.6, s0.56]
[s1.67, s1.34] [s0.96, s1.15] [s1, s1] [s0.58, s0.64]
[s2.87, s2.08] [s1.66, s1.79] [s1.73, s1.55] [s1, s1]

⎞
⎟⎟⎠ ,

Q̄∗
2 �

⎛
⎜⎜⎝

[s1, s1] [s0.89, s0.95] [s1.16, s1.49] [s1, s1.83]
[s1.12, s1.05] [s1, s1] [s1.31, s1.57] [s1.12, s1.93]
[s0.86, s0.67] [s0.76, s0.64] [s1, s1] [s0.86, s1.23]
[s1, s0.55] [s0.89, s0.52] [s1.17, s0.81] [s1, s1]

⎞
⎟⎟⎠

Following formula (31), we have GC I (R̃1) � 0.908, GC I (R̃2) � 0.9864,
GC I (R̃3) � 0.9414, GC I (R̃4) � 0.9.

Step 8: Based on the comprehensively consistent QMILPRs Q̄∗
1 � (q̄∗

1, i j )n×n and

Q̄∗
2 � (q̄∗

2, i j )n×n , the comprehensively consistent IVIMLPR is

R̃∗ �

⎛
⎜⎜⎜⎜⎜⎝

([s1, s1], [s1, s1]) ([s0.58, s0.89], [s1.05, s1.16]) ([s0.6, s1.16], [s0.67, s1.34]) ([s0.35, s1], [s0.55, s2.08])

([s1.05, s1.16], [s0.58, s0.89]) ([s1, s1], [s1, s1]) ([s0.87, s1.31], [s0.64, s0.96]) ([s0.6, s1.12], [s0.52, s1.79])

([s0.67, s1.34], [s0.6, s1.16]) ([s0.64, s0.96], [s0.87, s1.31]) ([s1, s1], [s1, s1]) ([s0.58, s0.86], [s0.81, s1.55])

([s0.55, s2.08], [s0.35, s1]) ([s0.52, s1.79], [s0.6, s1.12]) ([s0.81, s1.55], [s0.58, s0.86]) ([s1, s1], [s1, s1])

⎞
⎟⎟⎟⎟⎟⎠

Furthermore, the interval-valued intuitionistic multiplicative linguistic priority
weight vector is

w̃1 � ([s0.59, s1.01], [s0.79, s1.34]), w̃2 � ([s0.86, s1.14], [s0.66, s1.11]),

w̃3 � ([s0.71, s1.03], [s0.81, s1.24]), w̃2 � ([s0.69, s1.55], [s0.59, s0.99])

Step 9: The scores based on formula (6) are V (w̃1) � 0.56, V (w̃2) � 1.33,
V (w̃3) � 0.72, V (w̃4) � 1.84. Thus, the ranking is x4 
 x2 
 x3 
 x1, namely, the
fourth coal company is the most suitable partner.

According to the comprehensively consistent IVIMLPR, one can easily check that
the ranking of these four coal companies is consistent with IVIMLVs in the compre-
hensively consistent IVIMLPR R̃∗ obtained from Step 8. It shows that formula (6)
is good to calculate the ranking values of objects from consistent IVIMLPR. Fur-
thermore, we can derive the following conclusion to show the rationality of ranking
results:

(1) The consistency definition for IVIMLPRs satisfies all properties of the consis-
tency concept for multiplicative linguistic preference relations, which ensures the
rationality of judging the consistency of IVIMLPRs;

(2) Missing linguistic judgements are determined based on the consistency analysis,
which makes the obtained linguistic judgements have the highest consistency
levelwith the known judgments. This ensures the smallest adjustment for deriving
the completely consistent IVIMLPRs. Therefore, it remains the original known
information as much as possible;

(3) Models for deriving completely consistent IVIMLPRs own the following three
desirable aspects: (i) they are based on associated QMILPRs with the highest
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consistency level, which ensures the smallest total adjustment; (ii) they permit
the endpoints of IVIMLVs to have different adjustments; (iii) they ensure to derive
completely consistent IVIMLPRs from associated consistent QMILPRs;

(4) The weights of the DMs are determined in an objective way that is based on the
consensus analysis. The closer the judgments of one DM to those of other DMs
are, the larger the weight of him/her will be.

(5) Model (M-7) can achieve the goals listed in the second paragraph on page 20.

All in all, the results obtained from the newmethod avoid the contradictory situation
and own the given consensus level, which ensures the reasonability and reliability.

Notably, IVIMLPRs are a new type of preference relations, and there are no pre-
vious methods that can be applied in this example. Thus, we cannot make numerical
comparison analysis with previous methods. However, IVIMLPRs as a more general
type of preference relations, which can be seen as an extension of several types of lin-
guistic preference relations, such as intuitionistic multiplicative linguistic preference
relations, multiplicative interval linguistic preference relations, and multiplicative lin-
guistic preference relations. Therefore, the new method can be directly applied such
types of preference relations.

8 Conclusion

To denote the asymmetrically uncertain preferred and non-preferred qualitative judg-
ments of DMs, this paper extended Xu’s multiplicative interval linguistic variables
(Xu 2006) to introduce IVIMLVs. Then, IVIMLPRs, whose elements are IVIMLVs,
are proposed. To derive the rational ranking of objects from IVIMLPRs, this paper
has studied the consistency of IVIMLPRs. Based on the defined consistency concept,
a mathematical optimization model for judging the consistency of IVIMLPRs is con-
structed. Meanwhile, mathematical optimization models for determining unknown
linguistic variables and deriving consistent IVIMLPRs have been established, respec-
tively. For GDM with IVIMLPRs, we have used individual QMILPRs to define a
consensus index and then build a mathematical optimization model to determine the
weights of DMs. Furthermore, when the individual consensus level is smaller than
the given consensus threshold, a mathematical optimization model for improving the
consensus level has been built.

Based on the above developed results, a method for GDM with incomplete and
inconsistent IVIMLPRs has been provided, and its application has been shown
using a practical GDM problem on evaluating supply chain partners. This paper
mainly focused on the theoretical aspect of decision making with IVIMLPRs. In
future, we will continue this research by studying other decision-making methods
with interval-valued intuitionistic multiplicative linguistic fuzzy information, such as
PROMETHEEmethod, ELECTREmethod, TOPSISmethod, andVIKORmethod.On
the other hand,wewill further study the application of the newalgorithm in other fields,
such as evaluating enterprise environment management, medical recommendation,
large project management, and risk assessment of complex ecological environment.
Although the new method owns several merits, it is based on the assumption that the
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DMs completely agree to the consistency and consensus adjustments. However, in
some situations, the DMs may conditionally agree with them. Therefore, it is better to
include the DMs’ opinions in these procedures. Furthermore, the optimization-based
procedure seems to a little complex, andwe shall continue to studyGDMwith IVIML-
PRs and introduce simpler decision making methods. Moreover, it does not study the
associated thresholds.
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